151
|
Yan D, Blauvelt A, Dey AK, Golpanian RS, Hwang ST, Mehta NN, Myers B, Shi ZR, Yosipovitch G, Bell S, Liao W. New Frontiers in Psoriatic Disease Research, Part II: Comorbidities and Targeted Therapies. J Invest Dermatol 2021; 141:2328-2337. [PMID: 33888321 PMCID: PMC8464483 DOI: 10.1016/j.jid.2021.02.743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Although psoriasis and psoriatic arthritis (PsA) have been classically considered to be diseases of the skin and joints, respectively, emerging evidence suggests that a combination of innate and environmental factors creates widespread immune dysfunction, affecting multiple organ systems. A greater understanding of the pathogenesis of psoriasis and the systemic effects of psoriatic inflammation has allowed for the development of new, more effective treatments. The second portion of this two-part review series examines the comorbidities associated with psoriasis and PsA as well as the most recent advances in targeted systemic therapies for these conditions.
Collapse
Affiliation(s)
- Di Yan
- The Ronald O. Perelman Department of Dermatology, NYU Langone Medical Center, New York, New York, USA
| | | | - Amit K Dey
- Cardiopulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Rachel S Golpanian
- Itch Center, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Samuel T Hwang
- Department of Dermatology, UC Davis Medical Center, Sacramento, California
| | - Nehal N Mehta
- Cardiopulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Bridget Myers
- Department of Dermatology, University of California San Francisco, San Francisco, California
| | - Zhen-Rui Shi
- Department of Dermatology, UC Davis Medical Center, Sacramento, California
| | - Gil Yosipovitch
- Itch Center, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stacie Bell
- National Psoriasis Foundation, Portland, Oregon, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, California.
| |
Collapse
|
152
|
Effects of Obesity on Adiponectin System Skin Expression in Dogs: A Comparative Study. Animals (Basel) 2021; 11:ani11082308. [PMID: 34438765 PMCID: PMC8388499 DOI: 10.3390/ani11082308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Adipokines are biologically active molecules with hormonal action, produced mainly by white adipose tissue and related to the individual’s nutritional status. Adiponectin with its receptors (ADIPOR1, ADIPOR2) intervenes in the control of energy metabolism, as well as in the regulation of peripheral tissue functions. Adiponectin has a primary role in the skin in both physiological and pathological conditions, in addition, this molecule is greatly affected by nutritional status, and its serum level is lowered in the obese. In this work, the adiponectin system was evaluated in the skin of obese dogs along with adiponectin serum levels. Results were compared to normal weight dogs to evidence modifications in the obesity condition. Obesity is a widespread phenomenon in dogs, with a growing trend, as well, in humans; this condition may interfere with the local functionality of tissues, including the skin. The evaluation performed evidenced that adiponectin and ADIPOR2 skin expression is negatively correlated with the serum adiponectin level and accordingly with obesity. These findings evidence that the adiponectin system changes in the skin of obese dogs; this study also explores the role of adipokines in skin biology. Abstract Obesity is an important health issue in dogs since it influences a plethora of associated pathologies, including dermatological disorders. Considering the scarcity of information in pets, this work aimed to evaluate the localization and expression of adiponectin (ADIPOQ) and its two receptors (ADIPOR1 and ADIPOR2) in the skin of 10 obese dogs, compared with serum ADIPOQ level. Through immunohistochemistry, ADIPOQ and ADIPOR2 were observed in the adipose tissue, sweat and sebaceous glands, endothelium, and some connective cells. Both receptors were observed in the epidermis and the hair follicles, other than in the sweat and sebaceous glands. Real-time PCR evidenced that the ADIPOQ and ADIPOR2 transcripts were expressed 5.4-fold (p < 0.01) and 2.3-fold less (p < 0.01), respectively, in obese than in normal weight dogs, while ADIPOR1 expression did not change. Obese dogs showed lower serum ADIPOQ levels than the normal weight group. Accordingly, ADIPOQ and ADIPOR2 expression in the skin appear negatively correlated with obesity in the same way as the serum ADIPOQ level. These findings evidence that ADIPOQ system changes in the skin of obese dogs and suggest that the ADIPOQ effect on the skin is at least in part regulated by the reduced expression of ADIPOR2.
Collapse
|
153
|
Bhusnure OG, Gholve SB, Giram PS, Gaikwad AV, Udumansha U, Mani G, Tae JH. Novel 5-flurouracil-Embedded non-woven PVA - PVP electrospun nanofibers with enhanced anti-cancer efficacy: Formulation, evaluation and in vitro anti-cancer activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
154
|
Darvishi B, Dinarvand R, Mohammadpour H, Kamarul T, Sharifi AM. Dual l-Carnosine/ Aloe vera Nanophytosomes with Synergistically Enhanced Protective Effects against Methylglyoxal-Induced Angiogenesis Impairment. Mol Pharm 2021; 18:3302-3325. [PMID: 34297586 DOI: 10.1021/acs.molpharmaceut.1c00248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microvascular complications are among the major outcomes of patients with type II diabetes mellitus, which are the consequences of impaired physiological functioning of small blood vessels and angiogenic responses in these patients. Overproduction and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl byproduct of glycolysis pathway, has been acclaimed as the main inducer of impaired angiogenic responses and microvascular dysfunction in diabetic patients with uncontrolled hyperglycemia. Hence, an effective approach to overcome diabetes-associated microvascular complications is to neutralize the deleterious activity of enhanced the concentration of MGO in the body. Owing to the glycation inhibitory activity of Aloe vera whole extract, and capability of l-carnosine, an endogenous dipeptide, in attenuating MGO's destructive activity, we examined whether application of a combination of l-carnosine and A. vera could be an effective way of synergistically weakening this reactive dicarbonyl's impaired angiogenic effects. Additionally, overcoming the poor cellular uptake and internalization of l-carnosine and A. vera, a nanophytosomal formulation of the physical mixture of two compounds was also established. Although l-carnosine and A. vera at whole studied combination ratios could synergistically enhance viability of human umbilical vein endothelial cells (HUVECs) treated with MGO, the 25:1 w/w ratio was the most effective one among the others (27 ± 0.5% compared to 12 ± 0.3 to 18 ± 0.4%; F (4, 15) = 183.9, P < 0.0001). Developing dual nanophytosomes of l-carnosine/A. vera (25:1) combination ratio, we demonstrated superiority of the nanophytosomal formulation in protecting HUVECs against MGO-induced toxicity following a 24-72 h incubation period (17.3, 15.8, and 12.4% respectively). Moreover, 500 μg/mL concentration of dual l-carnosine/A. vera nanophytosomes exhibited a superior free radical scavenging potency (63 ± 4 RFU vs 83 ± 5 RFU; F (5, 12) = 54.81, P < 0.0001) and nitric oxide synthesizing capacity (26.11 ± 0.19 vs 5.1 ± 0.33; F (5, 12) = 2537, P < 0.0001) compared to their physical combination counterpart. Similarly, 500 μg/mL dual l-carnosine/A. vera nanophytosome-treated HUVECs demonstrated a superior tube formation capacity (15 ± 3 vs 2 ± 0.3; F (5, 12) = 30.87, P < 0.001), wound scratch healing capability (4.92 ± 0.3 vs 3.07 ± 0.3 mm/h; F (5, 12) = 39.21, P < 0.0001), and transwell migration (586 ± 32 vs 394 ± 18; F (5, 12) = 231.8, P < 0.001) and invasion (172 ± 9 vs 115 ± 5; F (5, 12) = 581.1, P < 0.0001) activities compared to the physical combination treated ones. Further confirming the proangiogenic activity of the dual l-carnosine/A. vera nanophytosomes, a significant shift toward expression of proangiogenic genes including HIF-1α, VEGFA, bFGF, KDR, and Ang II was reported in treated HUVECs. Overall, dual l-carnosine/A. vera nanophytosomes could be a potential candidate for attenuating type II DM-associated microvascular complications with an impaired angiogenesis background.
Collapse
Affiliation(s)
- Behrad Darvishi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran.,Razi Drug Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Hadiseh Mohammadpour
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 14155-5583, Iran
| | - Tunku Kamarul
- Tissue Engineering Group, (NOCERAL), Department of Orthopedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ali Mohammad Sharifi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran.,Razi Drug Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran.,Tissue Engineering Group, (NOCERAL), Department of Orthopedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Stem cell and Regenerative Medicine research center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
155
|
Singh DD, Yadav DK. TNBC: Potential Targeting of Multiple Receptors for a Therapeutic Breakthrough, Nanomedicine, and Immunotherapy. Biomedicines 2021; 9:biomedicines9080876. [PMID: 34440080 PMCID: PMC8389539 DOI: 10.3390/biomedicines9080876] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous, recurring cancer associated with a high rate of metastasis, poor prognosis, and lack of therapeutic targets. Although target-based therapeutic options are approved for other cancers, only limited therapeutic options are available for TNBC. Cell signaling and receptor-specific targets are reportedly effective in patients with TNBC under specific clinical conditions. However, most of these cancers are unresponsive, and there is a requirement for more effective treatment modalities. Further, there is a lack of effective biomarkers that can distinguish TNBC from other BC subtypes. ER, PR, and HER2 help identify TNBC and are widely used to identify patients who are most likely to respond to diverse therapeutic strategies. In this review, we discuss the possible treatment options for TNBC based on its inherent subtype receptors and pathways, such as p53 signaling, AKT signaling, cell cycle regulation, DNA damage, and programmed cell death, which play essential roles at multiple stages of TNBC development. We focus on poly-ADP ribose polymerase 1, androgen receptor, vascular endothelial growth factor receptor, and epidermal growth factor receptor as well as the application of nanomedicine and immunotherapy in TNBC and discuss their potential applications in drug development for TNBC.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Dharmendra Kumar Yadav
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: ; Tel.: +82-32-820-4948
| |
Collapse
|
156
|
Hayashi K, Nakazato Y, Ouchi M, Fujita T, Endou H, Chida M. Antitumor effect of dimethyl itaconate on thymic carcinoma by targeting LDHA-mTOR axis. Life Sci 2021; 282:119847. [PMID: 34293399 DOI: 10.1016/j.lfs.2021.119847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/02/2021] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
AIMS Thymic carcinoma is a rare type of cancer without an established standard pharmaceutical treatment. This study investigated the antitumor effect of dimethyl itaconate (DI), a cell-permeable derivative of itaconate, on human thymic carcinoma cell line. MAIN METHODS Human thymic carcinoma cell line Ty82 was used to evaluate the effect of DI on cell viability. Western blotting and immunohistochemistry were performed to determine the molecular mechanism of antitumor effects of DI on Ty82. KEY FINDINGS DI suppressed cell growth and promoted apoptosis of Ty82. The suppressive effect of DI on Ty82 was mediated by the downregulation of lactate dehydrogenase A (LDHA), and the subsequent decrease in the activity of mechanistic target of rapamycin (mTOR). DI exhibited synergistic antitumor effects with a specific inhibitor of large neutral amino acid transporter 1 (LAT1), an amino acid transporter currently being investigated as a novel target for cancer therapy. SIGNIFICANCE Our findings demonstrate that DI is a novel potential strategy for thymic carcinoma treatment.
Collapse
Affiliation(s)
- Keitaro Hayashi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Shimotsuga, Japan.
| | - Yoshimasa Nakazato
- Department of Diagnostic Pathology, Dokkyo Medical University School of Medicine, Shimotsuga, Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Shimotsuga, Japan
| | - Tomoe Fujita
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Shimotsuga, Japan
| | | | - Masayuki Chida
- Department of General Thoracic Surgery, Dokkyo Medical University School of Medicine, Shimotsuga, Japan
| |
Collapse
|
157
|
Li H, Lu Y, Geng Y. Analysis of the Effect of Vitamin C at IC 50 on RAW264.7 and K562 Cells Based on 1H NMR Metabonomics. ACS FOOD SCIENCE & TECHNOLOGY 2021; 1:1120-1129. [DOI: 10.1021/acsfoodscitech.1c00125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Hui Li
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Yang Lu
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Yue Geng
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
158
|
Zhou D, Luan J, Huang C, Li J. Tumor-Associated Macrophages in Hepatocellular Carcinoma: Friend or Foe? Gut Liver 2021; 15:500-516. [PMID: 33087588 PMCID: PMC8283292 DOI: 10.5009/gnl20223] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, and it has diverse etiologies with multiple mechanisms. The diagnosis of HCC typically occurs at advanced stages when there are limited therapeutic options. Hepatocarcinogenesis is considered a multistep process, and hepatic macrophages play a critical role in the inflammatory process leading to HCC. Emerging evidence has shown that tumor-associated macrophages (TAMs) are crucial components defining the HCC immune microenvironment and represent an appealing option for disrupting the formation and development of HCC. In this review, we summarize the current knowledge of the polarization and function of TAMs in the pathogenesis of HCC, as well as the mechanisms underlying TAM-related anti-HCC therapies. Eventually, novel insights into these important aspects of TAMs and their roles in the HCC microenvironment might lead to promising TAM-focused therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Dexi Zhou
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, China.,School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, China.,School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
159
|
Hassanzadeh A, Altajer AH, Rahman HS, Saleh MM, Bokov DO, Abdelbasset WK, Marofi F, Zamani M, Yaghoubi Y, Yazdanifar M, Pathak Y, Chartrand MS, Jarahian M. Mesenchymal Stem/Stromal Cell-Based Delivery: A Rapidly Evolving Strategy for Cancer Therapy. Front Cell Dev Biol 2021; 9:686453. [PMID: 34322483 PMCID: PMC8311597 DOI: 10.3389/fcell.2021.686453] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapy has become an attractive and advanced scientific research area in the context of cancer therapy. This interest is closely linked to the MSC-marked tropism for tumors, suggesting them as a rational and effective vehicle for drug delivery for both hematological and solid malignancies. Nonetheless, the therapeutic application of the MSCs in human tumors is still controversial because of the induction of several signaling pathways largely contributing to tumor progression and metastasis. In spite of some evidence supporting that MSCs may sustain cancer pathogenesis, increasing proofs have indicated the suppressive influences of MSCs on tumor cells. During the last years, a myriad of preclinical and some clinical studies have been carried out or are ongoing to address the safety and efficacy of the MSC-based delivery of therapeutic agents in diverse types of malignancies. A large number of studies have focused on the MSC application as delivery vehicles for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), chemotherapeutic drug such as gemcitabine (GCB), paclitaxel (PTX), and doxorubicin (DOX), prodrugs such as 5-fluorocytosine (5-FC) and ganciclovir (GCV), and immune cell-activating cytokines along with oncolytic virus. In the current review, we evaluate the latest findings rendering the potential of MSCs to be employed as potent gene/drug delivery vehicle for inducing tumor regression with a special focus on the in vivo reports performed during the last two decades.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
| | - Dmitry O. Bokov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- Adjunct Professor, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
160
|
Hikage F, Lennikov A, Mukwaya A, Lachota M, Ida Y, Utheim TP, Chen DF, Huang H, Ohguro H. NF-κB activation in retinal microglia is involved in the inflammatory and neovascularization signaling in laser-induced choroidal neovascularization in mice. Exp Cell Res 2021; 403:112581. [PMID: 33811906 PMCID: PMC8479856 DOI: 10.1016/j.yexcr.2021.112581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE To evaluate Nuclear Factor NF-κB (NF-κB) signaling on microglia activation, migration, and angiogenesis in laser-induced choroidal neovascularization (CNV). METHODS Nine-week-old C57BL/6 male mice were randomly assigned to IMD-0354 treated or untreated groups (5 mice, 10 eyes per group). CNV was induced with a 532-nm laser. Laser spots (power 250 mW, spot size 100 μm, time of exposure 50 ms) were created in each eye using a slit-lamp delivery system. Selective inhibitor of nuclear factor kappa-B kinase subunit beta (IKK2) inhibitor IMD-0354 (10 μg) was delivered subconjunctivally; vehicle-treated mice were the control. The treatment effect on CNV development was assessed at five days post-CNV induction in vivo in C57BL/6 and Cx3cr1gfp/wt mice by fluorescent angiography, fundus imaging, and ex vivo by retinal flatmounts immunostaining and Western blot analysis of RPE/Choroidal/Scleral complexes (RCSC) lysates. In vitro evaluations of IMD-0354 effects were performed in the BV-2 microglial cell line using lipopolysaccharide (LPS) stimulation. RESULTS IMD-0354 caused a significant reduction in the fluorescein leakage and size of the laser spot, as well as a reduction in microglial cell migration and suppression of phospho-IκBα, Vascular endothelial growth factor (VEGF-A), and Prostaglandin-endoperoxide synthase 2 (COX-2). In vivo and ex vivo observations demonstrated reduced lesion size in mice, CD68, and Allograft inflammatory factor 1 (IBA-1) positive microglia cells migration to the laser injury site in IMD-0354 treated eyes. The data further corroborate with GFP-positive cells infiltration of the CNV site in Cx3cr1wt/gfp mice. In vitro IMD-0354 (10-25 ng/ml) treatment reduced NF-κB activation, expression of COX-2, caused decreased Actin-F presence and organization, resulting in reduced BV-2 cells migration capacity. CONCLUSION The present data indicate that NF-κB activation in microglia and it's migration capacity is involved in the development of laser CNV in mice. Its suppression by NF-κB inhibition might be a promising therapeutic strategy for wet AMD.
Collapse
Affiliation(s)
- Fumihito Hikage
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Anton Lennikov
- University of Missouri-Columbia, Missouri, USA; Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States.
| | - Anthony Mukwaya
- Department of Ophthalmology, Institute for Clinical, And Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Mieszko Lachota
- Department of Clinical Immunology, Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Yosuke Ida
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Tor Paaske Utheim
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Dong Feng Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Hu Huang
- University of Missouri-Columbia, Missouri, USA
| | - Hiroshi Ohguro
- Department of Ophthalmology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
161
|
Patelli G, Tosi F, Amatu A, Mauri G, Curaba A, Patanè DA, Pani A, Scaglione F, Siena S, Sartore-Bianchi A. Strategies to tackle RAS-mutated metastatic colorectal cancer. ESMO Open 2021; 6:100156. [PMID: 34044286 PMCID: PMC8167159 DOI: 10.1016/j.esmoop.2021.100156] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
The RAS oncogene is among the most commonly mutated in cancer. RAS mutations are identified in about half of patients diagnosed with metastatic colorectal cancer (mCRC), conferring poor prognosis and lack of response to anti-epidermal growth factor receptor (EGFR) antibodies. In the last decades, several investigational attempts failed in directly targeting RAS mutations, thus RAS was historically regarded as 'undruggable'. Recently, novel specific KRASG12C inhibitors showed promising results in different solid tumors, including mCRC, renewing interest in this biomarker as a target. In this review, we discuss different strategies of RAS targeting in mCRC, according to literature data in both clinical and preclinical settings. We recognized five main strategies focusing on those more promising: direct RAS targeting, targeting the mitogen-activated protein kinase (MAPK) pathway, harnessing RAS through immunotherapy combinations, RAS targeting through metabolic pathways, and finally other miscellaneous approaches. Direct KRASG12C inhibition is emerging as the most promising strategy in mCRC as well as in other solid malignancies. However, despite good disease control rates, tumor response and duration of response are still limited in mCRC. At this regard, combinational approaches with anti-epidermal growth factor receptor drugs or checkpoint inhibitors have been proposed to enhance treatment efficacy, based on encouraging results achieved in preclinical studies. Besides, concomitant therapies increasing metabolic stress are currently under evaluation and expected to also provide remarkable results in RAS codon mutations apart from KRASG12C. In conclusion, based on hereby reported efforts of translational research, RAS mutations should no longer be regarded as 'undruggable' and future avenues are now opening for translation in the clinic in mCRC.
Collapse
Affiliation(s)
- G Patelli
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - F Tosi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - A Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - G Mauri
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - A Curaba
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - D A Patanè
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - A Pani
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - F Scaglione
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy; Clinical Pharmacology Unit, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - S Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - A Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy.
| |
Collapse
|
162
|
Liu J, Wang F, Song H, Weng Z, Bao Y, Fang Y, Tang X, Shen X. Soybean-derived gma-miR159a alleviates colon tumorigenesis by suppressing TCF7/MYC in mice. J Nutr Biochem 2021; 92:108627. [PMID: 33705946 DOI: 10.1016/j.jnutbio.2021.108627] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/10/2020] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Previous reports have shown that plant-derived microRNAs (miRNAs) regulate mammalian gene expression through dietary intake. Our prior study found that gma-miR159a, which is abundant in soybean, significantly inhibited the proliferation of colon cancer cells. In the current study, dietary gma-miR159a was utilized to study its anti-colon cancer function in azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer mice. Under processing conditions, gma-miR159a exhibited excellent stability in cooked soybean. In vitro, gma-miR159a suppressed the expression of the oncogene MYC downstream of the Wnt signaling pathway by targeting the TCF7 gene, significantly inhibiting the growth of colon cancer cells. The in vivo experiments showed that gma-miR159a and soybean RNA (total RNA extracted from soybean) significantly reduced tumor growth in AOM/DSS-induced colon cancer mice by gavage. This effect disappeared when anti-miR159a was present. In addition, gma-miR159a and soybean RNA significantly attenuated inflammation in colon cancer mice. These results showed that long-term dietary intake of soybean-derived gma-miR159a effectively prevented the occurrence of colon cancer and colitis, which provides novel evidence for the prevention function of soybean.
Collapse
Affiliation(s)
- Juncheng Liu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Zebin Weng
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yifan Bao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Yong Fang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China.
| |
Collapse
|
163
|
Huang JQ, Lu M, Ho CT. Health benefits of dietary chronobiotics: beyond resynchronizing internal clocks. Food Funct 2021; 12:6136-6156. [PMID: 34057166 DOI: 10.1039/d1fo00661d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The internal circadian clock in mammals drives whole-body biological activity rhythms. The clock reflects changes in external signals by controlling enzyme functions and the release of hormones involved in metabolic processes. Thus, misalignments between the circadian clock and an individual's daily schedule are recognized to be related to various metabolic diseases, such as obesity and diabetes. Although evidence has shown the existence of a complex relationship between circadian clock regulation and daily food intake, the regulatory effects of phytochemicals on the circadian clock remain unclarified. To better elucidate these relationships/effects, the circadian system components in mammals, circadian misalignment-related metabolic diseases, circadian rhythm-adjusting phytochemicals (including the heterocycles, acids, flavonoids and others) and the potential mechanisms (including the regulation of clock genes/proteins, metabolites of gut microbiota and secondary metabolites) are reviewed here. The bioactive components of functional foods discussed in this review could be considered potentially effective factors for the prevention and treatment of metabolic disorders related to circadian misalignment.
Collapse
Affiliation(s)
- Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-pattern of Traditional Chinese Medicine, Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | | | | |
Collapse
|
164
|
Li X, Yao J, Hu KH, Wu B, Sui JF, Gao J, Wu GY, Liu SL. Differential roles of prelimbic and anterior cingulate cortical region in the modulation of histaminergic and non-histaminergic itch. Behav Brain Res 2021; 411:113388. [PMID: 34052263 DOI: 10.1016/j.bbr.2021.113388] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Itch is an unpleasant sensation that evokes a desire to scratch. Itch processing in the peripheral and spinal cord has been studied extensively, but the mechanism of itch in the central nervous system is still unclear. Anterior cingulate cortex (ACC) and prelimbic cortex (Prl), two subregions of the prefrontal cortex closely related to emotion and motivation, have been reported to be activated during itching in a series of functional imaging studies. However, the exact role of Prl and the differences between ACC and Prl in itch modulation remains unknown. To directly test the differential roles of ACC and Prl in itch processing, we chemogeneticlly inhibited the caudal ACC and Prl, respectively. We found that inhibition of caudal ACC reduced histaminergic but not non-histaminergic itch-induced scratching behaviors. In contrast, inhibition of Prl reduced both histaminergic and non-histaminergic itch-induced scratching behaviors. Our study provided direct evidence of Prl involvement in itch modulation and revealed the differential roles of caudal ACC and Prl in regulating histaminergic and non-histaminergic itch.
Collapse
Affiliation(s)
- Xuan Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Ke-Hui Hu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, 629000, China
| | - Bing Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jian-Feng Sui
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jie Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Guang-Yan Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Shu-Lei Liu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
165
|
Bose A, Modi K, Dey S, Dalvi S, Nadkarni P, Sudarshan M, Kundu TK, Venkatraman P, Dalal SN. 14-3-3γ prevents centrosome duplication by inhibiting NPM1 function. Genes Cells 2021; 26:426-446. [PMID: 33813791 DOI: 10.1111/gtc.12848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
14-3-3 proteins bind to ligands via phospho-serine containing consensus motifs. However, the molecular mechanisms underlying complex formation and dissociation between 14-3-3 proteins and their ligands remain unclear. We identified two conserved acidic residues in the 14-3-3 peptide-binding pocket (D129 and E136) that potentially regulate complex formation and dissociation. Altering these residues to alanine led to opposing effects on centrosome duplication. D129A inhibited centrosome duplication, whereas E136A stimulated centrosome amplification. These results were due to the differing abilities of these mutant proteins to form a complex with NPM1. Inhibiting complex formation between NPM1 and 14-3-3γ led to an increase in centrosome duplication and over-rode the ability of D129A to inhibit centrosome duplication. We identify a novel role of 14-3-3γ in regulating centrosome licensing and a novel mechanism underlying the formation and dissociation of 14-3-3 ligand complexes dictated by conserved residues in the 14-3-3 family.
Collapse
Affiliation(s)
- Arunabha Bose
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Kruti Modi
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Suchismita Dey
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Somavally Dalvi
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Prafful Nadkarni
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Mukund Sudarshan
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Prasanna Venkatraman
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sorab N Dalal
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
166
|
Hama A, Yano M, Sotogawa W, Fujii R, Awaga Y, Natsume T, Hayashi I, Takamatsu H. Pharmacological modulation of brain activation to non-noxious stimulation in a cynomolgus macaque model of peripheral nerve injury. Mol Pain 2021; 17:17448069211008697. [PMID: 33853400 PMCID: PMC8053757 DOI: 10.1177/17448069211008697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In vivo neuroimaging could be utilized as a noninvasive tool for elaborating the CNS mechanism of chronic pain and for elaborating mechanisms of potential analgesic therapeutics. A model of unilateral peripheral neuropathy was developed in the cynomolgus macaque, a species that is phylogenetically close to humans. Nerve entrapment was induced by placing a 4 mm length of polyvinyl cuff around the left common sciatic nerve. Prior to nerve injury, stimulation of the foot with a range of non-noxious von Frey filaments (1, 4, 8, 15, and 26 g) did not evoke brain activation as observed with functional magnetic resonance imaging (fMRI). Two weeks after injury, stimulation of the ipsilateral foot with non-noxious filaments activated the contralateral insula/secondary somatosensory cortex (Ins/SII) and anterior cingulate cortex (ACC). By contrast, no activation was observed with stimulation of the contralateral foot. Robust bilateral activation of thalamus was observed three to five weeks after nerve injury. Treatment with the clinical analgesic pregabalin reduced evoked activation of Ins/SII, thalamus and ACC whereas treatment with the NK1 receptor antagonist aprepitant reduced activation of the ipsilateral (left) thalamus. Twelve to 13 weeks after nerve injury, treatment with pregabalin reduced evoked activation of all regions of interest (ROI). By contrast, brain activation persisted in most ROI, except the ACC, following aprepitant treatment. Activation of the contralateral Ins/SII and bilateral thalamus was observed six months after nerve injury and pregabalin treatment suppressed activation of these nuclei. The current findings demonstrated persistent changes in CNS neurons following nerve injury as suggested by activation with non-painful mechanical stimulation. Furthermore, it was possible to functionally distinguish between a clinically efficacious analgesic drug, pregabalin, from a drug that has not demonstrated significant clinical analgesic efficacy, aprepitant. In vivo neuroimaging in the current nonhuman model could enhance translatability.
Collapse
Affiliation(s)
- Aldric Hama
- Hamamatsu Pharma Research Inc., Hamamatsu, Japan
| | - Mizuho Yano
- Hamamatsu Pharma Research Inc., Hamamatsu, Japan
| | | | | | - Yuji Awaga
- Hamamatsu Pharma Research Inc., Hamamatsu, Japan
| | | | - Ikuo Hayashi
- Hamamatsu Pharma Research USA, Inc., San Diego, CA, USA
| | | |
Collapse
|
167
|
Olim F, Neves AR, Vieira M, Tomás H, Sheng R. Self‐Assembly of Cholesterol‐Doxorubicin and TPGS into Prodrug‐Based Nanoparticles with Enhanced Cellular Uptake and Lysosome‐Dependent Pathway in Breast Cancer Cells. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Filipe Olim
- CQM – Centro de Química da Madeira, MMRG Universidade da Madeira Campus da Penteada Funchal 9020‐105 Portugal
| | - Ana Rute Neves
- CQM – Centro de Química da Madeira, MMRG Universidade da Madeira Campus da Penteada Funchal 9020‐105 Portugal
| | - Mariana Vieira
- CQM – Centro de Química da Madeira, MMRG Universidade da Madeira Campus da Penteada Funchal 9020‐105 Portugal
| | - Helena Tomás
- CQM – Centro de Química da Madeira, MMRG Universidade da Madeira Campus da Penteada Funchal 9020‐105 Portugal
| | - Ruilong Sheng
- CQM – Centro de Química da Madeira, MMRG Universidade da Madeira Campus da Penteada Funchal 9020‐105 Portugal
| |
Collapse
|
168
|
Yang C, He B, Dai W, Zhang H, Zheng Y, Wang X, Zhang Q. The role of caveolin-1 in the biofate and efficacy of anti-tumor drugs and their nano-drug delivery systems. Acta Pharm Sin B 2021; 11:961-977. [PMID: 33996409 PMCID: PMC8105775 DOI: 10.1016/j.apsb.2020.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
As one of the most important components of caveolae, caveolin-1 is involved in caveolae-mediated endocytosis and transcytosis pathways, and also plays a role in regulating the cell membrane cholesterol homeostasis and mediating signal transduction. In recent years, the relationship between the expression level of caveolin-1 in the tumor microenvironment and the prognostic effect of tumor treatment and drug treatment resistance has also been widely explored. In addition, the interplay between caveolin-1 and nano-drugs is bidirectional. Caveolin-1 could determine the intracellular biofate of specific nano-drugs, preventing from lysosomal degradation, and facilitate them penetrate into deeper site of tumors by transcytosis; while some nanocarriers could also affect caveolin-1 levels in tumor cells, thereby changing certain biophysical function of cells. This article reviews the role of caveolin-1 in tumor prognosis, chemotherapeutic drug resistance, antibody drug sensitivity, and nano-drug delivery, providing a reference for the further application of caveolin-1 in nano-drug delivery systems.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- ADC, antibody drug conjugates
- BBB, blood–brain barrier
- Biofate
- CAFs, cancer-associated fibroblasts
- CPT, camptothecin
- CSD, caveolin scaffolding domain
- CTB, cholera toxins B
- Cancer
- Caveolin-1
- Drug resistance
- ECM, extracellular matrix
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- ER, endoplasmic reticulum
- ERK, extracellular regulated protein kinases
- FGF2, fibroblast growth factor 2
- GGT, γ-glutamyl transpeptidase
- GPI, glycosylphosphatidylinositol
- HER2, human epidermal growth factor receptor 2
- HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A
- HSA, human serum albumin
- IBC, infiltrating breast cancer
- IR, insulin receptor
- MAPK, mitogen-activated protein kinase
- MDR, multidrug resistance
- MSV, multistage nanovectors
- NPs, nanoparticles
- Nano-drug delivery systems
- PC, prostate cancer
- PDGF, platelet-derived growth factor
- PFS, progression free survival
- ROS, reactive oxygen species
- SCLC, small cell lung cancer
- SV40, simian virus 40
- Transcytosis
- cell SMA, styrene maleic acid
Collapse
|
169
|
Jiang H, Tang J, Qiu L, Zhang Z, Shi S, Xue L, Kui L, Huang T, Nan W, Zhou B, Zhao C, Yu M, Sun Q. Semaphorin 4D is a potential biomarker in pediatric leukemia and promotes leukemogenesis by activating PI3K/AKT and ERK signaling pathways. Oncol Rep 2021. [PMID: 33649851 DOI: 10.3892/or.2021.8021/html] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Semaphorin 4D (Sema4D) is highly expressed in a variety of tumors and is associated with high invasion, poor prognosis and poor therapeutic response. However, the expression and role of Sema4D in leukemia remains unclear. The present study investigated the expression of Sema4D in pediatric leukemia and its effects in leukemia cells. The results demonstrated that Sema4D protein was highly expressed in peripheral blood mononuclear cells of patients with pediatric leukemia, and high levels of soluble Sema4D were also observed in the plasma of these patients. Sema4D knockdown induced cell cycle arrest in G0/G1 phase, inhibited proliferation and promoted apoptosis in BALL‑1 cells, while Sema4D overexpression exhibited the opposite effect. In Jurkat cells, Sema4D knockdown inhibited proliferation and promoted apoptosis, while Sema4D overexpression decreased the abundance of the cells in the G0/G1 phase of the cell cycle and promoted proliferation. Sema4D overexpression also increased the migratory capacity of Jurkat cells and the invasive capacity of BALL‑1 cells. The phosphorylation level of PI3K was decreased in both Sema4D knocked‑down Jurkat and BALL‑1 cells, and the phosphorylation level of ERK was decreased in Sema4D knocked‑down BALL‑1 cells. The phosphorylation levels of PI3K, ERK and AKT were elevated in patients with pediatric leukemia, and were correlated to the increased Sema4D expression. Sema4D overexpression was associated with a shorter overall survival in patients with acute myeloid leukemia. Overall, the results of the present study indicated that Sema4D serves an important role in leukemia development by activating PI3K/AKT and ERK signaling, and it may be used as a potential target for the diagnosis and treatment of leukemia.
Collapse
MESH Headings
- Adolescent
- Antigens, CD/biosynthesis
- Antigens, CD/blood
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/blood
- Case-Control Studies
- Cell Line, Tumor
- Cell Proliferation/physiology
- Child
- Child, Preschool
- Female
- Humans
- Infant
- Jurkat Cells
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukocytes, Mononuclear/metabolism
- MAP Kinase Signaling System
- Male
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- Semaphorins/biosynthesis
- Semaphorins/blood
Collapse
Affiliation(s)
- Hongchao Jiang
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Jiaolian Tang
- Institute of Pediatrics, Children's Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650228, P.R. China
| | - Lijuan Qiu
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Zhen Zhang
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Shulan Shi
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Li Xue
- Institute of Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| | - Liyue Kui
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Tilong Huang
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Weiwei Nan
- Institute of Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| | - Bailing Zhou
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Canchun Zhao
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Ming Yu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
170
|
Effect of Interleukin-7 on Radiation-Induced Lymphopenia and Its Antitumor Effects in a Mouse Model. Int J Radiat Oncol Biol Phys 2021; 109:1559-1569. [PMID: 33321193 DOI: 10.1016/j.ijrobp.2020.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/29/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Local ionizing radiation (IR) can lead to systemic lymphocyte depletion, which is associated with poor survival outcomes in patients with cancer. Interleukin-7 (IL-7) plays an important role in lymphocyte homeostasis; however, its role in alleviating radiation-induced lymphopenia remains unclear. Hence, we established a radiation-induced lymphopenia animal model and evaluated the effect of exogenous IL-7 administration. METHODS C3H/HeN mice underwent x-ray irradiation of 30 Gy in 10 fractions at the right hind limbs. Next, 10 mg/kg of IL-7 was injected subcutaneously, and the lymphocyte count in blood was measured. Murine hepatocellular carcinoma (HCa-1) cells were inoculated subcutaneously into the right thighs of tumor model mice, which underwent the same treatment. RESULTS In the naïve mouse model, the decreased CD45+ cell count after irradiation gradually recovered to the initial level over 3 weeks in the IR group, whereas it markedly increased to 373% of the initial level in 1 week in the IR+IL-7 group. Similar trends were observed for the CD3+, CD8+, CD4+, regulatory T cells, and CD19+ B cell counts. Similar findings were observed in the tumor mouse model. CD8+ and CD4+ T cell infiltration in tumor specimens was higher in the IL-7 and IR+IL-7 groups than in the nontreated and IR groups. Tumor growth was significantly more suppressed in the IR+IL-7 group than in the IR group. The median survival time was significantly longer in the IR+IL-7 group (not reached) than in the IR (56 days; P = .0382), IL-7 (36 days; P = .0004), or nontreated groups (36 days; P < .0001). CONCLUSIONS Administration of exogenous IL-7 after IR not only restored lymphocyte counts but also enhanced the antitumor effect. Exogenous IL-7 can be beneficial in overcoming radiation-induced lymphopenia and in enhancing the treatment outcome in combination with radiation therapy, which needs validation through future clinical studies.
Collapse
|
171
|
Cui Y, Han B, Zhang H, Liu H, Zhang F, Niu R. Identification of Metabolic-Associated Genes for the Prediction of Colon and Rectal Adenocarcinoma. Onco Targets Ther 2021; 14:2259-2277. [PMID: 33833525 PMCID: PMC8020594 DOI: 10.2147/ott.s297134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/05/2021] [Indexed: 12/31/2022] Open
Abstract
Background and Aim Uncontrolled proliferation is the most prominent biological feature of tumors. In order to rapidly proliferate, tumor cells regulate their metabolic behavior by controlling the expression of metabolism-related genes (MRGs) to maximize the utilization of available nutrients. In this study, we aimed to construct prognosis models for colorectal adenocarcinoma (COAD) and rectum adenocarcinoma (READ) using MRGs to predict the prognoses of patients. Methods We first acquired the gene expression profiles of COAD and READ from the TCGA database, and then utilized univariate Cox analysis, Lasso regression, and multivariable Cox analysis to identify the MRGs for risk models. Results Eight genes (CPT1C, PLCB2, PLA2G2D, GAMT, ENPP2, PIP4K2B, GPX3, and GSR) in the colon cancer risk model and six genes (TDO2, PKLR, GAMT, EARS2, ACO1, and WAS) in the rectal cancer risk model were identified successfully. Multivariate Cox analysis indicated that these two models could accurately and independently predict overall survival (OS) for patients with COAD or READ. Furthermore, functional enrichment analysis was used to identify the metabolism pathway of MRGs in the risk models and analyzed these genes comprehensively. Then, we verified the prognosis model in independent COAD cohorts (GSE17538) and detected the correlations of the protein expression levels of GSR and ENPP2 with prognosis for COAD or READ. Conclusion In this study, 14 MRGs were identified as potential prognostic biomarkers and therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Yanfen Cui
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| | - Baoai Han
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| | - Hui Liu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| |
Collapse
|
172
|
Remodeling of Cancer-Specific Metabolism under Hypoxia with Lactate Calcium Salt in Human Colorectal Cancer Cells. Cancers (Basel) 2021. [PMID: 33806179 DOI: 10.3390/cancers13071518.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hypoxic cancer cells meet their growing energy requirements by upregulating glycolysis, resulting in increased glucose consumption and lactate production. Herein, we used a unique approach to change in anaerobic glycolysis of cancer cells by lactate calcium salt (CaLac). Human colorectal cancer (CRC) cells were used for the study. Intracellular calcium and lactate influx was confirmed following 2.5 mM CaLac treatment. The enzymatic activation of lactate dehydrogenase B (LDHB) and pyruvate dehydrogenase (PDH) through substrate reaction of CaLac was investigated. Changes in the intermediates of the tricarboxylic acid (TCA) cycle were confirmed. The cell viability assay, tube formation, and wound-healing assay were performed as well as the confirmation of the expression of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). In vivo antitumor effects were evaluated using heterotopic and metastatic xenograft animal models with 20 mg/kg CaLac administration. Intracellular calcium and lactate levels were increased following CaLac treatment in CRC cells under hypoxia. Then, enzymatic activation of LDHB and PDH were increased. Upon PDH knockdown, α-ketoglutarate levels were similar between CaLac-treated and untreated cells, indicating that TCA cycle restoration was dependent on CaLac-mediated LDHB and PDH reactivation. CaLac-mediated remodeling of cancer-specific anaerobic glycolysis induced destabilization of HIF-1α and a decrease in VEGF expression, leading to the inhibition of the migration of CRC cells. The significant inhibition of CRC growth and liver metastasis by CaLac administration was confirmed. Our study highlights the potential utility of CaLac supplementation in CRC patients who display reduced therapeutic responses to conventional modes owing to the hypoxic tumor microenvironment.
Collapse
|
173
|
Jeong KY, Sim JJ, Park MH, Kim HM. Remodeling of Cancer-Specific Metabolism under Hypoxia with Lactate Calcium Salt in Human Colorectal Cancer Cells. Cancers (Basel) 2021; 13:1518. [PMID: 33806179 PMCID: PMC8037473 DOI: 10.3390/cancers13071518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Hypoxic cancer cells meet their growing energy requirements by upregulating glycolysis, resulting in increased glucose consumption and lactate production. Herein, we used a unique approach to change in anaerobic glycolysis of cancer cells by lactate calcium salt (CaLac). Human colorectal cancer (CRC) cells were used for the study. Intracellular calcium and lactate influx was confirmed following 2.5 mM CaLac treatment. The enzymatic activation of lactate dehydrogenase B (LDHB) and pyruvate dehydrogenase (PDH) through substrate reaction of CaLac was investigated. Changes in the intermediates of the tricarboxylic acid (TCA) cycle were confirmed. The cell viability assay, tube formation, and wound-healing assay were performed as well as the confirmation of the expression of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). In vivo antitumor effects were evaluated using heterotopic and metastatic xenograft animal models with 20 mg/kg CaLac administration. Intracellular calcium and lactate levels were increased following CaLac treatment in CRC cells under hypoxia. Then, enzymatic activation of LDHB and PDH were increased. Upon PDH knockdown, α-ketoglutarate levels were similar between CaLac-treated and untreated cells, indicating that TCA cycle restoration was dependent on CaLac-mediated LDHB and PDH reactivation. CaLac-mediated remodeling of cancer-specific anaerobic glycolysis induced destabilization of HIF-1α and a decrease in VEGF expression, leading to the inhibition of the migration of CRC cells. The significant inhibition of CRC growth and liver metastasis by CaLac administration was confirmed. Our study highlights the potential utility of CaLac supplementation in CRC patients who display reduced therapeutic responses to conventional modes owing to the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Metimedi Pharmaceuticals Co., Research Center, 263 Central-Ro, Yeonsu-Gu, Incheon 22006, Korea; (J.-J.S.); (M.H.P.)
| | - Jae-Jun Sim
- Metimedi Pharmaceuticals Co., Research Center, 263 Central-Ro, Yeonsu-Gu, Incheon 22006, Korea; (J.-J.S.); (M.H.P.)
| | - Min Hee Park
- Metimedi Pharmaceuticals Co., Research Center, 263 Central-Ro, Yeonsu-Gu, Incheon 22006, Korea; (J.-J.S.); (M.H.P.)
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Sciences, Gachon University 191 Hambangmoe-Ro, Yeonsu-Gu, Incheon 21936, Korea
| |
Collapse
|
174
|
How Macrophages Become Transcriptionally Dysregulated: A Hidden Impact of Antitumor Therapy. Int J Mol Sci 2021; 22:ijms22052662. [PMID: 33800829 PMCID: PMC7961970 DOI: 10.3390/ijms22052662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are the essential components of the tumor microenvironment. TAMs originate from blood monocytes and undergo pro- or anti-inflammatory polarization during their life span within the tumor. The balance between macrophage functional populations and the efficacy of their antitumor activities rely on the transcription factors such as STAT1, NF-κB, IRF, and others. These molecular tools are of primary importance, as they contribute to the tumor adaptations and resistance to radio- and chemotherapy and can become important biomarkers for theranostics. Herein, we describe the major transcriptional mechanisms specific for TAM, as well as how radio- and chemotherapy can impact gene transcription and functionality of macrophages, and what are the consequences of the TAM-tumor cooperation.
Collapse
|
175
|
Jiang H, Tang J, Qiu L, Zhang Z, Shi S, Xue L, Kui L, Huang T, Nan W, Zhou B, Zhao C, Yu M, Sun Q. Semaphorin 4D is a potential biomarker in pediatric leukemia and promotes leukemogenesis by activating PI3K/AKT and ERK signaling pathways. Oncol Rep 2021; 45:1. [PMID: 33649851 PMCID: PMC7877000 DOI: 10.3892/or.2021.7952] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
Semaphorin 4D (Sema4D) is highly expressed in a variety of tumors and is associated with high invasion, poor prognosis and poor therapeutic response. However, the expression and role of Sema4D in leukemia remains unclear. The present study investigated the expression of Sema4D in pediatric leukemia and its effects in leukemia cells. The results demonstrated that Sema4D protein was highly expressed in peripheral blood mononuclear cells of patients with pediatric leukemia, and high levels of soluble Sema4D were also observed in the plasma of these patients. Sema4D knockdown induced cell cycle arrest in G0/G1 phase, inhibited proliferation and promoted apoptosis in BALL-1 cells, while Sema4D overexpression exhibited the opposite effect. In Jurkat cells, Sema4D knockdown inhibited proliferation and promoted apoptosis, while Sema4D overexpression decreased the abundance of the cells in the G0/G1 phase of the cell cycle and promoted proliferation. Sema4D overexpression also increased the migratory capacity of Jurkat cells and the invasive capacity of BALL-1 cells. The phosphorylation level of PI3K was decreased in both Sema4D knocked-down Jurkat and BALL-1 cells, and the phosphorylation level of ERK was decreased in Sema4D knocked-down BALL-1 cells. The phosphorylation levels of PI3K, ERK and AKT were elevated in patients with pediatric leukemia, and were correlated to the increased Sema4D expression. Sema4D overexpression was associated with a shorter overall survival in patients with acute myeloid leukemia. Overall, the results of the present study indicated that Sema4D serves an important role in leukemia development by activating PI3K/AKT and ERK signaling, and it may be used as a potential target for the diagnosis and treatment of leukemia.
Collapse
Affiliation(s)
- Hongchao Jiang
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Jiaolian Tang
- Institute of Pediatrics, Children's Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650228, P.R. China
| | - Lijuan Qiu
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Zhen Zhang
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Shulan Shi
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Li Xue
- Institute of Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| | - Liyue Kui
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Tilong Huang
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Weiwei Nan
- Institute of Medicine, Dali University, Dali, Yunnan 671000, P.R. China
| | - Bailing Zhou
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Canchun Zhao
- Institute of Pediatrics, The Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Ming Yu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
176
|
Demirbolat GM, Aktas E, Coskun GP, Erdogan O, Cevik O. New Approach to Formulate Methotrexate-Loaded Niosomes: In Vitro Characterization and Cellular Effectiveness. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09539-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
177
|
Yogosawa S, Nakayama J, Nishi M, Ryo A, Yoshida K. Carbonic anhydrase 13 suppresses bone metastasis in breast cancer. Cancer Treat Res Commun 2021; 27:100332. [PMID: 33588197 DOI: 10.1016/j.ctarc.2021.100332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 02/08/2023]
Abstract
Metastatic progression is the leading cause of mortality in breast cancer. However, molecular mechanisms that govern this process remain unclear. In this study, we found that carbonic anhydrase 13 (CA13) plays a potential role in suppressing bone metastasis. iRFP713-labeled iCSCL-10A (iRFP-iCSCL-10A) breast cancer cells, which exhibit the hallmarks of cancer stem cells, exerted the ability of bone metastasis in hind legs after 5-week injections, whereas no metastasis was observed in control iRFP713-labeled MCF-10A (iRFP-MCF10A) cells. Transcriptome analysis indicated that the expression of several genes, including metabolism-related CA13, was reduced in bone metastatic iRFP-iCSCL-10A cells. In vitro and in vivo analyses demonstrated that overexpression of CA13 in iRFP-iCSCL-10A cells suppressed migration, invasion, and bone metastasis, together with the reduction of VEGF-A and M-CSF expression. Furthermore, we found that breast cancer patients with a low CA13 expression had significantly shorter overall survival and disease-free survival rates compared to those with higher CA13 expression. These findings suggest that CA13 may act as a novel prognostic biomarker and would be a therapeutic candidate for the prevention of bone metastasis in breast cancer.
Collapse
Affiliation(s)
- Satomi Yogosawa
- Department of Biochemistry, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Jun Nakayama
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
178
|
Basharat S, Gilani SA, Iftikhar F, Murtaza MA, Basharat A, Sattar A, Qamar MM, Ali M. Capsaicin: Plants of the Genus Capsicum and Positive Effect of Oriental Spice on Skin Health. Skin Pharmacol Physiol 2021; 33:331-341. [PMID: 33401283 DOI: 10.1159/000512196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 08/28/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Capsaicin, the main pungent ingredient in hot chili peppers, causes excitation of small sensory neurons. It also provides the basic pungent flavor in Capsicum fruits. SUMMARY Capsaicin plays a vital role as an agonist for the TRPV1 (transient receptor potential cation channel, subfamily V, member 1) receptor. TRPV1 is essential for the reduction of oxidative stress, pain sensations, and inflammation. Therefore, it has many pros related to health issue. Activation and positive impact of TRPV1 via capsaicin has been studied in various dermatological conditions and in other skin-related issues. Past studies documented that capsaicin plays a vital role in the prevention of atopic dermatitis as well as psoriasis. Moreover, TRPV1 is also very important for skin health because it acts as a capsaicin receptor. It is found in nociceptive nerve fibers and nonneural structures. It prompts the release of a compound that is involved in communicating pain between the spinal cord nerves and other parts of the body. Key Messages: Here, we summarize the growing evidence for the beneficial role of capsaicin and TRPV1 and how they help in the relief of skin diseases such as inflammation, permeation, dysfunction, atopic dermatitis, and psoriasis and in pain amplification syndrome.
Collapse
Affiliation(s)
- Shahnai Basharat
- University Institute of Diet & Nutritional Sciences, The University of Lahore, Sargodha, Pakistan,
| | - Syed Amir Gilani
- Dean, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Faiza Iftikhar
- University Institute of Diet & Nutritional Sciences, The University of Lahore, Sargodha, Pakistan
| | | | - Ayesha Basharat
- Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Ahsan Sattar
- Food Microbiology and Technology, Bahaudin Zikriya University, Multan, Pakistan
| | - Muhammad Mustafa Qamar
- Department of Physical Therapy, Sargodha Medical College, The University of Sargodha, Sargodha, Pakistan
| | - Muhammad Ali
- Institute of Allied Health Sciences, Sargodha Medical College, The University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
179
|
GAS2L1 Is a Potential Biomarker of Circulating Tumor Cells in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12123774. [PMID: 33333841 PMCID: PMC7765300 DOI: 10.3390/cancers12123774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer is a malignant disease with high mortality and a dismal prognosis. Circulating tumor cell (CTC) detection and characterization have emerged as essential techniques for early detection, prognostication, and liquid biopsy in many solid malignancies. Unfortunately, due to the low EPCAM expression in pancreatic cancer CTCs, no specific marker is available to identify and isolate this rare cell population. This study analyzed single-cell RNA sequencing profiles of pancreatic CTCs from a genetically engineered mouse model (GEMM) and pancreatic cancer patients. Through dimensionality reduction analysis, murine pancreatic CTCs were grouped into three clusters with different biological functions. CLIC4 and GAS2L1 were shown to be overexpressed in pancreatic CTCs in comparison with peripheral blood mononuclear cells (PBMCs). Further analyses of PBMCs and RNA-sequencing datasets of enriched pancreatic CTCs were used to validate the overexpression of GAS2L1 in pancreatic CTCs. A combinatorial approach using both GAS2L1 and EPCAM expression leads to an increased detection rate of CTCs in PDAC in both GEMM and patient samples. GAS2L1 is thus proposed as a novel biomarker of pancreatic cancer CTCs.
Collapse
|
180
|
Neonatal complete Freund's adjuvant-induced inflammation does not induce or alter hyperalgesic priming or alter adult distributions of C-fibre dorsal horn innervation. Pain Rep 2020; 5:e872. [PMID: 33274305 PMCID: PMC7704330 DOI: 10.1097/pr9.0000000000000872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/18/2020] [Accepted: 10/07/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction: Inflammation during the neonatal period can exacerbate pain severity following reinjury in adulthood. This is driven by alterations in the postnatal development of spinal and supraspinal nociceptive circuitry. However, the contribution of alterations in peripheral nociceptor function remains underexplored. Objectives: We examined whether neonatal complete Freund's adjuvant (CFA)-induced inflammation induced or altered adult development of hyperalgesic priming (inflammation-induced plasticity in nonpeptidergic C fibres) or altered postnatal reorganization of calcitonin gene-related peptide (CGRP)-expressing and isolectin B4 (IB4)-binding C fibres in the spinal dorsal horn (DH). Methods: After intraplantar injection of CFA at postnatal day (P) 1, we assessed mechanical thresholds in adult (P60) rats before and after intraplantar carrageenan. One week later, intraplantar PGE2-induced hypersensitivity persisting for 4 hours was deemed indicative of hyperalgesic priming. CGRP expression and IB4 binding were examined in adult rat DH after CFA. Results: P1 CFA did not alter baseline adult mechanical thresholds, nor did it change the extent or duration of carrageenan-induced hypersensitivity. However, this was slower to resolve in female than in male rats. Rats that previously received carrageenan but not saline were primed, but P1 hind paw CFA did not induce or alter hyperalgesic priming responses to PGE2. In addition, CFA on P1 or P10 did not alter intensity or patterns of CGRP or IB4 staining in the adult DH. Conclusion: Complete Freund's adjuvant-induced inflammation during a critical period of vulnerability to injury during early postnatal development does not induce or exacerbate hyperalgesic priming or alter the broad distribution of CGRP-expressing or IB4-binding afferent terminals in the adult dorsal horn.
Collapse
|
181
|
Zhang Q, Liu Z, Li J, Liu G. Identifying Diabetic Macular Edema and Other Retinal Diseases by Optical Coherence Tomography Image and Multiscale Deep Learning. Diabetes Metab Syndr Obes 2020; 13:4787-4800. [PMID: 33304104 PMCID: PMC7723239 DOI: 10.2147/dmso.s288419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/21/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Diabetic Macular Edema has been one of the research hotspots all over the world. But as the global population continues to grow, the number of OCT images requiring manual analysis is becoming increasingly unaffordable. Medical images are often fuzzy due to the inherent physical processes of acquiring them. It is difficult for traditional algorithms to use low-quality data. And traditional algorithms usually only provide diagnostic results, which makes the reliability and interpretability of the model face challenges. To solve problem above, we proposed a more intuitive and robust diagnosis model with self-enhancement ability and clinical triage patients' ability. METHODS We used 38,057 OCT images (Drusen, DME, CNV and Normal) to establish and evaluate the model. All data are OCT images of fundus retina. There were 37,457 samples in the training dataset and 600 samples in the validation dataset. In order to diagnose these images accurately, we propose a multiscale transfer learning algorithm. Firstly, the sample is sent to the automatic self-enhancement module for edge detection and enhancement. Then, the processed data are sent to the image diagnosis module to determine the disease type. This process makes more data more effective and can be accurately classified. Finally, we calculated the accuracy, precision, sensitivity and specificity of the model, and verified the performance of the model from the perspective of clinical application. RESULTS The model proposed in this paper can provide the diagnosis results and display the detection targets more intuitively. The model reached 94.5% accuracy, 97.2% precision, 97.7% sensitivity and 97% specificity in the independent testing dataset. CONCLUSION Comparing the performance of relevant work and ablation test, our model achieved relatively good performance. It is proved that the model proposed in this paper has a stronger ability to recognize diseases even in the face of low-quality images. Experiment results also demonstrate its clinical referral capability. It can reduce the workload of medical staff and save the precious time of patients.
Collapse
Affiliation(s)
- Quan Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin300350, People’s Republic of China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin300350, People’s Republic of China
| | - Zhiang Liu
- College of Computer Science, Nankai University, Tianjin300350, People’s Republic of China
| | - Jiaxu Li
- The Second Affiliated Hospital of Harbin Medical University, Department of Plastic and Cosmetic Surgery, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Guohua Liu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin300350, People’s Republic of China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin300350, People’s Republic of China
| |
Collapse
|
182
|
Jeevanandam J, Kulabhusan PK, Sabbih G, Akram M, Danquah MK. Phytosynthesized nanoparticles as a potential cancer therapeutic agent. 3 Biotech 2020; 10:535. [PMID: 33224704 PMCID: PMC7669941 DOI: 10.1007/s13205-020-02516-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
Plants are the well-known sources for the hyper-accumulation and reduction of metallic ions. Analysis of various plant extracts has justified the presence of different types of phytochemicals that possess the stabilization and reduction functionalities of precursors to form nanoparticles. Such characteristics make plants as an attractive source for synthesizing eco-friendly nanoparticles (NPs) with potentially less toxicity to the body. Recently, phytosynthesized nanoparticles have been explored for targeted inhibition and diagnosis of cancer cells without affecting non-cancerous healthy cells. The aim of this review is to discuss the characteristic performance of NPs synthesized from various plant sources for the diagnosis and inhibition of cancer. The mode of action of phytosynthesized nanoparticles for anti-cancer applications are also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Prabir Kumar Kulabhusan
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, ON K1N6N5 Canada
| | - Godfred Sabbih
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, 38000 Pakistan
| | - Michael K. Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| |
Collapse
|
183
|
Cha M, Choi S, Kim K, Lee BH. Manganese-enhanced MRI depicts a reduction in brain responses to nociception upon mTOR inhibition in chronic pain rats. Mol Brain 2020; 13:158. [PMID: 33267907 PMCID: PMC7713325 DOI: 10.1186/s13041-020-00687-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/17/2020] [Indexed: 11/30/2022] Open
Abstract
Neuropathic pain induced by a nerve injury can lead to chronic pain. Recent studies have reported hyperactive neural activities in the nociceptive-related area of the brain as a result of chronic pain. Although cerebral activities associated with hyperalgesia and allodynia in chronic pain models are difficult to represent with functional imaging techniques, advances in manganese (Mn)-enhanced magnetic resonance imaging (MEMRI) could facilitate the visualization of the activation of pain-specific neural responses in the cerebral cortex. In order to investigate the alleviation of pain nociception by mammalian target of rapamycin (mTOR) modulation, we observed cerebrocortical excitability changes and compared regional Mn2+ enhancement after mTOR inhibition. At day 7 after nerve injury, drugs were applied into the intracortical area, and drug (Vehicle, Torin1, and XL388) effects were compared within groups using MEMRI. Therein, signal intensities of the insular cortex (IC), primary somatosensory cortex of the hind limb region, motor cortex 1/2, and anterior cingulate cortex regions were significantly reduced after application of mTOR inhibitors (Torin1 and XL388). Furthermore, rostral-caudal analysis of the IC indicated that the rostral region of the IC was more strongly associated with pain perception than the caudal region. Our data suggest that MEMRI can depict pain-related signal changes in the brain and that mTOR inhibition is closely correlated with pain modulation in chronic pain rats.
Collapse
Affiliation(s)
- Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| | - Songyeon Choi
- Department of Physiology, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 03722, Seoul, Republic of Korea
| | - Kyeongmin Kim
- Department of Physiology, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 03722, Seoul, Republic of Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea. .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 03722, Seoul, Republic of Korea.
| |
Collapse
|
184
|
Jeong KY, Park M, Sim JJ, Kim HM. Combination Antitumor Effect of Sorafenib via Calcium-Dependent Deactivation of Focal Adhesion Kinase Targeting Colorectal Cancer Cells. Molecules 2020; 25:5299. [PMID: 33202899 PMCID: PMC7697278 DOI: 10.3390/molecules25225299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022] Open
Abstract
Sorafenib has been recently used for the treatment of patients with advanced colorectal cancer (CRC) and is recognized for its therapeutic value. However, the continuous use of sorafenib may cause resistance in the treatment of cancer patients. In this study, we investigated whether sorafenib exerts an enhanced anticancer effect on CRC cells via the calcium-mediated deactivation of the focal adhesion kinase (FAK) signaling pathways. The appropriate dose of sorafenib and lactate calcium salt (CaLa) for a combination treatment were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Then, cell cycle analysis was performed following treatment with 2.5 μM sorafenib and/or 2.5 mM CaLa. CRC cells were found to be in the G1 phase by sorafenib treatment, and they accumulated in the sub-G1 phase with CaLa treatment. Western blots and enzyme-linked immunosorbent assays were performed to analyze the elements of the recombinant activated factor (RAF) and focal adhesion kinase (FAK) signaling cascades. Sorafenib-inhibited RAF-dependent signaling in CRC cells, however, either did not affect the expression of Akt or increased it. As the upstream signaling of FAK was suppressed by CaLa, we observed that the expression of the sub-signaling phospho (p) AKT and p-mammalian target of rapamycin was also suppressed. Treatment with a combination of sorafenib and CaLa enhanced the antitumor activity of CRC cells. The % viability of CRC cells was significantly decreased compared to the single treatment with sorafenib or CaLa, and the accumulation of Sub G1 of CRC cells was clearly confirmed. The migration ability of CRC cells was significantly reduced. The findings of this study indicate that sorafenib will show further improved antitumor efficacy against CRC due to overcoming resistance through the use of CaLa.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- R&D Center, Metimedi Pharmaceuticals, 263, Central-ro, Yeonsu-gu, Incheon 22006, Korea; (M.P.); (J.-J.S.)
| | - Minhee Park
- R&D Center, Metimedi Pharmaceuticals, 263, Central-ro, Yeonsu-gu, Incheon 22006, Korea; (M.P.); (J.-J.S.)
| | - Jae-Jun Sim
- R&D Center, Metimedi Pharmaceuticals, 263, Central-ro, Yeonsu-gu, Incheon 22006, Korea; (M.P.); (J.-J.S.)
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| |
Collapse
|
185
|
Combination Antitumor Effect of Sorafenib via Calcium-Dependent Deactivation of Focal Adhesion Kinase Targeting Colorectal Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2020. [PMID: 33202899 DOI: 10.3390/molecules25225299.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sorafenib has been recently used for the treatment of patients with advanced colorectal cancer (CRC) and is recognized for its therapeutic value. However, the continuous use of sorafenib may cause resistance in the treatment of cancer patients. In this study, we investigated whether sorafenib exerts an enhanced anticancer effect on CRC cells via the calcium-mediated deactivation of the focal adhesion kinase (FAK) signaling pathways. The appropriate dose of sorafenib and lactate calcium salt (CaLa) for a combination treatment were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Then, cell cycle analysis was performed following treatment with 2.5 μM sorafenib and/or 2.5 mM CaLa. CRC cells were found to be in the G1 phase by sorafenib treatment, and they accumulated in the sub-G1 phase with CaLa treatment. Western blots and enzyme-linked immunosorbent assays were performed to analyze the elements of the recombinant activated factor (RAF) and focal adhesion kinase (FAK) signaling cascades. Sorafenib-inhibited RAF-dependent signaling in CRC cells, however, either did not affect the expression of Akt or increased it. As the upstream signaling of FAK was suppressed by CaLa, we observed that the expression of the sub-signaling phospho (p) AKT and p-mammalian target of rapamycin was also suppressed. Treatment with a combination of sorafenib and CaLa enhanced the antitumor activity of CRC cells. The % viability of CRC cells was significantly decreased compared to the single treatment with sorafenib or CaLa, and the accumulation of Sub G1 of CRC cells was clearly confirmed. The migration ability of CRC cells was significantly reduced. The findings of this study indicate that sorafenib will show further improved antitumor efficacy against CRC due to overcoming resistance through the use of CaLa.
Collapse
|
186
|
Rai V, Agrawal S. Targets (Metabolic Mediators) of Therapeutic Importance in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:E8502. [PMID: 33198082 PMCID: PMC7697422 DOI: 10.3390/ijms21228502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), an extremely aggressive invasive cancer, is the fourth most common cause of cancer-related death in the United States. The higher mortality in PDAC is often attributed to the inability to detect it until it has reached advanced stages. The major challenge in tackling PDAC is due to its elusive pathology, minimal effectiveness, and resistance to existing therapeutics. The aggressiveness of PDAC is due to the capacity of tumor cells to alter their metabolism, utilize the diverse available fuel sources to adapt and grow in a hypoxic and harsh environment. Therapeutic resistance is due to the presence of thick stroma with poor angiogenesis, thus making drug delivery to tumor cells difficult. Investigating the metabolic mediators and enzymes involved in metabolic reprogramming may lead to the identification of novel therapeutic targets. The metabolic mediators of glucose, glutamine, lipids, nucleotides, amino acids and mitochondrial metabolism have emerged as novel therapeutic targets. Additionally, the role of autophagy, macropinocytosis, lysosomal transport, recycling, amino acid transport, lipid transport, and the role of reactive oxygen species has also been discussed. The role of various pro-inflammatory cytokines and immune cells in the pathogenesis of PDAC and the metabolites involved in the signaling pathways as therapeutic targets have been previously discussed. This review focuses on the therapeutic potential of metabolic mediators in PDAC along with stemness due to metabolic alterations and their therapeutic importance.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Swati Agrawal
- Department of Surgery, Creighton University School of Medicine, Omaha, NE 68178, USA;
| |
Collapse
|
187
|
Barbirou M, Woldu HG, Sghaier I, Bedoui SA, Mokrani A, Aami R, Mezlini A, Yacoubi-Loueslati B, Tonellato PJ, Bouhaouala-Zahar B. Western influenced lifestyle and Kv2.1 association as predicted biomarkers for Tunisian colorectal cancer. BMC Cancer 2020; 20:1086. [PMID: 33172410 PMCID: PMC7656678 DOI: 10.1186/s12885-020-07605-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most diagnosed malignancy worldwide. The global burden is expected to increase along with ongoing westernized behaviors and lifestyle. The etiology of CRC remains elusive and most likely combines environmental and genetic factors. The Kv2.1 potassium channel encoded by KCNB1 plays a collection of roles in malignancy of cancer and may be a key factor of CRC susceptibility. Our study provides baseline association between Tunisian CRC and interactions between KCNB1 variants and lifestyle factors. METHODS A case-control study involving 300 CRC patients, and 300 controls was conducted Patients were carefully phenotyped and followed till the end of study. KCNB1 genotyping was confirmed by Sanger sequencing. Bivariate and multivariable logistic regression analyses were used to assess the clinical status, lifestyle and study polymorphisms association with CRC. RESULTS We noted significant gender association with CRC occurrence. Moreover, CRC risk increases with high meat and fat consumption, alcohol use and physical activity (PA). Carriage of rs1051296 A/G and both rs11468831 ins/del and del/del genotypes (p < 0.001) were significantly associated with CRC risk. Analysis according to gender reveals correlation of rs1051295 A/G, rs11468831 non ins/ins (p = 0.01) with CRC susceptibility regardless of patients' gender while rs3331 T/C (p = 0.012) was associated with females. Stratification study according to malignancy site; Rectal Cancer (RC) and Colon Cancer (CC), reveals increasing RC risk by gender and high meat and fat consumption, alcohol use and PA. However, additional association with high brine consumption was noted for CC. The rs1051295 A/G (p = 0.01) was associated with RC risk. Increased CC risk was associated with carriage of rs1051295 A/G, rs11168831 (del/del) and (ins/del) genotypes. CONCLUSION The risk of CRC increases with modifiable factors by Western influences on Tunisian lifestyle such as alcohol use, high fat consumption and possibly inadequate intake of vegetables. In addition, KCNB1 polymorphisms also markedly influence CRC susceptibility. Our study establishes key elements of a baseline characterization of clinical state, Western influenced lifestyle and KCNB1 variants associated with Tunisian CRC.
Collapse
Affiliation(s)
- Mouadh Barbirou
- Laboratory of Venoms and Therapeutic Biomolecules, LR16IPT08 Institute Pasteur of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, 1002, Tunis, Belvédère, Tunisia.,Center for Biomedical Informatics, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Henok G Woldu
- Department of Health Management and Informatics, Biostatistics & Research Design Unit School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Ikram Sghaier
- Center for Biomedical Informatics, School of Medicine, University of Missouri, Columbia, MO, USA.,University of Tunis El Manar, Tunis, Tunisia
| | - Sinda A Bedoui
- Laboratory of Mycology Pathologies and Biomarkers Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Medical Oncology Division, Salah Azeiz Oncology Institute, University of Tunis El Manar, Tunis, Tunisia
| | - Amina Mokrani
- Medical School of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Radhia Aami
- Laboratory of Venoms and Therapeutic Biomolecules, LR16IPT08 Institute Pasteur of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, 1002, Tunis, Belvédère, Tunisia
| | - Amel Mezlini
- Medical School of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Besma Yacoubi-Loueslati
- Laboratory of Mycology Pathologies and Biomarkers Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Medical Oncology Division, Salah Azeiz Oncology Institute, University of Tunis El Manar, Tunis, Tunisia
| | - Peter J Tonellato
- Center for Biomedical Informatics, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms and Therapeutic Biomolecules, LR16IPT08 Institute Pasteur of Tunis, University of Tunis El Manar, 13 Place Pasteur, BP74, 1002, Tunis, Belvédère, Tunisia. .,Medical School of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
188
|
Abstract
The transient receptor potential vanilloid-1 (TRPV1) is a non-specific cation channel known for its sensitivity to pungent vanilloid compound (i.e. capsaicin) and noxious stimuli, including heat, low pH or inflammatory mediators. TRPV1 is found in the somatosensory system, particularly primary afferent neurons that respond to damaging or potentially damaging stimuli (nociceptors). Stimulation of TRPV1 evokes a burning sensation, reflecting a central role of the channel in pain. Pharmacological and genetic studies have validated TRPV1 as a therapeutic target in several preclinical models of chronic pain, including cancer, neuropathic, postoperative and musculoskeletal pain. While antagonists of TRPV1 were found to be a valuable addition to the pain therapeutic toolbox, their clinical use has been limited by detrimental side effects, such as hyperthermia. In contrast, capsaicin induces a prolonged defunctionalisation of nociceptors and thus opened the door to the development of a new class of therapeutics with long-lasting pain-relieving effects. Here we review the list of TRPV1 agonists undergoing clinical trials for chronic pain management, and discuss new indications, formulations or combination therapies being explored for capsaicin. While the analgesic pharmacopeia for chronic pain patients is ancient and poorly effective, modern TRPV1-targeted drugs could rapidly become available as the next generation of analgesics for a broad spectrum of pain conditions.
Collapse
Affiliation(s)
- Mircea Iftinca
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
189
|
Alkan F, Varlı HS, Demirbilek M, Kaplan E, Laçin NT. A Cationic Stearamide-based Solid Lipid Nanoparticle for Delivering Yamanaka Factors: Evaluation of the Transfection Efficiency. ChemistryOpen 2020; 9:1181-1189. [PMID: 33235824 PMCID: PMC7668193 DOI: 10.1002/open.202000244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/26/2020] [Indexed: 01/10/2023] Open
Abstract
Induced pluripotent stem cells (IPSC) are preferred as an alternative source for regenerative medicine, disease modeling, and drug screening due to their unique properties. As seen from the previous studies in the literature, most of the vector systems to transfer reprogramming factors are viral-based and have some well-known limitations. This study aims to develop a non-viral vector system for the transfection of reprogramming factors. Cationic stearamide lipid nanoparticles (CSLN) were prepared via the solvent diffusion method. The obtained CSLNs were used for the delivery of plasmid DNA (pDNA) encoding Oct3/4, Sox2, Klf4, and GFP to fibroblast cell lines. The optimization studies, for zeta potential and particle size of the conjugate, was performed to achieve high cell viability. CSLN63 with 36.5±0.06 mV zeta potential and 173.6±13.91 nm size was used for the transfection of Fibroblast cells. The transfection efficiency was observed by following GFP expression and was found as 70 %±0.11. The expression of the Oct4, Sox2, Klf4 was determined by RT-qPCR; an increase was observed after the 12th cycle in Klf4 (Ct averages: 13,41), Sox2 (Ct averages; 12,4), Oct4 (Ct average; 13,77). The tendency of colonization was observed. The upregulation efficiency of Oct4 and SSEA-1 with CSLN and another non-viral vector designed for the transportation of Yamanaka factors developed in our lab previously were compared with flow cytometer analysis.
Collapse
Affiliation(s)
- Funda Alkan
- Yıldız Technical UniversityMolecular Biology and Genetic DepartmentIstanbul34220
| | - Hanife Sevgi Varlı
- Yıldız Technical UniversityMolecular Biology and Genetic DepartmentIstanbul34220
| | - Murat Demirbilek
- Hacettepe UniversityAdvanced Technologies Application and Research Center BeytepeAnkara06800Turkey
| | - Engin Kaplan
- Bülent Ecevit UniversityFaculty of PharmacyZonguldakTurkey
| | | |
Collapse
|
190
|
Wang Y, Zhang Z, Auyeung KKW, Cho CH, Yung KKL, Ko JKS. Cryptotanshinone-Induced p53-Dependent Sensitization of Colon Cancer Cells to Apoptotic Drive by Regulation of Calpain and Calcium Homeostasis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1179-1202. [PMID: 32668972 DOI: 10.1142/s0192415x20500585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Over-expression of calpains in tumor tissues can be associated with cancer progression. Thus, inhibition of calpain activity using specific inhibitors has become a novel approach to control tumor growth. In this study, the anticancer potential of cryptotanshinone in combination with calpain inhibitor had been investigated in colon cancer cells and tumor xenograft. Cryptotanshinone elicited an initial endoplasmic reticular (ER) stress response, whereas prolonged stress would result in the promotion of apoptosis. It was then discovered that cryptotanshinone could cause rapid and sustained increase in cytosolic calcium in colon cancer cells accompanied by early GRP78 overexpression, which could be attenuated by pre-treatment of the calcium chelator BAPTA-AM. Cryptotanshinone also facilitated an early increase in calpain activity, which could be blocked by BAPTA-AM or the calpain inhibitor PD150606. A dynamic interaction between GRP78 and calpain during the action of cryptotanshinone was unveiled. This together with the altered NF-[Formula: see text]B signaling could be abolished by calpain inhibitor. GRP78 knockdown increased the sensitivity of cancer cells to cryptotanshinone-evoked apoptosis and reduction of cancer cell colony formation. Such sensitization of drug action had been confirmed to be p53-dependent by using p53-mutated (HT-29) and p53-deficient (HCT116 p53-∕-) cells. The synergistic antitumor effect of cryptotanshinone and calpain inhibitor was further exhibited in vivo. Taken together, findings in this study exemplify a new chemotherapeutic regimen comprising cryptotanshinone and calpain inhibitor by regulation of calpain and calcium homeostasis. This has provided us with new insights in the search of a potential target-specific neoadjuvant therapy against colon cancer.
Collapse
Affiliation(s)
- Yue Wang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Zhu Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Kathy Ka-Wai Auyeung
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chi-Hin Cho
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P. R. China
| | - Ken Kin-Lam Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Joshua Ka-Shun Ko
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, P. R. China.,Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong, Baptist University, Hong Kong SAR, P. R. China
| |
Collapse
|
191
|
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, Zaharoff DA. Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol 2020; 11:575597. [PMID: 33178203 PMCID: PMC7593768 DOI: 10.3389/fimmu.2020.575597] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Interleukin-12 (IL-12) is a potent, pro-inflammatory type 1 cytokine that has long been studied as a potential immunotherapy for cancer. Unfortunately, IL-12's remarkable antitumor efficacy in preclinical models has yet to be replicated in humans. Early clinical trials in the mid-1990's showed that systemic delivery of IL-12 incurred dose-limiting toxicities. Nevertheless, IL-12's pleiotropic activity, i.e., its ability to engage multiple effector mechanisms and reverse tumor-induced immunosuppression, continues to entice cancer researchers. The development of strategies which maximize IL-12 delivery to the tumor microenvironment while minimizing systemic exposure are of increasing interest. Diverse IL-12 delivery systems, from immunocytokine fusions to polymeric nanoparticles, have demonstrated robust antitumor immunity with reduced adverse events in preclinical studies. Several localized IL-12 delivery approaches have recently reached the clinical stage with several more at the precipice of translation. Taken together, localized delivery systems are supporting an IL-12 renaissance which may finally allow this potent cytokine to fulfill its considerable clinical potential. This review begins with a brief historical account of cytokine monotherapies and describes how IL-12 went from promising new cure to ostracized black sheep following multiple on-study deaths. The bulk of this comprehensive review focuses on developments in diverse localized delivery strategies for IL-12-based cancer immunotherapies. Advantages and limitations of different delivery technologies are highlighted. Finally, perspectives on how IL-12-based immunotherapies may be utilized for widespread clinical application in the very near future are offered.
Collapse
Affiliation(s)
- Khue G Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Maura R Vrabel
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Siena M Mantooth
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Jared J Hopkins
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Ethan S Wagner
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Taylor A Gabaldon
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
192
|
Rodionova K, Veelken R, Hilgers KF, Paulus EM, Linz P, Fischer MJM, Schenker M, Reeh P, Tiegs G, Ott C, Schmieder R, Schiffer M, Amann K, Ditting T. Afferent renal innervation in anti-Thy1.1 nephritis in rats. Am J Physiol Renal Physiol 2020; 319:F822-F832. [PMID: 33017188 DOI: 10.1152/ajprenal.00063.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Afferent renal nerves exhibit a dual function controlling central sympathetic outflow via afferent electrical activity and influencing intrarenal immunological processes by releasing peptides such as calcitonin gene-related peptide (CGRP). We tested the hypothesis that increased afferent and efferent renal nerve activity occur with augmented release of CGRP in anti-Thy1.1 nephritis, in which enhanced CGRP release exacerbates inflammation. Nephritis was induced in Sprague-Dawley rats by intravenous injection of OX-7 antibody (1.75 mg/kg), and animals were investigated neurophysiologically, electrophysiologically, and pathomorphologically 6 days later. Nephritic rats exhibited proteinuria (169.3 ± 10.2 mg/24 h) with increased efferent renal nerve activity (14.7 ± 0.9 bursts/s vs. control 11.5 ± 0.9 bursts/s, n = 11, P < 0.05). However, afferent renal nerve activity (in spikes/s) decreased in nephritis (8.0 ± 1.8 Hz vs. control 27.4 ± 4.1 Hz, n = 11, P < 0.05). In patch-clamp recordings, neurons with renal afferents from nephritic rats showed a lower frequency of high activity following electrical stimulation (43.4% vs. 66.4% in controls, P < 0.05). In vitro assays showed that renal tissue from nephritic rats exhibited increased CGRP release via spontaneous (14 ± 3 pg/mL vs. 6.8 ± 2.8 pg/ml in controls, n = 7, P < 0.05) and stimulated mechanisms. In nephritic animals, marked infiltration of macrophages in the interstitium (26 ± 4 cells/mm2) and glomeruli (3.7 ± 0.6 cells/glomerular cross-section) occurred. Pretreatment with the CGRP receptor antagonist CGRP8-37 reduced proteinuria, infiltration, and proliferation. In nephritic rats, it can be speculated that afferent renal nerves lose their ability to properly control efferent sympathetic nerve activity while influencing renal inflammation through increased CGRP release.
Collapse
Affiliation(s)
- Kristina Rodionova
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Karl F Hilgers
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Eva-Maria Paulus
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Peter Linz
- Department of Radiology, University of Erlangen, Erlangen, Germany
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Martina Schenker
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Physiology and Pathophysiology, University Erlangen, Erlangen, Germany
| | - Peter Reeh
- Department of Physiology and Pathophysiology, University Erlangen, Erlangen, Germany
| | - Gisa Tiegs
- Center of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ott
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| | - Roland Schmieder
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University of Erlangen, Erlangen, Germany
| | - Tilmann Ditting
- Department of Internal Medicine 4 (Nephrology und Hypertension), University of Erlangen, Erlangen, Germany.,Department of Internal Medicine 4 (Nephrology und Hypertension), Paracelsus Private Medical School, Klinikum Nuremberg, Nuremberg, Germany
| |
Collapse
|
193
|
Wang G, Wang X, Gao Q, Zhou M, Wang N. Effects of Heating-Conduction Dry Needling Therapy on Rats with Chronic Myofascial Pain Syndrome. J Manipulative Physiol Ther 2020; 43:506-514. [PMID: 32928569 DOI: 10.1016/j.jmpt.2019.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study aimed to investigate the effect of dry needling (DN) with 44°C heating on the pressure pain threshold (PPT) of rats with chronic myofascial pain syndrome (MPS) by regulating the transient receptor potential V1 channel. METHODS A total of 80 rats were divided into 5 groups: A, B, C, D, and E (16 in each group). The rats in Group A recovered naturally, while those in other groups received the DN treatment. The needles were heated to 40°C for the rats in Groups B and E and 44°C for the rats in Groups C and D. In addition, both Groups D and E received local capsaicin injection. PPTs of the gastrocnemius muscle and tolerance time of the plantar hot plate were measured before modeling, 1 day before the intervention, 24 hours after the intervention, and 7 days after the intervention. RESULTS PPTs of the gastrocnemius muscle for rats with MPS increased 7 days after DN and heating to 40°C. For the rats receiving DN at 44°C heating, PPTs increased 24 hours and 7 days after the intervention. Further, 44°C heating and capsaicin injection improved PPT. DN and 40°C heating followed by capsaicin injection improved PPT. CONCLUSION DN and 44°C heating had therapeutic effects on rats with MPS at 24 hours and at 7 days after the intervention. DN and 40°C heating had therapeutic effects 7 days after the intervention. DN and 44°C heating might exert therapeutic effects by regulating the transient receptor potential V1 channel.
Collapse
Affiliation(s)
- Gang Wang
- Department of Rehabilitation Medicine, The Chinese PLA General Hospital, Beijing, China
| | - Xinglin Wang
- Department of Rehabilitation Medicine, The Chinese PLA General Hospital, Beijing, China.
| | - Qian Gao
- Department of Rehabilitation Medicine, The Chinese PLA General Hospital, Beijing, China
| | - Ming Zhou
- Department of Rehabilitation Medicine, The Chinese PLA General Hospital, Beijing, China
| | - Ning Wang
- Department of Rehabilitation Medicine, The Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
194
|
Lin X, Chen W, Wei F, Xie X. TV-circRGPD6 Nanoparticle Suppresses Breast Cancer Stem Cell-Mediated Metastasis via the miR-26b/YAF2 Axis. Mol Ther 2020; 29:244-262. [PMID: 32950105 DOI: 10.1016/j.ymthe.2020.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/25/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Metastatic tumor is a major contributor to death caused by breast cancer. However, effective and targeted therapy for metastatic breast cancer remains to be developed. Initially, we exploited a feasible biological rationale of the association between metastatic status and tumor-initiating properties in metastatic breast cancer stem cells (BCSCs). Further, we explored that circular RNA RANBP2-like and GRIP domain-containing protein 6 (circRGPD6) regulates the maintenance of stem cell-like characteristics of BCSCs. Targeted expression of circRGPD6 via human telomerase reverse transcriptase (hTERT) promoter-driven VP16-GAL4-woodchuck hepatitis virus post-transcriptional regulatory element (WPRE)-integrated systemic amplifier delivery composite vector (TV-circRGPD6) significantly inhibited expression of stem-cell marker CD44 and increased expression of the DNA damage marker p-H2AX. Furthermore, we determined TV-circRGPD6, alone or synergized with docetaxel, displays significant therapeutic responses on metastatic BCSCs. Mechanistic analyses exploited that TV-circRGPD6 suppresses BCSC-mediated metastasis via the microRNA (miR)-26b/YAF2 axis. Clinically, for the first time, we observed that expressions of circRGPD6 and YAF2 predict a favorable prognosis in patients with breast cancer, whereas expression of miR-26b is an unfavorable prognostic factor. Overall, we have developed a TV-circRGPD6 nanoparticle that selectively expresses circRGPD6 in metastatic BCSCs to eradicate breast cancer metastasis, therefore providing a novel avenue to treat breast cancers.
Collapse
Affiliation(s)
- Xiaoti Lin
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Breast, Fujian Provincial Maternity and Children's Hospital of Fujian Medical University, Fuzhou 350000, China.
| | - Weiyu Chen
- Department of Physiology, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510060, China
| | - Fengqin Wei
- Department of Emergency, Fujian Provincial 2(nd) People's Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China
| | - Xiaoming Xie
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
195
|
He W, Xing X, Wang X, Wu D, Wu W, Guo J, Mitragotri S. Nanocarrier‐Mediated Cytosolic Delivery of Biopharmaceuticals. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [DOI: 10.1002/adfm.201910566] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/16/2020] [Indexed: 01/04/2025]
Abstract
AbstractBiopharmaceuticals have emerged to play a vital role in disease treatment and have shown promise in the rapidly expanding pharmaceutical market due to their high specificity and potency. However, the delivery of these biologics is hindered by various physiological barriers, owing primarily to the poor cell membrane permeability, low stability, and increased size of biologic agents. Since many biological drugs are intended to function by interacting with intracellular targets, their delivery to intracellular targets is of high relevance. In this review, the authors summarize and discuss the use of nanocarriers for intracellular delivery of biopharmaceuticals via endosomal escape and, especially, the routes of direct cytosolic delivery by means including the caveolae‐mediated pathway, contact release, intermembrane transfer, membrane fusion, direct translocation, and membrane disruption. Strategies with high potential for translation are highlighted. Finally, the authors conclude with the clinical translation of promising carriers and future perspectives.
Collapse
Affiliation(s)
- Wei He
- Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xuyang Xing
- Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xiaoling Wang
- School of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Debra Wu
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of Ministry of Education of China School of Pharmacy Fudan University Shanghai 201203 China
| | - Junling Guo
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| |
Collapse
|
196
|
Synthesis of exfoliate bentonite/cellulose nanocomposite as a delivery system for Oxaliplatin drug with enhanced loading and release properties; cytotoxicity and pharmacokinetic studies. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
197
|
Ko HG. The lateral habenula is critically involved in histamine-induced itch sensation. Mol Brain 2020; 13:117. [PMID: 32854744 PMCID: PMC7457247 DOI: 10.1186/s13041-020-00660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/21/2020] [Indexed: 12/02/2022] Open
Abstract
Lateral habenula (LHb) is a brain region acting as a hub mediating aversive response against noxious, stressful stimuli. Growing evidences indicated that LHb modulates aminergic activities to induce avoidance behavior against nociceptive stimuli. Given overlapped neural circuitry transmitting pain and itch information, it is likely that LHb have a role in processing itch information. Here, we examined whether LHb is involved in itchy response induced by histamine. We found that histamine injection enhances Fos (+) cells in posterior portion within parvocellular and central subnuclei of the medial division (LHbM) of the LHb. Moreover, chemogenetic suppression of LHbM reduced scratching behavior induced by histamine injection. These results suggest that LHb is required for processing itch information to induce histaminergic itchy response.
Collapse
Affiliation(s)
- Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Daegu, 41940, South Korea.
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
198
|
Abstract
Human and animal imaging studies demonstrated that chronic pain profoundly alters the structure and the functionality of several brain regions. In this article, we conducted a longitudinal and multimodal study to assess how chronic pain affects the brain. Using the spared nerve injury model which promotes both long-lasting mechanical and thermal allodynia/hyperalgesia but also pain-associated comorbidities, we showed that neuropathic pain deeply modified the intrinsic organization of the brain functional network 1 and 2 months after injury. We found that both functional metrics and connectivity of the part A of the retrosplenial granular cortex (RSgA) were significantly correlated with the development of neuropathic pain behaviours. In addition, we found that the functional RSgA connectivity to the subiculum and the prelimbic system are significantly increased in spared nerve injury animals and correlated with peripheral pain thresholds. These brain regions were previously linked to the development of comorbidities associated with neuropathic pain. Using a voxel-based morphometry approach, we showed that neuropathic pain induced a significant increase of the gray matter concentration within the RSgA, associated with a significant activation of both astrocytes and microglial cells. Together, functional and morphological imaging metrics of the RSgA could be used as a predictive biomarker of neuropathic pain.
Collapse
|
199
|
Yang P, Zhang L, Wang T, Liu Q, Wang J, Wang Y, Tu Z, Lin F. Doxorubicin and Edelfosine Combo-Loaded Lipid-Polymer Hybrid Nanoparticles for Synergistic Anticancer Effect Against Drug-Resistant Osteosarcoma. Onco Targets Ther 2020; 13:8055-8067. [PMID: 32884291 PMCID: PMC7434523 DOI: 10.2147/ott.s259428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/13/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction The failure of chemotherapy in osteosarcoma results in drug resistance and acute side effects in the body. Methods In this study, we have prepared a novel folate receptor-targeted doxorubicin (DOX) and edelfosine (EDL)-loaded lipid-polymer hybrid nanoparticle (DE-FPLN) to enhance the anticancer efficacy in osteosarcoma. The nanoparticles were thoroughly characterized for in vitro biological assays followed by detailed antitumor efficacy analysis and toxicity analysis in a xenograft model. Results The dual drug-loaded nanoparticles showed a nanosized morphology and physiological stability. The targeted nanoparticles showed enhanced cellular internalization and subcellular distribution in MG63 cancer cells compared to that of non-targeted nanoparticles. Among many ratios of DOX and EDL, 1:1 ratiometric combinations of drugs were observed to be highly synergistic in killing the cancer cells. MTT assay and caspase-3/7 activity assay clearly showed the superior anticancer efficacy of DE-FPLN formulations in inducing the cancer cell death. In vitro results indicate that the co-administration of two drugs in a folic acid-targeted nanoparticle could potentially induce the apoptosis and cell death. In vivo results displayed the potency of tumor cell killing and significant suppression of tumor growth without any detectable side effects. Conclusion The lipid-polymer hybrid nanocarriers with multiple properties of high drug loading, sequential and ratiometric drug release, improved physiological stability, prolonged blood circulation, and tumor-specific targeting are promising for the delivery of multiple drugs in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Ping Yang
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai 200233, People's Republic of China
| | - Lian Zhang
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai 200233, People's Republic of China
| | - Tian Wang
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai 200233, People's Republic of China
| | - Qi Liu
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai 200233, People's Republic of China
| | - Jing Wang
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai 200233, People's Republic of China
| | - Yaling Wang
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai 200233, People's Republic of China
| | - Zhiquan Tu
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai 200233, People's Republic of China
| | - Feng Lin
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai 200233, People's Republic of China
| |
Collapse
|
200
|
Tian L, Abukhadra MR, Mohamed AS, Nadeem A, Ahmad SF, Ibrahim KE. Insight into the Loading and Release Properties of an Exfoliated Kaolinite/Cellulose Fiber (EXK/CF) Composite as a Carrier for Oxaliplatin Drug: Cytotoxicity and Release Kinetics. ACS OMEGA 2020; 5:19165-19173. [PMID: 32775918 PMCID: PMC7408237 DOI: 10.1021/acsomega.0c02529] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/15/2020] [Indexed: 05/22/2023]
Abstract
Kaolinite layers were exfoliated as single sheets and admixed with cellulose fibers, forming an advanced exfoliated kaolinite/cellulose fiber (EXK/CF) composite, which was characterized as a promising carrier for the oxaliplatin (OL) drug to induce safety as well as the therapeutic effect. The EXK/CF composite exhibited promising loading capacity and achieved an experimental value of 670 mg/g and an expected theoretical value of 704.4 mg/g. The loading behavior of OL using the EXK/CF composite followed the pseudo-first-order kinetic model and the Langmuir equilibrium model, achieving an adsorption energy of 7.7 kJ/mol. This suggested physisorption and homogeneous loading behavior of the OL molecules in a monolayer form. The release profile of OL from EXK/CF continued for about 100 h with maximum release percentages of 86.4 and 95.2% in the phosphate and acetate buffers, respectively. The determined diffusion exponent from the Korsmeyer-Peppas kinetic model suggested non-Fickian transport behavior of the OL molecules and releasing behavior controlled by erosion as well as diffusion mechanisms. Regarding the cytotoxic effect, the EXK/CF composite has a high safety impact on the normal colorectal cells (CCD-18Co) and higher toxic impacts on the colorectal cancer cell (HCT116) than the free oxaliplatin drug.
Collapse
Affiliation(s)
- Lijun Tian
- Deputy
Chief Physician, Shanxi Provincial People’s Hospital, Taiyuan 030012, Shanxi Province, China
| | - Mostafa R. Abukhadra
- Geology
Department, Faculty of Science, Beni-Suef
University, Beni Suef 62511, Egypt
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef 62511, Egypt
| | - Aya S. Mohamed
- Materials
Technologies and their Applications Lab, Geology Department, Faculty
of Science, Beni-Suef University, Beni Suef 62511, Egypt
- Department
of Environment and Industrial Development, Faculty of Postgraduate
Studies for Advanced Sciences, Beni-Suef
University, Beni Suef 62511, Egypt
| | - Ahmed Nadeem
- Department
of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department
of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E. Ibrahim
- Department
of Zoology, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| |
Collapse
|