151
|
Lin Z, Nie F, Cao R, He W, Xu J, Guo Y. Lentinan-based pH-responsive nanoparticles achieve the combination therapy of tumors. Int J Biol Macromol 2024; 279:135300. [PMID: 39236942 DOI: 10.1016/j.ijbiomac.2024.135300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Cancer poses a significant threat to human health, and there is an urgent need for more effective treatments. Combining chemotherapy and immunotherapy is an effective strategy to enhance curative outcomes and holds great potential for widespread application. The natural phytochemical genistein (GEN) exhibits cytotoxicity against tumors and is a potential chemotherapeutic agent. Lentinan (LTN) is a natural polysaccharide with immune-enhancing properties that has been utilized in tumor treatment. This study constructed a pH-responsive nanoparticle GEN@LTN-BDBA with chemotherapy and immunotherapy functions using GEN and LTN. After characterizing the nanoparticles, the molecular mechanism of GEN@LTN-BDBA formation was explored using in silico simulation. GEN@LTN-BDBA can significantly inhibit the proliferation of A549 and HepG2 cells in vitro. The in vivo experiment results demonstrated that treatment with GEN@LTN-BDBA can significantly reduce tumor cell mass and prevent metastasis. In this nanoparticle, GEN induced oxidative stress and apoptosis of tumor cells. Meanwhile, the released LTN initiated an anti-tumor immune response by promoting dendritic cell (DC) maturation and upregulating the expression of costimulatory molecules and major histocompatibility complex. The construction method of GEN@LTN-BDBA can be extended to the preparation of other polysaccharides and hydrophobic chemotherapy molecules, offering a novel strategy to enhance the efficacy of monotherapy.
Collapse
Affiliation(s)
- Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ruyu Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Wenrui He
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
152
|
Wang T, Zhang H. Exploring the roles and molecular mechanisms of RNA binding proteins in the sorting of noncoding RNAs into exosomes during tumor progression. J Adv Res 2024; 65:105-123. [PMID: 38030125 PMCID: PMC11518959 DOI: 10.1016/j.jare.2023.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND RNA binding proteins (RBPs) play a role in sorting non-coding RNAs (ncRNAs) into exosomes. These ncRNAs, carried by exosomes, are involved in regulating various aspects of tumor progression, including metastasis, angiogenesis, control of the tumor microenvironment, and drug resistance. Recent studies have emphasized the importance of the RBP-ncRNA-exosome mechanism in tumor regulation. AIM OF REVIEW This comprehensive review aims to explore the RBP-ncRNA-exosome mechanism and its influence on tumor development. By understanding this intricate mechanism provides novel insights into tumor regulation and may lead to innovative treatment strategies in the future. KEY SCIENTIFIC CONCEPTS OF REVIEW The review discusses the formation of exosomes and the complex relationships among RBPs, ncRNAs, and exosomes. The RBP-ncRNA-exosome mechanism is shown to affect various aspects of tumor biology, including metastasis, multidrug resistance, angiogenesis, the immunosuppressive microenvironment, and tumor progression. Tumor development relies on the transmission of information between cells, with RBPs selectively mediating sorting of ncRNAs into exosomes through various mechanisms, which in turn carry ncRNAs to regulate RBPs. The review also provides an overview of potential therapeutic strategies, such as targeted drug discovery and genetic engineering for modifying therapeutic exosomes, which hold great promise for improving cancer treatment.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
153
|
Ajay A, Gaur SS, Shams R, Dash KK, Mukarram SA, Kovács B. Chickpeas and gut microbiome: Functional food implications for health. Heliyon 2024; 10:e39314. [PMID: 39498070 PMCID: PMC11532829 DOI: 10.1016/j.heliyon.2024.e39314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Chickpea is considered a rich source of nutrients, especially protein and dietary fibre. Besides, chickpea has potential benefits for the maintenance of gut health by improving intestinal integrity and serving as a source of energy for the gut microbiota. Moreover, chickpea consumption has been found to possess anti-cancer, anti-inflammatory, and antioxidant activity. On undergoing certain treatments like soaking, dehulling, roasting, and germination, the anti-nutritional profile of chickpeas can be reduced. Observing these benefits, this review explores the impact of chickpea and its components on maintaining gut health, emphasizing various benefits. Besides, the paper comprehensively covers the nutritional composition of chickpeas and factors influencing the bioavailability of its components concerning gut health. Additionally, it outlines the mechanisms through which chickpeas influence gastrointestinal health, providing valuable insights into complex processes and potential therapeutic applications. Furthermore, the review identifies contributions that can guide future research, encouraging further exploration of chickpeas' role in gut health and the development of interventions. As a result of the presented review, chickpeas can be used as an affordable source of food, which is nutritionally stable and prevents gastrointestinal diseases.
Collapse
Affiliation(s)
- Aswani Ajay
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Supriya Singh Gaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Shaikh Ayaz Mukarram
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
154
|
Ishfaq Z, Almutairi LA, Ali MY, Alrefaee SH, Fahmy MA, Shokralla EA, Alharbe LG, Ali A, Ashfaq A, Abd-Elwahed AR. Enhanced surface functionalization of 2D molybdenum/tin chalcogenide nanostructures for effective SERS detection of Escherichia coli. RSC Adv 2024; 14:35021-35034. [PMID: 39497768 PMCID: PMC11533536 DOI: 10.1039/d4ra05315j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/28/2024] [Indexed: 11/07/2024] Open
Abstract
Surface Enhanced Raman Spectroscopy (SERS) is a highly sensitive analytical technique used for fingerprint recognition of molecular samples. The SERS effect, which enhances Raman scattering signals, has been the subject of extensive research over the past few decades. More recently, the commercialization of portable Raman spectrometers has brought SERS closer to real-world applications. The aim of the study was to enhance their performance, properties, and biocompatibility for potential use as SERS substrates. The synthesis and characterization of MoS2 and SnS2 nanoparticles are described, along with the functionalization process using l-cysteine. The detection and identification of Escherichia coli (E. coli) bacteria using MoS2 and SnS2 as SERS substrates are also investigated. The results demonstrate the successful functionalization and characterization of the nanostructures, indicating their potential as SERS substrates. The abstract highlights the importance of developing cost-effective and environmentally friendly disposable analysis chips with high accuracy and specificity for practical SERS applications.
Collapse
Affiliation(s)
- Zainab Ishfaq
- Department of Physics, Government College University Faisalabad 38000 Pakistan
| | - Layla A Almutairi
- Department of Biology, College of Science Princess Nourah bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - M Yasir Ali
- Department of Physics, Government College University Faisalabad 38000 Pakistan
| | - Salhah Hamed Alrefaee
- Department of Chemistry, Faculty of Science, Taibah University Yanbu 30799 Saudi Arabia
| | - Mohamed Abdelsabour Fahmy
- Department of Mathematics, Adham University College, Umm Al-Qura University Adham 28653 Makkah Saudi Arabia
- Department of Basic Sciences, Faculty of Computers and Informatics, Suez Canal University New Campus 41522 Ismailia Egypt
| | - Elsammani Ali Shokralla
- Department of Physics, Faculty of Science, Al-Baha University Alaqiq 65779-7738 Saudi Arabia
| | - Lamiaa G Alharbe
- Department of Physics, Aljamoum University College, Umm Al-Qura University Makkah Saudi Arabia
| | - Adnan Ali
- Department of Physics, Government College University Faisalabad 38000 Pakistan
| | - Arslan Ashfaq
- Department of Physics, Government College University Faisalabad 38000 Pakistan
| | - A R Abd-Elwahed
- Department of Physics, College of Science, Qassim University Buraydah 51452 Saudi Arabia
| |
Collapse
|
155
|
Li H, Xu P, Zhang X, Ye N, Xu F, Liang B. Mizhuo Guanchangye enema delays the decline of renal function in rats with chronic kidney disease by intervening in the TLR4/MyD88/NF-κB pathway. Front Med (Lausanne) 2024; 11:1454506. [PMID: 39529796 PMCID: PMC11550938 DOI: 10.3389/fmed.2024.1454506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Background Chronic kidney disease (CKD) is a prevalent chronic condition that poses a significant threat to human health. There is a close connection between the gut and kidneys, jointly influencing the onset and progression of CKD through the "gut-kidney axis." Traditional Chinese medicine has shown potential in CKD treatment, but the specific mechanisms require further investigation. Objectives This study aims to explore the protective effects of Mizhuo Enema (MZGCY) on kidney function in CKD rats by regulating the TLR4/MyD88/NF-κB signaling pathway. Methods The researcher employed a CKD rat model, which was divided into four groups: Control, Model, half-dose Mizhuo Guanchangye (1/2 MZGCY), and full-dose Mizhuo Guanchangye (MZGCY). Post enema administration, assessments were conducted on kidney function indicators, which included blood urea nitrogen (BUN), serum creatinine (SCR), and 24-h urinary protein. Additionally, measurements were taken for intestinal toxic substances such as indoxyl sulfate (IS) and lipopolysaccharide (LPS), as well as inflammatory factors interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Examinations of pathological changes in both the intestines and kidneys were also performed. During this process, immunofluorescence was utilized to detect the expression levels of proteins toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), and nuclear factor kappa B (NF-κB) in the intestinal tissues. Results It was found that after enema treatment, the BUN, SCR, and 24-h urinary protein levels in the MZGCY and 1/2 MZGCY groups significantly decreased, indicating notable improvement in kidney function. Compared to the model group, the IS, LPS, IL-6, and TNF-α levels in the MZGCY and 1/2 MZGCY groups were significantly reduced. Immunofluorescence showed a marked decrease in the expression of TLR4, MyD88, and NF-κB proteins in the intestines of the MZGCY group. Conclusion MZGCY significantly reduces the levels of intestinal toxins and inflammatory factors in the serum of CKD rats by interfering with the TLR4/MyD88/NF-κB signaling pathway, thereby improving intestinal and renal pathological changes and delaying CKD progression. This study demonstrates that MZGCY has significant renal protective effects, providing a new potential approach for CKD treatment.
Collapse
Affiliation(s)
- Han Li
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Peng Xu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaomei Zhang
- Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Xu
- Traditional Chinese Medicine Hospital of Meishan, Meishan, China
| | - Bo Liang
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
156
|
Xu AX, Zhao ZF, Zhu L, Zhang YH, Li Y, Wei YF, Zhang BY, Jiang B, Gao TZ, Li MS, Liu JY. Promise and challenges of traditional Chinese medicine, specifically Calculus bovis, in liver cancer treatment. World J Gastroenterol 2024; 30:4380-4385. [PMID: 39494098 PMCID: PMC11525868 DOI: 10.3748/wjg.v30.i40.4380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/16/2024] Open
Abstract
Liver cancer, one of the most common malignancies worldwide, ranks sixth in incidence and third in mortality. Liver cancer treatment options are diverse, including surgical resection, liver transplantation, percutaneous ablation, transarterial chemoembolization, radiotherapy, chemotherapy, targeted therapy, immunotherapy, and traditional Chinese medicine (TCM). A multidisciplinary team (MDT) is essential to customize treatment plans based on tumor staging, liver function, and performance status (PS), ensuring individualized patient care. Treatment decisions require a MDT to tailor strategies based on tumor staging, liver function, and PS, ensuring personalized care. The approval of new first-line and second-line drugs and the establishment of standard treatments based on immune checkpoint inhibitors have significantly expanded treatment options for advanced liver cancer, improving overall prognosis. However, many patients do not respond effectively to these treatments and ultimately succumb to the disease. Modern oncology treatments, while extending patient survival, often come with severe side effects, resistance, and damage to the body, negatively impacting quality of life. Huang et al's study published at World Journal of Gastroenterology rigorously validates the anticancer properties of Calculus bovis, enhancing our understanding of TCM and contributing to new liver cancer treatment strategies. For over 5000 years, TCM has been used in East Asian countries like China to treat various diseases, including liver conditions. Analysis of real-world clinical data suggests that for patients with advanced-stage tumors lacking effective treatments, integrated TCM therapies could provide significant breakthroughs.
Collapse
Affiliation(s)
- Ao-Xi Xu
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Zhi-Feng Zhao
- Medical School of Chinese People's Liberation Army, Medical School of Chinese People's Liberation Army, Beijing 100853, China
- Department of Hepatobiliary and Pancreative Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Li Zhu
- Department of General Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yi-Heng Zhang
- Department of General Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Yan Li
- Department of General Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yu-Fan Wei
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo-Ya Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Bin Jiang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Tian-Ze Gao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Meng-Si Li
- Department of Surgery, Mancheng District People's Hospital, Baoding 072150, Hebei Province, China
| | - Jia-Yu Liu
- Department of Neurosurgery, First Medical Centre of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
157
|
Erdenebileg S, Kim M, Nam Y, Cha KH, Le TT, Jung SH, Nho CW. Artemisia argyi ethanol extract ameliorates nonalcoholic steatohepatitis-induced liver fibrosis by modulating gut microbiota and hepatic signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118415. [PMID: 38848971 DOI: 10.1016/j.jep.2024.118415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia argyi (AA), a herbal medicine traditionally used in Asian countries, to treat inflammatory conditions such as eczema, dermatitis, arthritis, allergic asthma and colitis. However, the mechanism of action of this plant with regard to hepatitis and other liver-related diseases is still unclear. AIM This study aimed to investigate the effects of AA ethanol extract on NASH-related fibrosis and gut microbiota in a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-induced mouse model. METHODS Male C57BL/6J mice were fed CDAHFD, with or without AA ethanol extract treatment. Biochemical markers, lipid profiles, hepatic mRNA expression levels of key genes, and the fibrosis area were assessed. In vitro, TGF-β-stimulated human hepatic stellate LX-2 cells and mouse primary hepatic stellate cells (mHSCs) were used to elucidate the effects of AA ethanol extract on fibrosis and steatosis. 16S rRNA sequencing, QIIME2, and PICRUST2 were employed to analyze gut microbial diversity, composition, and functional pathways. RESULTS Treatment with the AA ethanol extract improved plasma and liver lipid profiles, modulated hepatic mRNA expression levels of antioxidant, lipolytic, and fibrosis-related genes, and significantly reduced CDAHFD-induced hepatic fibrosis. Gut microbiota analysis revealed a marked decrease in Acetivibrio ethanolgignens abundance upon treatment with the AA ethanol extract, and its functional pathways were significantly correlated with NASH/fibrosis markers. The AA ethanol extract and its active components (jaceosidin, eupatilin, and chlorogenic acid) inhibited fibrosis-related markers in LX-2 and mHSC. CONCLUSION The AA ethanol extract exerted therapeutic effects on CDAHFD-induced liver disease by modulating NASH/fibrosis-related factors and gut microbiota composition. Notably, AA treatment reduced the abundance of the potentially profibrotic bacterium (A. ethanolgignens). These findings suggest that AA is a promising candidate for treating NASH-induced fibrosis.
Collapse
Affiliation(s)
- Saruul Erdenebileg
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea; Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea
| | - Myungsuk Kim
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea; Natural Product Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea; Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, 26426, South Korea
| | - Yunseong Nam
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea; Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea
| | - Kwang Hyun Cha
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea; Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, 26426, South Korea; Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea
| | - Tam Thi Le
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea; Natural Product Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea
| | - Sang Hoon Jung
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea; Natural Product Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea; Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea.
| |
Collapse
|
158
|
Guo X, Wang RS, Zhang ZL, Zhang HW, Wang SC, Zhang S, Wu YN, Li YJ, Yuan J. Effect of fermentation on the constituents in the branches and leaves of Taxus media and non-small cell lung cancer. Front Pharmacol 2024; 15:1449498. [PMID: 39508039 PMCID: PMC11538029 DOI: 10.3389/fphar.2024.1449498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Non-small cell lung cancer (NSCLC) is a prominent lung cancer disease worldwide. Currently, commonly used methods, such as surgery and radiotherapy, have significant side effects. Traditional Chinese medicine (TCM) has become a research hotspot because of its safe and effective characteristics. The branches and leaves of Taxus media are abundant in antitumor active compounds, and there has been no research conducted as yet regarding its anti-lung cancer molecular mechanism. Objective The aim of this study is to investigate the antitumor activity of two samples before and after fermentation of T. media, and to research the molecular mechanism of its inhibitory effect on NSCLC. Methods The chemical composition of pre-fermentation T. media (TM) and post-fermentation T. media qu (TMQ) were investigated using UHPLC-Q-Qrbitrap HRMS and high-performance liquid chromatography (HPLC). The anti-lung cancer activities of TM and TMQ were compared using an A549-induced tumor mouse model. An enzyme-linked immunosorbent assay (ELISA), hematoxylin and eosin (H&E) staining, immunohistochemistry, and immunofluorescence were used to determine the of TMQ mechanism of action. Results The results indicated that TM and TMQ contained 83 compounds, consisting primarily of flavonoids, organic acids, and taxanes. Both taxanes and flavonoids in TMQ were higher than that in TM. Both TM and TMQ effectively inhibited the tumor growth in non-small cell lung cancer (NSCLC), and the inhibition rate was greater in TMQ (57.24%) than in TM (49.62%). TMQ administration downregulated the tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and the glutathione (GSH) level and upregulated interferon-γ (IFN-γ), reactive oxygen species (ROS), and malondialdehyde (MDA) levels in the serum of tumor mice. TMQ treatment also increased the protein expression of Bax, Caspase-3, and Beclin-1 in tumor tissues. In contrast, the bcl-2, PI3K, Ki67, ULK1, and mTOR protein levels were suppressed by TMQ. Protein assay analyses reemphasized the superior antitumor effect of TMQ over TM. These cumulative findings demonstrated that the mechanism of action of TMQ was closely related to the activation of transcriptional misregulation in the cancer pathway that inhibited the cholinergic synaptic, AMPK, and PI3K/Akt/mTOR signaling pathways. Conclusion This study demonstrated that fermentation increased the active ingredient contents and antitumor effects of T. media. In addition, post-fermentation TMQ was superior to TM as a herbal medicine for NSCLC treatment.
Collapse
Affiliation(s)
- Xing Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Rui-Sheng Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen-Ling Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, China
- Henan Engineering Technology Research Center for Integrated Traditional Chinese Medicine Production, Zhengzhou, China
- Henan Engineering Research Center of Traditional Chinese Medicine Characteristic Processing Technology, Zhengzhou, China
| | - Hong-Wei Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Sheng-Chao Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuai Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ya-Ning Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ya-Jing Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jun Yuan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
159
|
Wang XR, Wu HN, Li MH, Guo XH, Cheng XL, Jing WG, Wei F. Comprehensive Analysis of Bile Medicines Based on UHPLC-QTOF-MS E and Machine Learning. ACS OMEGA 2024; 9:43264-43271. [PMID: 39464475 PMCID: PMC11500153 DOI: 10.1021/acsomega.4c08260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024]
Abstract
Based on UHPLC-QTOF-MSE analysis and quantized processing, combined with machine learning algorithms, data modeling was carried out to realize digital identification of bear bile powder (BBP), chicken bile powder (CIBP), duck bile powder (DBP), cow bile powder (CBP), sheep bile powder (SBP), pig bile powder (PBP), snake bile powder (SNBP), rabbit bile powder (RBP), and goose bile powder (GBP). First, 173 batches of bile samples were analyzed by UHPLC-QTOF-MSE to obtain the retention time-exact mass (RTEM) data pair to identify bile acid-like chemical components. Then, the data were modeled by combining support vector machine (SVM), random forest (RF), artificial neural network (ANN), gradient boosting (GB), AdaBoost (AB), and Naive Bayes (NB), and the models were evaluated by the parameters of accuracy (Acc), precision (P), and area under the curve (AUC). Finally, the bile medicines were digitally identified based on the optimal model. The results showed that the RF model constructed based on the identified 12 bile acid-like chemical constituents and random forest algorithm is optimal with ACC, P, and AUC > 0.950. In addition, the accuracy of external identification verification of 42 batches of bile medicines detected at different times is 100.0%. So based on UHPLC-QTOF-MSE analysis and combined with the RF algorithm, it can efficiently and accurately realize the digital identification of bile medicines, which can provide reference and assistance for the quality control of bile medicines. In addition, hyodeoxycholic acid, glycohyodeoxycholic acid, and taurochenodeoxycholic acid, and so forth are the most important bile acid constituents for the identification of nine bile medicines.
Collapse
Affiliation(s)
- Xian rui Wang
- Institute
for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Hao nan Wu
- Institute
for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
- Faculty
of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ming hua Li
- Institute
for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xiao han Guo
- Institute
for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xian long Cheng
- Institute
for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Wen guang Jing
- Institute
for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Feng Wei
- Institute
for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| |
Collapse
|
160
|
Teng X, Wu B, Liang Z, Zhang L, Yang M, Liu Z, Liang Q, Wang C. Three bioactive compounds from Huangqin decoction ameliorate Irinotecan-induced diarrhea via dual-targeting of Escherichia coli and bacterial β-glucuronidase. Cell Biol Toxicol 2024; 40:88. [PMID: 39422738 PMCID: PMC11489186 DOI: 10.1007/s10565-024-09922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Irinotecan (CPT-11) is a commonly prescribed chemotherapeutic for the treatment of colon cancer. Unfortunately, acute and delayed diarrhea are prominent side effects of CPT-11 use, and this limits its therapeutic potential. The curative effect of Huangqin decoction (HQD) on chemotherapy-induced diarrhea has been proven. This study investigated the efficacy of the components of HQD (baicalein, baicalin, and paeoniflorin) on CPT-11-induced diarrhea and their underlying mechanisms. Baicalein was found to be the most effective component in improving CPT-11-induced enterotoxicity by intestinal permeability test, ELISA, fluorescence co-localization, and IHC. The combination of baicalin, baicalin and paeoniflorin can obtain similar therapeutic effect to that of HQD. Mendelian randomization analysis, 16 s rRNA sequencing, and fluorescence imaging revealed that baicalein and baicalin significantly inhibited β-glucuronidase (β-GUS) activity. Bacterial abundance analysis and scanning electron microscopy showed that baicalein inhibited the proliferation of Escherichia coli by destroying its cell wall. The molecular dynamics and site-directed mutagenesis results revealed the structural basis for the inhibition of β-GUS by baicalein and baicalin. The results above provide a new idea for the development of drug therapy for adjuvant chemotherapy and theoretical guidance for the optimization of molecular structure targeting β-GUS.
Collapse
Affiliation(s)
- Xiaojun Teng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bingxin Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuhui Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lisheng Zhang
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Maolin Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Acupuncture Building, Guangdong Province, Guangzhou University of Chinese Medicine, Xiaoguwei Street, Panyu District, Guangzhou City, 510006, China.
| | - Qi Liang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 51800, People's Republic of China.
- Acupuncture Building, Guangdong Province, Guangzhou University of Chinese Medicine, Xiaoguwei Street, Panyu District, Guangzhou City, 510006, China.
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Acupuncture Building, Guangdong Province, Guangzhou University of Chinese Medicine, Xiaoguwei Street, Panyu District, Guangzhou City, 510006, China.
| |
Collapse
|
161
|
Fang Y, Wu Y, Zhang X, Wei L, Liu L, Chen Y, Chen D, Xu N, Cao L, Zhu J, Chen M, Cheng Y, Sferra TJ, Yao M, Shen A, Peng J. miR-326 overexpression inhibits colorectal cancer cell growth and proteasome activity by targeting PNO1: unveiling a novel therapeutic intervention strategy. Sci Rep 2024; 14:24284. [PMID: 39414903 PMCID: PMC11484865 DOI: 10.1038/s41598-024-75746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Proteasome inhibition emerges as a promising strategy for cancer prevention. PNO1, pivotal for colorectal cancer (CRC) progression, is involved in proteasome assembly in Saccharomyces cerevisiae. Hence, we aimed to explore the role of PNO1 in proteasome assembly and its up- and down-streams in CRC. Here, we demonstrated that PNO1 knockdown suppressed CRC cells growth, proteasome activities and assembly, as well as CDKN1B/p27Kip1 (p27) degradation. Moreover, p27 knockdown partially attenuated the inhibition of HCT116 cells growth by PNO1 knockdown. The up-stream studies of PNO1 identified miR-326 as a candidate miRNA directly targeting to CDS-region of PNO1 and its overexpression significantly down-regulated PNO1 protein expression, resulting in suppression of cell growth, decrease of proteasome activities and assembly, as well as increasing the stability of p27 in CRC cells. These findings indicated that miR-326 overexpression can suppress CRC cell growth, acting as an endogenous proteasome inhibitor by targeting PNO1.
Collapse
Affiliation(s)
- Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Yulun Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Xinran Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA
| | - Daxin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Nanhui Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Liujin Cao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Jie Zhu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Mian Chen
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Thomas J Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA
| | - Mengying Yao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
162
|
Wang Y, Qin Y, Kang Q, Wang H, Zhou S, Wu Y, Liu Y, Su Y, Guo Y, Xiu M, He J. Therapeutic potential of Astragalus membranaceus-Pueraria lobata decoction for the treatment of chemotherapy bowel injury. FASEB J 2024; 38:e70102. [PMID: 39382026 DOI: 10.1096/fj.202401677r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Intestinal mucositis (IM) is one of the most serious side effects of the chemotherapeutic agent irinotecan (CPT-11). Astragalus membranaceus-Pueraria lobata decoction is from the ancient medical book Zhengzhihuibu, has been reported to be used for the treatment of diabetes and hypertension. However, the beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) remain largely unknown. This study aimed to investigate the efficacy and mechanism of Astragalus membranaceus-Pueraria lobata decoction (AP) in treating CIM. The beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) were detected using Drosophila model, and combination with RT qPCR, transcriptomics. AP supplementation could significantly alleviate the CPT-11-induced body injury in Drosophila, such as increasing the survival rate, recovering the impaired digestion, improving the movement, and repairing the reproduction and developmental processes. Administration of AP remarkably alleviated the IM caused by CPT-11, including inhibiting the excretion, repairing the intestinal atrophy, improving the acid-base homeostasis imbalance, and inhibiting the disruption of intestinal structure. Mechanistic studies revealed that the protective role of AP against CPT-11 induced intestinal injury was regulated mainly by inhibiting immune-related Toll and Imd pathways, and enhancing the antioxidant capacity. Taken together, these results suggest that AP may be a novel agent to relieve CIM.
Collapse
Affiliation(s)
- Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yujie Qin
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qian Kang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Huinan Wang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shihong Zhou
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yifan Wu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Yun Su
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yaqiong Guo
- Second Provincial People's Hospital of Gansu, Lanzhou, China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Jianzheng He
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
- Second Provincial People's Hospital of Gansu, Lanzhou, China
- Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
163
|
Jiang S, Pei L, Chen L, Sun J, Song Y. Mechanisms of Electroacupuncture in Alleviating Visceral Hypersensitivity in Post-Infectious Irritable Bowel Syndrome Mice: The Role of GDNF Signaling Pathway and Gut Microbiota. Microb Physiol 2024; 34:255-263. [PMID: 39396501 DOI: 10.1159/000541888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Post-infectious irritable bowel syndrome (PI-IBS) is a functional bowel disease that develops following an acute gastrointestinal infection. Electroacupuncture (EA) can regulate the gut microbiota and alleviate visceral hypersensitivity. Glial cell-derived neurotrophic factor (GDNF) is a potential factor in visceral hypersensitivity reactions. The aim of this study was to explore whether EA could alleviate visceral hypersensitivity in PI-IBS by regulating gut microbiota through GDNF signaling. METHODS 2,4,6-trinitrobenzene sulfonic acid was used to induce visceral hypersensitivity in PI-IBS mice. Intestinal visceral sensitivity was assessed by using the abdominal withdrawal reflex (colorectal distention). 16S ribosomal RNA sequencing profiles the gut microbiome community. RESULTS GDNF can exacerbate the imbalances of the gut microbiota and increase visceral hypersensitivity compared with the model group. Whereas EA treatment increases the richness and diversity of the gut microbiota, decreases differences among species and alleviates visceral sensitivity. CONCLUSION EA can alleviate visceral hypersensitivity in PI-IBS by regulating the gut microbiota via GDNF signaling, providing new insights for mechanistic research on EA in PI-IBS treatment.
Collapse
Affiliation(s)
- Shiyuan Jiang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China,
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China,
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China,
| | - Lixia Pei
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Chen
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianhua Sun
- Department of Acupuncture and Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yafang Song
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
164
|
Wang L, Chen H, Deng L, Hu M, Wang Z, Zhang K, Lian C, Wang X, Zhang J. Roburic acid inhibits lung cancer metastasis and triggers autophagy as verified by network pharmacology, molecular docking techniques and experiments. Front Oncol 2024; 14:1449143. [PMID: 39450260 PMCID: PMC11499198 DOI: 10.3389/fonc.2024.1449143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Background Roburic acid (ROB) is a newly discovered tetracyclic triterpene acid extracted from oak galls, which has anti-inflammatory effects, but the mechanism of its anticancer effect is not clear. Our study focuses on exploring the potential mechanism of action of ROB in the treatment of lung cancer using a combination of network pharmacological prediction, molecular docking technique and experimental validation. Methods A network pharmacology approach was used to screen the protein targets of ROB and lung cancer, and PPI network analysis and enrichment analysis were performed on the intersecting genes. The tissue and organ distribution of the targets was also evaluated based on the BioGPS database. To ensure the reliability of the network pharmacology prediction results, we proceeded to use molecular docking technique to determine the relationship between drugs and targets. Finally, in vitro experiments with cell lines were performed to further reveal the potential mechanism of ROB for the treatment of lung cancer. Results A total of 83 potential targets of ROB in lung cancer were collected and further screened by using Cytoscape software, and 7 targets of PTGS2, CYP19A1, PTGS1, AR, CYP17A1, PTGES and SRD5A1 were obtained as hub genes and 7 hub targets had good binding energy with ROB. GO and KEGG analysis showed that ROB treatment of lung cancer mainly involves Arachidonic acid metabolism, Notch signaling pathway, cancer pathway and PPAR signaling pathway. The results of in vitro experiments indicated that ROB may inhibit the proliferation and metastasis of lung cancer cells and activate the PPARγ signaling pathway, as well as induce cellular autophagy. Conclusions The results of this study comprehensively elucidated the potential targets and molecular mechanisms of ROB for the treatment of lung cancer, providing new ideas for further lung cancer therapy.
Collapse
Affiliation(s)
- Luyao Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Huili Chen
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Lili Deng
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Mengling Hu
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Ziqiang Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Kai Zhang
- Research Center of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Chaoqun Lian
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Joint Research Center for Regional Diseases of Institute of Healthcare Management (IHM), The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| |
Collapse
|
165
|
Yuan J, Zhang W, Qie B, Xie Y, Zhu B, Chen C, Qiu W, Sun H, Zhao B, Long Y. Utilizing press needle acupuncture to treat mild-to-moderate COVID-19: A single-blind, randomized controlled trial. Medicine (Baltimore) 2024; 103:e39810. [PMID: 39465704 PMCID: PMC11460845 DOI: 10.1097/md.0000000000039810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND In China, acupuncture has been employed as an adjunctive therapy for coronavirus disease 2019 (COVID-19). Press needle acupuncture is a special type of acupuncture that provides prolonged stimulation to acupuncture points and simultaneously reduces the pain associated with traditional acupuncture. This study assessed the effectiveness of integrating press needles alongside pharmacologic treatment in patients with mild-to-moderate COVID-19. METHODS Patients hospitalized with mild-to-moderate COVID-19 symptoms between December 2022 and January 2023 were included in the study. The enrolled patients were randomly assigned to receive pharmacologic treatment alone (control group) or both pharmacologic treatment and press needle acupuncture (intervention group). Patients were evaluated for clinical outcomes, including symptom scores, deterioration rates, fever durations, and nucleic acid test results. The patients' complete blood count and C-reactive protein levels were also analyzed using venous blood samples both before and after treatment. RESULTS Both groups exhibited a reduction in clinical symptom scores, but symptoms regressed faster in the intervention group. Nucleic acid test negativity was achieved faster in the intervention group than in the control group. The intervention group also had a lower deterioration rate. Furthermore, the increase in the lymphocyte count and decrease in C-reactive protein levels following treatment were more pronounced in the intervention group than in the control group. CONCLUSION This study suggests that utilizing press needle acupuncture as an adjunct to pharmacologic treatment can be effective in patients with mild-to-moderate COVID-19 symptoms.
Collapse
Affiliation(s)
- Jiawei Yuan
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weizhen Zhang
- NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Beibei Qie
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuhua Xie
- Taihe Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Binbin Zhu
- Guangdong Work Injury Rehabilitation Hospital, Guangzhou, Guangdong, China
| | - Cheng Chen
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenwei Qiu
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huanwen Sun
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Zhao
- Southern Medical University, Guangzhou, Guangdong, China
| | - Yaqiu Long
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
166
|
Lin M, Xu CL, Pan HY, Song YB, Ma YW, Liu XY, Yao JB, Wang RW. Quality Evaluation of Shexiang Tongxin Dropping Pill Based on HPLC Fingerprints Combined with HPLC-Q-TOF-MS/MS Method. J Chromatogr Sci 2024; 62:732-741. [PMID: 38553778 DOI: 10.1093/chromsci/bmae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 11/10/2023] [Accepted: 03/14/2024] [Indexed: 10/03/2024]
Abstract
Shexiang Tongxin Dropping Pill (STP) is a composite formula of traditional Chinese medicine that is widely used for the treatment of cardiovascular diseases. It consists of seven medicinal extracts thereof or materials, including Bufonis venenum, synthetic Moschus, Panax ginseng, Bovis calculus artifactus, Bear bile powder, Salvia miltiorrhiza Bge and synthetic borneol. However, it is considerably difficult to evaluate the quality of STP due to its complex chemical compositions. This paper was designed to explore a comprehensive and systematic method combining fingerprints and chemical identification for quality assessment of STP samples. Twenty batches of STP samples were analyzed by high-performance liquid chromatography (HPLC) and high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. Ten common peaks were detected by HPLC fingerprint similarity evaluation system. Meanwhile, 100 compounds belonging to 4 structural characteristics, including 23 bufadienolides, 36 organic acids, 34 saponins and 7 other types, were systematically identified as the basic components in STP. This study could be used for clarifying the multiple bioactive substances and developing a comprehensive quality evaluation method of STP.
Collapse
Affiliation(s)
- Ming Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang District, Hangzhou 310053, People's Republic of China
- Zhejiang Conba Pharmaceutical Co., Ltd, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
| | - Chun-Ling Xu
- Zhejiang Conba Pharmaceutical Co., Ltd, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
| | - Hong-Ye Pan
- Zhejiang Conba Pharmaceutical Co., Ltd, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road, Xihu District, Hangzhou 310058, People's Republic of China
| | - Yong-Biao Song
- Inner Mongolia Conba Pharmaceutical Co., Ltd, Sini Town, Hangjin Banner, Erdos City, Inner Mongolia Autonomous Region, 017418, People's Republic of China
| | - Yi-Wen Ma
- Inner Mongolia Conba Pharmaceutical Co., Ltd, Sini Town, Hangjin Banner, Erdos City, Inner Mongolia Autonomous Region, 017418, People's Republic of China
| | - Xing-Yu Liu
- Zhejiang Conba Pharmaceutical Co., Ltd, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
| | - Jian-Biao Yao
- Zhejiang Conba Pharmaceutical Co., Ltd, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
| | - Ru-Wei Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang District, Hangzhou 310053, People's Republic of China
| |
Collapse
|
167
|
Zhang J, Wu Y, Tian Y, Xu H, Lin ZX, Xian YF. Chinese herbal medicine for the treatment of intestinal cancer: preclinical studies and potential clinical applications. Mol Cancer 2024; 23:217. [PMID: 39354520 PMCID: PMC11443726 DOI: 10.1186/s12943-024-02135-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Intestinal cancer (IC) poses a significant global health challenge that drives continuous efforts to explore effective treatment modalities. Conventional treatments for IC are effective, but are associated with several limitations and drawbacks. Chinese herbal medicine (CHM) plays an important role in the overall cancer prevention and therapeutic strategies. Recent years have seen a growing body of research focus on the potential of CHM in IC treatment, showing promising results in managing IC and mitigating the adverse effects of radiotherapy and chemotherapy. This review provides updated information from preclinical research and clinical observation on CHM's role in treatment of IC, offering insights into its comprehensive management and guiding future prevention strategies and clinical practice.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Yulin Wu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Yuanyang Tian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China.
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China.
| |
Collapse
|
168
|
Wang Y, Wu S, Song Z, Yang Y, Li Y, Li J. Unveiling the pathological functions of SOCS in colorectal cancer: Current concepts and future perspectives. Pathol Res Pract 2024; 262:155564. [PMID: 39216322 DOI: 10.1016/j.prp.2024.155564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, marked by increasing incidence and mortality rates in recent years. The pathogenesis of CRC is complex, involving chronic inflammation of the intestinal mucosa, heightened immunoinflammatory responses, and resistance to apoptosis. The suppressor of cytokine signaling (SOCS) family, comprised of key negative regulators within cytokine signaling pathways, plays a crucial role in cell proliferation, growth, and metabolic regulation. Deficiencies in various SOCS proteins can trigger the activation of the Janus kinase (JAK) and signal transducers and activators of transcription (STAT) pathways, following the binding of cytokines and growth factors to their receptors. Mounting evidence indicates that SOCS proteins are integral to the development and progression of CRC, positioning them as promising targets for novel anticancer therapies. This review delves into the structure, function, and molecular mechanisms of SOCS family members, examining their roles in cell proliferation, apoptosis, migration, epithelial-mesenchymal transition (EMT), and immune modulation. Additionally, it explores their potential impact on the regulation of CRC immunotherapy, offering new insights and perspectives that may inform the development of innovative therapeutic strategies for CRC.
Collapse
Affiliation(s)
- YuHan Wang
- College of Integrative of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Anorectal, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Sha Wu
- Department of Anorectal, Nanchuan Hospital of Traditional Chinese Medicine, Nanchuan, Chongqing, 408400, China
| | - ZhiHui Song
- College of Integrative of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yu Yang
- College of Integrative of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - YaLing Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Jun Li
- Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Anorectal, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
169
|
Attique S, Ibrahim M, Khan C, Ali A, Qadir R, Khan A, Al-Salahi R, Abuelizz HA, da Silva Medeiros P, Moreira Sampaio O, Campos Curcino Vieira L. Evaluation of Antimicrobial and Antioxidant Potential of Oxalis corymbosa Extracts. Chem Biodivers 2024; 21:e202400883. [PMID: 38985537 DOI: 10.1002/cbdv.202400883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
This work aimed to assess the antioxidant and antimicrobial properties of Oxalis corymbosa extracts. Biochemical analyses were conducted on various plant parts, utilizing enzymatic and non-enzymatic assays. Parameters such as total soluble protein, chlorophyll, and carotenoid contents were also evaluated to elucidate the role of bioactive chemical compounds. The antimicrobial screening of extracts was performed against the bacterial and fungal strains Escherichia coli, Staphylococcus aureus, and Candida albicans, respectively. Results indicated that chlorophyll a, chlorophyll b, total chlorophyll, carotenoid content, anthocyanin content, catalase, peroxidase, and superoxide dismutase were most abundant in the O. corymbosa leaves. Moreover, total ascorbate peroxidase content, total phenolic content, and total flavonoid content were found to be higher in the roots compared to other parts. High-performance liquid chromatography analysis identified chlorogenic acid as the major component, followed by gallic acid, caffeic acid, quercetin, and salicylic acid. Regarding antibacterial potential, each extract exhibited significant activity, with methanolic and ethyl acetate extracts demonstrating the maximum inhibition zone against S. aureus and E. coli, respectively. These findings highlight the substantial antioxidant and antibacterial potential of different parts of O. corymbosa, suggesting their promising applications as ingredients in various nutraceutical products.
Collapse
Affiliation(s)
- Sana Attique
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - Changeez Khan
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
| | - Akbar Ali
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Rahman Qadir
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Ajmir Khan
- School of Packaging, Michigan State University, East Lansing, MI-48824, United State
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hatem A Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Olívia Moreira Sampaio
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá-MT, 78060-900, Brazil
| | | |
Collapse
|
170
|
Ho YL, Au TTD, Wu HY, Wu KC, Chang YS. Comparative study of Scleromitrion diffusum and Oldenlandia corymbosa: Microscopy, TLC, HPLC, and antioxidant activity. Microsc Res Tech 2024; 87:2371-2384. [PMID: 38808861 DOI: 10.1002/jemt.24611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
Quality control of herbal medicines is crucial, especially the role of herbal drug identification. This is essential for preventing the misuse of herbs, which can affect efficacy or cause toxicity. Scleromitrion diffusum is a common herb, yet it is often mistaken for Oldenlandia corymbosa. This study analyzed the morphology, microscopy, thin-layer chromatography (TLC), and high-pressure liquid chromatography (HPLC) using two markers, asperuloside and scandoside methyl ester, to distinguish between S. diffusum and O. corymbosa with the analysis included 10 samples of S. diffusum and 10 samples of O. corymbosa collected from the Taiwan market. By quantifying the total polyphenols and flavonoids, we investigated the antioxidant activity, including the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging effect, 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+) scavenging effect, and reducing power to further elucidate the biological effects of the two herbs. The results of this study revealed notable differences in microscopy and suggested a TLC method for distinguishing between the two herbs in the market. In HPLC, the ratios of asperuloside and scandoside methyl ester differed between the two herbs. S. diffusum contained a higher asperuloside content. In contrast, O. corymbosa contained higher concentrations of scandoside methyl esters. With more total polyphenols and flavonoids in S. diffusum than those in O. corymbosa, the antioxidant activity of S. diffusum was superior to that of O. corymbosa. This study provides a comprehensive understanding for the identification and quality evaluation of S. diffusum in the market. RESEARCH HIGHLIGHTS: The study consolidates and clarifies the morphological and microscopic differences between Scleromitrion diffusum and Oldenlandia corymbosa - a common adulterant species of S. diffusum on the Taiwan markets. Using Asperuloside and Scandoside methyl ester as two chemical markers, the study proposes a TLC method for rapidly testing S. diffusum and O. corymbosa on the market. Through HPLC analysis, our results showed that S. diffusum and O. corymbosa had a clear difference in the ratio of two markers, Asperuloside and Scandoside methyl ester: Asperuloside/Scandoside methyl ester in S. diffusum is higher than that in O. corymbosa. Through phytochemicals contents, including total phenols content, flavonoids content, and antioxidant activity, including DPPH, ABTS•+ scavenging activity, and reducing power, S. diffusum showed slightly higher levels of phenols and flavonoids as well as a better antioxidant activity than O. corymbosa.
Collapse
Affiliation(s)
- Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung, Taiwan
| | - Thanh-Thuy-Dung Au
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hung-Yi Wu
- Department of Quality Control, Min Tong Pharmaceutical Company, Taichung, Taiwan
| | - Kun-Chang Wu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
171
|
Guo KC, Wang ZZ, Su XQ. Chinese Medicine in Colorectal Cancer Treatment: From Potential Targets and Mechanisms to Clinical Application. Chin J Integr Med 2024:10.1007/s11655-024-4115-8. [PMID: 39331211 DOI: 10.1007/s11655-024-4115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 09/28/2024]
Abstract
Colorectal cancer (CRC) is a global health challenge necessitating innovative therapeutic strategies. There is an increasing trend toward the clinical application of integrative Chinese medicine (CM) and Western medicine approaches. Chinese herbal monomers and formulations exert enhanced antitumor effects by modulating multiple signaling pathways in tumor cells, including inhibiting cell proliferation, inducing apoptosis, suppressing angiogenesis, reversing multidrug resistance, inhibiting metastasis, and regulating immunity. The synergistic effects of CM with chemotherapy, targeted therapy, immunotherapy, and nanovectors provide a comprehensive framework for CRC treatment. CM can mitigate drug toxicity, improve immune function, control tumor progression, alleviate clinical symptoms, and improve patients' survival and quality of life. This review summarizes the key mechanisms and therapeutic strategies of CM in CRC, highlighting its clinical significance. The potential for CM and combination with conventional treatment modalities is emphasized, providing valuable insights for future research and clinical practice.
Collapse
Affiliation(s)
- Ke-Chen Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zao-Zao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiang-Qian Su
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
172
|
Wang Y, Yang R, Xie Y, Zhou XQ, Yang JF, Shi YY, Liu S. Comprehensive review of drug-mediated ICD inhibition of breast cancer: mechanism, status, and prospects. Clin Exp Med 2024; 24:230. [PMID: 39325106 PMCID: PMC11427550 DOI: 10.1007/s10238-024-01482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
The escalating incidence of breast cancer (BC) in women underscores its grave health threat. Current molecular insights into BC's post-adjuvant therapy cure remain elusive, necessitating active treatment explorations. Immunotherapy, notably chemotherapy-induced immunogenic cell death (ICD), has emerged as a promising BC therapy. ICD harnesses chemotherapeutics to activate anti-tumor immunity via DAMPs, fostering long-term T-cell memory and primary BC cure. Besides chemotherapy drugs, Nanodrugs, traditional Chinese medicine (TCM) and ICIs also induce ICD, boosting immune response. ICIs, like PD-1/PD-L1 inhibitors, revolutionize cancer treatment but face limited success in cold tumors. Thus, ICD induction combined with ICIs is studied extensively for BC immunotherapy. This article reviews the mechanism of ICD related drugs in BC and provides reference for the research and development of BC treatment, in order to explore more effective clinical treatment of BC, we hope to explore more ICD inducers and make ICIs more effective vaccines.
Collapse
Affiliation(s)
- Yang Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
- China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Rui Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
- Shanxi Province Cancer Hospital/Shanxi Hospital Afiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital, Afiliated to Shanxi Medical University, 030013, Shanxi, China
| | - Ying Xie
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
| | - Xi-Qiu Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
| | - Jian-Feng Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| | - You-Yang Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| | - Sheng Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
- Graduate School, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| |
Collapse
|
173
|
Song Z, Chen G, Chen CYC. AI empowering traditional Chinese medicine? Chem Sci 2024; 15:d4sc04107k. [PMID: 39355231 PMCID: PMC11440359 DOI: 10.1039/d4sc04107k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
For centuries, Traditional Chinese Medicine (TCM) has been a prominent treatment method in China, incorporating acupuncture, herbal remedies, massage, and dietary therapy to promote holistic health and healing. TCM has played a major role in drug discovery, with over 60% of small-molecule drugs approved by the FDA from 1981 to 2019 being derived from natural products. However, TCM modernization faces challenges such as data standardization and the complexity of TCM formulations. The establishment of comprehensive TCM databases has significantly improved the efficiency and accuracy of TCM research, enabling easier access to information on TCM ingredients and encouraging interdisciplinary collaborations. These databases have revolutionized TCM research, facilitating advancements in TCM modernization and patient care. In addition, advancements in AI algorithms and database data quality have accelerated progress in AI for TCM. The application of AI in TCM encompasses a wide range of areas, including herbal screening and new drug discovery, diagnostic and treatment principles, pharmacological mechanisms, network pharmacology, and the incorporation of innovative AI technologies. AI also has the potential to enable personalized medicine by identifying patterns and correlations in patient data, leading to more accurate diagnoses and tailored treatments. The potential benefits of AI for TCM are vast and diverse, promising continued progress and innovation in the field.
Collapse
Affiliation(s)
- Zhilin Song
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University Shenzhen Guangdong 518107 China
| | - Calvin Yu-Chian Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- Department of Medical Research, China Medical University Hospital Taichung 40447 Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taichung 41354 Taiwan
- Guangdong L-Med Biotechnology Co., Ltd Meizhou Guangdong 514699 China
| |
Collapse
|
174
|
Bai SR, Zhao BX, Zhao Q, Ge YC, Li M, Zhao CG, Wu XJ, Wang XB. Oleanolic acid improves 5-fluorouracil-induced intestinal damage and inflammation by alleviating intestinal senescence. Sci Rep 2024; 14:21852. [PMID: 39300121 DOI: 10.1038/s41598-024-72536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
5-Fluorouracil (5-FU) is used as a standard first-line drug for colorectal cancer malignancy (CRC), but it brings a series of side effects such as severe diarrhea and intestinal damage. Our previous study found that a large number of senescent cells increased while 5-Fu induced intestinal damage, and anti-senescence drugs can alleviate its side effects of inflammatory damage. Oleanolic acid (OA) is a common pentacyclic triterpenoid mainly derived from food fungi and medicinal plants, and studies have shown that it mainly possesses hepatoprotective, enzyme-lowering, anti-inflammatory, and anti-tumor effects. But its role in senescence is still unclear. In the present study, we demonstrated for the first time that OA ameliorated 5-Fu-induced human umbilical vein endothelial cells (HUVECs) and human normal intestinal epithelial cells (NCM460) in a 5-Fu-induced cellular senescence model by decreasing the activity of SA-β-gal-positive cells, and the expression of senescence-associated proteins (p16), senescence-associated genes (p53 and p21), and senescence-associated secretory phenotypes (SASPs: IL-1β, IL-6, IL-8, IFN-γ and TNF-α). Meanwhile, in this study, in a BALB/c mouse model, we demonstrated that 5-FU induced intestinal inflammatory response and injury, which was also found to be closely related to the increase of senescent cells, and that OA treatment was effective in ameliorating these adverse phenomena. Furthermore, our in vivo and in vitro studies showed that OA could alleviate senescence by inhibiting mTOR. In colon cancer cell models, OA also enhanced the ability of 5-FU to kill HCT116 cells and SW480 cells. Overall, this study demonstrates for the first time the potential role of OA in counteracting the side effects of 5-FU chemotherapy, providing a new option for the treatment of colorectal cancer to progressively achieve the goal of high efficacy and low toxicity of chemotherapy.
Collapse
Affiliation(s)
- Shi-Rui Bai
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
| | - Bing-Xiang Zhao
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
| | - Qi Zhao
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
| | - Yu-Chen Ge
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
| | - Man Li
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
| | - Cheng-Gang Zhao
- Microbiology Research Institute, Guangxi Academy of Agricultural Science, Nanning, 530007, Guangxi Province, China
| | - Xiao-Jian Wu
- Microbiology Research Institute, Guangxi Academy of Agricultural Science, Nanning, 530007, Guangxi Province, China.
| | - Xiao-Bo Wang
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China.
| |
Collapse
|
175
|
Qin Y, Li Z, Zhang X, Li J, Teng Y, Zhang N, Zhao S, Kong L, Niu W. Pan-cancer exploration of PNO1: A prospective prognostic biomarker with ties to immune infiltration. Heliyon 2024; 10:e36819. [PMID: 39263087 PMCID: PMC11387552 DOI: 10.1016/j.heliyon.2024.e36819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
The partner of NOB1 homolog (PNO1) is an RNA-binding protein that participates in ribosome biogenesis and protein modification. The functions of this molecule are largely unknown in cancers, particularly breast cancer. We employed bioinformatics methods to probe the putative oncogenic functions of PNO1 based on expression profiles and clinical data from the cancer genome atlas (TCGA), genotype-tissue expression project (GTEx), human protein atlas (HPA), cancer cell line encyclopedia (CCLE), UALCAN, drug sensitivity in cancer (GDSC) and UCSC XENA databases. Our analyses revealed that PNO1 was overexpressed in 31 malignancies, which excluded kidney chromophobe (KICH) and acute myeloid leukemia (LAML). Prognostic assessments have demonstrated that high PNO1 expression was significantly correlated with poor overall and disease-specific survival in various cancers. The promoter methylation level of PNO1 is significantly decreased in breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma (HNSC), kidney renal papillary cell carcinoma (KIRP), prostate adenocarcinoma (PRAD), thyroid carcinoma (THCA) and uterine corpus endometrial carcinoma (UCEC). Furthermore, inhibition of PNO1 decreased the viability, migration and invasion of breast cancer cells, and these results were confirmed by mouse xenograft models of breast cancer. In addition, we discovered that tumor microenvironment (TME), immune infiltration, and chemotherapy sensitivity were influenced by PNO1 expression. Concordantly, our analyses revealed a significant positive correlation between PNO1 and programmed cell death ligand 1 (PD-L1) expression across breast carcinoma samples. In conclusion, these findings indicate that PNO1 could act as a promising prognostic biomarker and adjunct diagnostic indicator, because it affects tumor growth and invasion. Our study offers valuable new perspectives on the oncogenic role of PNO1 in various types of cancers.
Collapse
Affiliation(s)
- Yinhui Qin
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zhen Li
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xianwei Zhang
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Junjun Li
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1 Shangcheng Avenue, Hangzhou, 310058, Zhejiang, China
| | - Yuetai Teng
- Department of Pharmacy, Jinan Vocational College of Nursing, Jinan, 250102, China
| | - Na Zhang
- Shandong Academy of Chinese Medicine, Jinan, 250014, China
| | - Shengyu Zhao
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lingfei Kong
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Weihong Niu
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| |
Collapse
|
176
|
Chen F, Peng S, Li C, Yang F, Yi Y, Chen X, Xu H, Cheng B, Xu Y, Xie X. Nitidine chloride inhibits mTORC1 signaling through ATF4-mediated Sestrin2 induction and targets IGF2R for lysosomal degradation. Life Sci 2024; 353:122918. [PMID: 39034027 DOI: 10.1016/j.lfs.2024.122918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
AIMS Nitidine chloride (NC), a natural phytochemical alkaloid derived from Zanthoxylum nitidum (Roxb.) DC, exhibits multiple bioactivities, including antitumor, anti-inflammatory, and other therapeutic effects. However, the primary targets of NC and the mechanism of action (MOA) have not been explicitly defined. METHODS We explored the effects of NC on mTORC1 signaling by immunoblotting and fluorescence microscopy in wild-type and gene knockout cell lines generated by the CRISPR/Cas9 gene editing technique. We identified IGF2R as a direct target of NC via the drug affinity-responsive target stability (DARTS) method. We investigated the antitumor effects of NC using a mouse melanoma B16 tumor xenograft model. KEY FINDINGS NC inhibits mTORC1 activity by targeting amino acid-sensing signaling through activating transcription factor 4 (ATF4)-mediated Sestrin2 induction. NC directly binds to IGF2R and promotes its lysosomal degradation. Moreover, NC displayed potent cytotoxicity against various cancer cells and inhibited B16 tumor xenografts. SIGNIFICANCE NC inhibits mTORC1 signaling through nutrient sensing and directly targets IGF2R for lysosomal degradation, providing mechanistic insights into the MOA of NC.
Collapse
Affiliation(s)
- Fengzhi Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Canrong Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Fan Yang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuguo Yi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xinyu Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Haolun Xu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Baicheng Cheng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yumin Xu
- Department of Infectious Diseases & Department of Hospital Infection Management, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
177
|
Lin H, Zhang X, Zheng Y, Tang C, Wang J. Research on the soothing Liver - Qi stagnation method in the treatment of postoperative papillary thyroid carcinoma patients' concomitant depression: A randomized controlled clinical trial. Medicine (Baltimore) 2024; 103:e39325. [PMID: 39287310 PMCID: PMC11404975 DOI: 10.1097/md.0000000000039325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Postoperative papillary thyroid carcinoma (P-PTC) patients often grapple with depression fueled by the looming threat of recurrence. While the Liver-Qi stagnation method is frequently employed for depression management, a notable scarcity of clinical trials exists regarding its application in patients with P-PTC and concurrent depression. This study presents a randomized controlled clinical trial, aiming to establish the efficacy of the Liver-Qi stagnation method in alleviating depression in patients with P-PTC. METHODS In this randomized controlled clinical trial, P-PTC patients diagnosed with concomitant depression were systematically enrolled. Subjects were randomly assigned to either the control or test group, both receiving standard treatment comprising Levothyroxine sodium tablets and decoction of benefiting Qi and nourishing Yin. Additionally, the test group received supplementation with bupleuri radix-paeoniae alba radix (CH-BS) alongside the baseline therapy. The intervention spanned 12 weeks. Pre- and post-treatment evaluations were conducted using the Hamilton Depression Scale (HAMD), European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30) and Traditional Chinese Medicine (TCM) syndrome score scale. Concurrently, blood inflammatory factors and serum 5-hydroxytryptamine (5-HT) levels were measured to comprehensively assess treatment outcomes. RESULTS During the 12-week intervention, the test group demonstrated a significant reduction in HAMD scores compared to the control group (P < .05). Moreover, post-treatment serum 5-HT levels were significantly elevated in the test group compared to the control group (P < .05). Findings gleaned from the EORTC QLQ - C30 revealed a noteworthy improvement in social function and overall quality of life scores within both groups post-treatment in comparison to baseline (P < .05). Concurrently, post-treatment scores for fatigue and insomnia symptoms witnessed a significant decrease compared to baseline (P < .05). Notably, the test group exhibited superior scores in the emotional domain in contrast to the control group (P < .05). Both groups exhibited a substantial decrease in TCM syndrome scores from baseline (P < .05). Noteworthy increases were found in IFN-γ < 2.44 rate (62.86%) and IL-6 < 2.44 rate (74.29%) in the test group compared to pretreatment levels (P < .05). CONCLUSION The soothing Liver-Qi stagnation method induces a rise in serum 5-HT levels, reducing depression-related inflammatory factors, culminating in the alleviation of depression for P-PTC.
Collapse
Affiliation(s)
- Huiyue Lin
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang Province, China
| | - Xueting Zhang
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqian Zheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenchen Tang
- Department of Experimental Management, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juyong Wang
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
178
|
Etti IC, Unoh EE, Akpan MR, Umanah UU, Agbonika RE, Kadir AA, Nwafor C. Attenuation of testosterone-induced benign prostatic hyperplasia with Andrographis paniculata (burm.f.) leaf extract in Wistar rats. Nat Prod Res 2024:1-9. [PMID: 39267300 DOI: 10.1080/14786419.2024.2401494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Andrographis paniculata (Burm.f.) Nees has been used traditionally in treating many diseases. This study investigated its potential to attenuate benign prostatic hyperplasia (BPH) in male rats. Rats were castrated, divided into five groups and orally treated for 14 days with: normal saline,10 mg/kg testosterone propionate sc, finasteride (0.5 mg/kg), 500 mg, and 1500 mg/kg of Andrographis paniculata. Relative prostate weights, the correlation between prostatic index and volume and the prostates' histopathology as well as Prostate Specific Antigen (PSA) were evaluated. Following treatment with Andrographis paniculata, the prostate weights were significantly reduced (p < 0.05) and the lost correlation observed in the untreated group was restored. Histopathological assessment showed reduced epithelial hyperplasia following treatment with a resultant thin layer of epithelial cells, similar to the healthy normal control group. The level of PSA was also reduced. Andrographis paniculata, thus, has the potential to inhibit the proliferation observed in testosterone-induced BPH.
Collapse
Affiliation(s)
| | - Erimimoh Eba Unoh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Nigeria
| | - Mary Richard Akpan
- Department of Clinical Pharmacy and Biopharmacy, University of Uyo, Nigeria
| | - Ubong Uduak Umanah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Nigeria
| | | | - Arifah Abdul Kadir
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | | |
Collapse
|
179
|
Rosales P, Vitale D, Icardi A, Sevic I, Alaniz L. Role of Hyaluronic acid and its chemical derivatives in immunity during homeostasis, cancer and tissue regeneration. Semin Immunopathol 2024; 46:15. [PMID: 39240397 DOI: 10.1007/s00281-024-01024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Over the last few decades, scientists have recognized the critical role that various components of the extracellular matrix (ECM) play in maintaining homeostatic immunity. Besides, dysregulation in the synthesis or degradation levels of these components directly impacts the mechanisms of immune response during tissue injury caused by tumor processes or the regeneration of the tissue itself in the event of damage. ECM is a complex network of protein compounds, proteoglycans and glycosaminoglycans (GAGs). Hyaluronic acid (HA) is one of the major GAGs of this network, whose metabolism is strictly physiologically regulated and quickly altered in injury processes, affecting the behavior of different cells, from stem cells to differentiated immune cells. In this revision we discuss how the native or chemically modified HA interacts with its specific receptors and modulates intra and intercellular communication of immune cells, focusing on cancer and tissue regeneration conditions.
Collapse
Affiliation(s)
- Paolo Rosales
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Daiana Vitale
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina.
| |
Collapse
|
180
|
Wang Y, Qin J, Sharma A, Dakal TC, Wang J, Pan T, Bhushan R, Chen P, Setiawan MF, Schmidt-Wolf IGH, Li F. Exploring the promise of regulator of G Protein Signaling 20: insights into potential mechanisms and prospects across solid cancers and hematological malignancies. Cancer Cell Int 2024; 24:305. [PMID: 39227952 PMCID: PMC11373255 DOI: 10.1186/s12935-024-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024] Open
Abstract
RGS (Regulator of G protein signaling) proteins have long captured the fascination of researchers due to their intricate involvement across a wide array of signaling pathways within cellular systems. Their diverse and nuanced functions have positioned them as continual subjects of scientific inquiry, especially given the implications of certain family members in various cancer types. Of particular note in this context is RGS20, whose clinical relevance and molecular significance in hepatocellular carcinoma we have recently investigated. These investigations have prompted questions into the prevalence of pathogenic mutations within the RGS20 gene and the intricate network of interacting proteins that could contribute to the complex landscape of cancer biology. In our study, we aim to unravel the mutations within the RGS20 gene and the multifaceted interplay between RGS20 and other proteins within the context of cancer. Expanding on this line of inquiry, our research is dedicated to uncovering the intricate mechanisms of RGS20 in various cancers. In particular, we have redirected our attention to examining the role of RGS20 within hematological malignancies, with a specific focus on multiple myeloma and follicular lymphoma. These hematological cancers hold significant promise for further investigation, as understanding the involvement of RGS20 in their pathogenesis could unveil novel therapeutic strategies and treatment avenues. Furthermore, our exploration has extended to encompass the latest discoveries concerning the potential involvement of RGS20 in diseases affecting the central nervous system, thereby broadening the scope of its implications beyond oncology to encompass neurobiology and related fields.
Collapse
Affiliation(s)
- Yulu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiading Qin
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Jieyu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tiantian Pan
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ravi Bhushan
- Department of Zoology, M.S. College, Motihari, Bihar, India
| | - Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Maria F Setiawan
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Fei Li
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
181
|
Guan Y, Liu X, Tian J, Yang G, Xu F, Guo N, Guo L, Wan Z, Huang Z, Gao M, Chong T. CCL5 promotes the epithelial-mesenchymal transition of circulating tumor cells in renal cancer. J Transl Med 2024; 22:817. [PMID: 39227943 PMCID: PMC11370314 DOI: 10.1186/s12967-024-05297-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/12/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are pivotal in tumor metastasis across cancers, yet their specific role in renal cancer remains unclear. METHODS This study investigated C-C motif chemokine ligand 5 (CCL5)'s tumorigenic impact on renal cancer cells and CTCs using bioinformatics, in vivo, and in vitro experiments. It also assessed renal cancer patients' CTCs prognostic value through Lasso regression and Kaplan-Meier survival curves. RESULTS Bioinformatics analysis revealed differential genes focusing on cellular adhesion and migration between CTCs and tumor cells. CCL5 exhibited high expression in various CTCs, correlating with poor prognosis in renal cancer. In 786-O-CTCs, CCL5 enhanced malignancy, while in renal cell carcinoma cell line CAKI-2 and 786-O, it promoted epithelial-mesenchymal transition (EMT) via smad2/3, influencing cellular characteristics. The nude mouse model suggested CCL5 increased CTCs and intensified EMT, enhancing lung metastasis. Clinical results shown varying prognostic values for different EMT-typed CTCs, with mesenchymal CTCs having the highest value. CONCLUSIONS In summary, CCL5 promoted EMT in renal cancer cells and CTCs through smad2/3, enhancing the malignant phenotype and facilitating lung metastasis. Mesenchymal-type CTC-related factors can construct a risk model for renal cancer patients, allowing personalized treatment based on metastatic risk prediction.
Collapse
Affiliation(s)
- Yibing Guan
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
- Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Road, Zhengzhou, 450052, He Nan, China
| | - Xueyi Liu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Juanhua Tian
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Guang Yang
- Henan Key Lab Reprod & Genet, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Road, Zhengzhou, 450052, He Nan, China
| | - Fangshi Xu
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Ni Guo
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Lingyu Guo
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Ziyan Wan
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Zhixin Huang
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Mei Gao
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Tie Chong
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China.
| |
Collapse
|
182
|
Wang Z, Ren M, Liu W, Wu J, Tang P. Role of cell division cycle-associated proteins in regulating cell cycle and promoting tumor progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189147. [PMID: 38955314 DOI: 10.1016/j.bbcan.2024.189147] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
The cell division cycle-associated protein (CDCA) family is important in regulating cell division. High CDCA expression is significantly linked to tumor development. This review summarizes clinical and basic studies on CDCAs conducted in recent decades. Furthermore, it systematically introduces the molecular expression and function, key mechanisms, cell cycle regulation, and roles of CDCAs in tumor development, cell proliferation, drug resistance, invasion, and metastasis. Additionally, it presents the latest research on tumor diagnosis, prognosis, and treatment targeting CDCAs. These findings are pivotal for further in-depth studies on the role of CDCAs in promoting tumor development and provide theoretical support for their application as new anti-tumor targets.
Collapse
Affiliation(s)
- Zhaoyu Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Minshijing Ren
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Wei Liu
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Jin Wu
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China; Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Peng Tang
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China.
| |
Collapse
|
183
|
Kafle A, Suttiprapa S, Muhammad M, Tenorio JCB, Mahato RK, Sahimin N, Loong SK. Epigenetic Biomarkers and the Wnt/β-Catenin Pathway in Opisthorchis viverrini-associated Cholangiocarcinoma: A Scoping Review on Therapeutic Opportunities. PLoS Negl Trop Dis 2024; 18:e0012477. [PMID: 39236081 PMCID: PMC11407677 DOI: 10.1371/journal.pntd.0012477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/17/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Epigenetic modifications, such as DNA methylation and histone modifications, are pivotal in regulating gene expression pathways related to inflammation and cancer. While there is substantial research on epigenetic markers in cholangiocarcinoma (CCA), Opisthorchis viverrini-induced cholangiocarcinoma (Ov-CCA) is overlooked as a neglected tropical disease (NTD) with limited representation in the literature. Considering the distinct etiological agent, pathogenic mechanisms, and pathological manifestations, epigenetic research plays a pivotal role in uncovering markers and potential targets related to the cancer-promoting and morbidity-inducing liver fluke parasite prevalent in the Great Mekong Subregion (GMS). Emerging studies highlight a predominant hypermethylation phenotype in Opisthorchis viverrini (O. viverrini) tumor tissues, underscoring the significance of abnormal DNA methylation and histone modifications in genes and their promoters as reliable targets for Ov-CCA. PRINCIPAL FINDINGS Relevant published literature was identified by searching major electronic databases using targeted search queries. This process retrieved a total of 81 peer-reviewed research articles deemed eligible for inclusion, as they partially or fully met the pre-defined selection criteria. These eligible articles underwent a qualitative synthesis and were included in the scoping review. Within these, 11 studies specifically explored Ov-CCA tissues to investigate potential epigenetic biomarkers and therapeutic targets. This subset of 11 articles provided a foundation for exploring the applications of epigenetics-based therapies and biomarkers for Ov-CCA. These articles delved into various epigenetic modifications, including DNA methylation and histone modifications, and examined genes with aberrant epigenetic changes linked to deregulated signalling pathways in Ov-CCA progression. CONCLUSIONS This review identified epigenetic changes and Wnt/β-catenin pathway deregulation as key drivers in Ov-CCA pathogenesis. Promoter hypermethylation of specific genes suggests potential diagnostic biomarkers and dysregulation of Wnt/β-catenin-modulating genes contributes to pathway activation in Ov-CCA progression. Reversible epigenetic changes offer opportunities for dynamic disease monitoring and targeted interventions. Therefore, this study underscores the importance of these epigenetic modifications in Ov-CCA development, suggesting novel therapeutic targets within disrupted signalling networks. However, additional validation is crucial for translating these novel insights into clinically applicable strategies, enhancing personalised Ov-CCA management approaches.
Collapse
Affiliation(s)
- Alok Kafle
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Mubarak Muhammad
- Department of Physiology and Graduate School, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jan Clyden B. Tenorio
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | | | - Norhidayu Sahimin
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
184
|
Jiahong C, Junfeng D, Shuxian L, Tao W, Liyun W, Hongfu W. The role of immune cell death in spermatogenesis and male fertility. J Reprod Immunol 2024; 165:104291. [PMID: 38986230 DOI: 10.1016/j.jri.2024.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
The male reproductive system provides a distinctive shield to the immune system, safeguarding germ cells (GCs) from autoimmune harm. The testis in mammals creates a unique immunological setting due to its exceptional immune privilege and potent local innate immunity. which can result from a number of different circumstances, including disorders of the pituitary gland, GC aplasia, and immunological elements. Apoptosis, or programmed cell death (PCD), is essential for mammalian spermatogenesis to maintain and ensure an appropriate number of GCs that correspond with the supporting capability of the Sertoli cells. Apoptosis is substantial in controlling the number of GCs in the testis throughout spermatogenesis, and any dysregulation of this process has been linked to male infertility. There is a number of evidence about the potential of PCD in designing novel therapeutic approaches in the treatment of infertility. A detailed understanding of PCD and the processes that underlie immunological infertility can contribute to the progress in designing strategies to prevent and treat male infertility. This review will provide a summary of the role of immune cell death in male reproduction and infertility and describe the therapeutic strategies and agents for treatment based on immune cell death.
Collapse
Affiliation(s)
- Chen Jiahong
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Department of Venereal Diseases and Integrated Chinese and Western Medicine and Bone Paralysis, Longjiang Hospital of Shunde District, Foshan, China
| | - Dong Junfeng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Liu Shuxian
- Guangzhou Huadu District Maternal and Child Health Care Hospital (Huzhong Hospital of Huadu District), Guangzhou, China
| | - Wang Tao
- Department of Venereal Diseases and Integrated Chinese and Western Medicine and Bone Paralysis, Longjiang Hospital of Shunde District, Foshan, China.
| | - Wang Liyun
- Guangzhou Huadu District Maternal and Child Health Care Hospital (Huzhong Hospital of Huadu District), Guangzhou, China.
| | - Wu Hongfu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
185
|
Sun J, Cao Y, Liu Q, Zhou Z, Xu Y, Liu C. Chemical Constituents, Anti-Tumor Mechanisms, and Clinical Application: A Comprehensive Review on Scutellaria barbata. Molecules 2024; 29:4134. [PMID: 39274982 PMCID: PMC11397148 DOI: 10.3390/molecules29174134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
With the increasing global incidence and mortality rates of cancer, the development of novel anti-tumor drugs has become particularly urgent. Scutellaria barbata D. Don, a perennial herb belonging to the genus Scutellaria in the family Lamiaceae, has aroused extensive attention for its medicinal value in recent years. This article presents an exhaustive review of the flavonoid, diterpene, and other chemical constituents harbored within Scutellaria barbata, delving into the intricate mechanisms by which these compounds orchestrate their anti-tumor effects via diverse biological pathways. Remarkably, these compounds distinguish themselves through their capability to regulate cellular signaling, inhibit cancer cell proliferation, trigger apoptosis, disrupt angiogenesis, and bolster immune responses. These anti-tumor effects are achieved through strategic modulation of pivotal signaling cascades, particularly the PI3K/Akt/mTOR, MAPK, and NFκB pathways. In addition, this article also summarizes the clinical applications of Scutellaria barbata in tumor treatment, especially its potential in alleviating the side effects of radiotherapy and chemotherapy and improving patients' quality of life. In conclusion, this review comprehensively summarizes and analyzes the chemical constituents, anti-tumor mechanisms, and clinical applications of Scutellaria barbata, with the aim of systematically reviewing the existing research results and exploring potential future research directions.
Collapse
Affiliation(s)
- Jiagui Sun
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Yuqi Cao
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Qiqi Liu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Zhengshu Zhou
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Yanan Xu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Chenggang Liu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| |
Collapse
|
186
|
Shen M, Zhang L, Li C, Ma Y, Gao S, Ma Y. Meta-analysis with trial sequential analysis investigating the impact of adjunctive electroacupuncture therapy on vascular mild cognitive impairment. Transl Psychiatry 2024; 14:349. [PMID: 39214960 PMCID: PMC11364872 DOI: 10.1038/s41398-024-03052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND To systematically collect, evaluate, and synthesize evidence from randomized controlled trials (RCTs) supporting the use of electroacupuncture (EA) as an additional treatment option for Vascular mild cognitive impairment (VaMCI), a meta-analysis was carried out. METHODS Electronic searches of eight databases were used to locate RCTs that evaluated EA as a VaMCI adjuvant therapy. The Cochrane Risk of bias was used to assess the included trials' methodological quality. Review Manager 5.4 was used to analyze the data. Trial sequential analysis (TSA) was conducted with the trial sequential analysis program. RESULTS There were 15 RCTs with 1033 subjects in them. Compared to conventional therapy (CT) alone, the Montreal Cognitive Assessment (SMD 0.72, 95 percent CI [0.55, 0.88]), Mini-mental State Examination (SMD 0.73, 95 percent CI [0.60, 0.87]), and activities of daily living (SMD 0.83, 95 percent CI [0.54, 1.12]) were significantly improved while EA was used in conjunction with CT. The current studies exceeded the required information size, according to trial sequential analysis (TSA), demonstrating the reliability of EA adjuvant therapy VaMCI. CONCLUSIONS According to the pooled data, EA as an adjunct therapy for the treatment of VaMCI increases clinical efficacy. Although the TSA confirms a stable conclusion, it is encouraged to conduct studies of the highest quality standards.
Collapse
Affiliation(s)
- Min Shen
- Department of Acupuncture and Massage, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linlin Zhang
- Key Laboratory of New Material Research, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunjing Li
- Department of Acupuncture and Massage, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuning Ma
- Key Laboratory of New Material Research, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuzhong Gao
- Department of Acupuncture and Massage, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuxia Ma
- Department of Acupuncture and Massage, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
187
|
Jiang S, Tang Y, Wang X, Guo H, Chen L, Hu G, Cui Y, Liang S, Zuo J, Luo Z, Chen X, Wang X. ARHGAP4 promotes colon cancer metastasis through the TGF-β signaling pathway and may be associated with T cell exhaustion. Biochem Biophys Res Commun 2024; 722:150172. [PMID: 38805788 DOI: 10.1016/j.bbrc.2024.150172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Colon cancer is a prevalent invasive neoplasm in the gastrointestinal system with a high degree of malignancy. Despite extensive research, the underlying mechanisms of its recurrence and metastasis remain elusive.Rho GTPase activating protein 4 (ARHGAP4), a member of the small GTPases protein family, may be closely related to tumor metastasis, and its expression is increased in colon cancer. However, the role of ARHGAP4 in colon cancer metastasis is uncertain. This study investigates the impact of ARHGAP4 on the metastasis of colon cancer cells. Our objective is to determine the role of ARHGAP4 in regulating the invasive behavior of colon cancer cells. METHODS We downloaded colon adenocarcinoma (COAD) data from the Cancer Genome Atlas (TCGA), and performed differential analysis and survival analysis. By using the CIBERSORT algorithm, we evaluated the proportion of infiltrating immune cells in colon cancer. We further analyzed whether ARHGAP4 is associated with T cell exhaustion. Finally, we investigated the impact of ARHGAP4 knockdown on the migration and invasion of colon cancer cells through in vitro cell experiments. Additionally, we utilized western blotting to assess the expression of protein related to the TGF-β signaling pathway and epithelial-mesenchymal transition (EMT). RESULTS We found that ARHGAP4 is upregulated in colon cancer. Subsequent survival analysis revealed that the high-expression group had significantly lower survival rates compared to the low-expression group. Immune infiltration analysis showed that ARHGAP4 was not only positively correlated with CD8+ T cells, but also positively correlated with T cell exhaustion markers programmed cell death 1 (PDCD-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), and lymphocyte activating 3 (LAG-3). In vitro cell experiments, the knockdown of ARHGAP4 inhibited the migration and invasion of colon cancer cells. Among EMT-related proteins, when ARHGAP4 was knocked down, the expression of E-cadherin was increased, while the expression of N-cadherin and Vimentin was decreased. Meanwhile, the expression of TGF-β1, p-Smad2, and p-Smad3, which are associated with the TGF-β/Smad pathway, all decreased. CONCLUSION ARHGAP4 promotes colon cancer metastasis through the TGF-β/Smad signaling pathway and may be associated with T cell exhaustion. It plays an important role in the progression of colon cancer and may serve as a potential target for diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Shuanghong Jiang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China; Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Yong Tang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Xiaobo Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Haiyang Guo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Lin Chen
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Guangbing Hu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Yutong Cui
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Shiqi Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Ji Zuo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Zichen Luo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Xinrui Chen
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Xianfei Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China; Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China.
| |
Collapse
|
188
|
Zou D, Xin X, Xu Y, Xu H, Huang L, Xu T. Improving the efficacy of immunotherapy for colorectal cancer: Targeting tumor microenvironment-associated immunosuppressive cells. Heliyon 2024; 10:e36446. [PMID: 39262952 PMCID: PMC11388603 DOI: 10.1016/j.heliyon.2024.e36446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Currently, immune checkpoint inhibitors (ICIs) have changed the treatment paradigm for many malignant tumors. As the most common digestive tract malignancy, colorectal cancer (CRC) shows a good response to ICIs only in a small subset of patients with MSI-H/dMMR CRC. In contrast, patients with MSS/pMMR CRC show minimal response to ICIs. The results of the REGONIVO study suggest that targeting the tumor microenvironment (TME) to improve immunotherapy outcomes in MSS/pMMR CRC patients is a feasible strategy. Therefore, this article focuses on exploring the feasibility of targeting the TME to enhance immunotherapy outcomes in CRC, collecting recent basic research on targeting the TME to enhance immunotherapy outcomes in CRC and analyzing ongoing clinical trials to provide a theoretical basis and future research directions for improving immunotherapy outcomes in MSS/pMMR CRC.
Collapse
Affiliation(s)
- Daoyang Zou
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xi Xin
- Ganzhou People's Hospital, Ganzhou, 341000, China
| | - Yunxian Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Huangzhen Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Linyan Huang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Tianwen Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| |
Collapse
|
189
|
Mahboobnia K, Beveridge DJ, Yeoh GC, Kabir TD, Leedman PJ. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2024; 25:9393. [PMID: 39273339 PMCID: PMC11395074 DOI: 10.3390/ijms25179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - George C Yeoh
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
190
|
Li C, Yin X, Xie C, Zeng J, Song C, Yang G, Zhang J, Chen S, Wei P, Wang Z, Gu M, Li W, An J, Pan Y. Berberine attenuates TNBS-induced colitis in mice by improving the intestinal microbiota. Front Microbiol 2024; 15:1463005. [PMID: 39268532 PMCID: PMC11392431 DOI: 10.3389/fmicb.2024.1463005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Objective To investigate the effects of berberine (BBR) as a treatment on intestinal microecological alterations and enteritis in mice produced by TNBS. Methods There were seven mice per group: seven in the healthy group (Ctrl), seven in the TNBS-induced enteritis group (TNBS), and seven in the berberine treatment group (BBR). The mice were weighed, slaughtered after 7 days, and subjected to high-throughput intestinal microecological analysis by Illumina, as well as haematological detection and imaging evaluation of colon pathology. Results The alterations in colon length, immune cell subpopulations, inflammatory factors, and intestinal microecology of mice induced by BBR were refined using a battery of experiments and observations. According to intestinal microecological studies, BBR can increase the number of bacteria, including Lactobacillus, Verrucomicrobia, Bacteroides, and Akkermansia muciniphila. Conclusion BBR has a therapeutic effect on TNBS-induced colitis in mice, which is associated with modifications in immune cell subpopulations and intestinal microecology. It also offers a viable approach as a prospective probiotic (like Akkermansia muciniphila) to IBD therapy in clinical settings.
Collapse
Affiliation(s)
- Chao Li
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xinxin Yin
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Changpeng Xie
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Jin Zeng
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Chuan Song
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Guibin Yang
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jinglei Zhang
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Siai Chen
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ziyu Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Meng Gu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wei Li
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Juan An
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
191
|
Guo Q, Wang J, Ni C, Pan J, Zou J, Shi Y, Sun J, Zhang X, Wang D, Luan F. Research progress on the natural products in the intervention of myocardial infarction. Front Pharmacol 2024; 15:1445349. [PMID: 39239656 PMCID: PMC11374734 DOI: 10.3389/fphar.2024.1445349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Coronary heart disease is a prevalent cardiovascular ailment globally, with myocardial infarction (MI) being one of its most severe manifestations. The morbidity and mortality of MI are escalating, showing an increasing trend among younger, highly educated individuals, thereby posing a serious threat to public health. Currently, thrombolysis, percutaneous coronary intervention, and coronary artery bypass grafting are the primary clinical treatments for MI. Although these methods significantly reduce patient mortality, complications often result in poor prognoses. Due to limitations in chemical synthetic drug research, the focus has shifted towards developing herbs based on natural substances. Natural medicines represent a novel approach for safer and more effective MI management and treatment. They can control multiple pathogenic variables by targeting various pathways and systems. This paper investigates the molecular mechanisms of MI and evaluates the application of natural products and medicinal plants in MI treatment over the past 5 years, demonstrating their specific good therapeutic potential and superior tolerance. These natural therapies have been shown to mitigate myocardial cell damage caused by MI through mechanisms such as oxidative stress, inflammation, apoptosis, angiogenesis, myocardial fibrosis, autophagy, endoplasmic reticulum stress, mitophagy, and pyroptosis. This review offers the latest insights into the application of natural products and medicinal plants in MI treatment, elucidating their mechanisms of action and serving as an important reference for MI prevention.
Collapse
Affiliation(s)
- Qiuting Guo
- College of Pharmacy, Xianyang Polytechnic Institute, Xianyang, China
| | - Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Caixia Ni
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jiaojiao Pan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Deng Wang
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
192
|
Song D, Chen M, Chen X, Xu J, Wu S, Lyu Y, Zhao Q. Apoptosis induction and inhibition of invasion and migration in gastric cancer cells by Isoorientin studied using network pharmacology. BMC Complement Med Ther 2024; 24:309. [PMID: 39160561 PMCID: PMC11334567 DOI: 10.1186/s12906-024-04605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND To investigate the effects of Isoorientin on the apoptosis, proliferation, invasion, and migration of human gastric cancer cells (HGC27 cells). METHODS We used network pharmacology to predict the targets of drugs and diseases. The CCK-8 assay was used to determine the effects of Isoorientin on the proliferation of HGC27 cells. Flow cytometry was employed to analyze the effects of Isoorientin on cell apoptosis and cell cycle distribution of HGC27 cells. Scratch test and transwell chamber test were conducted to assess the effects of Isoorientin on invasion and migration, respectively. Additionally, qPCR and western blot were performed to examine the impact of Isoorientin on apoptosis-related genes and protein expression, respectively. RESULTS The Isoorientin significantly inhibited the proliferation, migration, and invasion of HGC27 cells compared to the control group. Furthermore, Isoorientin induced apoptosis in HGC27 cells by upregulating the relative expression of Bax and caspase-3 while downregulating the relative expression of p-PI3K, p-AKT, and Bcl-2 proteins. CONCLUSION The Isoorientin exhibits inhibitory effects on the proliferation, invasion, and migration of HGC27 cells, and induces apoptosis in gastric cancer cells.
Collapse
Affiliation(s)
- Dan Song
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, 712082, China
| | - Maosheng Chen
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Xiangjun Chen
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Jiaojiao Xu
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Siqi Wu
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Yaxin Lyu
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China
| | - Qin Zhao
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082, China.
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, 712082, China.
| |
Collapse
|
193
|
Similie D, Minda D, Bora L, Kroškins V, Lugiņina J, Turks M, Dehelean CA, Danciu C. An Update on Pentacyclic Triterpenoids Ursolic and Oleanolic Acids and Related Derivatives as Anticancer Candidates. Antioxidants (Basel) 2024; 13:952. [PMID: 39199198 PMCID: PMC11351203 DOI: 10.3390/antiox13080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer is a global health problem, with the incidence rate estimated to reach 40% of the population by 2030. Although there are currently several therapeutic methods, none of them guarantee complete healing. Plant-derived natural products show high therapeutic potential in the management of various types of cancer, with some of them already being used in current practice. Among different classes of phytocompounds, pentacyclic triterpenoids have been in the spotlight of research on this topic. Ursolic acid (UA) and its structural isomer, oleanolic acid (OA), represent compounds intensively studied and tested in vitro and in vivo for their anticancer and chemopreventive properties. Since natural compounds can rarely be used in practice as such due to their characteristic physico-chemical properties, to tackle this problem, their derivatization has been attempted, obtaining compounds with improved solubility, absorption, stability, effectiveness, and reduced toxicity. This review presents various UA and OA derivatives that have been synthesized and evaluated in recent studies for their anticancer potential. It can be observed that the most frequent structural transformations were carried out at the C-3, C-28, or both positions simultaneously. It has been demonstrated that conjugation with heterocycles or cinnamic acid, derivatization as hydrazide, or transforming OH groups into esters or amides increases anticancer efficacy.
Collapse
Affiliation(s)
- Diana Similie
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Daliana Minda
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Larisa Bora
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Vladislavs Kroškins
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Jevgeņija Lugiņina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Māris Turks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Cristina Adriana Dehelean
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
194
|
Wang L, Deng Z, Li Y, Wu Y, Yao R, Cao Y, Wang M, Zhou F, Zhu H, Kang H. Ameliorative effects of mesenchymal stromal cells on senescence associated phenotypes in naturally aged rats. J Transl Med 2024; 22:722. [PMID: 39103873 DOI: 10.1186/s12967-024-05486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Aging is a multifaceted process that affects all organ systems. With the increasing trend of population aging, aging-related diseases have resulted in significant medical challenges and socioeconomic burdens. Mesenchymal stromal cells (MSCs), due to their antioxidative stress, immunoregulatory, and tissue repair capabilities, hold promise as a potential anti-aging intervention. METHODS In this study, we transplanted MSCs into naturally aged rats at 24 months, and subsequently examined levels of aging-related factors such as β-galactosidase, superoxide dismutase, p16, p21 and malondialdehyde in multiple organs. Additionally, we assessed various aging-related phenotypes in these aged rats, including immune senescence, lipid deposition, myocardial fibrosis, and tissue damage. We also conducted a 16 S ribosomal ribonucleic acid (rRNA) analysis to study the composition of gut microbiota. RESULTS The results indicated that MSCs significantly reduced the levels of aging-associated and oxidative stress-related factors in multiple organs such as the heart, liver, and lungs of naturally aging rats. Furthermore, they mitigated chronic tissue damage and inflammation caused by aging, reduced levels of liver lipid deposition and myocardial fibrosis, alleviated aging-associated immunodeficiency and immune cell apoptosis, and positively influenced the gut microbiota composition towards a more youthful state. This research underscores the diverse anti-aging effects of MSCs, including oxidative stress reduction, tissue repair, metabolic regulation, and improvement of immune functions, shedding light on the underlying anti-aging mechanisms associated with MSCs. CONCLUSIONS The study confirms that MSCs hold great promise as a potential anti-aging approach, offering the possibility of extending lifespan and improving the quality of life in the elderly population.
Collapse
Affiliation(s)
- Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Zihui Deng
- Department of Basic Medicine, Graduate School, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yun Li
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Renqi Yao
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yuan Cao
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Emergency Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050004, China
| | - Min Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Feihu Zhou
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Hanyu Zhu
- Medical School of Chinese PLA, Beijing, 100853, China.
- National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China.
- Department of Nephrology, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Hongjun Kang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
- National Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China.
| |
Collapse
|
195
|
Mo J, Xia K, Wu C. Hedyotis diffusa Willd inhibits inflammation and oxidative stress to protect against chronic prostatitis via the NRF2/ARE signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:4221-4230. [PMID: 38738704 DOI: 10.1002/tox.24298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is a common and serious disease with unclear pathogenesis and recurrent symptoms. Hedyotis diffusa Willd (HDW) has been recognized for its potential in managing various chronic inflammatory diseases. This research aimed to interrogate the mechanism of HDW in treating CP/CPPS. Complete Freund Adjuvant (CFA) and LPS were utilized to establish the rat and cell models of CP/CPPS. Results showed that HDW decreased levels of inflammation-related factors in CP rat prostate tissue and LPS-elicited RWPE-1 cell injury model. Moreover, HDW administration impaired oxidative stress in the prostate and RWPE-1 cells. In addition, HDW treatment activated the NRF2/ARE signaling in rat prostate tissue and cell models. Interestingly, NRF2/ARE pathway inhibitor ML385 reversed the inhibition effects of cell apoptosis, inflammation, and oxidative stress triggered by HDW. In summary, HDW alleviated inflammation and oxidative stress by activating NRF2/ARE signaling in CP/CPPS rat model and human prostate epithelial cell injury model.
Collapse
Affiliation(s)
- Junfu Mo
- Department of Urology, Chongqing Hospital, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Chongqing, China
| | - Kang Xia
- Department of Urology, Chongqing Hospital, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Chongqing, China
| | - Chaokui Wu
- Department of Urology, Chongqing Hospital, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Chongqing, China
| |
Collapse
|
196
|
Shukla RP, Tiwari P, Sardar A, Urandur S, Gautam S, Marwaha D, Tripathi AK, Rai N, Trivedi R, Mishra PR. Alendronate-functionalized porous nano-crystalsomes mitigate osteolysis and consequent inhibition of tumor growth in a tibia-induced metastasis model. J Control Release 2024; 372:331-346. [PMID: 38844176 DOI: 10.1016/j.jconrel.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Bone is one of the most prevalent sites of metastases in various epithelial malignancies, including breast cancer and this metastasis to bone often leads to severe skeletal complications in women due to its osteolytic nature. To address this, we devised a novel drug delivery approach using an Alendronate (ALN) functionalized self-assembled porous crystalsomes for concurrent targeting of Oleanolic acid (OA) and ALN (ALN + OA@NCs) to bone metastasis. Initially, the conjugation of both PEG-OA and OA-PEG-ALN with ALN and OA was achieved, and this conjugation was then self-assembled into porous crystalsomes (ALN + OA@NCs) by nanoemulsion crystallization. The reconstruction of a 3D single particle using transmission electron microscopy ensured the crystalline porous structure of ALN + OA@NCs, was well aligned with characteristic nanoparticle attributes including size distribution, polydispersity, and zeta potential. Further, ALN + OA@NCs showed enhanced efficacy in comparison to OA@NCs suggesting the cytotoxic roles of ALN towards cancer cells, followed by augmentation ROS generation (40.81%), mitochondrial membrane depolarization (57.20%), and induction of apoptosis (40.43%). We found that ALN + OA@NCs facilitated inhibiting osteoclastogenesis and bone resorption followed by inhibited osteolysis. In vivo activity of ALN + OA@NCs in the 4 T1 cell-induced tibia model rendered a reduced bone loss in the treated mice followed by restoring bone morphometric markers which were further corroborated bone-targeting effects of ALN + OA@NCs to reduce RANKL-stimulated osteoclastogenesis. Further, In vivo intravenous pharmacokinetics showed the improved therapeutic profile of the ALN + OA@NCs in comparison to the free drug, prolonging the levels of the drug in the systemic compartment by reducing the clearance culminating the higher accumulation at the tumor site. Our finding proposed that ALN + OA@NCs can effectively target and treat breast cancer metastasis to bone and its associated complications.
Collapse
Affiliation(s)
- Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anirban Sardar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandeep Urandur
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashish Kumar Tripathi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
197
|
Xu F, Ren Y, Teng Y, Mu J, Tang J, Sundaram K, Zhang L, Park JW, Hwang JY, Yan J, Dryden G, Zhang H. Tryptophan As a New Member of RNA-Induced Silencing Complexes Prevents Colon Cancer Liver Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307937. [PMID: 39031551 PMCID: PMC11336974 DOI: 10.1002/advs.202307937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/15/2024] [Indexed: 07/22/2024]
Abstract
Essential amino acids (EAA) and microRNAs (miRs) control biological activity of a cell. Whether EAA regulates the activity of miR has never been demonstrated. Here, as proof-of-concept, a tryptophan (Trp, an EAA) complex containing Argonaute 2 (Ago2) and miRs including miR-193a (Trp/Ago2/miR-193a) is identified. Trp binds miR-193a-3p and interacts with Ago2. Trp/Ago2/miR-193a increases miR-193a-3p activity via enhancing Argonaute 2 (Ago2) RNase activity. Other miRs including miR-103 and miR-107 in the Trp complex enhance miR-193a activity by targeting the same genes. Mechanistically, the Trp/Ago2/miR-193a complex interacts with Trp-binding pockets of the PIWI domain of Ago2 to enhance Ago2 mediated miR activity. This newly formed Ago2/Trp/miR-193a-3p complex is more efficient than miR-193a-3p alone in inhibiting the expression of targeted genes and inhibiting colon cancer liver metastasis. The findings show that Trp regulates miR activity through communication with the RNA-induced silencing complexes (RISC), which provides the basis for tryptophan based miR therapy.
Collapse
Affiliation(s)
- Fangyi Xu
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
- Department of Central LaboratoryCancer CenterThe affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'an223300China
| | - Yi Ren
- Department of Breast and Thyroid SurgeryThe affiliated Huaian first People's Hospital of Nanjing Medical UniversityHuaianJiangsu223300China
| | - Yun Teng
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Jingyao Mu
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Jie Tang
- Department of Breast and Thyroid SurgeryThe affiliated Huaian first People's Hospital of Nanjing Medical UniversityHuaianJiangsu223300China
| | | | - Lifeng Zhang
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Juw Won Park
- Department of Computer Science and EngineeringUniversity of LouisvilleLouisvilleKY40202USA
| | - Jae Yeon Hwang
- Department of Computer Science and EngineeringUniversity of LouisvilleLouisvilleKY40202USA
| | - Jun Yan
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
| | - Gerald Dryden
- Robley Rex Veterans Affairs Medical CenterLouisvilleKY40206USA
| | - Huang‐Ge Zhang
- Brown Cancer CenterUniversity of LouisvilleLouisvilleKY40202USA
- Robley Rex Veterans Affairs Medical CenterLouisvilleKY40206USA
- Department of Microbiology & ImmunologyUniversity of LouisvilleLouisvilleKY40202USA
| |
Collapse
|
198
|
Günther A, Zalewski P, Sip S, Bednarczyk-Cwynar B. Exploring the Potential of Oleanolic Acid Dimers-Cytostatic and Antioxidant Activities, Molecular Docking, and ADMETox Profile. Molecules 2024; 29:3623. [PMID: 39125028 PMCID: PMC11313909 DOI: 10.3390/molecules29153623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The presented work aimed to explore the potential of oleanolic acid dimers (OADs): their cytostatic and antioxidant activities, molecular docking, pharmacokinetics, and ADMETox profile. The cytostatic properties of oleanolic acid (1) and its 14 synthesised dimers (2a-2n) were evaluated against 10 tumour types and expressed as IC50 values. Molecular docking was performed with the CB-Dock2 server. Antioxidant properties were evaluated with the CUPRAC method. ADMETox properties were evaluated with the ADMETlab Manual (2.0) database. The results indicate that the obtained OADs can be effective cytostatic agents, for which the IC50 not exceeded 10.00 for many tested cancer cell lines. All OADs were much more active against all cell lines than the mother compound (1). All dimers can inhibit the interaction between the 1MP8 protein and cellular proteins with the best results for compounds 2f and 2g with unsaturated bonds within the linker. An additional advantage of the tested OADs was a high level of antioxidant activity, with Trolox equivalent for OADs 2c, 2d, 2g-2j, 2l, and 2m of approximately 0.04 mg/mL, and beneficial pharmacokinetics and ADMETox properties. The differences in the DPPH and CUPRAC assay results obtained for OADs may indicate that these compounds may be effective antioxidants against different radicals.
Collapse
Affiliation(s)
- Andrzej Günther
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 2 (CP.2), Rokietnicka Str. 3, 60-806 Poznan, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 1 (CP.1), Rokietnicka Str. 3, 60-806 Poznan, Poland; (P.Z.); (S.S.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Szymon Sip
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 1 (CP.1), Rokietnicka Str. 3, 60-806 Poznan, Poland; (P.Z.); (S.S.)
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Collegium Pharmaceuticum 2 (CP.2), Rokietnicka Str. 3, 60-806 Poznan, Poland;
- Center of Innovative Pharmaceutical Technology (CITF), Rokietnicka Str. 3, 60-806 Poznan, Poland
| |
Collapse
|
199
|
Wu C, Yang J, Ye C, Wu H, Shu W, Li R, Wang S, Lu Y, Chen H, Zhang Z, Yao Q. Berberine attenuates 5-fluorouracil-induced intestinal mucosal injury by modulating the gut microbiota without compromising its anti-tumor efficacy. Heliyon 2024; 10:e34528. [PMID: 39114045 PMCID: PMC11305238 DOI: 10.1016/j.heliyon.2024.e34528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Background 5-Fluorouracil (5-Fu), a prominent chemotherapeutic agent for colorectal cancer (CRC) treatment, is often associated with gastrointestinal toxicities, particularly diarrhea. Our previous study demonstrated that berberine (BBR) ameliorates 5-Fu-induced intestinal mucosal injury by modulating the gut microbiota in rats. Nevertheless, the precise molecular mechanism underlying BBR's protective effect on intestinal mucosa remains elusive, and its impact on the anti-tumor efficacy of 5-Fu warrants further investigation. Methods The effect of BBR on 5-Fu-induced intestinal mucosal injury was investigated using a tumor-bearing murine model, employing H&E staining, 16 S rDNA sequencing, transcriptome sequencing, Western blot analysis, cell experiments and constructing a pseudo-germ-free tumor xenograft model. Result Our findings demonstrate that BBR alleviates intestinal mucosal damage, reduces the levels of inflammatory factors (IL-6, TNF-α, and IL-1β), and inhibits epithelial cell apoptosis in 5-Fu-treated mice without compromising 5-Fu's anti-tumor efficacy. Moreover, 16 S rDNA sequencing indicated that BBR significantly increases the abundance of Akkermansia and decreases the abundance of pathogenic bacteria Escherichia/Shigella at the genus level. Mechanistically, transcriptome sequencing and Western blot analysis confirmed that BBR upregulates PI3K/AKT/mTOR expression in the intestinal mucosa. However, this effect was not observed in tumor tissues. Notably, BBR did not demonstrate a direct protective effect on 5-Fu-treated CCD841 and SW480 cells. Additionally, BBR had no effect on the PI3K/AKT/mTOR pathway in the intestinal tissue of the 5-Fu-treated mouse model with a depleted gut microbiota. Conclusion This study indicates that BBR alleviates 5-Fu-induced intestinal mucosal injury by modulating the gut microbiota and regulating the PI3K/AKT/mTOR signaling pathway without compromising the anti-tumor efficacy of 5-Fu.
Collapse
Affiliation(s)
- Changhong Wu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Yang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chenxiao Ye
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hui Wu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wenxi Shu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Rongrong Li
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310012, China
| | - Sihan Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Lu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Department of Clinical Nutrition, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Haitao Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Integrated Traditional Chinese and Western Medicine Oncology Laboratory, Key Laboratory of Traditional Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, 310022, China
| | - Zewei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Qinghua Yao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310005, China
| |
Collapse
|
200
|
Yuhao W, Shenghua C, Jueying C, Shate X, Rongrong S, Xiangfeng S. Targeting ferroptosis regulators in lung cancer: Exploring natural products. Heliyon 2024; 10:e33934. [PMID: 39104501 PMCID: PMC11298827 DOI: 10.1016/j.heliyon.2024.e33934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Lung cancer remains a formidable global health challenge, necessitating innovative therapeutic strategies for improved efficacy. This review explores the untapped potential of natural products and Traditional Chinese Medicine (TCM) in lung cancer therapy, focusing on targeting ferroptosis regulators. Natural compounds, such as curcumin and resveratrol, exhibit diverse anti-cancer mechanisms, complemented by TCM's holistic approach rooted in a 3500-year history. Emphasizing the induction of cell death, particularly ferroptosis, the review highlights its significance in overcoming challenges like resistance to conventional therapies. Key ferroptosis regulators are explored in the context of natural products and TCM. The impact of these treatments on crucial pathways, such as antioxidant mechanisms (GPX4, SLC7A11, and NRF2), iron metabolism regulators, and lipid and mitochondria pathways, is examined. The findings provide a comprehensive overview of how natural products and TCM modulate ferroptosis in lung cancer, offering valuable insights for the development of innovative, side-effect-reduced therapeutic strategies. This work holds promise for transforming the landscape of lung cancer treatment by integrating the rich resources of nature into conventional therapeutic paradigms.
Collapse
Affiliation(s)
- Wang Yuhao
- Graduated College, Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Cheng Shenghua
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Chen Jueying
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, 321017, Zhejiang, China
| | - Xiang Shate
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Song Rongrong
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Shen Xiangfeng
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, 321017, Zhejiang, China
| |
Collapse
|