1751
|
Cao X, Li M. A New Pathway for Senescence Regulation. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 13:333-5. [PMID: 26777575 PMCID: PMC4747646 DOI: 10.1016/j.gpb.2015.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/12/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Xi Cao
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mo Li
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
1752
|
Abstract
Aging is a universal, intrinsic, and time-dependent biological decay that is linked to intricate cellular processes including cellular senescence, telomere shortening, stem cell exhaustion, mitochondrial dysfunction, and deregulated metabolism. Cellular senescence is accepted as one of the core processes of aging at the organism level. Understanding the molecular mechanism underlying senescence could facilitate the development of potential therapeutics for aging and age-related diseases. Recently, the discovery of long non-coding RNAs (lncRNA) provided insights into a novel regulatory layer that can intervene with cellular senescence. Increasing evidence indicates that targeting lncRNAs may impact on senescence pathways. In this review, we will focus on lncRNAs involved in mechanistic pathways governing cellular senescence.
Collapse
Affiliation(s)
- Ufuk Degirmenci
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sun Lei
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS, Singapore
- *Correspondence: Sun Lei,
| |
Collapse
|
1753
|
Ding Y, Chen J, Okon IS, Zou MH, Song P. Absence of AMPKα2 accelerates cellular senescence via p16 induction in mouse embryonic fibroblasts. Int J Biochem Cell Biol 2015; 71:72-80. [PMID: 26718972 DOI: 10.1016/j.biocel.2015.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/30/2015] [Accepted: 12/18/2015] [Indexed: 01/22/2023]
Abstract
Emerging evidence suggests that activation of adenosine monophosphate-activated protein kinase (AMPK), an energy gauge and redox sensor, delays aging process. However, the molecular mechanisms by which AMPKα isoform regulates cellular senescence remain largely unknown. The aim of this study was to determine if AMPKα deletion contributes to the accelerated cell senescence by inducing p16(INK4A) (p16) expression thereby arresting cell cycle. The markers of cellular senescence, cell cycle proteins, and reactive oxygen species (ROS) were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J), AMPKα1, or AMPKα2 homozygous deficient (AMPKα1(-/-), AMPKα2(-/-)) mice by Western blot and cellular immunofluorescence staining, as well as immunohistochemistry (IHC) in skin tissue of young and aged mice. Deletion of AMPKα2, the minor isoform of AMPKα, but not AMPKα1 in high-passaged MEFs led to spontaneous cell senescence demonstrated by accumulation of senescence-associated-β-galactosidase (SA-β-gal) staining and foci formation of heterochromatin protein 1 homolog gamma (HP1γ). It was shown here that AMPKα2 deletion upregulates cyclin-dependent kinase (CDK) inhibitor, p16, which arrests cell cycle. Furthermore, AMPKα2 null cells exhibited elevated ROS production. Interestingly, knockdown of HMG box-containing protein 1 (HBP1) partially blocked the cellular senescence of AMPKα2-deleted MEFs via the reduction of p16. Finally, dermal cells senescence, including fibroblasts senescence evidenced by the staining of p16, HBP1, and Ki-67, in the skin of aged AMPKα2(-/-) mice was enhanced when compared with that in wild type mice. Taken together, our results suggest that AMPKα2 isoform plays a fundamental role in anti-oxidant stress and anti-senescence.
Collapse
Affiliation(s)
- Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA
| | - Jie Chen
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA
| | - Imoh Sunday Okon
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
1754
|
Liu S, Uppal H, Demaria M, Desprez PY, Campisi J, Kapahi P. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Sci Rep 2015; 5:17895. [PMID: 26658759 PMCID: PMC4677323 DOI: 10.1038/srep17895] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and prevent certain cancers. Here, we show that simvastatin decreases the SASP of senescent human fibroblasts by inhibiting protein prenylation, without affecting the senescent growth arrest. The Rho family GTPases Rac1 and Cdc42 were activated in senescent cells, and simvastatin reduced both activities. Further, geranylgeranyl transferase, Rac1 or Cdc42 depletion reduced IL-6 secretion by senescent cells. We also show that simvastatin mitigates the effects of senescent conditioned media on breast cancer cell proliferation and endocrine resistance. Our findings identify a novel activity of simvastatin and mechanism of SASP regulation. They also suggest that senescent cells, which accumulate after radio/chemo therapy, promote endocrine resistance in breast cancer and that simvastatin might suppress this resistance.
Collapse
Affiliation(s)
- Su Liu
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Marco Demaria
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Pierre-Yves Desprez
- Buck Institute for Research on Aging, Novato, CA 94945, USA.,California Pacific Medical Center, Research Institute, San Francisco, CA 94107, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA.,Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
1755
|
Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 2015; 22:78-83. [PMID: 26657143 DOI: 10.1038/nm.4010] [Citation(s) in RCA: 1208] [Impact Index Per Article: 134.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/16/2015] [Indexed: 12/15/2022]
Abstract
Senescent cells (SCs) accumulate with age and after genotoxic stress, such as total-body irradiation (TBI). Clearance of SCs in a progeroid mouse model using a transgenic approach delays several age-associated disorders, suggesting that SCs play a causative role in certain age-related pathologies. Thus, a 'senolytic' pharmacological agent that can selectively kill SCs holds promise for rejuvenating tissue stem cells and extending health span. To test this idea, we screened a collection of compounds and identified ABT263 (a specific inhibitor of the anti-apoptotic proteins BCL-2 and BCL-xL) as a potent senolytic drug. We show that ABT263 selectively kills SCs in culture in a cell type- and species-independent manner by inducing apoptosis. Oral administration of ABT263 to either sublethally irradiated or normally aged mice effectively depleted SCs, including senescent bone marrow hematopoietic stem cells (HSCs) and senescent muscle stem cells (MuSCs). Notably, this depletion mitigated TBI-induced premature aging of the hematopoietic system and rejuvenated the aged HSCs and MuSCs in normally aged mice. Our results demonstrate that selective clearance of SCs by a pharmacological agent is beneficial in part through its rejuvenation of aged tissue stem cells. Thus, senolytic drugs may represent a new class of radiation mitigators and anti-aging agents.
Collapse
|
1756
|
O'Loghlen A, Brookes S, Martin N, Rapisarda V, Peters G, Gil J. CBX7 and miR-9 are part of an autoregulatory loop controlling p16(INK) (4a). Aging Cell 2015; 14:1113-21. [PMID: 26416703 PMCID: PMC4693451 DOI: 10.1111/acel.12404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2015] [Indexed: 11/27/2022] Open
Abstract
Polycomb repressive complexes (PRC1 and PRC2) are epigenetic regulators that act in coordination to influence multiple cellular processes including pluripotency, differentiation, cancer and senescence. The role of PRCs in senescence can be mostly explained by their ability to repress the INK4/ARF locus. CBX7 is one of five mammalian orthologues of Drosophila Polycomb that forms part of PRC1. Despite the relevance of CBX7 for regulating senescence and pluripotency, we have a limited understanding of how the expression of CBX7 is regulated. Here we report that the miR‐9 family of microRNAs (miRNAS) downregulates the expression of CBX7. In turn, CBX7 represses miR‐9‐1 and miR‐9‐2 as part of a regulatory negative feedback loop. The miR‐9/CBX7 feedback loop is a regulatory module contributing to induction of the cyclin‐dependent kinase inhibitor (CDKI) p16INK4a during senescence. The ability of the miR‐9 family to regulate senescence could have implications for understanding the role of miR‐9 in cancer and aging.
Collapse
Affiliation(s)
- Ana O'Loghlen
- Cell Proliferation Group; MRC Clinical Sciences Centre; Imperial College London; Hammersmith Campus London W12 0NN UK
- Molecular Oncology Laboratory; CRUK London Research Institute; 44 Lincoln's Inn Fields London WC2A 3LY UK
- Epigenetics & Cellular Senescence Group; Blizard Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; 4 Newark Street London E1 2AT UK
| | - Sharon Brookes
- Cell Proliferation Group; MRC Clinical Sciences Centre; Imperial College London; Hammersmith Campus London W12 0NN UK
- Molecular Oncology Laboratory; CRUK London Research Institute; 44 Lincoln's Inn Fields London WC2A 3LY UK
| | - Nadine Martin
- Cell Proliferation Group; MRC Clinical Sciences Centre; Imperial College London; Hammersmith Campus London W12 0NN UK
| | - Valentina Rapisarda
- Epigenetics & Cellular Senescence Group; Blizard Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; 4 Newark Street London E1 2AT UK
| | - Gordon Peters
- Molecular Oncology Laboratory; CRUK London Research Institute; 44 Lincoln's Inn Fields London WC2A 3LY UK
| | - Jesús Gil
- Cell Proliferation Group; MRC Clinical Sciences Centre; Imperial College London; Hammersmith Campus London W12 0NN UK
| |
Collapse
|
1757
|
Malavolta M, Orlando F, Piacenza F, Giacconi R, Costarelli L, Basso A, Lucarini G, Pierpaoli E, Provinciali M. Metallothioneins, longevity and cancer: Comment on "Deficiency of metallothionein-1 and -2 genes shortens the lifespan of the 129/Sv mouse strain". Exp Gerontol 2015; 73:28-30. [PMID: 26615880 DOI: 10.1016/j.exger.2015.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/01/2015] [Accepted: 11/22/2015] [Indexed: 02/04/2023]
Affiliation(s)
- M Malavolta
- Scientific and Technological pole, INRCA, Ancona, Italy.
| | - F Orlando
- Scientific and Technological pole, INRCA, Ancona, Italy
| | - F Piacenza
- Scientific and Technological pole, INRCA, Ancona, Italy
| | - R Giacconi
- Scientific and Technological pole, INRCA, Ancona, Italy
| | - L Costarelli
- Scientific and Technological pole, INRCA, Ancona, Italy
| | - A Basso
- Scientific and Technological pole, INRCA, Ancona, Italy
| | - G Lucarini
- Department of Molecular and Clinical Sciences, Histology, Polytechnic University of Marche Region, Ancona, Italy
| | - E Pierpaoli
- Scientific and Technological pole, INRCA, Ancona, Italy
| | - M Provinciali
- Scientific and Technological pole, INRCA, Ancona, Italy
| |
Collapse
|
1758
|
Bennett DC. Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell Melanoma Res 2015; 29:122-40. [PMID: 26386262 DOI: 10.1111/pcmr.12422] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
There are many links between cell senescence and the genetics of melanoma, meaning both familial susceptibility and somatic-genetic changes in sporadic melanoma. For example, CDKN2A, the best-known melanoma susceptibility gene, encodes two effectors of cell senescence, while other familial melanoma genes are related to telomeres and their maintenance. This article aimed to analyze our current knowledge of the genetic or epigenetic driver changes necessary to generate a cutaneous metastatic melanoma, the commonest order in which these occur, and the relation of these changes to the biology and pathology of melanoma progression. Emphasis is laid on the role of cell senescence and the escape from senescence leading to cellular immortality, the ability to divide indefinitely.
Collapse
Affiliation(s)
- Dorothy C Bennett
- Molecular Cell Sciences Research Centre, St George's, University of London, Cranmer Terrace, London, UK
| |
Collapse
|
1759
|
Xing Y, Zhang J, Lu L, Li D, Wang Y, Huang S, Li C, Zhang Z, Li J, Meng A. Identification of hub genes of pneumocyte senescence induced by thoracic irradiation using weighted gene co‑expression network analysis. Mol Med Rep 2015; 13:107-16. [PMID: 26572216 PMCID: PMC4686054 DOI: 10.3892/mmr.2015.4566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 10/14/2015] [Indexed: 01/03/2023] Open
Abstract
Irradiation commonly causes pneumocyte senescence, which may lead to severe fatal lung injury characterized by pulmonary dysfunction and respiratory failure. However, the molecular mechanism underlying the induction of pneumocyte senescence by irradiation remains to be elucidated. In the present study, weighted gene co-expression network analysis (WGCNA) was used to screen for differentially expressed genes, and to identify the hub genes and gene modules, which may be critical for senescence. A total of 2,916 differentially expressed genes were identified between the senescence and non-senescence groups following thoracic irradiation. In total, 10 gene modules associated with cell senescence were detected, and six hub genes were identified, including B-cell scaffold protein with ankyrin repeats 1, translocase of outer mitochondrial membrane 70 homolog A, actin filament-associated protein 1, Cd84, Nuf2 and nuclear factor erythroid 2. These genes were markedly associated with cell proliferation, cell division and cell cycle arrest. The results of the present study demonstrated that WGCNA of microarray data may provide further insight into the molecular mechanism underlying pneumocyte senescence.
Collapse
Affiliation(s)
- Yonghua Xing
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Junling Zhang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Lu Lu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Deguan Li
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Yueying Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Song Huang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Chengcheng Li
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Zhubo Zhang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Jianguo Li
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Aimin Meng
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| |
Collapse
|
1760
|
Di Mitri D, Alimonti A. Non-Cell-Autonomous Regulation of Cellular Senescence in Cancer. Trends Cell Biol 2015; 26:215-226. [PMID: 26564316 DOI: 10.1016/j.tcb.2015.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022]
Abstract
Cellular senescence is a permanent growth arrest that is broadly recognized to act as a barrier against tumorigenesis. Senescence is predominant in premalignant tumors, and senescence escape is thought to be required for tumor progression. Importantly, evidences indicate that cell-autonomous mechanisms, such as genetic alterations or therapeutic interventions targeting specific genetic pathways, can affect the senescence response in cancer. Nevertheless, new findings have emerged in the last few years that indicate a fundamental role for the tumor microenvironment in the regulation of cellular senescence. Indeed, cytokines belonging to the senescent secretome, as well as tumor-infiltrating immune subsets, have been described to modulate the senescence response in tumors. Such evidence demonstrates that senescence initiation also relies on non-cell-autonomous mechanisms, which are discussed in the present review.
Collapse
Affiliation(s)
- Diletta Di Mitri
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona 6500, Switzerland
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona 6500, Switzerland; Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1011, Switzerland.
| |
Collapse
|
1761
|
Leontieva OV, Blagosklonny MV. Tumor promoter-induced cellular senescence: cell cycle arrest followed by geroconversion. Oncotarget 2015; 5:12715-27. [PMID: 25587030 PMCID: PMC4350340 DOI: 10.18632/oncotarget.3011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 12/26/2014] [Indexed: 02/07/2023] Open
Abstract
Phorbol ester (PMA or TPA), a tumor promoter, can cause either proliferation or cell cycle arrest, depending on cellular context. For example, in SKBr3 breast cancer cells, PMA hyper-activates the MEK/MAPK pathway, thus inducing p21 and cell cycle arrest. Here we showed that PMA-induced arrest was followed by conversion to cellular senescence (geroconversion). Geroconversion was associated with active mTOR and S6 kinase (S6K). Rapamycin suppressed geroconversion, maintaining quiescence instead. In this model, PMA induced arrest (step one of a senescence program), whereas constitutively active mTOR drove geroconversion (step two). Without affecting Akt phosphorylation, PMA increased phosphorylation of S6K (T389) and S6 (S240/244), and that was completely prevented by rapamycin. Yet, T421/S424 and S235/236 (p-S6K and p-S6, respectively) phosphorylation became rapamycin-insensitive in the presence of PMA. Either MEK or mTOR was sufficient to phosphorylate these PMA-induced rapamycin-resistant sites because co-treatment with U0126 and rapamycin was required to abrogate them. We next tested whether activation of rapamycin-insensitive pathways would shift quiescence towards senescence. In HT-p21 cells, cell cycle arrest was caused by IPTG-inducible p21 and was spontaneously followed by mTOR-dependent geroconversion. Rapamycin suppressed geroconversion, whereas PMA partially counteracted the effect of rapamycin, revealing the involvement of rapamycin-insensitive gerogenic pathways. In normal RPE cells arrested by serum withdrawal, the mTOR/pS6 pathway was inhibited and cells remained quiescent. PMA transiently activated mTOR, enabling partial geroconversion. We conclude that PMA can initiate a senescent program by either inducing arrest or fostering geroconversion or both. Rapamycin can decrease gero-conversion by PMA, without preventing PMA-induced arrest. The tumor promoter PMA is a gero-promoter, which may be useful to study aging in mammals.
Collapse
Affiliation(s)
- Olga V Leontieva
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | |
Collapse
|
1762
|
Le Roux I, Konge J, Le Cam L, Flamant P, Tajbakhsh S. Numb is required to prevent p53-dependent senescence following skeletal muscle injury. Nat Commun 2015; 6:8528. [PMID: 26503169 PMCID: PMC4639798 DOI: 10.1038/ncomms9528] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/01/2015] [Indexed: 12/29/2022] Open
Abstract
Regeneration relies on coordinated action of multiple cell types to reconstitute the damaged tissue. Here we inactivate the endocytic adaptor protein Numb in skeletal muscle stem cells prior to chronic or severe muscle injury in mice. We observe two types of senescence in regenerating muscle; a transient senescence in non-myogenic cells of control and Numb mutant mice that partly depends on INK4a/ARF activity, and a persistent senescence in myogenic cells lacking Numb. The senescence levels of Numb-deficient muscle is reduced to wild type levels by an anti-oxidant treatment or p53 ablation, resulting in functional rescue of the regenerative potential in Numb mutants. Ex vivo experiments suggest that Numb-deficient senescent cells recruit macrophages to sustain inflammation and drive fibrosis, two hallmarks of the impaired muscle regeneration in Numb mutants. These findings provide insights into previously reported developmental and oncogenic senescence that are also differentially regulated by p53.
Collapse
Affiliation(s)
- Isabelle Le Roux
- Department of Developmental and Stem Cell Biology, Stem Cells and Development, CNRS URA 2578, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France
| | - Julie Konge
- Department of Developmental and Stem Cell Biology, Stem Cells and Development, CNRS URA 2578, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France
| | - Laurent Le Cam
- Molecular Basis of Carcinogenesis, Institut de Recherche en Cancérologie de Montpellier, 208 rue des Apothicaires, Montpellier, cedex 5 34298, France
| | - Patricia Flamant
- Human Histopathology and Animal Models, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell Biology, Stem Cells and Development, CNRS URA 2578, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France
| |
Collapse
|
1763
|
Abstract
Given the irreversible nature of nephron loss, aging of the kidney is of special interest to diagnostic and toxicologic pathologists. There are many similarities among histologic lesions in aged human and canine kidneys, including increased frequency of glomerulosclerosis, interstitial fibrosis, and tubular atrophy. Unfortunately, there are few studies in which renal tissue from aged healthy dogs was adequately examined with advanced diagnostics—namely, transmission electron microscopy and immunofluorescence—so age-associated changes in canine podocytes and glomerular basement membranes are poorly characterized. An age-associated decrease in the glomerular filtration rate in humans and dogs (specifically small breed dogs) has been documented. Although lesions in aged rats and mice differ somewhat from those of aged dogs and humans, the knowledge gained from rodent models is still vital to elucidating the pathogenesis of age-associated renal disease. Many novel molecules implicated in renal aging have been identified through genetically modified rodent models and transcriptomic and proteomic analysis of human kidneys. These molecules represent intriguing therapeutic targets and diagnostic biomarkers. Likewise, influencing critical pathways of cellular aging, such as telomere shortening, cellular senescence, and autophagy, could improve renal function in the elderly.
Collapse
Affiliation(s)
- R. E. Cianciolo
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - S. L. Benali
- Dipartimento di Biomedicina comparata e Alimentazione, Università di Padova, Legnaro, Italy
| | - L. Aresu
- Dipartimento di Biomedicina comparata e Alimentazione, Università di Padova, Legnaro, Italy
| |
Collapse
|
1764
|
Adrados I, Larrasa-Alonso J, Galarreta A, López-Antona I, Menéndez C, Abad M, Gil J, Moreno-Bueno G, Palmero I. The homeoprotein SIX1 controls cellular senescence through the regulation of p16INK4A and differentiation-related genes. Oncogene 2015; 35:3485-94. [PMID: 26500063 DOI: 10.1038/onc.2015.408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/04/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022]
Abstract
Cellular senescence is an antiproliferative response with essential functions in tumor suppression and tissue homeostasis. Here we show that SIX1, a member of the SIX family of homeobox transcriptional factors, is a novel repressor of senescence. Our data show that SIX1 is specifically downregulated in fibroblasts upon oncogenic stress and other pro-senescence stimuli, as well as in senescent skin premalignant lesions. Silencing of SIX1 in human fibroblasts suffices to trigger senescence, which is mediated by p16INK4A and lacks a canonical senescence-associated secretory phenotype. Interestingly, SIX1-associated senescence is further characterized by the expression of a set of development and differentiation-related genes that significantly overlap with genes associated with SIX1 in organogenesis or human tumors, and show coincident regulation in oncogene-induced senescence. Mechanistically, we show that gene regulation by SIX1 during senescence is mediated, at least in part, by cooperation with Polycomb repressive complexes. In summary, our results identify SIX1, a key development regulator altered in human tumors, as a critical repressor of cellular senescence, providing a novel connection between senescence, differentiation and tumorigenesis.
Collapse
Affiliation(s)
- I Adrados
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - J Larrasa-Alonso
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - A Galarreta
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - I López-Antona
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - C Menéndez
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - M Abad
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - J Gil
- Cell Proliferation Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London, UK
| | - G Moreno-Bueno
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.,Departamento de Bioquímica, UAM, IdiPAZ (Instituto de Investigación Sanitaria La Paz) and Fundación MD Anderson Internacional, Madrid, Spain
| | - I Palmero
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| |
Collapse
|
1765
|
Serrano M. The InflammTORy Powers of Senescence. Trends Cell Biol 2015; 25:634-636. [PMID: 26471225 DOI: 10.1016/j.tcb.2015.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/07/2023]
Abstract
Cellular senescence is accompanied by secretion of cytokines and ensuing inflammation. Recent work reveals that mTOR is crucial for the secretory phenotype of senescent cells. These findings open the possibility of disabling the pathological effects of senescence with mTOR inhibitors and may explain the anti-aging properties of rapamycin.
Collapse
Affiliation(s)
- Manuel Serrano
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
1766
|
Density-gradient centrifugation enables the purification of cultured corneal endothelial cells for cell therapy by eliminating senescent cells. Sci Rep 2015; 5:15005. [PMID: 26443440 PMCID: PMC4595725 DOI: 10.1038/srep15005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/11/2015] [Indexed: 12/13/2022] Open
Abstract
The corneal endothelium is essential for maintaining corneal transparency; therefore, corneal endothelial dysfunction causes serious vision loss. Tissue engineering-based therapy is potentially a less invasive and more effective therapeutic modality. We recently started a first-in-man clinical trial of cell-based therapy for treating corneal endothelial dysfunction in Japan. However, the senescence of corneal endothelial cells (CECs) during the serial passage culture needed to obtain massive quantities of cells for clinical use is a serious technical obstacle preventing the push of this regenerative therapy to clinical settings. Here, we show evidence from an animal model confirming that senescent cells are less effective in cell therapy. In addition, we propose that density-gradient centrifugation can eliminate the senescent cells and purify high potency CECs for clinical use. This simple technique might be applicable for other types of cells in the settings of regenerative medicine.
Collapse
|
1767
|
Mou H, Brazauskas K, Rajagopal J. Personalized medicine for cystic fibrosis: establishing human model systems. Pediatr Pulmonol 2015; 50 Suppl 40:S14-23. [PMID: 26335952 DOI: 10.1002/ppul.23233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/26/2015] [Indexed: 12/16/2022]
Abstract
With over 1,500 identifiable mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that result in distinct functional and phenotypical abnormalities, it is virtually impossible to perform randomized clinical trials to identify the best therapeutics for all patients. Therefore, a personalized medicine approach is essential. The only way to realistically accomplish this is through the development of improved in vitro human model systems. The lack of a readily available and infinite supply of human CFTR-expressing airway epithelial cells is a key bottleneck. We propose that a concerted two-pronged approach is necessary for patient-specific cystic fibrosis research to continue to prosper and realize its potential: (1) more effective culture and differentiation conditions for growing primary human airway and nasal epithelial cells and (2) the development of collective protocols for efficiently differentiating disease- and patient-specific induced pluripotent stem cells (iPSC) into pure populations of adult epithelial cells. Ultimately, we need a personalized human model system for cystic fibrosis with the capacity for uncomplicated bankability, widespread availability, and universal applicability for patient-specific disease modeling, novel pharmacotherapy investigation and screening, and readily executable genetic modification.
Collapse
Affiliation(s)
- Hongmei Mou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Karissa Brazauskas
- Pediatric Pulmonary Medicine, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Pulmonary Critical Care Unit, Internal Medicine and Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
1768
|
Bargiela-Iparraguirre J, Prado-Marchal L, Pajuelo-Lozano N, Jiménez B, Perona R, Sánchez-Pérez I. Mad2 and BubR1 modulates tumourigenesis and paclitaxel response in MKN45 gastric cancer cells. Cell Cycle 2015; 13:3590-601. [PMID: 25483095 DOI: 10.4161/15384101.2014.962952] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aneuploidy and chromosomal instability (CIN) are common features of gastric cancer (GC), but their contribution to carcinogenesis and antitumour therapy response is still poorly understood. Failures in the mitotic checkpoint induced by changes in expression levels of the spindle assembly checkpoint (SAC) proteins cause the missegregation of chromosomes in mitosis as well as aneuploidy. To evaluate the possible contribution of SAC to GC, we analyzed the expression levels of proteins of the mitotic checkpoint complex in a cohort of GC cell lines. We found that the central SAC proteins, Mad2 and BubR1, were the more prominently expressed members in disseminated GC cell lines. Silencing of Mad2 and BubR1 in MKN45 and ST2957 cells decreased their cell proliferation, migration and invasion abilities, indicating that Mad2 and BubR1 could contribute to cellular transformation and tumor progression in GC. We next evaluated whether silencing of SAC proteins could affect the response to microtubule poisons. We discovered that paclitaxel treatment increased cell survival in MKN45 cells interfered for Mad2 or BubR1 expression. However, apoptosis (assessed by caspase-3 activation, PARP proteolysis and levels of antiapoptotic Bcl 2-family members), the DNA damage response (assessed by H2Ax phosphorylation) and exit from mitosis (assessed by Cyclin B degradation and Cdk1 regulation) were activated equally between cells, independently of Mad2 or BubR1-protein levels. In contrast, we observed that the silencing of Mad2 or BubR1 in MKN45 cells showed the induction of a senescence-like phenotype accompanied by cell enlargement, increased senescence-associated β-galactosidase activity and increased IL-6 and IL-8 expression. In addition, the senescent phenotype is highly increased after treatment with PTX, indicating that senescence could prevent tumorigenesis in GC. In conclusion, the results presented here suggest that Mad2 and BubR1 could be used as prognostic markers of tumor progression and new pharmacological targets in the treatment for GC.
Collapse
Key Words
- BMC, bleomycin
- BubR1
- BubR1, budding uninhibited by benzimidazoles 1 homolog B protein (gene BUB1B)
- CDDP, cisplatin
- CIN, chromosome instability
- DDR, DNA damage response
- Mad2
- Mad2, mitotic arrest deficient-like-1 protein (gene Mad2L1)
- Monopolar Spindle kinase, MPS1
- PTX, paclitaxel
- SAC, spindle assembly checkpoint
- SASP, senescence associate secretory phenotype
- apoptosis
- gastric cancer
- mitosis
- paclitaxel
- senescence
- γH2AX, phosphorylated H2AX
Collapse
|
1769
|
Sousa-Victor P, Perdiguero E, Muñoz-Cánoves P. Geroconversion of aged muscle stem cells under regenerative pressure. Cell Cycle 2015; 13:3183-90. [PMID: 25485497 DOI: 10.4161/15384101.2014.965072] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regeneration of skeletal muscle relies on a population of quiescent stem cells (satellite cells) and is impaired in very old (geriatric) individuals undergoing sarcopenia. Stem cell function is essential for organismal homeostasis, providing a renewable source of cells to repair damaged tissues. In adult organisms, age-dependent loss-of-function of tissue-specific stem cells is causally related with a decline in regenerative potential. Although environmental manipulations have shown good promise in the reversal of these conditions, recently we demonstrated that muscle stem cell aging is, in fact, a progressive process that results in persistent and irreversible changes in stem cell intrinsic properties. Global gene expression analyses uncovered an induction of p16(INK4a) in satellite cells of physiologically aged geriatric and progeric mice that inhibits satellite cell-dependent muscle regeneration. Aged satellite cells lose the repression of the INK4a locus, which switches stem cell reversible quiescence into a pre-senescent state; upon regenerative or proliferative pressure, these cells undergo accelerated senescence (geroconversion), through Rb-mediated repression of E2F target genes. p16(INK4a) silencing rejuvenated satellite cells, restoring regeneration in geriatric and progeric muscles. Thus, p16(INK4a)/Rb-driven stem cell senescence is causally implicated in the intrinsic defective regeneration of sarcopenic muscle. Here we discuss on how cellular senescence may be a common mechanism of stem cell aging at the organism level and show that induction of p16(INK4a) in young muscle stem cells through deletion of the Polycomb complex protein Bmi1 recapitulates the geriatric phenotype.
Collapse
|
1770
|
Abstract
Cellular senescence happens in 2 steps: cell cycle arrest followed, or sometimes preceded, by gerogenic conversion (geroconversion). Geroconvesrion is a form of growth, a futile growth during cell cycle arrest. It converts reversible arrest to irreversible senescence. Geroconversion is driven by growth-promoting, mitogen-/nutrient-sensing pathways such as mTOR. Geroconversion leads to hyper-secretory, hypertrophic and pro-inflammatory cellular phenotypes, hyperfunctions and malfunctions. On organismal level, geroconversion leads to age-related diseases and death. Rapamycin, a gerosuppressant, extends life span in diverse species from yeast to mammals. Stress-and oncogene-induced accelerated senescence, replicative senescence in vitro and life-long cellular aging in vivo all can be described by 2-step model.
Collapse
|
1771
|
Gonzalez LC, Ghadaouia S, Martinez A, Rodier F. Premature aging/senescence in cancer cells facing therapy: good or bad? Biogerontology 2015; 17:71-87. [DOI: 10.1007/s10522-015-9593-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/22/2015] [Indexed: 01/07/2023]
|
1772
|
Behnia F, Taylor BD, Woodson M, Kacerovsky M, Hawkins H, Fortunato SJ, Saade GR, Menon R. Chorioamniotic membrane senescence: a signal for parturition? Am J Obstet Gynecol 2015; 213:359.e1-16. [PMID: 26025293 DOI: 10.1016/j.ajog.2015.05.041] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/30/2015] [Accepted: 05/18/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Senescence is an important biological phenomenon involved in both physiologic and pathologic processes. We propose that chorioamniotic membrane senescence is a mechanism associated with human parturition. The present study was conducted to explore the association between senescence and normal term parturition by examining the morphologic and biochemical evidences in chorioamniotic membranes. STUDY DESIGN Chorioamniotic membranes were collected from normal term deliveries; group 1: term labor and group 2: term, not in labor. Senescence-related morphologic changes were determined by transmission electron microscopy and biochemical changes were studied by senescence-associated (SA) β-galactosidase staining. Amniotic fluid samples collected from both term labor and term not in labor were analyzed for 14 SA secretory phenotype (SASP) markers. RESULTS Morphologic evidence of cellular senescence (enlarged cells and organelles) and a higher number of SA β-galactosidase-stained amnion and chorion cells were observed in chorioamniotic membranes obtained from women in labor at term, when compared to term not in labor. The concentration of proinflammatory SASP markers (granulocyte macrophage colony-stimulating factor, interleukin-6 and -8) was significantly higher in the amniotic fluid of women in labor at term than women not in labor. In contrast, SASP factors that protect against cell death (eotaxin-1, soluble Fas ligand, osteoprotegerin, and intercellular adhesion molecule-1) were significantly lower in the amniotic fluid samples from term labor. CONCLUSION Morphologic and biochemical features of senescence were more frequent in chorioamniotic membranes from women who experienced term labor. Senescence of chorioamniotic membranes were also associated with amniotic fluid SASP markers.
Collapse
Affiliation(s)
- Faranak Behnia
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics, Texas A&M University Health Science Center, College Station, TX
| | - Michael Woodson
- Electron Microscopy Core Laboratory, University of Texas Medical Branch, Galveston, TX
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, Charles University, Hradec Kralove, Czech Republic
| | - Hal Hawkins
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | | | - George R Saade
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
1773
|
Adnot S, Amsellem V, Boyer L, Marcos E, Saker M, Houssaini A, Kebe K, Dagouassat M, Lipskaia L, Boczkowski J. Telomere Dysfunction and Cell Senescence in Chronic Lung Diseases: Therapeutic Potential. Pharmacol Ther 2015; 153:125-34. [DOI: 10.1016/j.pharmthera.2015.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/15/2015] [Indexed: 12/27/2022]
|
1774
|
de Oliveira LR, Mombach JCM, Castellani G. A simple stochastic model for the feedback circuit between p16INK4a and p53 mediated by p38MAPK: implications for senescence and apoptosis. MOLECULAR BIOSYSTEMS 2015; 11:2955-63. [PMID: 26281034 DOI: 10.1039/c5mb00230c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mechanisms leading to the cell fate decision between apoptosis and senescence upon DNA damage are still unclear and have stochastic features. Cellular oxidative stress can generate DNA damage and activate the important mitogen-activated protein kinase 14 (p38MAPK) that is involved in pathologies like Alzheimer's disease. Based on experimental evidence we propose a simple network that might operate at the core of the cell control machinery for the choice between apoptosis and senescence involving the cross-talk between p38MAPK, the tumor suppressor protein p53 and the cyclin-dependent kinase inhibitor (p16INK4a). We have performed two types of analyses, deterministic and stochastic, exploring the system's parameter space, in the first, we calculated the fixed points of the deterministic model and, in the second, we numerically integrated the master equation for the stochastic version. The model shows a variety of behaviors dependent on the parameters including states of high expression levels of p53 or p16INK4a that can be associated with an apoptotic or senescent phenotype, respectively, in agreement with experimental data. In addition, we observe both monostable and bistable behavior (where bistability is a phenomenon in which two stable steady states coexist for a fixed set of control parameter values) which here we suggest to be involved in the cell fate decision problem.
Collapse
Affiliation(s)
- L R de Oliveira
- Physics Department, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| | | | | |
Collapse
|
1775
|
Morancho B, Martínez-Barriocanal Á, Villanueva J, Arribas J. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res 2015; 17:106. [PMID: 26260680 PMCID: PMC4532141 DOI: 10.1186/s13058-015-0619-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/16/2015] [Indexed: 01/07/2023] Open
Abstract
Introduction Cellular senescence is a terminal cell proliferation arrest that can be triggered by oncogenes. One of the traits of oncogene-induced senescence (OIS) is the so-called senescence-associated secretory phenotype or senescence secretome. Depending on the context, the non-cell autonomous effects of OIS may vary from tumor suppression to promotion of metastasis. Despite being such a physiological and pathologically relevant effector, the mechanisms of generation of the senescence secretome are largely unknown. Methods We analyzed by label-free proteomics the secretome of p95HER2-induced senescent cells and compared the levels of the membrane-anchored proteins with their transcript levels. Then, protein and RNA levels of ADAM17 were evaluated by using Western blot and reverse transcription-polymerase chain reaction, its localization by using biotin labeling and immunofluorescence, and its activity by using alkaline phosphatase-tagged substrates. The p95HER2-expressing cell lines, senescent MCF7 and proliferating MCF10A, were analyzed to study ADAM17 regulation. Finally, we knocked down ADAM17 to determine its contribution to the senescence-associated secretome. The effect of this secretome was evaluated in migration assays in vitro and in nude mice by assessing the metastatic ability of orthotopically co-injected non-senescent cells. Results Using breast cancer cells expressing p95HER2, a constitutively active fragment of the proto-oncogene HER2 that induces OIS, we show that the extracellular domains of a variety of membrane-bound proteins form part of the senescence secretome. We determine that these proteins are regulated transcriptionally and, in addition, that their shedding is limited by the protease ADAM17. The activity of the sheddase is constrained, at least in part, by the accumulation of cellular cholesterol. The blockade of ADAM17 abrogates several prometastatic effects of the p95HER2-induced senescence secretome, both in vitro and in vivo. Conclusions Considering these findings, we conclude that ectodomain shedding is tightly regulated in oncogene-induced senescent cells by integrating transcription of the shedding substrates with limiting ADAM17 activity. The remaining activity of ADAM17 contributes to the non-cell autonomous protumorigenic effects of p95HER2-induced senescent cells. Because ADAM17 is druggable, these results represent an approximation to the pharmacological regulation of the senescence secretome. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0619-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beatriz Morancho
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain.
| | - Águeda Martínez-Barriocanal
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain.
| | - Josep Villanueva
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain.
| | - Joaquín Arribas
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain. .,Department of Biochemistry and Molecular Biology, Building M, Campus UAB, Bellaterra (Cerdanyola del Valles), Barcelona, 08193, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
1776
|
Abstract
Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders.
Collapse
Affiliation(s)
- Ao Bian
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Javier A Neyra
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| | - Ming Zhan
- Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX, USA
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
1777
|
Piera-Velazquez S, Jimenez SA. Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis. Curr Rheumatol Rep 2015; 17:473. [PMID: 25475596 DOI: 10.1007/s11926-014-0473-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Scleroderma Center, Thomas Jefferson University, 233 South 10th Street, Suite 509 BLSB, Philadelphia, PA, 19107, USA
| | | |
Collapse
|
1778
|
Takebayashi SI, Tanaka H, Hino S, Nakatsu Y, Igata T, Sakamoto A, Narita M, Nakao M. Retinoblastoma protein promotes oxidative phosphorylation through upregulation of glycolytic genes in oncogene-induced senescent cells. Aging Cell 2015; 14:689-97. [PMID: 26009982 PMCID: PMC4531082 DOI: 10.1111/acel.12351] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2015] [Indexed: 12/13/2022] Open
Abstract
Metabolism is closely linked with cellular state and biological processes, but the mechanisms controlling metabolic properties in different contexts remain unclear. Cellular senescence is an irreversible growth arrest induced by various stresses, which exhibits active secretory and metabolic phenotypes. Here, we show that retinoblastoma protein (RB) plays a critical role in promoting the metabolic flow by activating both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) in cells that have undergone oncogene-induced senescence (OIS). A combination of real-time metabolic monitoring, and metabolome and gene expression analyses showed that OIS-induced fibroblasts developed an accelerated metabolic flow. The loss of RB downregulated a series of glycolytic genes and simultaneously reduced metabolites produced from the glycolytic pathway, indicating that RB upregulates glycolytic genes in OIS cells. Importantly, both mitochondrial OXPHOS and glycolytic activities were abolished in RB-depleted or downstream glycolytic enzyme-depleted OIS cells, suggesting that RB-mediated glycolytic activation induces a metabolic flux into the OXPHOS pathway. Collectively, our findings reveal that RB essentially functions in metabolic remodeling and the maintenance of the active energy production in OIS cells.
Collapse
Affiliation(s)
- Shin-ichiro Takebayashi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamoto, Japan
- Program for Leading Graduate Schools ‘HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program’, Kumamoto UniversityKumamoto, Japan
| | - Hiroshi Tanaka
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamoto, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamoto, Japan
| | - Yuko Nakatsu
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamoto, Japan
| | - Tomoka Igata
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamoto, Japan
| | - Akihisa Sakamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamoto, Japan
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridge, UK
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamoto, Japan
- Program for Leading Graduate Schools ‘HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program’, Kumamoto UniversityKumamoto, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology AgencyTokyo, Japan
| |
Collapse
|
1779
|
Prashanth Kumar B, Rajput S, Bharti R, Parida S, Mandal M. BI2536 – A PLK inhibitor augments paclitaxel efficacy in suppressing tamoxifen induced senescence and resistance in breast cancer cells. Biomed Pharmacother 2015; 74:124-32. [DOI: 10.1016/j.biopha.2015.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 07/09/2015] [Indexed: 02/02/2023] Open
|
1780
|
Haupt S, Buckley D, Pang JMB, Panimaya J, Paul PJ, Gamell C, Takano EA, Lee YY, Hiddingh S, Rogers TM, Teunisse AFAS, Herold MJ, Marine JC, Fox SB, Jochemsen A, Haupt Y. Targeting Mdmx to treat breast cancers with wild-type p53. Cell Death Dis 2015; 6:e1821. [PMID: 26181202 PMCID: PMC4650725 DOI: 10.1038/cddis.2015.173] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/15/2015] [Accepted: 05/22/2015] [Indexed: 01/07/2023]
Abstract
The function of the tumor suppressor p53 is universally compromised in cancers. It is the most frequently mutated gene in human cancers (reviewed). In cases where p53 is not mutated, alternative regulatory pathways inactivate its tumor suppressive functions. This is primarily achieved through elevation in the expression of the key inhibitors of p53: Mdm2 or Mdmx (also called Mdm4) (reviewed). In breast cancer (BrCa), the frequency of p53 mutations varies markedly between the different subtypes, with basal-like BrCas bearing a high frequency of p53 mutations, whereas luminal BrCas generally express wild-type (wt) p53. Here we show that Mdmx is unexpectedly highly expressed in normal breast epithelial cells and its expression is further elevated in most luminal BrCas, whereas p53 expression is generally low, consistent with wt p53 status. Inducible knockdown (KD) of Mdmx in luminal BrCa MCF-7 cells impedes the growth of these cells in culture, in a p53-dependent manner. Importantly, KD of Mdmx in orthotopic xenograft transplants resulted in growth inhibition associated with prolonged survival, both in a preventative model and also in a treatment model. Growth impediment in response to Mdmx KD was associated with cellular senescence. The growth inhibitory capacity of Mdmx KD was recapitulated in an additional luminal BrCa cell line MPE600, which expresses wt p53. Further, the growth inhibitory capacity of Mdmx KD was also demonstrated in the wt p53 basal-like cell line SKBR7 line. These results identify Mdmx growth dependency in wt p53 expressing BrCas, across a range of subtypes. Based on our findings, we propose that Mdmx targeting is an attractive strategy for treating BrCas harboring wt p53.
Collapse
Affiliation(s)
- S Haupt
- Tumor Suppression Laboratory, Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - D Buckley
- Tumor Suppression Laboratory, Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - J-M B Pang
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - J Panimaya
- Tumor Suppression Laboratory, Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - P J Paul
- Tumor Suppression Laboratory, Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - C Gamell
- Tumor Suppression Laboratory, Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - E A Takano
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Y Ying Lee
- Tumor Suppression Laboratory, Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - S Hiddingh
- Tumor Suppression Laboratory, Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - T-M Rogers
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - A F A S Teunisse
- Department of Molecular Cell Biology, University Medical Centre, Leiden, The Netherlands
| | - M J Herold
- 1] Department of Molecular Genetics of Cancer, The Walter and Eliza Hall Institute, Parkville, Victoria, Australia [2] Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - J-C Marine
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - S B Fox
- 1] Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - A Jochemsen
- Department of Molecular Cell Biology, University Medical Centre, Leiden, The Netherlands
| | - Y Haupt
- 1] Tumor Suppression Laboratory, Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia [3] Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [4] Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
1781
|
The DNA damage response and immune signaling alliance: Is it good or bad? Nature decides when and where. Pharmacol Ther 2015; 154:36-56. [PMID: 26145166 DOI: 10.1016/j.pharmthera.2015.06.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/15/2022]
Abstract
The characteristic feature of healthy living organisms is the preservation of homeostasis. Compelling evidence highlight that the DNA damage response and repair (DDR/R) and immune response (ImmR) signaling networks work together favoring the harmonized function of (multi)cellular organisms. DNA and RNA viruses activate the DDR/R machinery in the host cells both directly and indirectly. Activation of DDR/R in turn favors the immunogenicity of the incipient cell. Hence, stimulation of DDR/R by exogenous or endogenous insults triggers innate and adaptive ImmR. The immunogenic properties of ionizing radiation, a prototypic DDR/R inducer, serve as suitable examples of how DDR/R stimulation alerts host immunity. Thus, critical cellular danger signals stimulate defense at the systemic level and vice versa. Disruption of DDR/R-ImmR cross talk compromises (multi)cellular integrity, leading to cell-cycle-related and immune defects. The emerging DDR/R-ImmR concept opens up a new avenue of therapeutic options, recalling the Hippocrates quote "everything in excess is opposed by nature."
Collapse
|
1782
|
Abstract
'Cellular senescence', a term originally defining the characteristics of cultured cells that exceed their replicative limit, has been broadened to describe durable states of proliferative arrest induced by disparate stress factors. Proposed relationships between cellular senescence, tumour suppression, loss of tissue regenerative capacity and ageing suffer from lack of uniform definition and consistently applied criteria. Here, we highlight caveats in interpreting the importance of suboptimal senescence-associated biomarkers, expressed either alone or in combination. We advocate that more-specific descriptors be substituted for the now broadly applied umbrella term 'senescence' in defining the suite of diverse physiological responses to cellular stress.
Collapse
Affiliation(s)
- Norman E Sharpless
- Department of Medicine and Genetics and The Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7295, USA
| | - Charles J Sherr
- Department of Tumor Cell Biology and The Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, USA
| |
Collapse
|
1783
|
Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL. Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity. Diabetes 2015; 64:2289-98. [PMID: 26106186 PMCID: PMC4477358 DOI: 10.2337/db14-1820] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cellular senescence is a fundamental aging mechanism that has been implicated in many age-related diseases and is a significant cause of tissue dysfunction. Accumulation of senescent cells occurs during aging and is also seen in the context of obesity and diabetes. Senescent cells may play a role in type 2 diabetes pathogenesis through direct impact on pancreatic β-cell function, senescence-associated secretory phenotype (SASP)-mediated tissue damage, and involvement in adipose tissue dysfunction. In turn, metabolic and signaling changes seen in diabetes, such as high circulating glucose, altered lipid metabolism, and growth hormone axis perturbations, can promote senescent cell formation. Thus, senescent cells might be part of a pathogenic loop in diabetes, as both a cause and consequence of metabolic changes and tissue damage. Therapeutic targeting of a basic aging mechanism such as cellular senescence may have a large impact on disease pathogenesis and could be more effective in preventing the progression of diabetes complications than currently available therapies that have limited impact on already existing tissue damage. Therefore, senescent cells and the SASP represent significant opportunities for advancement in the prevention and treatment of type 2 diabetes and its complications.
Collapse
Affiliation(s)
- Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN Mayo Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Rochester, MN
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | | | - Eduardo N Chini
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN Department of Anesthesiology, Mayo Clinic, Rochester, MN
| | - Ming Xu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
| |
Collapse
|
1784
|
Katlinskaya YV, Carbone CJ, Yu Q, Fuchs SY. Type 1 interferons contribute to the clearance of senescent cell. Cancer Biol Ther 2015; 16:1214-9. [PMID: 26046815 DOI: 10.1080/15384047.2015.1056419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The major known function of cytokines that belong to type I interferons (IFN, including IFNα and IFNβ) is to mount the defense against viruses. This function also protects the genetic information of host cells from alterations in the genome elicited by some of these viruses. Furthermore, recent studies demonstrated that IFN also restrict proliferation of damaged cells by inducing cell senescence. Here we investigated the subsequent role of IFN in elimination of the senescent cells. Our studies demonstrate that endogenous IFN produced by already senescent cells contribute to increased expression of the natural killer (NK) receptor ligands, including MIC-A and ULBP2. Furthermore, neutralization of endogenous IFN or genetic ablation of its receptor chain IFNAR1 compromises the recognition of senescent cells and their clearance in vitro and in vivo. We discuss the role of IFN in protecting the multi-cellular host from accumulation of damaged senescent cells and potential significance of this mechanism in human cancers.
Collapse
Affiliation(s)
- Yuliya V Katlinskaya
- a Department of Biomedical Sciences ; School of Veterinary Medicine ; University of Pennsylvania ; Philadelphia , PA USA
| | | | | | | |
Collapse
|
1785
|
Liao Y, Jiang Y, He H, Ni H, Tu Z, Zhang S, Wang B, Lou J, Quan S, Wang H. NEDD8-mediated neddylation is required for human endometrial stromal proliferation and decidualization. Hum Reprod 2015; 30:1665-76. [DOI: 10.1093/humrep/dev117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/01/2015] [Indexed: 11/12/2022] Open
|
1786
|
Bischof O, Martínez-Zamudio RI. MicroRNAs and lncRNAs in senescence: A re-view. IUBMB Life 2015; 67:255-67. [PMID: 25990945 PMCID: PMC5008183 DOI: 10.1002/iub.1373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/16/2015] [Indexed: 12/12/2022]
Abstract
Cellular senescence is a stress response to a variety of extrinsic and intrinsic insults that cause genomic or epigenomic perturbations. It is now widely recognized as a potent tumor suppressor mechanism as well as a biological process impacting aging and organismal development. Like other cell fate decisions, senescence is executed and maintained by an intricate network of transcription factors (TFs), chromatin modifiers, and noncoding RNAs (ncRNAs). Altogether, these factors cooperate to implement the gene expression program that initiates and sustains the senescent phenotype. In the context of senescence, microRNAs (miRs) and long ncRNAs have been found to play regulatory roles at both the transcriptional and post‐transcriptional levels. In this review, we discuss recent developments in the field and point toward future research directions to gain a better understanding of ncRNAs in senescence. © 2015 IUBMB Life, 67(4):255–267, 2015
Collapse
Affiliation(s)
- Oliver Bischof
- Institut Pasteur, Laboratory of Nuclear Organization and Oncogenesis, Department of Cell Biology and Infection, Paris, France.,INSERM, U993, Paris, France
| | - Ricardo Iván Martínez-Zamudio
- Institut Pasteur, Laboratory of Nuclear Organization and Oncogenesis, Department of Cell Biology and Infection, Paris, France.,INSERM, U993, Paris, France
| |
Collapse
|
1787
|
Hubackova S, Kucerova A, Michlits G, Kyjacova L, Reinis M, Korolov O, Bartek J, Hodny Z. IFNγ induces oxidative stress, DNA damage and tumor cell senescence via TGFβ/SMAD signaling-dependent induction of Nox4 and suppression of ANT2. Oncogene 2015; 35:1236-49. [PMID: 25982278 DOI: 10.1038/onc.2015.162] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Cellular senescence provides a biological barrier against tumor progression, often associated with oncogene-induced replication and/or oxidative stress, cytokine production and DNA damage response (DDR), leading to persistent cell-cycle arrest. While cytokines such as tumor necrosis factor-alpha (TNFα) and interferon gamma (IFNγ) are important components of senescence-associated secretome and induce senescence in, for example, mouse pancreatic β-cancer cell model, their downstream signaling pathway(s) and links with oxidative stress and DDR are mechanistically unclear. Using human and mouse normal and cancer cell models, we now show that TNFα and IFNγ induce NADPH oxidases Nox4 and Nox1, reactive oxygen species (ROS), DDR signaling and premature senescence. Unlike mouse tumor cells that required concomitant presence of IFNγ and TNFα, short exposure to IFNγ alone was sufficient to induce Nox4, Nox1 and DDR in human cells. siRNA-mediated knockdown of Nox4 but not Nox1 decreased IFNγ-induced DDR. The expression of Nox4/Nox1 required Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling and the effect was mediated by downstream activation of transforming growth factor-beta (TGFβ) secretion and consequent autocrine/paracrine activation of the TGFβ/Smad pathway. Furthermore, the expression of adenine nucleotide translocase 2 (ANT2) was suppressed by IFNγ contributing to elevation of ROS and DNA damage. In contrast to mouse B16 cells, inability of TC-1 cells to respond to IFNγ/TNFα by DDR and senescence correlated with the lack of TGFβ and Nox4 response, supporting the role of ROS induced by NADPH oxidases in cytokine-induced senescence. Overall, our data reveal differences between cytokine effects in mouse and human cells, and mechanistically implicate the TGFβ/SMAD pathway, via induction of NADPH oxidases and suppression of ANT2, as key mediators of IFNγ/TNFα-evoked genotoxicity and cellular senescence.
Collapse
Affiliation(s)
- S Hubackova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - A Kucerova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - G Michlits
- Department of Tumour Immunology, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - L Kyjacova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - M Reinis
- Department of Tumour Immunology, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - O Korolov
- Department of Tumour Immunology, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Bartek
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Z Hodny
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
1788
|
Mombach JCM, Vendrusculo B, Bugs CA. A Model for p38MAPK-Induced Astrocyte Senescence. PLoS One 2015; 10:e0125217. [PMID: 25954815 PMCID: PMC4425668 DOI: 10.1371/journal.pone.0125217] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/22/2015] [Indexed: 11/18/2022] Open
Abstract
Experimental evidence indicates that aging leads to accumulation of senescent cells in tissues and they develop a secretory phenotype (also known as SASP, for senescence-associated secretory phenotype) that can contribute to chronic inflammation and diseases. Recent results have showed that markers of senescence in astrocytes from aged brains are increased in brains with Alzheimer’s disease. These studies strongly involved the stress kinase p38MAPK in the regulation of the secretory phenotype of astrocytes, yet the molecular mechanisms underlying the onset of senescence and SASP activation remain unclear. In this work, we propose a discrete logical model for astrocyte senescence determined by the level of DNA damage (reparable or irreparable DNA strand breaks) where the kinase p38MAPK plays a central role in the regulation of senescence and SASP. The model produces four alternative stable states: proliferation, transient cycle arrest, apoptosis and senescence (and SASP) computed from its inputs representing DNA damages. Perturbations of the model were performed through gene gain or loss of functions and compared with results concerning cultures of normal and mutant astrocytes showing agreement in most cases. Moreover, the model allows some predictions that remain to be tested experimentally.
Collapse
|
1789
|
Affiliation(s)
- Manuel Serrano
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
1790
|
Thannickal VJ, Murthy M, Balch WE, Chandel NS, Meiners S, Eickelberg O, Selman M, Pardo A, White ES, Levy BD, Busse PJ, Tuder RM, Antony VB, Sznajder JI, Budinger GRS. Blue journal conference. Aging and susceptibility to lung disease. Am J Respir Crit Care Med 2015; 191:261-9. [PMID: 25590812 DOI: 10.1164/rccm.201410-1876pp] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The aging of the population in the United States and throughout the developed world has increased morbidity and mortality attributable to lung disease, while the morbidity and mortality from other prevalent diseases has declined or remained stable. Recognizing the importance of aging in the development of lung disease, the American Thoracic Society (ATS) highlighted this topic as a core theme for the 2014 annual meeting. The relationship between aging and lung disease was discussed in several oral symposiums and poster sessions at the annual ATS meeting. In this article, we used the input gathered at the conference to develop a broad framework and perspective to stimulate basic, clinical, and translational research to understand how the aging process contributes to the onset and/or progression of lung diseases. A consistent theme that emerged from the conference was the need to apply novel, systems-based approaches to integrate a growing body of genomic, epigenomic, transcriptomic, and proteomic data and elucidate the relationship between biologic hallmarks of aging, altered lung function, and increased susceptibility to lung diseases in the older population. The challenge remains to causally link the molecular and cellular changes of aging with age-related changes in lung physiology and disease susceptibility. The purpose of this review is to stimulate further research to identify new strategies to prevent or treat age-related lung disease.
Collapse
|
1791
|
Landin MA, Nygård S, Shabestari MG, Babaie E, Reseland JE, Osmundsen H. Mapping the global mRNA transcriptome during development of the murine first molar. Front Genet 2015; 6:47. [PMID: 25852735 PMCID: PMC4362327 DOI: 10.3389/fgene.2015.00047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/02/2015] [Indexed: 11/13/2022] Open
Abstract
The main objective of this study was to map global gene expression in order to provide information about the populations of mRNA species participating in murine tooth development at 24 h intervals, starting at the 11th embryonic day (E11.5) up to the 7th post-natal day (P7). The levels of RNA species expressed during murine tooth development were mesured using a total of 58 deoxyoligonucleotide microarrays. Microarray data was validated using real-time RT-PCR. Differentially expressed genes (p < 0.05) were subjected to bioinformatic analysis to identify cellular activities significantly associated with these genes. Using ANOVA the microarray data yielded 4362 genes as being differentially expressed from the 11th embryonic day (E11.5) up to 7 days post-natal (P7), 1921 of these being genes without known functions. The remaining 2441 genes were subjected to further statistical analysis using a supervised procedure. Bioinformatic analysis results for each time-point studied suggests that the main molecular functions associated with genes expressed at the early pre-natal stages (E12.5–E18.5) were cell cycle progression, cell morphology, lipid metabolism, cellular growth, proliferation, senescence and apoptosis, whereas most genes expressed at post-natal and secretory stages (P0–P7) were significantly associated with regulation of cell migration, biosynthesis, differentiation, oxidative stress, polarization and cell death. Differentially expressed genes (DE) not described earlier during murine tooth development; Inositol 1, 4, 5-triphosphate receptor 3 (Itpr3), metallothionein 1(Mt1), cyclin-dependent kinase 4 (Cdk4), cathepsin D (Ctsd), keratin complex 2, basic, gene 6a (Krt2-6a), cofilin 1, non-muscle (Cfl1), cyclin 2 (Ccnd2), were verified by real-time RT-PCR.
Collapse
Affiliation(s)
- Maria A Landin
- Department of Oral Biology, Faculty of Dentistry, University of Oslo Oslo, Norway
| | - Ståle Nygård
- Bioinformatics Core Facility, Institute for Medical Informatics, Oslo University Hospital and University of Oslo Oslo, Norway
| | - Maziar G Shabestari
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo Oslo, Norway
| | - Eshrat Babaie
- The Biotechnology Centre of Oslo, University of Oslo Oslo, Norway
| | - Janne E Reseland
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo Oslo, Norway
| | - Harald Osmundsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo Oslo, Norway
| |
Collapse
|
1792
|
Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions. Proc Natl Acad Sci U S A 2015; 112:5231-6. [PMID: 25848011 DOI: 10.1073/pnas.1424313112] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acute kidney injury (AKI) is a potentially fatal syndrome characterized by a rapid decline in kidney function caused by ischemic or toxic injury to renal tubular cells. The widely used chemotherapy drug cisplatin accumulates preferentially in the renal tubular cells and is a frequent cause of drug-induced AKI. During the development of AKI the quiescent tubular cells reenter the cell cycle. Strategies that block cell-cycle progression ameliorate kidney injury, possibly by averting cell division in the presence of extensive DNA damage. However, the early signaling events that lead to cell-cycle activation during AKI are not known. In the current study, using mouse models of cisplatin nephrotoxicity, we show that the G1/S-regulating cyclin-dependent kinase 4/6 (CDK4/6) pathway is activated in parallel with renal cell-cycle entry but before the development of AKI. Targeted inhibition of CDK4/6 pathway by small-molecule inhibitors palbociclib (PD-0332991) and ribociclib (LEE011) resulted in inhibition of cell-cycle progression, amelioration of kidney injury, and improved overall survival. Of additional significance, these compounds were found to be potent inhibitors of organic cation transporter 2 (OCT2), which contributes to the cellular accumulation of cisplatin and subsequent kidney injury. The unique cell-cycle and OCT2-targeting activities of palbociclib and LEE011, combined with their potential for clinical translation, support their further exploration as therapeutic candidates for prevention of AKI.
Collapse
|
1793
|
Molon M, Zadrag-Tecza R, Bilinski T. The longevity in the yeast Saccharomyces cerevisiae: A comparison of two approaches for assessment the lifespan. Biochem Biophys Res Commun 2015; 460:651-6. [PMID: 25817783 DOI: 10.1016/j.bbrc.2015.03.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/16/2015] [Indexed: 11/25/2022]
Abstract
Longevity of the selected "longevity mutants" of yeast was studied using two methods. The standard method was based on counting the number of daughter cells produced. Modification of that method allowed for establishing the length of life expressed in units of time. It appeared that all the studied "deletion longevity mutants" showed a statistically meaningful increase in the number of daughters produced (replicative lifespan), whereas only one of the mutants, previously regarded as "short lived", showed a meaningful increase in the time of life. The analysis of the available data shows that the time of life of most yeast strains is similar irrespective of their genetic background and mutations, which suggests a quasi-programmed nature of yeast death.
Collapse
Affiliation(s)
- Mateusz Molon
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland.
| | - Renata Zadrag-Tecza
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Tomasz Bilinski
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
| |
Collapse
|
1794
|
Ahmad T, Sundar IK, Lerner CA, Gerloff J, Tormos AM, Yao H, Rahman I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB J 2015; 29:2912-29. [PMID: 25792665 DOI: 10.1096/fj.14-268276] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/02/2015] [Indexed: 02/07/2023]
Abstract
Cigarette smoke (CS)-induced cellular senescence is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). The molecular mechanism by which CS induces cellular senescence is unknown. Here, we show that CS stress (exposure of primary lung cells to CS extract 0.2-0.75% with a half-maximal inhibitory concentration of ∼0.5%) led to impaired mitophagy and perinuclear accumulation of damaged mitochondria associated with cellular senescence in both human lung fibroblasts and small airway epithelial cells (SAECs). Impaired mitophagy was attributed to reduced Parkin translocation to damaged mitochondria, which was due to CS-induced cytoplasmic p53 accumulation and its interaction with Parkin. Impaired Parkin translocation to damaged mitochondria was also observed in mouse lungs with emphysema (6 months CS exposure, 100 mg TPM/m(3)) as well as in lungs of chronic smokers and patients with COPD. Primary SAECs from patients with COPD also exhibited impaired mitophagy and increased cellular senescence via suborganellar signaling. Mitochondria-targeted antioxidant (Mito-Tempo) restored impaired mitophagy, decreased mitochondrial mass accumulation, and delayed cellular senescence in Parkin-overexpressing cells. In conclusion, defective mitophagy leads to CS stress-induced lung cellular senescence, and restoring mitophagy delays cellular senescence, which provides a promising therapeutic intervention in chronic airway diseases.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, USA
| | - Chad A Lerner
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, USA
| | - Janice Gerloff
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, USA
| | - Ana M Tormos
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, USA
| | - Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, USA
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
1795
|
Ogata F, Fujiu K, Koshima I, Nagai R, Manabe I. Phenotypic modulation of smooth muscle cells in lymphoedema. Br J Dermatol 2015; 172:1286-93. [DOI: 10.1111/bjd.13482] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2014] [Indexed: 01/22/2023]
Affiliation(s)
- F. Ogata
- Department of Cardiovascular Medicine; Graduate School of Medicine; University of Tokyo; 7-3-1 Hongo Bunkyo Tokyo 113-8655 Japan
- Department of Plastic, Reconstructive and Aesthetic Surgery; Graduate School of Medicine; University of Tokyo; 7-3-1 Hongo Bunkyo Tokyo 113-8655 Japan
| | - K. Fujiu
- Department of Cardiovascular Medicine; Graduate School of Medicine; University of Tokyo; 7-3-1 Hongo Bunkyo Tokyo 113-8655 Japan
- Translational Systems Biology and Medicine Initiative; Graduate School of Medicine; University of Tokyo; 7-3-1 Hongo Bunkyo Tokyo 113-8655 Japan
| | - I. Koshima
- Department of Plastic, Reconstructive and Aesthetic Surgery; Graduate School of Medicine; University of Tokyo; 7-3-1 Hongo Bunkyo Tokyo 113-8655 Japan
| | - R. Nagai
- Jichi Medical University; 3311-1 Yakushiji Shimotsuke-shi Tochigi-ken 329-0498 Japan
| | - I. Manabe
- Department of Cardiovascular Medicine; Graduate School of Medicine; University of Tokyo; 7-3-1 Hongo Bunkyo Tokyo 113-8655 Japan
| |
Collapse
|
1796
|
Abstract
Cellular senescence is a response to damage that involves inflammation and extracellular matrix remodeling and that resolves with the phagocytic elimination of the senescent cells. Demaria et al. (2014) in this issue of Developmental Cell demonstrate that cellular senescence plays an active and positive role during tissue regeneration.
Collapse
Affiliation(s)
- Manuel Serrano
- Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain.
| |
Collapse
|
1797
|
Smith PC, Cáceres M, Martínez C, Oyarzún A, Martínez J. Gingival wound healing: an essential response disturbed by aging? J Dent Res 2015; 94:395-402. [PMID: 25527254 PMCID: PMC4814024 DOI: 10.1177/0022034514563750] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gingival wound healing comprises a series of sequential responses that allow the closure of breaches in the masticatory mucosa. This process is of critical importance to prevent the invasion of microbes or other agents into tissues, avoiding the establishment of a chronic infection. Wound healing may also play an important role during cell and tissue reaction to long-term injury, as it may occur during inflammatory responses and cancer. Recent experimental data have shown that gingival wound healing is severely affected by the aging process. These defects may alter distinct phases of the wound-healing process, including epithelial migration, granulation tissue formation, and tissue remodeling. The cellular and molecular defects that may explain these deficiencies include several biological responses such as an increased inflammatory response, altered integrin signaling, reduced growth factor activity, decreased cell proliferation, diminished angiogenesis, reduced collagen synthesis, augmented collagen remodeling, and deterioration of the proliferative and differentiation potential of stem cells. In this review, we explore the cellular and molecular basis of these defects and their possible clinical implications.
Collapse
Affiliation(s)
- P C Smith
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Cáceres
- Molecular and Cell Biology Program, Faculty of Medicine, University of Chile, Santiago, Chile
| | - C Martínez
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A Oyarzún
- Faculty of Dentistry, Universidad Finis Terrae, Santiago, Chile
| | - J Martínez
- Laboratory of Cell Biology, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|
1798
|
Boivin B, Tonks NK. PTP1B: mediating ROS signaling to silence genes. Mol Cell Oncol 2015; 2:e975633. [PMID: 27308433 PMCID: PMC4905060 DOI: 10.4161/23723556.2014.975633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 11/25/2022]
Abstract
Numerous studies have shown that normal cells often respond to the activation of oncogenes by undergoing reactive oxygen species-dependent induction of senescence. Here, we discuss our recent publication identifying protein tyrosine phosphatase PTP1B as an important redox-controlled checkpoint for senescence downstream of oncogenic RAS.
Collapse
Affiliation(s)
- Benoit Boivin
- Department of Biochemistry and Department of Medicine; Université de Montréal; Montréal, QC Canada; Montreal Heart Institute; Montréal, QC Canada
| | | |
Collapse
|
1799
|
Xie X, Koh JY, Price S, White E, Mehnert JM. Atg7 Overcomes Senescence and Promotes Growth of BrafV600E-Driven Melanoma. Cancer Discov 2015; 5:410-23. [PMID: 25673642 DOI: 10.1158/2159-8290.cd-14-1473] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/05/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED Macroautophagy (autophagy hereafter) may promote survival and growth of spontaneous tumors, including melanoma. We utilized a genetically engineered mouse model of melanoma driven by oncogenic BrafV600E and deficiency in the Pten tumor suppressor gene in melanocytes to test the functional consequences of loss of the essential autophagy gene autophagy-related-7, Atg7. Atg7 deficiency prevented melanoma development by BrafV600E and allelic Pten loss, indicating that autophagy is essential for melanomagenesis. Moreover, BrafV600E-mutant, Pten-null, Atg7-deficient melanomas displayed accumulation of autophagy substrates and growth defects, which extended animal survival. Atg7-deleted tumors showed increased oxidative stress and senescence, a known barrier to melanomagenesis. Treatment with the BRAF inhibitor dabrafenib decreased tumor growth and induced senescence that was more pronounced in tumors with Atg7 deficiency. Thus, Atg7 promotes melanoma by limiting oxidative stress and overcoming senescence, and autophagy inhibition may be of therapeutic value by augmenting the antitumor activity of BRAF inhibitors. SIGNIFICANCE The essential autophagy gene Atg7 promotes development of BrafV600E-mutant, Pten-null melanomas by overcoming senescence, and deleting Atg7 facilitated senescence induction and antitumor activity of BRAF inhibition. This suggests that combinatorial BRAFV600E and autophagy inhibition may improve therapeutic outcomes in patients whose tumors have BRAFV600E/K mutations, an approach currently being explored in clinical trials.
Collapse
Affiliation(s)
- Xiaoqi Xie
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey. Department of Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Ju Yong Koh
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey. Department of Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Sandy Price
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey. Department of Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey. Department of Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey. Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey.
| | - Janice M Mehnert
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey. Department of Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey.
| |
Collapse
|
1800
|
Abstract
Ageing is the main risk factor for major non-communicable chronic lung diseases, including chronic obstructive pulmonary disease, most forms of lung cancer and idiopathic pulmonary fibrosis. While the prevalence of these diseases continually increases with age, their respective incidence peaks at different times during the lifespan, suggesting specific effects of ageing on the onset and/or pathogenesis of chronic obstructive pulmonary disease, lung cancer and idiopathic pulmonary fibrosis. Recently, the nine hallmarks of ageing have been defined as cell-autonomous and non-autonomous pathways involved in ageing. Here, we review the available evidence for the involvement of each of these hallmarks in the pathogenesis of chronic obstructive pulmonary disease, lung cancer, or idiopathic pulmonary fibrosis. Importantly, we propose an additional hallmark, “dysregulation of the extracellular matrix”, which we argue acts as a crucial modifier of cell-autonomous changes and functions, and as a key feature of the above-mentioned lung diseases.
Collapse
|