1801
|
Wu CJ, Chen Z, Ullrich A, Greene MI, O'Rourke DM. Inhibition of EGFR-mediated phosphoinositide-3-OH kinase (PI3-K) signaling and glioblastoma phenotype by signal-regulatory proteins (SIRPs). Oncogene 2000; 19:3999-4010. [PMID: 10962556 DOI: 10.1038/sj.onc.1203748] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several growth factors and cytokines, including EGF, are known to induce tyrosine phosphorylation of Signal Regulatory Proteins (SIRPs). Consistent with the idea that increased phosphorylation activates SIRP function, we overexpressed human SIRPalpha1 in U87MG glioblastoma cells in order to examine how SIRPalpha1 modulates EGFR signaling pathways. Endogenous EGFR proteins are overexpressed in U87MG cells and these cells exhibit survival and motility phenotypes that are influenced by EGFR kinase activity. Overexpression of the SIRPalpha1 cDNA diminished EGF-induced phosphoinositide-3-OH kinase (PI3-K) activation in U87MG cells. Reduced EGF-stimulated activation of PI3-K was mediated by interactions between carboxyl terminus of SIRPalpha1 and the Src homology-2 (SH2)-containing phosphotyrosine phosphatase, SHP2. SIRPalpha1 overexpression also reduced the EGF-induced association between SHP2 and the p85 regulatory subunit of PI3-K. Inhibition of transformation and enhanced apoptosis following gamma-irradiation were observed in SIRPalpha1-overexpressing U87MG cells, and enhanced apoptosis was associated with reduced levels of bcl-xL protein. Furthermore, SIRPalpha1-overexpressing U87MG cells displayed reduced cell migration and cell spreading that was mediated by association between SIRPalpha1 and SHP2. However, SIRPalpha1-overexpressing U87MG clonal derivatives exhibited no differences in cell growth or levels of mitogen-activated protein kinase (MAPK) activation. These data reveal a pathway that negatively regulates EGFR-induced PI3-K activation in glioblastoma cells and involves interactions between SHP2 and tyrosine phosphorylated SIRPalpha1. These results also suggest that negative regulation of PI3-K pathway activation by the SIRP family of transmembrane receptors may diminish EGFR-mediated motility and survival phenotypes that contribute to transformation of glioblastoma cells. Oncogene (2000) 19, 3999 - 4010.
Collapse
Affiliation(s)
- C J Wu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, PA 19104, USA
| | | | | | | | | |
Collapse
|
1802
|
Scanga SE, Ruel L, Binari RC, Snow B, Stambolic V, Bouchard D, Peters M, Calvieri B, Mak TW, Woodgett JR, Manoukian AS. The conserved PI3'K/PTEN/Akt signaling pathway regulates both cell size and survival in Drosophila. Oncogene 2000; 19:3971-7. [PMID: 10962553 DOI: 10.1038/sj.onc.1203739] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Akt (or PKB) is an oncogene involved in the regulation of cell survival. Akt is regulated by phosphatidylinositol 3-OH kinase (PI3'K) signaling and has shown to be hyperactivated through the loss of the PTEN tumor suppressor. In Drosophila, insulin signaling as studied using the Drosophila IRS-4 homolog (Chico) has been shown to be a crucial regulator of cell size. We have studied Drosophila Akt (Dakt1) and have shown that it is also involved in the regulation of cell size. Furthermore we have performed genetic epistasis tests to demonstrate that in Drosophila, PI3'K, PTEN and Akt comprise a signaling cassette that is utilized during multiple stages of development. In addition, we show that this signaling cassette is also involved in the regulation of cell survival during embryogenesis. This study therefore establishes the evolutionary conservation of this signaling pathway in Drosophila. Oncogene (2000) 19, 3971 - 3977.
Collapse
Affiliation(s)
- S E Scanga
- Department of Medical Biophysics, Division of Cell and Molecular Biology, Ontario Cancer Institute, University Health Network, Princess Margaret Hospital, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada, M5G 2M9
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1803
|
Bardeesy N, Wong KK, DePinho RA, Chin L. Animal models of melanoma: recent advances and future prospects. Adv Cancer Res 2000; 79:123-56. [PMID: 10818679 DOI: 10.1016/s0065-230x(00)79004-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
MESH Headings
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Chromosomes, Human, Pair 9/genetics
- Cricetinae
- Cyprinodontiformes
- Disease Progression
- Forecasting
- Genes, p16
- Genes, ras
- Growth Substances/physiology
- Humans
- Loss of Heterozygosity
- Melanocytes/metabolism
- Melanocytes/pathology
- Melanoma, Experimental/epidemiology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mesocricetus
- Mice
- Mice, Transgenic
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasms, Radiation-Induced/epidemiology
- Neoplasms, Radiation-Induced/genetics
- Opossums
- Proteins/genetics
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/physiology
- Species Specificity
- Tumor Suppressor Protein p14ARF
Collapse
Affiliation(s)
- N Bardeesy
- Department of Adult Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | |
Collapse
|
1804
|
Graff JR, Konicek BW, McNulty AM, Wang Z, Houck K, Allen S, Paul JD, Hbaiu A, Goode RG, Sandusky GE, Vessella RL, Neubauer BL. Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J Biol Chem 2000; 275:24500-5. [PMID: 10827191 DOI: 10.1074/jbc.m003145200] [Citation(s) in RCA: 271] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PTEN tumor suppressor gene is frequently inactivated in human prostate cancers, particularly in more advanced cancers, suggesting that the AKT/protein kinase B (PKB) kinase, which is negatively regulated by PTEN, may be involved in human prostate cancer progression. We now show that AKT activation and activity are markedly increased in androgen-independent, prostate-specific antigen-positive prostate cancer cells (LNAI cells) established from xenograft tumors of the androgen-dependent LNCaP cell line. These LNAI cells show increased expression of integrin-linked kinase, which is putatively responsible for AKT activation/Ser-473 phosphorylation, as well as for increased phosphorylation of the AKT target protein, BAD. Furthermore, expression of the p27(Kip1) cell cycle regulator was diminished in LNAI cells, consistent with the notion that AKT directly inhibits AFX/Forkhead-mediated transcription of p27(Kip1). To assess directly the impact of increased AKT activity on prostate cancer progression, an activated hAKT1 mutant was overexpressed in LNCaP cells, resulting in a 6-fold increase in xenograft tumor growth. Like LNAI cells, these transfectants showed dramatically reduced p27(Kip1) expression. Together, these data implicate increased AKT activity in prostate tumor progression and androgen independence and suggest that diminished p27(Kip1) expression, which has been repeatedly associated with prostate cancer progression, may be a consequence of increased AKT activity.
Collapse
Affiliation(s)
- J R Graff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1805
|
Abstract
Disruption of integrin-extracellular matrix interactions in normal epithelial cells induces apoptosis, a process termed anoikis. Reduced sensitivity to anoikis appears to be an important hallmark of oncogenic transformation, particularly in the process of metastasis. Several pathways have been implicated in the suppression of anoikis, however, the events which take place proximal to the integrin receptors remain unclear. Integrin-linked kinase (ILK) is an integrin-interacting protein kinase which has been identified as a potential PDK-2, as it is capable of phosphorylating PKB/Akt on Ser-473, and stimulating its activity. Here, we show that ILK activity is stimulated upon adhesion of SCP2 mouse mammary epithelial cells to fibronectin, and inhibited in suspended cells. Overexpression of ILK in the anoikis-sensitive SCP2 cells results in a profound inhibition of anoikis, as determined by annexin V binding and activation of caspases 8 and 3. This effect is reversible by the transfection and expression of a dominant-negative, kinase deficient ILK (ILK KD), as well as by a dominant negative PKB/Akt (PKB AAA). On the other hand, transfection of a dominant negative form of FAK (FRNK) failed to reverse the suppression of anoikis by ILK. Furthermore, inhibition of ILK activity induced anoikis in two anoikis-resistant human breast cancer cell lines. These findings suggest that ILK plays a major role in the suppression of anoikis.
Collapse
Affiliation(s)
- S Attwell
- British Columbia Cancer Agency and Jack Bell Research Centre, Vancouver, Canada
| | | | | |
Collapse
|
1806
|
Gout I, Middleton G, Adu J, Ninkina NN, Drobot LB, Filonenko V, Matsuka G, Davies AM, Waterfield M, Buchman VL. Negative regulation of PI 3-kinase by Ruk, a novel adaptor protein. EMBO J 2000; 19:4015-25. [PMID: 10921882 PMCID: PMC306608 DOI: 10.1093/emboj/19.15.4015] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2000] [Revised: 06/15/2000] [Accepted: 06/15/2000] [Indexed: 11/14/2022] Open
Abstract
Class I(A) phosphatidylinositol 3-kinase (PI 3-kinase) is a key component of important intracellular signalling cascades. We have identified an adaptor protein, Ruk(l), which forms complexes with the PI 3-kinase holoenzyme in vitro and in vivo. This interaction involves the proline-rich region of Ruk and the SH3 domain of the p85 alpha regulatory subunit of the class I(A) PI 3-kinase. In contrast to many other adaptor proteins that activate PI 3-kinase, interaction with Ruk(l) substantially inhibits the lipid kinase activity of the enzyme. Overexpression of Ruk(l) in cultured primary neurons induces apoptosis, an effect that could be reversed by co-expression of constitutively activated forms of the p110 alpha catalytic subunit of PI 3-kinase or its downstream effector PKB/Akt. Our data provide evidence for the existence of a negative regulator of the PI 3-kinase signalling pathway that is essential for maintaining cellular homeostasis. Structural similarities between Ruk, CIN85 and CD2AP/CMS suggest that these proteins form a novel family of adaptor molecules that are involved in various intracellular signalling pathways.
Collapse
Affiliation(s)
- I Gout
- Ludwig Institute for Cancer Research, Courtauld Building, 91 Riding House Street, London W1P 8BT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1807
|
Abstract
In the last 10 years we have come to appreciate the central role that phosphatidylinositol (PI)-3,4,5-P(3)plays in regulating a vast array of biological responses to extracellular signals. The level of this phospholipid is low in resting cells but increases rapidly in response to growth factor/cytokine-stimulated plasma membrane recruitment and activation of PI-3-kinase. Within the last 3 years three enzymes, SHIP, SHIP2 and PTEN, that play key roles in regulating the level of PI-3,4,5-P(3)have been cloned. In this review I have attempted to summarize our current knowledge regarding these three intriguing phosphatases.
Collapse
Affiliation(s)
- G Krystal
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada V5Z 1L3.
| |
Collapse
|
1808
|
Abstract
Mechanisms involved in hereditary intestinal cancer are likely to play a role in sporadic tumorigenesis as well. Studies focusing on the molecular biology underlying these syndromes has contributed considerably to our knowledge on molecular bases of malignant transformation. It can be concluded, that there are two aspects to the importance of studies on intestinal cancer predisposition. First, the families suffering from cancer proneness need help which can, to some extent, be provided through molecular genetic studies. Second, the resources appointed to such research have produced scientific advances with outstanding importance to our understanding of common malignant diseases.
Collapse
Affiliation(s)
- L A Aaltonen
- Department of Medical Genetics, University of Helsinki, P.O. Box 21, FIN-00014, Finland
| |
Collapse
|
1809
|
Jones RJ, Brunton VG, Frame MC. Adhesion-linked kinases in cancer; emphasis on src, focal adhesion kinase and PI 3-kinase. Eur J Cancer 2000; 36:1595-606. [PMID: 10959046 DOI: 10.1016/s0959-8049(00)00153-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Our understanding of the complex signal transduction pathways involved in signalling within cancer cells, between cancer cells and between cancer cells and their environment has increased dramatically in recent years. Here we concentrate on three non-receptor kinases: Src, focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI 3-kinase). These form part of a complex network of intracellular signals which is thought to be important in regulating cancer cells.
Collapse
Affiliation(s)
- R J Jones
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, G61 1BD, Glasgow, UK
| | | | | |
Collapse
|
1810
|
McLean GW, Fincham VJ, Frame MC. v-Src induces tyrosine phosphorylation of focal adhesion kinase independently of tyrosine 397 and formation of a complex with Src. J Biol Chem 2000; 275:23333-9. [PMID: 10816598 DOI: 10.1074/jbc.m909322199] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The non-receptor tyrosine kinase FAK plays a key role at sites of cellular adhesion. It is subject to regulatory tyrosine phosphorylation in response to a variety of stimuli, including integrin engagement after attachment to extracellular matrix, oncogene activation, and growth factor stimulation. Here we use an antibody that specifically recognizes the phosphorylated form of the putative FAK autophosphorylation site, Tyr(397). We demonstrate that FAK phosphorylation induced by integrins during focal adhesion assembly differs from that induced by activation of a temperature-sensitive v-Src, which is associated with focal adhesion turnover and transformation. Specifically, although v-Src induces tyrosine phosphorylation of FAK, there is no detectable phosphorylation of Tyr(397). Moreover, activation of v-Src results in a net decrease in fibronectin-stimulated phosphorylation of Tyr(397), suggesting possible antagonism between v-Src and integrin-induced phosphorylation. Our mutational analysis further indicates that the binding of v-Src to Tyr(397) of FAK in its phosphorylated form, which is normally mediated, at least in part, by the SH2 domain of Src, is not essential for v-Src-induced cell transformation. We conclude that different stimuli can induce phosphorylation of FAK on distinct tyrosine residues, linking specific phosphorylation events to ensuing biological responses.
Collapse
Affiliation(s)
- G W McLean
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, United Kingdom.
| | | | | |
Collapse
|
1811
|
Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 2000; 68:965-1014. [PMID: 10872470 DOI: 10.1146/annurev.biochem.68.1.965] [Citation(s) in RCA: 750] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The protein kinase Akt/PKB is activated via a multistep process by a variety of signals. In the early steps of this process, PI-3 kinase-generated D3-phosphorylated phosphoinositides bind the Akt PH domain and induce the translocation of the kinase to the plasma membrane where it co-localizes with phosphoinositide-dependent kinase-1. By binding to the PH domains of both Akt and phosphoinositide-dependent kinase-1, D3-phosphorylated phosphoinositides appear to also induce conformational changes that permit phosphoinositide-dependent kinase-1 to phosphorylate the activation loop of Akt. The paradigm of Akt activation via phosphoinositide-dependent phosphorylation provided a framework for research into the mechanism of activation of other members of the AGC kinase group (p70S6K, PKC, and PKA) and members of the Tec tyrosine kinase family (TecI, TecII, Btk/Atk, Itk/Tsk/Emt, Txk/Rlk, and Bm/Etk). The result was the discovery that these kinases and Akt are activated by overlapping pathways. In this review, we present our current understanding of the regulation and function of the Akt kinase and we discuss the common and unique features of the activation processes of Akt and the AGC and Tec kinase families. In addition, we present an overview of the biosynthesis of phosphoinositides that contribute to the regulation of these kinases.
Collapse
Affiliation(s)
- T O Chan
- Kimmel Cancer Institute, Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
1812
|
Wu Y, Dowbenko D, Spencer S, Laura R, Lee J, Gu Q, Lasky LA. Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase. J Biol Chem 2000; 275:21477-85. [PMID: 10748157 DOI: 10.1074/jbc.m909741199] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PTEN/MMAC is a phosphatase that is mutated in multiple human tumors. PTEN/MMAC dephosphorylates 3-phosphorylated phosphatidylinositol phosphates that activate AKT/protein kinase B (PKB) kinase activity. AKT/PKB is implicated in the inhibition of apoptosis, and cell lines and tumors with mutated PTEN/MMAC show increased AKT/PKB kinase activity and resistance to apoptosis. PTEN/MMAC contains a PDZ domain-binding site, and we show here that the phosphatase binds to a PDZ domain of membrane-associated guanylate kinase with inverted orientation (MAGI) 3, a novel inverted membrane-associated guanylate kinase that localizes to epithelial cell tight junctions. Importantly, MAGI3 and PTEN/MMAC cooperate to modulate the kinase activity of AKT/PKB. These data suggest that MAGI3 allows for the juxtaposition of PTEN/MMAC to phospholipid signaling pathways involved with cell survival.
Collapse
Affiliation(s)
- Y Wu
- Departments of Molecular Oncology and Molecular Biology, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | |
Collapse
|
1813
|
Bruni P, Boccia A, Baldassarre G, Trapasso F, Santoro M, Chiappetta G, Fusco A, Viglietto G. PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1. Oncogene 2000; 19:3146-55. [PMID: 10918569 DOI: 10.1038/sj.onc.1203633] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The dual-specificity phosphatase PTEN/MMAC1/TEP1 has recently been identified as the tumor suppressor gene most frequently mutated and/or deleted in human tumors. Germline mutations of PTEN give rise to Cowden Disease (CD), an autosomal dominantly-inherited cancer syndrome which predisposes to increased risk of developing breast and thyroid tumors. However, PTEN mutations have rarely been detected in sporadic thyroid carcinomas. In this study, we confirm that PTEN mutations in sporadic thyroid cancer are infrequent as we found one point mutation and one heterozygous deletion of PTEN gene in 26 tumors and eight cell lines screened. However, we report that PTEN expression is reduced both at the mRNA and at the protein level - in five out of eight tumor-derived cell lines and in 24 out of 61 primary tumors. In most cases, decreased PTEN expression is correlated with increased phosphorylation of the PTEN-regulated protein kinase Akt/PKB. Moreover, we demonstrate that PTEN may act as a suppressor of thyroid cancerogenesis as the constitutive re-expression of PTEN into two different thyroid tumor cell lines markedly inhibits cell growth. PTEN-dependent inhibition of BrdU incorporation is accompanied by enhanced expression of the cyclin-dependent kinase inhibitor p27kip1 and can be overcome by simultaneous co-transfection of an excess p27kip1 antisense plasmid. Accordingly, in a subset of thyroid primary carcinomas and tumor-derived cell lines, a striking correlation between PTEN expression and the level of p27kip1 protein was observed. In conclusion, our findings demonstrate that inactivation of PTEN may play a role in the development of sporadic thyroid carcinomas and that one key target of PTEN suppressor activity is represented by the cyclin-dependent kinase inhibitor p27kip1.
Collapse
Affiliation(s)
- P Bruni
- Servizio Oncologia Sperimentale E, Istituto Nazionale Tumori, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
1814
|
Janji B, Melchior C, Vallar L, Kieffer N. Cloning of an isoform of integrin-linked kinase (ILK) that is upregulated in HT-144 melanoma cells following TGF-beta1 stimulation. Oncogene 2000; 19:3069-77. [PMID: 10871859 DOI: 10.1038/sj.onc.1203640] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have shown previously that integrin-linked kinase (ILK) is upregulated in human HT-144 melanoma cells following TGF-beta1 stimulation. Using mRNA from TGF-beta1 stimulated HT-144 cells and reverse transcriptase polymerase chain reaction, we have isolated a cDNA encoding a protein highly homologous to ILK. Sequencing of the full-length 1359 base pair cDNA and polypeptide translation revealed that this protein, designated ILK-2, differs from the known ILK (hereafter called ILK-1) by only four amino acids, while the cDNA sequence diverges by 102 nucleotides, thus excluding that ILK-2 is an allelic variant of ILK-1. Expression of ILK-2 mRNA was observed in metastatic human HT-144 melanoma and HT-1080 fibrosarcoma cell lines, but not in normal human tissues. Moreover, stimulation of HT-144 cells with TGF-beta1, but not with EGF, PDGF-AB or insulin, induced a selective overexpression of ILK-2 mRNA as compared to ILK-1 mRNA. Bacterially-expressed GST/ILK-2 autophosphorylated and labeled myelin basic protein as well as a recombinant GST/beta3 integrin cytoplasmic tail peptide. Transfection of either ILK-2 or ILK-1 cDNA into the non-metastatic melanoma cell line SK-Mel-2, expressing exclusively ILK-1, induced anchorage independent cell growth and cell proliferation, as demonstrated by growth in soft agar. Our data provide evidence that ILK-2 is a new isoform of ILK-1 that is expressed in some highly invasive tumor cell lines but not in normal adult human tissues and whose expression is regulated by TGF-beta1.
Collapse
Affiliation(s)
- B Janji
- Laboratoire Franco-Luxembourgeois de Recherche Biomedicale (CRP-Sante/CNRS), University Center, L-1511 Luxembourg, Grand-Duchy of Luxembourg
| | | | | | | |
Collapse
|
1815
|
Haïk S, Gauthier LR, Granotier C, Peyrin JM, Lages CS, Dormont D, Boussin FD. Fibroblast growth factor 2 up regulates telomerase activity in neural precursor cells. Oncogene 2000; 19:2957-66. [PMID: 10871847 DOI: 10.1038/sj.onc.1203596] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During brain development, neuronal and glial cells are generated from neural precursors on a precise schedule involving steps of proliferation, fate commitment and differentiation. We report that telomerase activity is highly expressed during embryonic murine cortical neurogenesis and early steps of gliogenesis and progressively decreases thereafter during cortex maturation to be undetectable in the normal adult brain. We evidenced neural precursor cells (NPC) as the principal telomerase-expressing cells in primary cultures from E15 mouse embryo cortices. Their differentiation either in neurons or in glial cells lead to a down regulation of telomerase activity that was directly correlated to the decrease of telomerase core protein (mTERT) mRNA synthesis. Furthermore, we show that FGF2 (fibroblast growth factor 2), one of the main regulators of CNS development, induces a dose-dependant increase of both the proliferation of NPC and telomerase activity in primary cortical cultures without affecting the mTERT mRNA synthesis compared to that of glyceraldehyde-3-phosphate dehydrogenase (mGAPDH). Finally, we evidenced that AZT (3'-azido-2', 3'-dideoxythymidine), known to inhibit telomerase activity, blocks in a dose dependant manner the FGF2-induced proliferation of NPC. Altogether, our results are in favor of an important role of telomerase activity during brain organogenesis. Oncogene (2000).
Collapse
Affiliation(s)
- S Haïk
- CEA, Service de Neurovirologie DSV/DRM, CRSSA, IPSC, BP 6, 92 265 Fontenay-aux-Roses cedex, France
| | | | | | | | | | | | | |
Collapse
|
1816
|
Abstract
Hepatocellular carcinoma (HCC) is one of the human cancers clearly linked to viral infections. Although the major viral and environmental risk factors for HCC development have been unravelled, the oncogenic pathways leading to malignant transformation of liver cells have long remained obscure. Recent outcomes have been provided by extensive allelotype studies which resulted in a comprehensive overview of the main genetic abnormalities in HCC, including DNA copy gains and losses. The differential involvement of the p53 tumor-suppressor gene in tumors associated with various risk factors has been largely clarified. Evidence for a crucial role of the reactivation of the Wnt/beta-catenin pathway, through mutations in the beta-catenin and axin genes in 30-40% of liver tumors, represents a major breakthrough. It has also been shown that the Rb pathway is frequently disrupted by methylation-dependent silencing of the p16INK4A gene and stimulation of Rb degradation by a proteosomal subunit. Presently, the identification of candidate oncogenes and tumor suppressors in the most frequently altered chromosomal regions is a major challenge. Great insights will come from integrating the signals from different pathways operating at preneoplastic and neoplastic stages. This search might, in time, permit an accurate evaluation of the major targets for therapeutic treatments.
Collapse
Affiliation(s)
- M A Buendia
- Unité INSERM U163, Department of Retroviruses, Institut Pasteur, Paris
| |
Collapse
|
1817
|
|
1818
|
Gao X, Neufeld TP, Pan D. Drosophila PTEN regulates cell growth and proliferation through PI3K-dependent and -independent pathways. Dev Biol 2000; 221:404-18. [PMID: 10790335 DOI: 10.1006/dbio.2000.9680] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The control of cell and organ growth is fundamental to the development of multicellular organisms. Here, we show that dPTEN, a Drosophila homolog of the mammalian PTEN tumor suppressor gene, plays an essential role in the control of cell size, cell number, and organ size. In mosaic animals, dPTEN(-) cells proliferate faster than their heterozygous siblings, show an autonomous increase in cell size, and form organs of increased size, whereas overexpression of dPTEN results in opposite phenotypes. The loss-of-function phenotypes of dPTEN are suppressed by mutations in the PI3K target Dakt1 and the translational initiation factor eif4A, suggesting that dPTEN acts through the PI3K signaling pathway to regulate translation. Although activation of PI3K and Akt has been reported to increase rates of cellular growth but not proliferation, loss of dPTEN stimulates both of these processes, suggesting that PTEN regulates overall growth through PI3K/Akt-dependent and -independent pathways. Furthermore, we show that dPTEN does not play a major role in cell survival during Drosophila development. Our results provide a potential explanation for the high frequency of PTEN mutation in human cancer.
Collapse
Affiliation(s)
- X Gao
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas, 75235-9040, USA
| | | | | |
Collapse
|
1819
|
Jones RG, Parsons M, Bonnard M, Chan VS, Yeh WC, Woodgett JR, Ohashi PS. Protein kinase B regulates T lymphocyte survival, nuclear factor kappaB activation, and Bcl-X(L) levels in vivo. J Exp Med 2000; 191:1721-34. [PMID: 10811865 PMCID: PMC2193154 DOI: 10.1084/jem.191.10.1721] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The serine/threonine kinase protein kinase B (PKB)/Akt mediates cell survival in a variety of systems. We have generated transgenic mice expressing a constitutively active form of PKB (gag-PKB) to examine the effects of PKB activity on T lymphocyte survival. Thymocytes and mature T cells overexpressing gag-PKB displayed increased active PKB, enhanced viability in culture, and resistance to a variety of apoptotic stimuli. PKB activity prolonged the survival of CD4(+)CD8(+) double positive (DP) thymocytes in fetal thymic organ culture, but was unable to prevent antigen-induced clonal deletion of thymocytes expressing the major histocompatibility complex class I-restricted P14 T cell receptor (TCR). In mature T lymphocytes, PKB can be activated in response to TCR stimulation, and peptide-antigen-specific proliferation is enhanced in T cells expressing the gag-PKB transgene. Both thymocytes and T cells overexpressing gag-PKB displayed elevated levels of the antiapoptotic molecule Bcl-X(L). In addition, the activation of peripheral T cells led to enhanced nuclear factor (NF)-kappaB activation via accelerated degradation of the NF-kappaB inhibitory protein IkappaBalpha. Our data highlight a physiological role for PKB in promoting survival of DP thymocytes and mature T cells, and provide evidence for the direct association of three major survival molecules (PKB, Bcl-X(L), and NF-kappaB) in vivo in T lymphocytes.
Collapse
Affiliation(s)
- Russell G. Jones
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Michael Parsons
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | | | - Vera S.F. Chan
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Wen-Chen Yeh
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
- Amgen Institute, Toronto, Ontario M5G 2C1, Canada
| | - James R. Woodgett
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Pamela S. Ohashi
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
- Department of Immunology, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
1820
|
Schubert KM, Scheid MP, Duronio V. Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J Biol Chem 2000; 275:13330-5. [PMID: 10788440 DOI: 10.1074/jbc.275.18.13330] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The second messenger ceramide (N-alkylsphingosine) has been implicated in a host of cellular processes including growth arrest and apoptosis. Ceramide has been reported to have effects on both protein kinases and phosphatases and may constitute an important component of stress response in various tissues. We have examined in detail the relationship between ceramide signaling and the activation of an important signaling pathway, phosphatidylinositol (PI) 3-kinase and its downstream target, protein kinase B (PKB). PKB activation was observed following stimulation of cells with the cytokine granulocyte-macrophage colony-stimulating factor. Addition of cell-permeable ceramide analogs, C(2)- or C(6)-ceramide, caused a partial loss (50-60%) of PKB activation. This reduction was not a result of decreased PI(3,4,5)P(3) or PI(3,4)P(2) generation by PI 3-kinase. Two residues of PKB (threonine 308 and serine 473) require phosphorylation for maximal PKB activation. Serine 473 phosphorylation was consistently reduced by treatment with ceramide, whereas threonine 308 phosphorylation remained unaffected. In further experiments, ceramide appeared to accelerate serine 473 dephosphorylation, suggesting the activation of a phosphatase. Consistent with this, the reduction in serine 473 phosphorylation was inhibited by the phosphatase inhibitors okadaic acid and calyculin A. Surprisingly, threonine 308 phosphorylation was abolished in cells treated with these inhibitors, revealing a novel mechanism of regulation of threonine 308 phosphorylation. These results demonstrate that PI 3-kinase-dependent kinase 2-catalyzed phosphorylation of serine 473 is the principal target of a ceramide-activated phosphatase.
Collapse
Affiliation(s)
- K M Schubert
- Department of Medicine, University of British Columbia, Vancouver Hospital, Vancouver, British Columbia V6H 3Z6, Canada
| | | | | |
Collapse
|
1821
|
Raghunath M, Patti R, Bannerman P, Lee CM, Baker S, Sutton LN, Phillips PC, Damodar Reddy C. A novel kinase, AATYK induces and promotes neuronal differentiation in a human neuroblastoma (SH-SY5Y) cell line. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 77:151-62. [PMID: 10837911 DOI: 10.1016/s0169-328x(00)00048-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Apoptosis Associated Tyrosine Kinase (AATYK), a novel protein recently isolated from differentiating 32D mouse myeloid cells, contains a putative tyrosine kinase domain and several binding motifs for src homology 2 (SH-2) and src homology 3 (SH-3) domain containing proteins. We observed that AATYK is expressed in different regions of the brain. Although it might play a role in normal nervous system development by modulating apoptosis, little is known regarding its function in the brain or its intracellular localization and kinase activity. Recognizing its homology with Insulin like growth factor-I (IGF-I) receptor (IGF-IR) and the critical role of IGF-I in neuronal survival, we hypothesized that AATYK plays an important role in neuronal differentiation/apoptosis. To test this hypothesis, we transfected the human adrenergic neuroblastoma (NB):SH-SY5Y cells with AATYK cDNA under a tetracycline-repressible promoter and established stable cell lines that readily express AATYK on removal of tetracycline. AATYK immunoprecipitated from these cell lysates is an active kinase. Indirect immunofluorescent staining of the clones revealed AATYK to be localized in the cytoplasm. By itself, AATYK overexpression for short duration (2-3 days) did not induce differentiation in the stable SH-SY5Y clones. On the other hand, overexpression for longer periods (7-8 days) per se, significantly (P<0.05-0.001) increased the percent of differentiated cells as well as the neurite length. AATYK-induced differentiation was in the same range as the differentiation induced by agents like all-trans retinoic acid (RA), 12-O-Tetradecanoyl phorbol 13-acetate (TPA) and IGF-I. In addition, AATYK significantly promoted the neuronal differentiation induced by these agents. Our results demonstrate for the first time that AATYK is an active, non-receptor, cytosolic kinase which induces neuronal differentiation and also promotes differentiation induced by other agents in the SH-SY5Y cells.
Collapse
Affiliation(s)
- M Raghunath
- Division of Neuro-Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | | | | | | | | | | | | | | |
Collapse
|
1822
|
Analysis of the cellular functions of PTEN using catalytic domain and C-terminal mutations: differential effects of C-terminal deletion on signalling pathways downstream of phosphoinositide 3-kinase. Biochem J 2000. [PMID: 10698713 DOI: 10.1042/bj3460827] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tumour suppressor protein, PTEN (phosphatase and tensin homolog deleted on chromosome 10), is a phosphatase that can dephosphorylate tyrosine-containing peptides, Shc, focal adhesion kinase and phosphoinositide substrates. In cellular assays, PTEN has been shown to antagonize the PI-3K-dependent activation of protein kinase B (PKB) and to inhibit cell spreading and motility. It is currently unclear, however, whether PTEN accomplishes these effects through its lipid- or protein-phosphatase activity, although strong evidence has demonstrated the importance of the latter for tumour suppression by PTEN. By using a PTEN G129E (Gly(129)-->Glu) mutant that has lost its lipid phosphatase activity, while retaining protein phosphatase activity, we demonstrated a requirement for the lipid phosphatase activity of PTEN in the regulation of PKB activity, cell viability and membrane ruffling. We also made a small C-terminal deletion of PTEN, removing a putative PDZ (PSD95, Dlg and ZO1)-binding motif, with no detectable effect on the phosphatase activity of the protein expressed in HEK293 cells (human embryonic kidney 293 cells) assayed in vitro. Surprisingly, expression of this mutant revealed differential requirements for the C-terminus in the different functional assays. Wild-type and C-terminally deleted PTEN appeared to be equally active in down-regulating PKB activity, but this mutant enzyme had no effect on platelet-derived growth factor (PDGF)-induced membrane ruffling and was only partially active in a cell viability assay. These results stress the importance of the lipid phosphatase activity of PTEN in the regulation of several signalling pathways. They also identify a mutation, similar to mutations that occur in some human tumours, which removes the effect of PTEN on membrane ruffling but not that on PKB.
Collapse
|
1823
|
Yuan ZQ, Sun M, Feldman RI, Wang G, Ma X, Jiang C, Coppola D, Nicosia SV, Cheng JQ. Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene 2000; 19:2324-30. [PMID: 10822383 DOI: 10.1038/sj.onc.1203598] [Citation(s) in RCA: 276] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously demonstrated that AKT2, a member of protein kinase B family, is activated by a number of growth factors via Ras and PI 3-kinase signaling pathways. Here, we report the frequent activation of AKT2 in human primary ovarian cancer and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase (PI 3-kinase)/Akt pathway. In vitro AKT2 kinase assay analyses in 91 ovarian cancer specimens revealed elevated levels of AKT2 activity (>3-fold) in 33 cases (36.3%). The majority of tumors displaying activated AKT2 were high grade and stages III and IV. Immunostaining and Western blot analyses using a phospho-ser-473 Akt antibody that detects the activated form of AKT2 (AKT2 phosphorylated at serine-474) confirmed the frequent activation of AKT2 in ovarian cancer specimens. Phosphorylated AKT2 in tumor specimens localized to the cell membrane and cytoplasm but not the nucleus. To address the mechanism of AKT2 activation, we measured in vitro PI 3-kinase activity in 43 ovarian cancer specimens, including the 33 cases displaying elevated AKT2 activation. High levels of PI 3-kinase activity were observed in 20 cases, 15 of which also exhibited AKT2 activation. The remaining five cases displayed elevated AKT1 activation. Among the cases with elevated AKT2, but not PI 3-kinase activity (18 cases), three showed down-regulation of PTEN protein expression. Inhibition of PI 3-kinase/AKT2 by wortmannin or LY294002 induces apoptosis in ovarian cancer cells exhibiting activation of the PI 3-kinase/AKT2 pathway. These findings demonstrate for the first time that activation of AKT2 is a common occurrence in human ovarian cancer and that PI 3-kinase/Akt pathway may be an important target for ovarian cancer intervention.
Collapse
Affiliation(s)
- Z Q Yuan
- Department of Pathology, H Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1824
|
Analysis of the cellular functions of PTEN using catalytic domain and C-terminal mutations: differential effects of C-terminal deletion on signalling pathways downstream of phosphoinositide 3-kinase. Biochem J 2000. [PMID: 10698713 DOI: 10.1042/0264-6021:3460827] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The tumour suppressor protein, PTEN (phosphatase and tensin homolog deleted on chromosome 10), is a phosphatase that can dephosphorylate tyrosine-containing peptides, Shc, focal adhesion kinase and phosphoinositide substrates. In cellular assays, PTEN has been shown to antagonize the PI-3K-dependent activation of protein kinase B (PKB) and to inhibit cell spreading and motility. It is currently unclear, however, whether PTEN accomplishes these effects through its lipid- or protein-phosphatase activity, although strong evidence has demonstrated the importance of the latter for tumour suppression by PTEN. By using a PTEN G129E (Gly(129)-->Glu) mutant that has lost its lipid phosphatase activity, while retaining protein phosphatase activity, we demonstrated a requirement for the lipid phosphatase activity of PTEN in the regulation of PKB activity, cell viability and membrane ruffling. We also made a small C-terminal deletion of PTEN, removing a putative PDZ (PSD95, Dlg and ZO1)-binding motif, with no detectable effect on the phosphatase activity of the protein expressed in HEK293 cells (human embryonic kidney 293 cells) assayed in vitro. Surprisingly, expression of this mutant revealed differential requirements for the C-terminus in the different functional assays. Wild-type and C-terminally deleted PTEN appeared to be equally active in down-regulating PKB activity, but this mutant enzyme had no effect on platelet-derived growth factor (PDGF)-induced membrane ruffling and was only partially active in a cell viability assay. These results stress the importance of the lipid phosphatase activity of PTEN in the regulation of several signalling pathways. They also identify a mutation, similar to mutations that occur in some human tumours, which removes the effect of PTEN on membrane ruffling but not that on PKB.
Collapse
|
1825
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) generate specific inositol lipids that have been implicated in the regulation of cell growth, proliferation, survival, differentiation and cytoskeletal changes. One of the best characterized targets of PI3K lipid products is the protein kinase Akt or protein kinase B (PKB). In quiescent cells, PKB resides in the cytosol in a low-activity conformation. Upon cellular stimulation, PKB is activated through recruitment to cellular membranes by PI3K lipid products and phosphorylation by 3'-phosphoinositide-dependent kinase-1 (PDK1). Here we review the mechanism by which PKB is activated and the downstream actions of this multifunctional kinase. We also discuss the evidence that PDK1 may be involved in the activation of protein kinases other than PKB, the mechanisms by which this activity of PDK1 could be regulated and the possibility that some of the currently postulated PKB substrates targets might in fact be phosphorylated by PDK1-regulated kinases other than PKB.
Collapse
|
1826
|
Jeuken JW, Nelen MR, Vermeer H, van Staveren WC, Kremer H, van Overbeeke JJ, Boerman RH. PTEN mutation analysis in two genetic subtypes of high-grade oligodendroglial tumors. PTEN is only occasionally mutated in one of the two genetic subtypes. CANCER GENETICS AND CYTOGENETICS 2000; 119:42-7. [PMID: 10812170 DOI: 10.1016/s0165-4608(99)00210-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We recently identified two genetic subtypes of high-grade oligodendroglial tumors (HG-OT): 1p-/19q- HG-OT are characterized by a loss of chromosome 1p32-36 (del(1)(p32-p36) and/or a del(19)(q13. 3); whereas +7/-10 HG-OT harbor a gain of chromosome 7 (+7) and/or a -10 without a loss of 1p32-36 and 19q13.3. Because a -10 and a +7 are most frequently detected in glioblastomas (GBM), the genotype of +7/-10 HG-OT suggests that these tumors are GBM with a prominent oligodendroglial phenotype rather than anaplastic oligodendrogliomas. PTEN is a tumor suppressor gene, located at 10q23.3, which is involved in tumor progression of GBM and other neoplasms. In this study, we screened for PTEN mutations in six low-grade oligodendroglial tumors (LG-OT), five 1p-/19q- HG-OT, seven +7/-10 HG-OT, and nine xenografted GBM. PTEN mutations were detected in none of the LG-OT and 1p-/19q- HG-OT, once in +7/-10 HG-OT, and frequently in GBM. As one of the +7/-10 HG-OT harbored a PTEN mutation, this demonstrates that PTEN can be involved in the oncogenesis of this genetic subtype of HG-OT. The lower frequency of PTEN mutations in +7/-10 HG-OT compared to GBM suggests that these tumors are of a distinct tumor type rather than GBM. Published by Elsevier Science Inc.
Collapse
Affiliation(s)
- J W Jeuken
- Department of Neurosurgery, University Hospital Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
1827
|
Hlobilkova A, Guldberg P, Thullberg M, Zeuthen J, Lukas J, Bartek J. Cell cycle arrest by the PTEN tumor suppressor is target cell specific and may require protein phosphatase activity. Exp Cell Res 2000; 256:571-7. [PMID: 10772829 DOI: 10.1006/excr.2000.4867] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PTEN, a tumor suppressor commonly targeted in human cancer, possesses phosphatase activities toward both protein and lipid substrates. While PTEN suppresses gliomas through cell cycle inhibition which requires its lipid phosphatase activity, PTEN's effects on other tumor types and the role of its protein phosphatase activity are controversial or unknown. Here we show that exogenous wild-type PTEN arrests some, but not all human breast cancer cell lines in G1, in a manner independent of endogenous PTEN. Unexpectedly, the G129E mutant of PTEN selectively deficient in the lipid phosphatase activity still blocked the cell cycle of MCF-7 cells, while the G129R and H123Y mutants lacking both phosphatase activities were ineffective. These results suggest that PTEN's protein phosphatase activity likely contributes to its tumor suppressor function in subsets of tumors and that elucidation of downstream targets which dictate cellular responses to PTEN may have important implications for future cancer treatment strategies.
Collapse
Affiliation(s)
- A Hlobilkova
- Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, Copenhagen O, DK-2100, Denmark
| | | | | | | | | | | |
Collapse
|
1828
|
Borlado LR, Redondo C, Alvarez B, Jimenez C, Criado LM, Flores J, Marcos MA, Martinez-A C, Balomenos D, Carrera AC. Increased phosphoinositide 3-kinase activity induces a lymphoproliferative disorder and contributes to tumor generation in vivo. FASEB J 2000; 14:895-903. [PMID: 10783143 DOI: 10.1096/fasebj.14.7.895] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alterations in the cell division:cell death ratio induce multiple autoimmune and transformation processes. Phosphoinositide 3-kinase (PI3K) controls cell division and cell death in vitro, but its effect on the function of the cellular immune system and on tumor formation in mammals is poorly characterized. Here we show that transgenic mice expressing in T lymphocytes an active form of PI3K derived from a thymic lymphoma, p65(PI3K), developed an infiltrating lymphoproliferative disorder and autoimmune renal disease with an increased number of T lymphocytes exhibiting a memory phenotype and reduced apoptosis. This pathology was strikingly similar to that described in mice exhibiting heterozygous loss of the tumor suppressor PTEN, a lipid and protein phosphatase. We show that overexpression of PTEN selectively blocks p65(PI3K)-induced 3T3 fibroblast transformation. Moreover, the early development of T cell lymphomas in p65(PI3K) Tg p53(-/-) mice indicated that PI3K contributes to tumor development. These observations demonstrate that constitutive activation of PI3K extends T cell survival in vivo, affects T cell homeostasis, and contributes to tumor generation, supporting a model in which selective increases in one type of PTEN substrate, the PI3K-derived lipid products, induce tumorigenesis. PI3K thus emerges as a potential target in autoimmune disease and cancer therapy.
Collapse
Affiliation(s)
- L R Borlado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Universidad Autonóma de Madrid, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1829
|
Gimm O, Perren A, Weng LP, Marsh DJ, Yeh JJ, Ziebold U, Gil E, Hinze R, Delbridge L, Lees JA, Mutter GL, Robinson BG, Komminoth P, Dralle H, Eng C. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:1693-700. [PMID: 10793080 PMCID: PMC1876937 DOI: 10.1016/s0002-9440(10)65040-7] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Germline mutations in PTEN (MMAC1/TEP1) are found in patients with Cowden syndrome, a familial cancer syndrome which is characterized by a high risk of breast and thyroid neoplasia. Although somatic intragenic PTEN mutations have rarely been found in benign and malignant sporadic thyroid tumors, loss of heterozygosity (LOH) has been reported in up to one fourth of follicular thyroid adenomas (FAs) and carcinomas. In this study, we examined PTEN expression in 139 sporadic nonmedullary thyroid tumors (55 FA, 27 follicular thyroid carcinomas, 35 papillary thyroid carcinomas, and 22 undifferentiated thyroid carcinomas) using immunohistochemistry and correlated this to the results of LOH studies. Normal follicular thyroid cells showed a strong to moderate nuclear or nuclear membrane signal although the cytoplasmic staining was less strong. In FAs the neoplastic nuclei had less intense PTEN staining, although the cytoplasmic PTEN-staining intensity did not differ significantly from that observed in normal follicular cells. In thyroid carcinomas as a group, nuclear PTEN immunostaining was mostly weak in comparison with normal thyroid follicular cells and FAs. The cytoplasmic staining was more intense than the nuclear staining in 35 to 49% of carcinomas, depending on the histological type. Among 81 informative tumors assessed for LOH, there seemed to be an associative trend between decreased nuclear and cytoplasmic staining and 10q23 LOH (P = 0.003, P = 0.008, respectively). These data support a role for PTEN in the pathogenesis of follicular thyroid tumors.
Collapse
Affiliation(s)
- O Gimm
- Clinical Cancer Genetics and Human Cancer Genetics Programs, Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1830
|
Kamikura DM, Khoury H, Maroun C, Naujokas MA, Park M. Enhanced transformation by a plasma membrane-associated met oncoprotein: activation of a phosphoinositide 3'-kinase-dependent autocrine loop involving hyaluronic acid and CD44. Mol Cell Biol 2000; 20:3482-96. [PMID: 10779338 PMCID: PMC85641 DOI: 10.1128/mcb.20.10.3482-3496.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Met-hepatocyte growth factor receptor oncoprotein, Tpr-Met, generated by chromosomal rearrangement, fuses a protein dimerization motif with the cytoplasmic domain of the Met receptor, producing a cytosolic, constitutively activated tyrosine kinase. Although both the Met receptor and the Tpr-Met oncoprotein associate with the same substrates, activating mutations of the Met receptor in hereditary papillary renal carcinomas have different signaling requirements for transformation than Tpr-Met. This suggests differential activation of membrane-localized pathways by oncogenic forms of the membrane-bound Met receptor but not by the cytoplasmic Tpr-Met oncoprotein. To establish which pathways might be differentially regulated, we have localized the constitutively activated Tpr-Met oncoprotein to the membrane using the c-src myristoylation signal. Membrane localization enhances cellular transformation, focus formation, and anchorage-independent growth and induces tumors with a distinct myxoid phenotype. This correlates with the induction of hyaluronic acid (HA) and the presence of a distinct form of its receptor, CD44. A pharmacological inhibitor of phosphoinositide 3' kinase (PI3'K), inhibits the production of HA, and conversely, an activated, plasma membrane-targeted form of PI3'K is sufficient to enhance HA production. Furthermore, the multisubstrate adapter protein Gab-1, which couples the Met receptor with PI3'K, enhances Met receptor-dependent HA synthesis in a PI3'K-dependent manner. These results provide a positive link to a role for HA and CD44 in Met receptor-mediated oncogenesis and implicate PI3'K in these events.
Collapse
Affiliation(s)
- D M Kamikura
- Molecular Oncology Group, Departments of Medicine, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada H3A-1A1
| | | | | | | | | |
Collapse
|
1831
|
Nakashima N, Sharma PM, Imamura T, Bookstein R, Olefsky JM. The tumor suppressor PTEN negatively regulates insulin signaling in 3T3-L1 adipocytes. J Biol Chem 2000; 275:12889-95. [PMID: 10777587 DOI: 10.1074/jbc.275.17.12889] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PTEN is a tumor suppressor with sequence homology to protein-tyrosine phosphatases and the cytoskeleton protein tensin. PTEN is capable of dephosphorylating phosphatidylinositol 3,4, 5-trisphosphate in vitro and down-regulating its levels in insulin-stimulated 293 cells. To study the role of PTEN in insulin signaling, we overexpressed PTEN in 3T3-L1 adipocytes approximately 30-fold above uninfected or control virus (green fluorescent protein)-infected cells, using an adenovirus gene transfer system. PTEN overexpression inhibited insulin-induced 2-deoxy-glucose uptake by 36%, GLUT4 translocation by 35%, and membrane ruffling by 50%, all of which are phosphatidylinositol 3-kinase-dependent processes, compared with uninfected cells or cells infected with control virus. Microinjection of an anti-PTEN antibody increased basal and insulin stimulated GLUT4 translocation, suggesting that inhibition of endogenous PTEN function led to an increase in intracellular phosphatidylinositol 3,4,5-trisphosphate levels, which stimulates GLUT4 translocation. Further, insulin-induced phosphorylation of downstream targets Akt and p70S6 kinase were also inhibited significantly by overexpression of PTEN, whereas tyrosine phosphorylation of the insulin receptor and IRS-1 or the phosphorylation of mitogen-activated protein kinase were not affected, suggesting that the Ras/mitogen-activated protein kinase pathway remains fully functional. Thus, we conclude that PTEN may regulate phosphatidylinositol 3-kinase-dependent insulin signaling pathways in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- N Nakashima
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
1832
|
Wu X, Hepner K, Castelino-Prabhu S, Do D, Kaye MB, Yuan XJ, Wood J, Ross C, Sawyers CL, Whang YE. Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci U S A 2000; 97:4233-8. [PMID: 10760291 PMCID: PMC18208 DOI: 10.1073/pnas.97.8.4233] [Citation(s) in RCA: 309] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PTEN is a tumor suppressor gene mutated in human cancers. Although many mutations target the phosphatase domain, others create a truncated protein lacking the C-terminal PDZ-binding motif or a protein that extends beyond the PDZ-binding motif. Using the yeast two-hybrid system, we isolated a membrane-associated guanylate kinase family protein with multiple PDZ domains [AIP-1 (atrophin interacting protein 1), renamed MAGI-2 (membrane associated guanylate kinase inverted-2)]. MAGI-2 contains eight potential protein-protein interaction domains and is localized to tight junctions in the membrane of epithelial cells. PTEN binds to MAGI-2 through an interaction between the PDZ-binding motif of PTEN and the second PDZ domain of MAGI-2. MAGI-2 enhances the ability of PTEN to suppress Akt activation. Furthermore, certain PTEN mutants have reduced stability, which is restored by adding the minimal PDZ-binding motif back to the truncated protein. We propose that MAGI-2 improves the efficiency of PTEN signaling through assembly of a multiprotein complex at the cell membrane.
Collapse
Affiliation(s)
- X Wu
- Department of Medicine, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1833
|
Liliental J, Moon SY, Lesche R, Mamillapalli R, Li D, Zheng Y, Sun H, Wu H. Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases. Curr Biol 2000; 10:401-4. [PMID: 10753747 DOI: 10.1016/s0960-9822(00)00417-6] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pten (Phosphatase and tensin homolog deleted on chromosome 10) is a recently identified tumor suppressor gene which is deleted or mutated in a variety of primary human cancers and in three cancer predisposition syndromes [1]. Pten regulates apoptosis and cell cycle progression through its phosphatase activity on phosphatidylinositol (PI) 3,4,5-trisphosphate (PI(3,4,5)P(3)), a product of PI 3-kinase [2-5]. Pten has also been implicated in controlling cell migration [6], but the exact mechanism is not very clear. Using the isogenic Pten(+/+) and Pten(-/-) mouse fibroblast lines, here we show that Pten deficiency led to increased cell motility. Reintroducing the wild-type Pten, but not the catalytically inactive Pten C124S or lipid-phosphatase-deficient Pten G129E mutant, reduced the enhanced cell motility of Pten-deficient cells. Moreover, phosphorylation of the focal adhesion kinase p125(FAK) was not changed in Pten(-/-) cells. Instead, significant increases in the endogenous activities of Rac1 and Cdc42, two small GTPases involved in regulating the actin cytoskeleton [7], were observed in Pten(-/-) cells. Overexpression of dominant-negative mutant forms of Rac1 and Cdc42 reversed the cell migration phenotype of Pten(-/-) cells. Thus, our studies suggest that Pten negatively controls cell motility through its lipid phosphatase activity by down-regulating Rac1 and Cdc42.
Collapse
Affiliation(s)
- J Liliental
- Department of Microbiology and Molecular Immunology, Howard Hughes Medical Institute, University of California at Los Angeles School of Medicine, Los Angeles, 90095-1735, USA
| | | | | | | | | | | | | | | |
Collapse
|
1834
|
Persad S, Attwell S, Gray V, Delcommenne M, Troussard A, Sanghera J, Dedhar S. Inhibition of integrin-linked kinase (ILK) suppresses activation of protein kinase B/Akt and induces cell cycle arrest and apoptosis of PTEN-mutant prostate cancer cells. Proc Natl Acad Sci U S A 2000; 97:3207-12. [PMID: 10716737 PMCID: PMC16217 DOI: 10.1073/pnas.97.7.3207] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PTEN is a tumor suppressor gene located on chromosome 10q23 that encodes a protein and phospholipid phosphatase. Somatic mutations of PTEN are found in a number of human malignancies, and loss of expression, or mutational inactivation of PTEN, leads to the constitutive activation of protein kinase B (PKB)/Akt via enhanced phosphorylation of Thr-308 and Ser-473. We recently have demonstrated that the integrin-linked kinase (ILK) can phosphorylate PKB/Akt on Ser-473 in a phosphoinositide phospholipid-dependent manner. We now demonstrate that the activity of ILK is constitutively elevated in a serum- and anchorage-independent manner in PTEN-mutant cells, and transfection of wild-type (WT) PTEN into these cells inhibits ILK activity. Transfection of a kinase-deficient, dominant-negative form of ILK or exposure to a small molecule ILK inhibitor suppresses the constitutive phosphorylation of PKB/Akt on Ser-473, but not on Thr-308, in the PTEN-mutant prostate carcinoma cell lines PC-3 and LNCaP. Transfection of dominant-negative ILK and WT PTEN into these cells also results in the inhibition of PKB/Akt kinase activity. Furthermore, dominant-negative ILK or WT PTEN induces G(1) phase cycle arrest and enhanced apoptosis. Together, these data demonstrate a critical role for ILK in PTEN-dependent cell cycle regulation and survival and indicate that inhibition of ILK may be of significant value in PTEN-mutant tumor therapy.
Collapse
Affiliation(s)
- S Persad
- British Columbia Cancer Agency and Jack Bell Research Centre, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| | | | | | | | | | | | | |
Collapse
|
1835
|
Inhibition of integrin-linked kinase (ILK) suppresses activation of protein kinase B/Akt and induces cell cycle arrest and apoptosis of PTEN-mutant prostate cancer cells. Proc Natl Acad Sci U S A 2000; 97. [PMID: 10716737 PMCID: PMC16217 DOI: 10.1073/pnas.060579697] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PTEN is a tumor suppressor gene located on chromosome 10q23 that encodes a protein and phospholipid phosphatase. Somatic mutations of PTEN are found in a number of human malignancies, and loss of expression, or mutational inactivation of PTEN, leads to the constitutive activation of protein kinase B (PKB)/Akt via enhanced phosphorylation of Thr-308 and Ser-473. We recently have demonstrated that the integrin-linked kinase (ILK) can phosphorylate PKB/Akt on Ser-473 in a phosphoinositide phospholipid-dependent manner. We now demonstrate that the activity of ILK is constitutively elevated in a serum- and anchorage-independent manner in PTEN-mutant cells, and transfection of wild-type (WT) PTEN into these cells inhibits ILK activity. Transfection of a kinase-deficient, dominant-negative form of ILK or exposure to a small molecule ILK inhibitor suppresses the constitutive phosphorylation of PKB/Akt on Ser-473, but not on Thr-308, in the PTEN-mutant prostate carcinoma cell lines PC-3 and LNCaP. Transfection of dominant-negative ILK and WT PTEN into these cells also results in the inhibition of PKB/Akt kinase activity. Furthermore, dominant-negative ILK or WT PTEN induces G(1) phase cycle arrest and enhanced apoptosis. Together, these data demonstrate a critical role for ILK in PTEN-dependent cell cycle regulation and survival and indicate that inhibition of ILK may be of significant value in PTEN-mutant tumor therapy.
Collapse
|
1836
|
Chodosh LA, Gardner HP, Rajan JV, Stairs DB, Marquis ST, Leder PA. Protein kinase expression during murine mammary development. Dev Biol 2000; 219:259-76. [PMID: 10694421 DOI: 10.1006/dbio.2000.9614] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The susceptibility of the mammary gland to carcinogenesis is influenced by its normal development, particularly during developmental stages such as puberty and pregnancy that are characterized by marked changes in proliferation and differentiation. Protein kinases are important regulators of proliferation and differentiation, as well as of neoplastic transformation, in a wide array of tissues, including the breast. Using a RT-PCR-based cloning strategy, we have identified 41 protein kinases that are expressed in breast cancer cell lines and in the murine mammary gland during development. The expression of each of these kinases was analyzed throughout postnatal mammary gland development as well as in a panel of mammary epithelial cell lines derived from distinct transgenic models of breast cancer. Although the majority of protein kinases isolated in this screen have no currently recognized role in mammary development, most kinases examined were found to exhibit developmental regulation. After kinases were clustered on the basis of similarities in their temporal expression profiles during mammary development, multiple distinct patterns of expression were observed. Analysis of these patterns revealed an ordered set of expression profiles in which successive waves of kinase expression occur during development. Interestingly, several protein kinases whose expression has previously been reported to be restricted to tissues other than the mammary gland were isolated in this screen and found to be expressed in the mammary gland. In aggregate, these findings suggest that the array of kinases participating in the regulation of normal mammary development is considerably broader than currently appreciated.
Collapse
Affiliation(s)
- L A Chodosh
- Department of Molecular & Cellular Engineering, Division of Endocrinology, University of Pennsylvania School of Medicine, 612 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
1837
|
Maehama T, Taylor GS, Slama JT, Dixon JE. A sensitive assay for phosphoinositide phosphatases. Anal Biochem 2000; 279:248-50. [PMID: 10706796 DOI: 10.1006/abio.2000.4497] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- T Maehama
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, 48109-0606, USA
| | | | | | | |
Collapse
|
1838
|
Madrid LV, Wang CY, Guttridge DC, Schottelius AJ, Baldwin AS, Mayo MW. Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol 2000; 20:1626-38. [PMID: 10669740 PMCID: PMC85346 DOI: 10.1128/mcb.20.5.1626-1638.2000] [Citation(s) in RCA: 529] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well established that cell survival signals stimulated by growth factors, cytokines, and oncoproteins are initiated by phosphoinositide 3-kinase (PI3K)- and Akt-dependent signal transduction pathways. Oncogenic Ras, an upstream activator of Akt, requires NF-kappaB to initiate transformation, at least partially through the ability of NF-kappaB to suppress transformation-associated apoptosis. In this study, we show that oncogenic H-Ras requires PI3K and Akt to stimulate the transcriptional activity of NF-kappaB. Activated forms of H-Ras and MEKK stimulate signals that result in nuclear translocation and DNA binding of NF-kappaB as well as stimulation of the NF-kappaB transactivation potential. In contrast, activated PI3K or Akt stimulates NF-kappaB-dependent transcription by stimulating transactivation domain 1 of the p65 subunit rather than inducing NF-kappaB nuclear translocation via IkappaB degradation. Inhibition of IkappaB kinase (IKK), using an IKKbeta dominant negative protein, demonstrated that activated Akt requires IKK to efficiently stimulate the transactivation domain of the p65 subunit of NF-kappaB. Inhibition of endogenous Akt activity sensitized cells to H-Ras(V12)-induced apoptosis, which was associated with a loss of NF-kappaB transcriptional activity. Finally, Akt-transformed cells were shown to require NF-kappaB to suppress the ability of etoposide to induce apoptosis. Our work demonstrates that, unlike activated Ras, which can stimulate parallel pathways to activate both DNA binding and the transcriptional activity of NF-kappaB, Akt stimulates NF-kappaB predominantly by upregulating of the transactivation potential of p65.
Collapse
Affiliation(s)
- L V Madrid
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
1839
|
Shi ZQ, Yu DH, Park M, Marshall M, Feng GS. Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Mol Cell Biol 2000; 20:1526-36. [PMID: 10669730 PMCID: PMC85329 DOI: 10.1128/mcb.20.5.1526-1536.2000] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that activation of extracellular signal-regulated kinase (Erk) by epidermal growth factor (EGF) treatment was significantly decreased in mouse fibroblast cells expressing a mutant Shp-2 molecule lacking 65 amino acids in the SH2-N domain, Shp-2(Delta46-110). To address the molecular mechanism for the positive role of Shp-2 in mediating Erk induction, we evaluated the activation of signaling components upstream of Erk in Shp-2 mutant cells. EGF-stimulated Ras, Raf, and Mek activation was significantly attenuated in Shp-2 mutant cells, suggesting that Shp-2 acts to promote Ras activation or to suppress the down-regulation of activated Ras. Biochemical analyses indicate that upon EGF stimulation, Shp-2 is recruited into a multiprotein complex assembled on the Gab1 docking molecule and that Shp-2 seems to exert its biological function by specifically dephosphorylating an unidentified molecule of 90 kDa in the complex. The mutant Shp-2(Delta46-110) molecule failed to participate in the Gab1-organized complex for dephosphorylation of p90, correlating with a defective activation of the Ras-Raf-Mek-Erk cascade in EGF-treated Shp-2 mutant cells. Evidence is also presented that Shp-2 does not appear to modulate the signal relay from EGF receptor to Ras through the Shc, Grb2, and Sos proteins. These results begin to elucidate the mechanism of Shp-2 function downstream of a receptor tyrosine kinase to promote the activation of the Ras-Erk pathway, with potential therapeutic applications in cancer treatment.
Collapse
Affiliation(s)
- Z Q Shi
- Department of Biochemistry and Molecular Biology and Walther Oncology Center, Indiana University School of Medicine and Walther Cancer Institute, Indianapolis, Indiana 46202-5254, USA
| | | | | | | | | |
Collapse
|
1840
|
Abstract
Mutations of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a protein and lipid phosphatase, have been associated with gliomas, macrocephaly, and mental deficiencies. We have assessed PTEN's role in the nervous system and find that PTEN is expressed in mouse brain late in development, starting at approximately postnatal day 0. In adult brain, PTEN is preferentially expressed in neurons and is especially evident in Purkinje neurons, olfactory mitral neurons, and large pyramidal neurons. To analyze the function of PTEN in neuronal differentiation, we used two well established model systems-pheochromocytoma cells and cultured CNS stem cells. PTEN is expressed during neurotrophin-induced differentiation and is detected in both the nucleus and cytoplasm. Suppression of PTEN levels with antisense oligonucleotides does not block initiation of neuronal differentiation. Instead, PTEN antisense leads to death of the resulting, immature neurons, probably during neurite extension. In contrast, PTEN is not required for astrocytic differentiation. These observations indicate that PTEN acts at multiple sites in the cell, regulating the transition of differentiating neuroblasts to postmitotic neurons.
Collapse
|
1841
|
Affiliation(s)
- A Di Cristofano
- Department of Human Genetics, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
1842
|
Wang X, Gjörloff-Wingren A, Saxena M, Pathan N, Reed JC, Mustelin T. The tumor suppressor PTEN regulates T cell survival and antigen receptor signaling by acting as a phosphatidylinositol 3-phosphatase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1934-9. [PMID: 10657643 DOI: 10.4049/jimmunol.164.4.1934] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The tumor suppressor gene PTEN encodes a 55-kDa enzyme that hydrolyzes both protein phosphotyrosyl and 3-phosphorylated inositol phospholipids in vitro. We have found that the latter activity is physiologically relevant in intact T cells. Expression of active PTEN lead to a 50% loss of transfected cells due to increased apoptosis, which was completely prevented by coexpression of a constitutively active, membrane-bound form of protein kinase B. A mutant of PTEN selectively lacking lipid phosphatase activity, but retaining protein phosphatase activity, had no effects on cell number. Active (but not mutant) PTEN also decreased TCR-induced activation of the mitogen-activated protein kinase ERK2 (extracellular signal-related kinase 2), as seen after inhibition of phosphatidylinositol 3-kinase. Our data indicate that PTEN is a phosphatidylinositol 3-phosphatase in T cells, and we suggest that PTEN may play a role in the regulation of T cell survival and TCR signaling by directly opposing phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- X Wang
- The Burnham Institute, La Jolla Cancer Research Center, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
1843
|
Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, Giaccia AJ. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 2000. [DOI: 10.1101/gad.14.4.391] [Citation(s) in RCA: 346] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In glioblastoma-derived cell lines, PTEN does not significantly alter apoptotic sensitivity or cause complete inhibition of DNA synthesis. However, in these cell lines PTEN regulates hypoxia- and IGF-1-induced angiogenic gene expression by regulating Akt activation of HIF-1 activity. Restoration of wild-type PTEN to glioblastoma cell lines lacking functional PTEN ablates hypoxia and IGF-1 induction of HIF-1-regulated genes. In addition, Akt activation leads to HIF-1α stabilization, whereas PTEN attenuates hypoxia-mediated HIF-1α stabilization. We propose that loss ofPTEN during malignant progression contributes to tumor expansion through the deregulation of Akt activity and HIF-1-regulated gene expression.
Collapse
|
1844
|
Vazquez F, Sellers WR. The PTEN tumor suppressor protein: an antagonist of phosphoinositide 3-kinase signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1470:M21-35. [PMID: 10656987 DOI: 10.1016/s0304-419x(99)00032-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- F Vazquez
- Department of Adult Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
1845
|
Tolkacheva T, Chan AM. Inhibition of H-Ras transformation by the PTEN/MMAC1/TEP1 tumor suppressor gene. Oncogene 2000; 19:680-9. [PMID: 10698513 DOI: 10.1038/sj.onc.1203331] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human PTEN/MMAC1/TEP1 (PTEN) tumor suppressor gene encodes a phosphatase with specificity towards the D3 phosphate of phosphatidylinositides. PTEN mutations have been reported in the endometrioid type of uterine tumors which are associated with frequent activations of the Ras oncogenes. In this study, we report the ability of PTEN to potently inhibit H-Ras induced morphological transformation and anchorage-independent growth in NIH3T3 cells. This novel activity of PTEN was correlated more with its ability to suppress the phosphatidylinositol 3-kinase (PI3-K)-dependent signaling cascade, but not the mitogen-activated protein kinase (MAPK) pathway. To define the minimal region in PTEN protein that is responsible for this anti-oncogenic activity, a panel of carboxyl-terminal truncation mutants was generated. While deletions of 4 and 33 amino acids do not have marked effects, removal of up to 68 amino acids drastically reduced the ability of PTEN to inhibit Ras transformation. The propensity of these mutants to suppress Ras transformation is correlated with their relative ability to dephosphorylate inositol (1,3,4,5)-tetrakisphosphate in vitro, and to suppress Akt kinase activity in cultured cells. In addition, we have evidence to suggest that the C-terminal region of PTEN contributes to the stability of the encoded gene product.
Collapse
Affiliation(s)
- T Tolkacheva
- The Derald H Ruttenberg Cancer Center, The Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
1846
|
Abstract
Although tumor suppressor genes continue to be discovered, the most recent advances have been made in attributing new and exciting functions to existing ones - such as the apparent role of VHL as a regulator of proteolysis. Great insights have also come from piecing genes together into pathways and networks. For instance the discovery that cyclin D1 is regulated by beta-catenin/Tcf-4 allows us to tie the APC pathway to the RB pathway and cell cycle control. Similarly, tumor suppressor genes have been fitted together with oncogenes into the various pathways that regulate apoptosis such that tumor suppressor function is now attributed to some of the basic components of the apoptotic machinery, such as caspases and Apaf-1. The great pace at which mouse models of tumorigenesis continue to advance our knowledge of tumor suppressor gene function has led us to look anew at the role of genes such as TCF-1 and SMAD-3 in human cancer. Finally, the realisation that different growth regulatory pathways give rise to generic signals suggests that future work may lie in integrating the signals from different pathways and in understanding the importance of protein levels to cellular function.
Collapse
Affiliation(s)
- K Macleod
- Department of Molecular & Cellular Pathology, University of Dundee, Ninewells Hospital & Medical School, Dundee, DD1 9SY, Scotland. k.f.
| |
Collapse
|
1847
|
Birck A, Ahrenkiel V, Zeuthen J, Hou-Jensen K, Guldberg P. Mutation and allelic loss of the PTEN/MMAC1 gene in primary and metastatic melanoma biopsies. J Invest Dermatol 2000; 114:277-80. [PMID: 10651986 DOI: 10.1046/j.1523-1747.2000.00877.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The PTEN/MMAC1 gene on chromosome 10q23 encodes a lipid phosphatase with tumor-suppressive properties. Germline PTEN/MMAC1 mutations have been implicated as the predisposing factor in Cowden disease and other hamartoma syndromes, and somatic mutations and deletions have been identified in a wide range of human cancers, including 30-40% of metastatic melanoma cell lines. To study further the possible role of PTEN/MMAC1 in the pathogenesis and progression of malignant melanoma, we examined uncultured specimens from 16 primary and 61 metastatic tumors from 67 patients. Denaturing gradient gel electrophoresis was used to analyze systematically the coding region of PTEN/MMAC1 and revealed mutations in four of the metastatic samples (7%). Sequence analysis of the mutants identified a 1 bp frameshift insertion, a 2 bp frameshift deletion, an 11 bp frameshift deletion, and a single base substitution resulting in the generation of a premature stop codon. Analysis of two intragenic polymorphisms showed allelic loss in three of eight informative primary tumors (38%) and in 18 of 31 metastatic tumors (58%). One of the mutant cases showed allelic loss, suggesting that both PTEN/MMAC1 alleles were inactivated in this tumor. Altogether, these results suggest that mutation and deletion of PTEN/MMAC1 may contribute to the development and progression of malignant melanoma.
Collapse
Affiliation(s)
- A Birck
- *Department of Tumor Cell Biology, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
1848
|
Raoul C, Pettmann B, Henderson CE. Active killing of neurons during development and following stress: a role for p75(NTR) and Fas? Curr Opin Neurobiol 2000; 10:111-7. [PMID: 10679436 DOI: 10.1016/s0959-4388(99)00055-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Evidence for active triggering of neuronal death continues to accumulate. The transmembrane receptors p75(NTR) and Fas can trigger (and in some cases are required for) programmed cell death of the neurons that express them, through signalling pathways that are regulated by a variety of cytoplasmic effectors. Neuronal death induced by trophic deprivation often requires Fas signalling, further blurring the boundaries between naturally occurring and stress-induced neuronal death.
Collapse
Affiliation(s)
- C Raoul
- INSERM U.382, Developmental Biology Institute of Marseille (CNRS-INSERM - Univ. Méditerranée - AP Marseille), Marseille, 13288, France.
| | | | | |
Collapse
|
1849
|
Abstract
CD95 and CD95-ligand (CD95L) are physiological mediators of apoptosis required for the control of cell numbers in the human immune system. Discoveries in CD95-dependent mechanisms of immune evasion by tumours suggest regulation by oncogene expression. Clonal contraction of lymphocytes by a CD95/CD95L-independent mechanism has been reported and new evidence supports a role for CD95-dependent peripheral lymphocyte deletion by non-lymphoid tissue. Additionally, factors affecting the pro- and anti-inflammatory effects of CD95L point to a balance of cytokines and growth factors.
Collapse
Affiliation(s)
- M J Pinkoski
- La Jolla Institute for Allergy & Immunology, San Diego, California 92121, USA.
| | | |
Collapse
|
1850
|
Robinson S, Cohen AR. Cowden disease and Lhermitte-Duclos disease: characterization of a new phakomatosis. Neurosurgery 2000; 46:371-83. [PMID: 10690726 DOI: 10.1097/00006123-200002000-00021] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Lhermitte-Duclos disease, or dysplastic gangliocytoma of the cerebellum, is an unusual hamartomatous lesion that can cause progressive mass effects in the posterior fossa. Cowden disease, or multiple hamartoma-neoplasia syndrome, is a rare autosomal dominant disorder characterized by mucocutaneous hamartomas and high incidences of systemic malignancies. We recently treated a patient with manifestations of both Lhermitte-Duclos disease and Cowden disease, and we were intrigued by the occurrence of these two rare disorders in the same patient. The purpose of the present study was to examine the nature of the association between Lhermitte-Duclos disease and Cowden disease. METHODS The records for all patients who had been diagnosed at our institution as having Lhermitte-Duclos disease were reviewed, to determine whether these patients also exhibited manifestations of Cowden disease. Data were obtained from multiple sources, including patient interviews, correspondence with treating physicians, and chart reviews. RESULTS During the past 40 years, five patients were diagnosed at Case Western Reserve University as having Lhermitte-Duclos disease. All five patients exhibited manifestations of Cowden disease. Before this review, Cowden disease had not been diagnosed for three of the patients. In our most recent case, the diagnoses of both disorders were established preoperatively. That patient was observed to have a deletion in the critical portion of Exon 5 of the PTEN gene, the gene associated with Cowden disease. CONCLUSION Inclusion of Lhermitte-Duclos disease in the Cowden disease spectrum suggests that Cowden disease is a true phakomatosis, with hamartomas arising from cutaneous and neural ectoderm. Recent advances in molecular genetics may help to refine the current descriptive classification of the phakomatoses. The association between Lhermitte-Duclos disease and Cowden disease has been under-recognized and under-reported. Recognition of this association has direct clinical relevance, because diligent long-term follow-up monitoring of individuals with Lhermitte-Duclos disease and Cowden disease may lead to the early detection of malignancy.
Collapse
Affiliation(s)
- S Robinson
- Division of Pediatric Neurological Surgery, Rainbow Babies and Childrens Hospital, and Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|