151
|
Chen X, Yang Y, Chen J, He Y, Huang Y, Huang Q, Deng W, Zhu R, Huang X, Li T. Dual-driven selenium Janus single-atom nanomotors for autonomous regulating mitochondrial oxygen imbalance to catalytic therapy of rheumatoid arthritis. Redox Biol 2025; 81:103574. [PMID: 40043450 PMCID: PMC11926693 DOI: 10.1016/j.redox.2025.103574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
O2 deficiency and excessive reactive oxygen and nitrogen species (RONS) in macrophage mitochondria is a key factor causing oxygen imbalance in rheumatoid arthritis microenvironment (RAM). Although nanocatalytic therapy that simultaneously produce O2 and eliminate RONS offer a novel strategy for RA therapy, the therapeutic efficacy of nanozymes is limited by the lack of autonomous targeting into mitochondria. Herein, we constructed a Janus-structured nanomotor (Pd@MSe) with autonomous targeting ability by embedding Pd single-atom nanozymes into mesoporous selenium (MSe) nanozymes, and obtained a composite nanomotor (Pd@MSe-TPP) with dual-driven forces by modifying with triphenylphosphine (TPP) in MSe hemisphere. In RAM, Pd@MSe-TPP nanomotor achieved autonomously target into macrophages mitochondria with the driven of generation O2 and TPP targeting effect, moreover under the single-atom effect of the Pd nanozymes enhanced electronic transfer between nanozymes, which significantly boosted GPx catalytic activity further effectively enhanced the diffusion of Pd@MSe-TPP nanomotor, thus quickly resorted the oxygen balance. Additionally, while regulating oxygen imbalance, Pd@MSe-TPP nanomotor enable rapidly blocked the inflammatory cascade, restored mitochondrial function and alleviated inflammation, further prevented cartilage degradation and effectively inhibited RA progression. Therefore, the exquisitely designed nanoplatform to regulation arthritic microenvironment provides a new direction for the RA therapy and the clinical translation of nanomedicine.
Collapse
Affiliation(s)
- Xu Chen
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China.
| | - Yang Yang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Jiajun Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Yuebing He
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Yukai Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Qidang Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Weiming Deng
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Ruiqi Zhu
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Xuechan Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China; Department of Rheumatology and Immunology, Zhaoqing Central People's Hospital, Zhaoqing, 526000, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China
| |
Collapse
|
152
|
Yao X, Xue T, Chen B, Zhou X, Ji Y, Gao Z, Liu B, Yang J, Shen Y, Sun H, Gu X, Dai B. Advances in biomaterial-based tissue engineering for peripheral nerve injury repair. Bioact Mater 2025; 46:150-172. [PMID: 39760068 PMCID: PMC11699443 DOI: 10.1016/j.bioactmat.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Peripheral nerve injury is a common clinical disease. Effective post-injury nerve repair remains a challenge in neurosurgery, and clinical outcomes are often unsatisfactory, resulting in social and economic burden. Particularly, the repair of long-distance nerve defects remains a challenge. The existing nerve transplantation strategies show limitations, including donor site morbidity and immune rejection issues. The multiple studies have revealed the potential of tissue engineering strategies based on biomaterials in the repair of peripheral nerve injuries. We review the events of regeneration after peripheral nerve injury, evaluates the efficacy of existing nerve grafting strategies, and delves into the progress in the construction and application strategies of different nerve guidance conduits. A spotlight is cast on the materials, technologies, seed cells, and microenvironment within these conduits to facilitate optimal nerve regeneration. Further discussion was conducted on the approve of nerve guidance conduits and potential future research directions. This study anticipates and proposes potential avenues for future research, aiming to refine existing strategies and uncover innovative approaches in biomaterial-based nerve repair. This study endeavors to synthesize the collective insights from the fields of neuroscience, materials science, and regenerative medicine, offering a multifaceted perspective on the role of biomaterials in advancing the frontiers of peripheral nerve injury treatment.
Collapse
Affiliation(s)
- Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Tong Xue
- Department of Paediatrics and Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Bingqian Chen
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu Province, 215500, PR China
| | - Xinyang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Jiawen Yang
- Department of Paediatrics and Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
- Research and Development Center for E-Learning, Ministry of Education, Beijing, 100816, PR China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Bin Dai
- Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, 224500, PR China
| |
Collapse
|
153
|
Ding Y, Huang M, Cai P, Yu X, Cui J, Sun B, Mo X, Lu C, Chen J, Wu J. Inflammation-modulating elastic decellularized extracellular matrix scaffold promotes meniscus regeneration. Acta Biomater 2025; 196:93-108. [PMID: 39988032 DOI: 10.1016/j.actbio.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/31/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Scaffold-guided meniscus repair and regeneration show promise for meniscus injuries. Desirable scaffold properties are key to promoting proper tissue remodeling and effective regeneration. Herein, we report an inflammation-modulating elastic decellularized extracellular matrix (ECM) scaffold and evaluate its biological performance on meniscus repair in a rabbit model. An elastic scaffold of decellularized meniscus ECM (dmECM) was first prepared and functionalized with chitosan (CS) and ibuprofen (IBU) to obtain dmECM/CS-IBU scaffold. Our results show that CS and IBU grafting did not affect the overall properties of the dmECM/CS-IBU scaffold, including porous structure, good mechanical strength and elasticity. It promoted chondrocyte proliferation and preserved chondrogenic properties. In addition, both in vitro and in vivo assessments indicate that the dmECM/CS-IBU scaffold showed good anti-inflammatory properties and promoted pro-healing polarization of macrophages. In a partial rabbit meniscus defect model, the dmECM/CS-IBU scaffold showed promotive effects on in situ meniscus repair and preserved cartilage tissue. Therefore, our study provides a feasible strategy for fabricating scaffolds with tissue-specific bioactivity and inflammation-modulating abilities that synergistically promote meniscus repair and regeneration. STATEMENT OF SIGNIFICANCE: Desirable scaffold properties are key to promoting proper tissue remodeling and effective regeneration of meniscus injuries. Herein, elastic decellularized scaffolds were prepared using natural meniscus and successfully grafted with chitosan and the anti-inflammatory drug ibuprofen (dmECM/CS-IBU). The dmECM/CS-IBU scaffold showed a pro-proliferative and phenotype- preserving effect on chondrocytes. In both in vitro and in vivo models, dmECM/CS-IBU scaffolds exhibited wonderful anti-inflammatory activity. In a meniscus white zone defect model, the dmECM/CS-IBU scaffold demonstrated in situ repair of tissue and protection of cartilage tissue. Therefore, we provides a feasible strategy for fabricating scaffolds with tissue-specific bioactivity and inflammation-modulating abilities that synergistically promote meniscus repair and regeneration.
Collapse
Affiliation(s)
- Yangfan Ding
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Department of Biomedical Engineering, Donghua University, Shanghai 201620, China
| | - Moran Huang
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Pengfei Cai
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Department of Biomedical Engineering, Donghua University, Shanghai 201620, China; G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Xiao Yu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Department of Biomedical Engineering, Donghua University, Shanghai 201620, China
| | - Jie Cui
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Department of Biomedical Engineering, Donghua University, Shanghai 201620, China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Department of Biomedical Engineering, Donghua University, Shanghai 201620, China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Department of Biomedical Engineering, Donghua University, Shanghai 201620, China
| | - Changrui Lu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Department of Biomedical Engineering, Donghua University, Shanghai 201620, China.
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Department of Biomedical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
154
|
Li D, Yi G, Cao G, Midgley AC, Yang Y, Yang D, Liu W, He Y, Yao X, Li G. Dual-Carriers of Tartary Buckwheat-Derived Exosome-Like Nanovesicles Synergistically Regulate Glucose Metabolism in the Intestine-Liver Axis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410124. [PMID: 40079102 DOI: 10.1002/smll.202410124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/26/2025] [Indexed: 03/14/2025]
Abstract
The utilization of plant-derived exosome-like nanovesicles (ELNs) as nanocarriers for oral delivery of bioactives has garnered significant attention. However, their distinctive lipid membrane composition may result in elevated membrane permeability within the gastrointestinal environment, leading to the leakage of carried bioactives. Inspired by the concept of projectile design, Tartary buckwheat-derived ELNs (TB-ELNs) based dual-carriers are fabricated by loading chlorogenic acid (CGA) into the cores and bonding selenium nanoparticles (SeNPs) to the lipid membrane. The results indicate that SeNPs bond markedly augments the membrane rigidity, and therefore enhances the stability of TB-ELNs and the retention rate of the loaded CGA during gastrointestinal digestion. In vitro and in vivo studies indicates that the TB-ELNs based dual-carriers are internalized by epithelial cells and transcytosis via the endoplasmic reticulum, and show the synergistic regulatory effect on high-fat diet-induced hyperglycemia in the intestine-liver axis. These results may be attributed to the fact that SeNPs combination reduces the gastrointestinal degradation of the carried bioactives. Moreover, SeNPs with antioxidant property can protect ELNs and their carried bioactives from oxidative damage, thereby enhancing their biological activities. Collectively, this study offers a new strategy to develop highly efficient oral delivery systems for bioactives to alleviate hyperglycemia and diabetes.
Collapse
Affiliation(s)
- Dan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Gaoyang Yi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Guifang Cao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yongli Yang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Dan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Wenguang Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Yujuan He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| |
Collapse
|
155
|
Xiao YP, Wu J, Chen PH, Lei S, Lin J, Zhou X, Huang P. Biocatalytic cascade reactions for management of diseases. Chem Soc Rev 2025; 54:3247-3271. [PMID: 39936523 DOI: 10.1039/d3cs00410d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Biocatalytic cascade reactions, which evolve from the confinement of multiple enzymes within living cells, represent a promising strategy for disease management. Using tailor-made nanoplatforms, reactions induced by multiple enzymes and/or nanozymes can be precisely triggered at pathogenic sites. These promote further cascade reactions that generate therapeutic species prompting effective therapeutic outcomes with minimal side effects. Over the past few years, this approach has seen widespread applications in disease management. This review attempts to critically assess and summarize the recent advances in the use of biocatalytic cascade reactions for the management of diseases. Emphasis is placed on the design of cascade catalytic systems of high efficiency and selectivity and the implementation of specific cascade processes that respond to the endogenous substances produced in the pathological processes. The various types of biocatalytic cascade reactions are outlined according to the timeline of the catalytic steps through a series of reported examples. The challenges and outlook in the field are also discussed to encourage the further development of personalized treatments based on biocatalytic cascade reactions.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
- School of Life and Health Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Peng-Hang Chen
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
156
|
Liang Y, Zhang P, Liu M, Liu H, He B, Zhu Y, Wang J. Plant-based protein amyloid fibrils: Origins, formation, extraction, applications, and safety. Food Chem 2025; 469:142559. [PMID: 39732075 DOI: 10.1016/j.foodchem.2024.142559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Amyloid fibrils (AFs) are highly ordered nanostructures formed through the self-assembly of proteins under specific conditions. Due to their unique properties, AFs have garnered significant attention as biomaterials over the past decade. Nevertheless, the increasing reliance on animal proteins for AFs production raises sustainability concerns, highlighting the need for a transition to plant-based proteins as more environmentally friendly feedstocks. This review summarizes the conditions, mechanisms, and factors influencing the fibrillisation of over 20 plant-based protein amyloid fibrils (PAFs). The effectiveness of enzymatic extraction and membrane separation for isolating PAFs was also evaluated. Additionally, the review discusses the potential for enhancing PAFs' suitability through cross-linking with external agents. In the future, PAFs may be developed as advanced nanomaterials for a range of applications, including food hydrogels, cell-cultured meat scaffolds, and food detection sensors. However, thorough investigation of safety concerns and process improvements remain the primary challenges for the development of PAFs.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Penghui Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Mei Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yingying Zhu
- College of Food and Bioengineering, Zhengzhou R&D Center for high-quality innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
157
|
Wang J, Huang H, Jia M, Chen S, Wang F, He G, Wu C, Lou K, Zheng X, Zhang H, Qin C, Yuan Y, Zen K, Liang H. Autologous platelet delivery of siRNAs by autologous plasma protein self-assembled nanoparticles for the treatment of acute kidney injury. J Nanobiotechnology 2025; 23:256. [PMID: 40156015 PMCID: PMC11954310 DOI: 10.1186/s12951-025-03338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Acute kidney injury (AKI) involves the activation of intrarenal hemostatic and inflammatory pathways. Platelets rapidly migrate to affected sites of AKI and release extracellular vesicles (EVs) laden with bioactive mediators that regulate inflammation and hemostasis. While small interfering RNA (siRNA) is a potent gene-silencing tool for biomedical applications, its therapeutic application in vivo remains challenging. We developed an innovative nucleic acid delivery platform by hybridizing synthetic transformation-related protein 53 (p53) siRNA with autologous plasma and incubating the complex with autologous platelets. These engineered platelets selectively delivered p53 siRNA to injured renal tubular cells via EV-mediated cargo release, resulting in targeted p53 suppression in renal cells and subsequent attenuation of AKI progression. This platelet-centric translational strategy demonstrates significant potential for advancing precision therapies in AKI by exploiting endogenous platelet trafficking to deliver therapeutics directly to injury sites.
Collapse
Affiliation(s)
- Jiafan Wang
- Department of Emergency, School of Life Science and Technology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
| | - Hai Huang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Jia
- Department of Emergency, School of Life Science and Technology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
| | - Si Chen
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengjuan Wang
- Department of Emergency, School of Life Science and Technology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
| | - Guiyang He
- Department of Emergency, School of Life Science and Technology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
| | - Chong Wu
- Department of Emergency, School of Life Science and Technology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
| | - Kaibin Lou
- Department of Emergency, School of Life Science and Technology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
| | - Xuexue Zheng
- Department of Emergency, School of Life Science and Technology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
| | - Heng Zhang
- Department of Emergency, School of Life Science and Technology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yanggang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Ke Zen
- Department of Emergency, School of Life Science and Technology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China.
| | - Hongwei Liang
- Department of Emergency, School of Life Science and Technology, Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
158
|
Cano-Plá SM, Oltolina F, Acebedo-Martínez FJ, Fernández-Penas R, Verdugo-Escamilla C, Triunfo C, Di Simone PE, Borsotti C, Follenzi A, Maoloni G, Falini G, Gómez-Morales J. Sustainable production of osteoinductive Co 2+, Mg 2+ and Mn 2+ -substituted apatites particles by one-pot conversion of biogenic calcium carbonate. Sci Rep 2025; 15:10893. [PMID: 40158005 PMCID: PMC11954947 DOI: 10.1038/s41598-025-94792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Biogenic CaCO3 microparticles obtained from oyster shells Crassostrea gigas were used as starting material for synthesizing Co2+, Mg2+ and Mn2+-doped apatite nano-submicroparticles, through a one-step hydrothermal conversion. The conversion was completed at 200 °C for 7 days, yielding metal-doped apatite and whitlockite in percentages of 5.3 wt% when adding Co2+, 28.7 wt% for Mg2+, and 0 wt% for Mn2+. Samples were cytocompatible with murine pancreatic endothelial cells (MS1), murine mesenchymal stem cells (m17.ASC), and murine osteoblast's progenitors (mOBPs) cells. The analysis by flow cytometry and TEM-EDX revealed strong particle-cell interactions, sustained internalization across m17.ASC and mOBPs cells, and potential progressive apatite dissolution in the cellular environment. Additionally, incubating these cells with the metal-doped samples promoted their osteogenic differentiation without needing an osteogenic differentiation medium. Indeed, the evaluation of gene expression by quantitative real-time PCR, the detection of alkaline phosphatase activity, and the ability to induce the mineralization in the cellular matrix analyzed by alizarin red staining revealed that all particles (and particularly the carbonated apatite and the Mg-doped sample) encouraged the osteogenic commitment. This approach represents a sustainable way to valorize and transform aquaculture and canning industries' mineral waste (shells) in highly demanded osteoinductive materials.
Collapse
Affiliation(s)
- Sandra María Cano-Plá
- Laboratory of Crystallographic Studies, Andalusian Earth Science Institute, Spanish National Research Council, Avda. Las Palmeras, No 4, 18100, Armilla, Spain
| | - Francesca Oltolina
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, "A. Avogadro" Via Solaroli 17, 28100, Novara, Italy
| | - Francisco Javier Acebedo-Martínez
- Laboratory of Crystallographic Studies, Andalusian Earth Science Institute, Spanish National Research Council, Avda. Las Palmeras, No 4, 18100, Armilla, Spain
| | - Raquel Fernández-Penas
- Laboratory of Crystallographic Studies, Andalusian Earth Science Institute, Spanish National Research Council, Avda. Las Palmeras, No 4, 18100, Armilla, Spain
| | - Cristóbal Verdugo-Escamilla
- Laboratory of Crystallographic Studies, Andalusian Earth Science Institute, Spanish National Research Council, Avda. Las Palmeras, No 4, 18100, Armilla, Spain
| | - Carla Triunfo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Italy
| | - Paolo Emanuele Di Simone
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, "A. Avogadro" Via Solaroli 17, 28100, Novara, Italy
| | - Chiara Borsotti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, "A. Avogadro" Via Solaroli 17, 28100, Novara, Italy
| | - Antonia Follenzi
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, "A. Avogadro" Via Solaroli 17, 28100, Novara, Italy.
| | - Gabriele Maoloni
- Plant Ascoli Piceno, Finproject S.p.A., 3100, Ascoli Piceno, Italy
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - Jaime Gómez-Morales
- Laboratory of Crystallographic Studies, Andalusian Earth Science Institute, Spanish National Research Council, Avda. Las Palmeras, No 4, 18100, Armilla, Spain.
| |
Collapse
|
159
|
Liu Y, Zhang J, Wan Y, Li C, Cui S, Gao XJ, Wei H, Yang D. Engineering Perovskite Hydroxide as a Cold-Adapted Oxidase Mimic for Construction of the Robust Low-Temperature Adaptive Biosensors. ACS Sens 2025; 10:1844-1856. [PMID: 40073385 DOI: 10.1021/acssensors.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Traditional biological detection methods rely on signal amplification strategies such as enzymatic catalysis or nucleic acid amplification. However, their efficiency decreases in low-temperature environments, compromising their detection sensitivity. To break the loss of enzyme catalytic activity at low temperatures, research on cold-adaptive nanozymes has attracted much attention. Till now, only a few nanozymes have been reported to have cold-resistant catalytic properties. Here, a new type of cold-adapted nanozyme was constructed by engineering a perovskite hydroxide. The nanozyme not only boosted the oxidase-like catalytic activity by 2 orders of magnitude but also retained excellent catalytic performance at 0 °C. This enhanced activity may be attributed to the increase in manganese content, vacancy oxygen, and tetravalent manganese. Then, a robust low-temperature adaptive biosensor was established with a cold adaptive nanozyme. Notably, the detection of sulfide ion, ascorbic acid, alkaline phosphatase, and cellular glutathione by the cold-adapted probe was less affected by the temperature reduction, and the detection sensitivity of the probe for ALP at 0 °C is better than that of a commercial kit. Finally, the cold-adapted nanozyme was further used to construct a paper-based H2S gas colorimetric probe. This study develops a new cold adaptive nanozyme and broadens the application scenarios of the nanozymes.
Collapse
Affiliation(s)
- Yufeng Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Jing Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yuxin Wan
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Cong Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Shuai Cui
- Department of Pharmacy, The Second Affiliated Hospital of Xuzhou Medical University, General Hospital of Xuzhou Mining Group, Xuzhou 221006, Jiangsu, China
| | - Xuejiao J Gao
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, Jiangsu, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, Jiangsu, China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| |
Collapse
|
160
|
Fan D, Chen X, Wang S, Zhan J, Chen Y, Zhou H, Li D, Tang H, He Q, Chen T. Machine Learning-Assisted Prediction of Photothermal Metal-Phenolic Networks. Angew Chem Int Ed Engl 2025; 64:e202423799. [PMID: 39781604 DOI: 10.1002/anie.202423799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
Photothermal therapy (PTT) demonstrates significant potential in cancer treatment, wound healing, and antibacterial therapy, with its efficacy largely depending on the performance of photothermal agents (PTAs). Metal-phenolic network (MPN) materials are ideal PTA candidates due to their low cost, good biocompatibility and excellent ligand-to-metal charge transfer properties. However, not all MPNs exhibit significant photothermal properties, and the vast chemical space of MPNs (over 700,000 potential combinations) complicates the screening of high-photothermal materials. To address this challenge, this study introduces machine learning (ML) methods for predicting the photothermal performance of MPNs. A database of photothermal properties of 80 modular MPNs was constructed, and the ML process was optimized through feature engineering and model training. The selected extreme gradient boosting model (XGBoost) successfully identified 1,654 high photothermal MPNs from a virtual database of 44,438. Subsequent experimental validation revealed a remarkable success rate of 70 % in predicting high photothermal MPNs. Additionally, several previously unreported high photothermal MPNs were discovered, demonstrating advantages in photothermal antibacterial applications. This study offers an innovative ML-driven approach for the efficient screening of MPN materials, providing a solid foundation for PTA design in PTT and other biomedical applications.
Collapse
Affiliation(s)
- Dongqi Fan
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, P. R. China
| | - Xu Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, P. R. China
| | - Shan Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, P. R. China
| | - Jinglei Zhan
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, P. R. China
| | - Yuan Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, P. R. China
| | - Houqi Zhou
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, P. R. China
| | - Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, P. R. China
| | - Han Tang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, P. R. China
| | - Qingqing He
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, P. R. China
| |
Collapse
|
161
|
Mitani T. Functional expression mechanisms of food-derived components based on target proteins. Biosci Biotechnol Biochem 2025; 89:523-532. [PMID: 39805718 DOI: 10.1093/bbb/zbaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Food-derived polyphenols and some alkaloids have reported bioactivities related to the prevention of systemic metabolic disorders such as obesity, glucose intolerance, and dyslipidemia. For food-derived components to exert their functions in vivo, it is essential to interact with biological factors such as proteins, lipids, and nucleic acids. However, it is still unclear whether bioactive components in foods express functions related to their target factors. In this review, I introduce the target proteins in which food-derived components express functions in cells.
Collapse
Affiliation(s)
- Takakazu Mitani
- Division of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| |
Collapse
|
162
|
Wang W, Wang J, Liao D. Effects and Mechanisms of Extracellular Vesicles in Different Models of Acute Kidney Injury. Stem Cells Int 2025; 2025:1075016. [PMID: 40165854 PMCID: PMC11957863 DOI: 10.1155/sci/1075016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Acute kidney injury (AKI) is a rapid decline in renal function caused by ischemia/reperfusion (I/R), renal toxic injury, and sepsis. While the precise molecular mechanisms underlying AKI are still under investigation, current therapeutic approaches remain insufficient. In recent years, there has been growing evidence that mesenchymal stem cells (MSCs) have great potential in accelerating renal repair after AKI in various preclinical models, while there has been extensive research on extracellular vesicles (EVs) as therapeutic mediators in AKI models, and they are considered to be superior to MSCs as new regenerative therapies. EVs are nanoparticles secreted by various types of cells under physiological and pathological conditions. EVs derived from various sources possess biomarker potential and play crucial roles in mediating cellular communication between kidney cells and other tissue cells by transmitting signal molecules. These vesicles play a direct and indirect role in regulating the pathophysiological mechanisms of AKI and contribute to the occurrence, development, treatment, and repair of AKI. In this review, we briefly outline the essential characteristics of EVs, focus on the multiple molecular mechanisms currently involved in the protection of EVs against different types of AKI, and further discuss the potential targets of EVs from different sources in the treatment of AKI. Finally, we summarized the deficiencies in the production and treatment of EVs and the current strategies for improvement.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Nephrology, Mianyang Central Hospital, Mianyang 621000, China
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Beijing 100080, China
| | - Dan Liao
- Department of Nephrology, Mianyang Central Hospital, Mianyang 621000, China
| |
Collapse
|
163
|
Cai H, Zhou L, Hu Y, Zhou T. Machine Learning-Driven Identification of Exosome-Related Genes in Head and Neck Squamous Cell Carcinoma for Prognostic Evaluation and Drug Response Prediction. Biomedicines 2025; 13:780. [PMID: 40299352 PMCID: PMC12024895 DOI: 10.3390/biomedicines13040780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Background: This study integrated four Gene Expression Omnibus (GEO) datasets to identify disease-specific feature genes in head and neck squamous cell carcinoma (HNSCC) through differential expression analysis with batch effect correction. Methods: The GeneCards database was used to find genes related to exosomes, and samples were categorized into groups with high and low expression levels based on these feature genes. Functional and pathway enrichment analyses (GO, KEGG, and GSEA) were used to investigate the possible biological mechanisms underlying feature genes. A predictive model was produced by using machine learning algorithms (LASSO regression, SVM, and random forest) to find disease-specific feature genes. Receiver operating characteristic (ROC) curve analysis was used to assess the model's effectiveness. The diagnostic model showed excellent predictive accuracy through external data GSE83519 validation. Results: This analysis highlighted 22 genes with significant differential expression. A predictive model based on five important genes (AGRN, TSPAN6, MMP9, HBA1, and PFN2) was produced by using machine learning algorithms. MMP9 and TSPAN6 showed relatively high predictive performance. Using the ssGSEA algorithm, three key genes (MMP9, AGRN, and PFN2) were identified as strongly linked to immune regulation, immune response suppression, and critical signaling pathways involved in HNSCC progression. Matching HNSCC feature gene expression profiles with DSigDB compound signatures uncovered potential therapeutic targets. Molecular docking simulations identified ligands with high binding affinity and stability, notably C5 and Hoechst 33258, which were prioritized for further validation and potential drug development. Conclusions: This study employs a novel diagnostic model for HNSCC constructed using machine learning technology, which can provide support for the early diagnosis of HNSCC and thus contribute to improving patient treatment plans and clinical management strategies.
Collapse
Affiliation(s)
- Hua Cai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.C.); (L.Z.)
| | - Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.C.); (L.Z.)
| | - Yao Hu
- Department of Otorhinolaryngology, The Central Hospital of Wuhan, Wuhan 430021, China
| | - Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.C.); (L.Z.)
| |
Collapse
|
164
|
Ren L, Liu X, Tang S, Wang Y, Yang M, Guo L, Li J, Jiao K, Wang L. DNA-Engineered Coating for Protecting the Catalytic Activity of Platinum Nanozymes in Biological Systems. BIOSENSORS 2025; 15:205. [PMID: 40277518 PMCID: PMC12024773 DOI: 10.3390/bios15040205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/08/2025] [Accepted: 03/17/2025] [Indexed: 04/26/2025]
Abstract
Nanozymes, exemplified by metal nanoparticles, have shown promise in the fields of biological diagnostics and therapeutics. However, their practical application is often hindered by aggregation or deactivation in complex biological systems. Here, we develop a DNA-engineered nanozyme coating to preserve the peroxidase-like catalytic activity of platinum nanoparticles in complex biological environments. We employed thiol-modified single-stranded DNA to coat the platinum nanoparticles through metal-sulfur interaction. We found that the negatively charged DNA coating prevents the aggregation of platinum nanoparticles in high-salt environments. Moreover, the DNA coating functions as a molecular sieve, inhibiting non-specific protein adsorption while preserving substrate access to the catalytic interface, thus sustaining high peroxidase-like catalytic activity in serum. As a proof of concept, we demonstrate miRNA detection in serum samples with a detection limit of 1 fM. This approach offers a versatile strategy for molecular diagnostics of nanozymes in complex biological environments.
Collapse
Affiliation(s)
- Lei Ren
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (L.R.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China; (X.L.); (S.T.); (M.Y.); (L.G.); (J.L.)
| | - Xia Liu
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China; (X.L.); (S.T.); (M.Y.); (L.G.); (J.L.)
- Xiangfu Laboratory, Jiaxing 314102, China
| | - Shuai Tang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China; (X.L.); (S.T.); (M.Y.); (L.G.); (J.L.)
| | - Yue Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (L.R.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Yang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China; (X.L.); (S.T.); (M.Y.); (L.G.); (J.L.)
| | - Linjie Guo
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China; (X.L.); (S.T.); (M.Y.); (L.G.); (J.L.)
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China; (X.L.); (S.T.); (M.Y.); (L.G.); (J.L.)
| | - Kai Jiao
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China; (X.L.); (S.T.); (M.Y.); (L.G.); (J.L.)
| | - Lihua Wang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China; (X.L.); (S.T.); (M.Y.); (L.G.); (J.L.)
- Shanghai Collaborative Innovation Center of Intelligent Sensing Chip Technology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
165
|
Tiskratok W, Chuinsiri N, Limraksasin P, Kyawsoewin M, Jitprasertwong P. Extracellular Matrix Stiffness: Mechanotransduction and Mechanobiological Response-Driven Strategies for Biomedical Applications Targeting Fibroblast Inflammation. Polymers (Basel) 2025; 17:822. [PMID: 40292716 PMCID: PMC11946729 DOI: 10.3390/polym17060822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
The extracellular matrix (ECM) is a dynamic network providing mechanical and biochemical cues that regulate cellular behavior. ECM stiffness critically influences fibroblasts, the primary ECM producers, particularly in inflammation and fibrosis. This review explores the role of ECM stiffness in fibroblast-driven inflammation and tissue remodeling, focusing on the physicochemical and biological mechanisms involved. Engineered materials, hydrogels, and polydimethylsiloxane (PDMS) are highlighted for replicating tissue-specific stiffness, enabling precise control over cell-matrix interactions. The surface functionalization of substrate materials, including collagen, polydopamine, and fibronectin, enhances bioactivity and fibroblast adhesion. Key mechanotransduction pathways, such as integrin signaling and YAP/TAZ activation, are related to regulating fibroblast behaviors and inflammatory responses. The role of fibroblasts in driving chronic inflammatory diseases emphasizes their therapeutic potentials. Advances in ECM-modifying strategies, including tunable biomaterials and hydrogel-based therapies, are explored for applications in tissue engineering, drug delivery, anti-inflammatory treatments, and diagnostic tools for the accurate diagnosis and prognosis of ECM stiffness-related inflammatory diseases. This review integrates mechanobiology with biomedical innovations, providing a comprehensive prognosis of fibroblast responses to ECM stiffness and outlining future directions for targeted therapies.
Collapse
Affiliation(s)
- Watcharaphol Tiskratok
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| | - Nontawat Chuinsiri
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (P.L.); (M.K.)
| | - Maythwe Kyawsoewin
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (P.L.); (M.K.)
| | - Paiboon Jitprasertwong
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
166
|
Hao H, Chen Y, Yu W, Wang X, Wang C, Zhang P, Ji J. Regulating Cell-Material Interfacial Interactions through Selective Cellular Resistance. J Am Chem Soc 2025; 147:9981-9989. [PMID: 40035633 DOI: 10.1021/jacs.5c01433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Regulating the behavior of different types of cells at the material-tissue interface is pivotal for inducing tissue regeneration. Traditional methods enhance target cell activity using specific ligands such as peptides and antibodies, which have stability issues within biological environments. Herein, we show that selective cell resistance can be realized by fine-tuning the material surface chemistry, achieving strong cell selectivity superior to that of extracellular matrix peptides. A certain degree of adsorption resistance differentially affects the adhesion of various types of cells on material surfaces. Taking this principle into account, a polyethylene glycol (PEG) grafted surface was meticulously fine-tuned to selectively support endothelial cells (ECs) while resisting smooth muscle cell attachment. Mechanistic studies identified that the difference in myosin II expression is crucial for cell selectivity. An EC-selective polymer coating for cardiovascular devices was fabricated to promote rapid surface endothelialization and prevent neointimal hyperplasia in vivo.
Collapse
Affiliation(s)
- Hongye Hao
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, P. R. China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining 314400, P. R. China
| | - Yifeng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Weijiang Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xingwang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Cong Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Peng Zhang
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, P. R. China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining 314400, P. R. China
| | - Jian Ji
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, P. R. China
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining 314400, P. R. China
- Transvascular Implantation Devices Research Institute China, Hangzhou 310058, P. R. China
| |
Collapse
|
167
|
Fang M, Su B, Zhang S, Li F, Guo Y, Chen Q, Wu Y, Liu H, Jiang C, Sun T. Engineered Intelligent Microenvironment Responsive Prodrug Conjugates Navigated by Bioinspired Lipoproteins for Reversing Liver Fibrosis. SMALL METHODS 2025:e2402247. [PMID: 40103435 DOI: 10.1002/smtd.202402247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/23/2025] [Indexed: 03/20/2025]
Abstract
Liver fibrosis (LF) is characterized by excessive production of reactive oxygen species (ROS), abnormal activation of hepatic stellate cells (HSCs), and subsequent extracellular matrix (ECM) deposition. The complexity of multiple interrelated pathways involved in this process makes it challenging for monotherapy to achieve the desired therapeutic effects. To address this issue, this study designs a ROS-activated heterodimer conjugate (VTO) to collaboratively alleviate LF. Additionally, a biomimetic high-density lipoprotein is utilized for encapsulation, resulting in the formation of PL-VTO, which enables natural liver targeting. Once PL-VTO is delivered to the fibrotic liver, it can respond and release both parent drugs upon encountering the high ROS microenvironment, effectively scavenge ROS, induce quiescence of activated HSCs, and reduce collagen deposition, ultimately reversing LF. Overall, this study presents a feasible and versatile nanotherapeutic approach to enhance the prodrug-driven treatment of LF.
Collapse
Affiliation(s)
- Mingzhu Fang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Boyu Su
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shilin Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Fangxin Li
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yun Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yuxing Wu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Huiyi Liu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai, 201203, China
- Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai, 201203, China
- Quzhou Fudan Institute, Quzhou, 324003, China
| |
Collapse
|
168
|
Lapmanee S, Bhubhanil S, Khongkow M, Namdee K, Yingmema W, Bhummaphan N, Wongchitrat P, Charoenphon N, Hutchison JA, Talodthaisong C, Kulchat S. Application of Gelatin/Vanillin/Fe 3+/AGP-AgNPs Hydrogels Promotes Wound Contraction, Enhances Dermal Growth Factor Expression, and Minimizes Skin Irritation. ACS OMEGA 2025; 10:10530-10545. [PMID: 40124024 PMCID: PMC11923657 DOI: 10.1021/acsomega.4c10648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
This study further investigates the potential of gelatin-based hydrogel cross-linked with vanillin and ferric ion (GVF), combined with andrographolide (AGP) and silver nanoparticles (AgNPs), as an anti-infection biomaterial for wound dressing, aimed at exploring the mechanisms that attenuate inflammation, enhance wound healing rates, and address allergic skin irritation. AGP-AgNPs were evaluated for cytotoxicity in human adult epidermal keratinocytes (HEKa) and the murine macrophage cell line (RAW 264.7), as well as for nitric oxide (NO) production in response to lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. Skin-wound specimens from male Wistar rats were histologically analyzed for epidermal thickness and inflammatory changes. The mRNA expression profiling of dermal growth factors was assessed using RT-qPCR, and skin irritation tests were conducted in female New Zealand rabbits. These AGP-AgNPs exhibited significantly lower toxicity in HEKa and no toxicity in RAW 264.7. Interestingly, AGP-AgNPs at specific concentrations produced NO in RAW 264.7 control cells but were more effective in reducing inflammatory NO levels in RAW 264.7 cells pretreated with lipopolysaccharides, suggesting that AGP-AgNP composites are safe and effectively diminish inflammation. Furthermore, a marked increase in epidermal thickness and a reduction in histological inflammatory cells at wound sites were observed in rats treated with AGP-AgNPs/GVF hydrogels over 21 days. Upregulation of dermal genes promoting wound healing, including collagen types I and III, epidermal growth factor, transforming growth factor-beta, fibronectin, and vascular endothelial growth factor, but not fibroblast growth factor, was observed in a time-dependent manner. These results suggest that the anti-inflammatory properties of GVF/AGP-AgNP hydrogels could promote epithelialization, enhance cellular proliferation, support extracellular matrix synthesis, and facilitate angiogenesis. Additionally, rabbit skin in contact with GVF/AGP-AgNP hydrogels consistently displayed reduced levels of erythema and edema, with no swelling, and a standardized scoring system yielded low primary dermal irritation indices for this hydrogel. These findings suggest that the novel GVF/AGP-AgNP hydrogels possess anti-inflammatory-like activity and can modulate dermal growth factors for wound healing. This leads to reduced dermal irritation, making the formulation potentially suitable for safe topical applications in skin and wound care. However, comprehensive human studies and clinical trials should be required in the future.
Collapse
Affiliation(s)
- Sarawut Lapmanee
- Chulabhorn
International College of Medicine, Thammasat
University, Pathumthani 10120, Thailand
- Department
of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok 10160, Thailand
| | - Sakkarin Bhubhanil
- Department
of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok 10160, Thailand
| | - Mattaka Khongkow
- National
Science and Technology Development Agency, National Nanotechnology Centre, Pathumthani 12120, Thailand
| | - Katawut Namdee
- National
Science and Technology Development Agency, National Nanotechnology Centre, Pathumthani 12120, Thailand
| | - Werayut Yingmema
- Laboratory
Animal Center, Thammasat University, Pathumthani 10120, Thailand
| | - Narumol Bhummaphan
- College
of Public Health Sciences, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Prapimpun Wongchitrat
- Center
for
Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Natthawut Charoenphon
- Department
of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - James A. Hutchison
- School
of Chemistry and Centre of Excellence in Exciton Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Chanon Talodthaisong
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinan Kulchat
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
169
|
Li R, Tao H, Pan K, Li R, Guo Z, Chen X, Li Z. Extracellular vesicles derived from mesenchymal stem cells alleviate renal fibrosis via the miR-99b-5p/mTOR/autophagy axis in diabetic kidney disease. Stem Cell Res Ther 2025; 16:142. [PMID: 40103007 PMCID: PMC11921689 DOI: 10.1186/s13287-025-04265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) globally, presenting a significant therapeutic challenge. Extracellular vesicles (EVs) from mesenchymal stem cells (MSCs) have emerged as promising therapeutic agents. This study explored the therapeutic effects and mechanisms of EVs derived from human placental mesenchymal stem cells (hP-MSCs) on DKD. METHODS EVs were isolated from cultured hP-MSCs and administered to streptozotocin (STZ)-induced diabetic mice and high glucose-treated glomerular mesangial cells. The therapeutic impact of EVs was assessed through histological analysis and biochemical assays. miR-99b-5p expression in EVs and its role in modulating the mechanistic target of rapamycin (mTOR)/autophagy pathway were examined via western blotting and RT‒qPCR. RESULTS Treatment with hP-MSC-derived EVs significantly alleviated renal fibrosis and improved renal function in DKD models. These EVs were enriched with miR-99b-5p, which targeted and inhibited mTOR signaling, thereby increasing autophagic activity and reducing cellular proliferation and extracellular matrix accumulation in renal tissues. CONCLUSIONS hP-MSC-derived EVs can mitigate renal injury in DKD by modulating the miR-99b-5p/mTOR/autophagy pathway. These findings suggest a potential cell-free therapeutic strategy for managing DKD.
Collapse
Affiliation(s)
- Rongrong Li
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, No. 17 Jingnan 5th Road, 450016, Zhengzhou, China
- School of Medicine, Nankai University, 94 Weijin Road, 300071, Tianjin, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China, 601 Jinsui Road, 453003
| | - Hongyan Tao
- School of Medicine, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Kai Pan
- School of Medicine, Nankai University, 94 Weijin Road, 300071, Tianjin, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China, 601 Jinsui Road, 453003
| | - Rui Li
- School of Medicine, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, No. 17 Jingnan 5th Road, 450016, Zhengzhou, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China, 601 Jinsui Road, 453003
| | - Xiaoniao Chen
- Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, 69 Yongding Road, Beijing, 100039, China.
- National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, 28 Fuxing Road, 100853, Beijing, China.
| | - Zongjin Li
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, No. 17 Jingnan 5th Road, 450016, Zhengzhou, China.
- School of Medicine, Nankai University, 94 Weijin Road, 300071, Tianjin, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China, 601 Jinsui Road, 453003.
- National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, 28 Fuxing Road, 100853, Beijing, China.
| |
Collapse
|
170
|
Liu Z, Tang C, Han N, Jiang Z, Liang X, Wang S, Hu Q, Xiong C, Yao S, Wang Z, Wang ZL, Zou D, Li L. Electronic vascular conduit for in situ identification of hemadostenosis and thrombosis in small animals and nonhuman primates. Nat Commun 2025; 16:2671. [PMID: 40102408 PMCID: PMC11920275 DOI: 10.1038/s41467-025-58056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Patients suffering from coronary artery disease (CAD) or peripheral arterial disease (PAD) can benefit from bypass graft surgery. For this surgery, arterial vascular grafts have become promising alternatives when autologous grafts are inaccessible but suffer from numerous postimplantation challenges, particularly delayed endothelialization, intimal hyperplasia, high risk of thrombogenicity and restenosis, and difficulty in timely detection of these subtle pathological changes. We present an electronic vascular conduit that integrates flexible electronics into bionic vascular grafts for in situ, real-time and long-term monitoring for hemadostenosis and thrombosis concurrent with postoperative vascular repair. Following bypass surgery, the integrated bioelectronic sensor based on the triboelectric effect enables monitoring of the blood flow in the vascular graft and identification of lesions in real time for up to three months. In male nonhuman primate cynomolgus monkeys, the electronic vascular conduit, with an integrated wireless signal transmission module, enables wireless and real-time hemodynamic monitoring and timely identification of thrombi. This electronic vascular conduit demonstrates potential as a treatment-monitoring platform, providing a sensitive and intuitive monitoring technique during the critical period after bypass surgery in patients with CAD and PAD.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
| | - Chuyu Tang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Nannan Han
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoheng Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Liang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shaobo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Quanhong Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Cheng Xiong
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China.
- Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea.
| | - Duohong Zou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
171
|
Zhang H, Yang M, Wu Q, Xue J, Liu H. Engineering Two-Dimensional Nanomaterials for Photothermal Therapy. Angew Chem Int Ed Engl 2025; 64:e202424768. [PMID: 39936912 DOI: 10.1002/anie.202424768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/13/2025]
Abstract
Two-dimensional (2D) nanomaterials offer a transformative platform for photothermal therapy (PTT) due to their unique physicochemical properties and exceptional photothermal conversion efficiencies. This Minireview summarizes the photothermal mechanisms of common 2D nanomaterials and details their synthesis, surface modification, and optimization strategies. Recent advances leveraging 2D nanomaterials for enhanced PTT are highlighted, with particular emphasis on synergistic therapeutic modalities. Despite the significant potential of 2D nanomaterials in PTT, challenges persist, including scalable and reproducible manufacturing, precise targeted delivery, understanding of the underlying biological interactions, and comprehensive assessment of long-term biocompatibility and toxicity. Looking forward, emerging technologies such as machine learning are expected to play a crucial role in accelerating the design and optimization of 2D nanomaterials for PTT, enabling the prediction of optimal structures, properties, and therapeutic efficacy, and ultimately paving the way for personalized nanomedicine.
Collapse
Affiliation(s)
- Haoyuan Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Min Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Qingyuan Wu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, No. 30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Jiajia Xue
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No. 15, East of North Third Ring Road, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
172
|
Sun Y, Qiao Y, Niu Y, Madhavan BK, Fang C, Hu J, Schuck K, Traub B, Friess H, Herr I, Michalski CW, Kong B. ARP2/3 complex affects myofibroblast differentiation and migration in pancreatic ductal adenocarcinoma. Int J Cancer 2025; 156:1272-1281. [PMID: 39472297 PMCID: PMC11737003 DOI: 10.1002/ijc.35246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 01/18/2025]
Abstract
The ARP2/3 complex, which orchestrates actin cytoskeleton organization and lamellipodia formation, has been implicated in the initiation of pancreatic ductal adenocarcinoma (PDAC). This study aims to clarify its impact on the activity of cancer-associated fibroblasts (CAFs), key players in PDAC progression, and patient outcomes. Early pancreatic carcinogenesis was modeled in p48Cre; LSL-KrasG12D mice with caerulein-induced pancreatitis, complemented by in vitro studies on human immortalized pancreatic stellate cells (PSCs) and primary PDAC-derived CAFs. Data were gained from microarray analysis, RNA sequencing (RNA-seq), and single-cell RNA sequencing (sc-RNA-seq), with subsequent bioinformatics analysis. We uncovered a specific transcriptional signature associated with fibroblast migration in early pancreatic carcinogenesis and linked it to poor survival in patients with PDAC. A pivotal role of the ARP2/3 complex in CAF migration was identified. Inhibition of the ARP2/3 complex markedly decreased CAF motility and induced significant morphological changes in vitro. Furthermore, its inhibition also hindered TGFβ1-mediated myofibroblastic CAF differentiation but had no effect on IL-1-mediated inflammatory CAF differentiation. Our findings position the ARP2/3 complex as central to the migration and differentiation of myofibroblastic CAF. Targeting this complex presents a promising new therapeutic avenue for PDAC treatment.
Collapse
Affiliation(s)
- Yifeng Sun
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
- Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | - Yina Qiao
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Yiqi Niu
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | | | - Chao Fang
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | - Jingxiong Hu
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | - Kathleen Schuck
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | - Benno Traub
- Department of General and Visceral SurgeryUlm University HospitalUlmGermany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, School of Medicine and HealthyTechnical University of Munich (TUM)MunichGermany
| | - Ingrid Herr
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Christoph W. Michalski
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Bo Kong
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| |
Collapse
|
173
|
Ren X, Wang S, Teng Y, Zheng S, Li F, Wang C, Wu L, Zhang J. Engineered extracellular vesicles loaded in boronated cyclodextrin framework for pulmonary delivery. Carbohydr Polym 2025; 352:123160. [PMID: 39843065 DOI: 10.1016/j.carbpol.2024.123160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 01/24/2025]
Abstract
Extracellular vesicles (EVs) are promising therapeutic carriers for their ideal nano-size and intrinsic biocompatibility, while rapid clearance and limited targeting ability are the major setbacks of EVs. With minimal absorption into the systemic circulation, inhalation for pulmonary disease therapy minimizes off-target toxicity to other organs and offers a safe and effective treatment for respiratory disorders. Herein, a nano-grid carrier made of boronated cyclodextrin framework (BCF) was prepared for pH/H2O2 responsive release of EVs. A novel design of cyclo (Arg-Gly-Asp-D-Tyr-Lys) peptide (RGD)-modified milk-derived EVs (mEVs) loaded in the BCF particles (RGD-mEVs@BCF) was developed for pulmonary delivery. The results indicated that RGD-mEVs showed superior anti-inflammatory activity in contrast with mEVs in vitro. BCF was able to capture and protect RGD-mEVs, which showed extended-release profiles and responsiveness. Pulmonary administration of RGD-mEVs@BCF showed favorable biocompatibility in rats. Taken together, RGD-mEVs@BCF features biocompatibility and pH-responsive mEVs release as a therapeutic platform for pulmonary delivery of drugs to treat lung diseases, especially for inflammatory diseases.
Collapse
Affiliation(s)
- Xiaohong Ren
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Siwen Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yupu Teng
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiyu Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Feng Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caifen Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiwen Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Shenyang Pharmaceutical University, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
174
|
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L, Xia Q. Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI. Metabolites 2025; 15:201. [PMID: 40137165 PMCID: PMC11943624 DOI: 10.3390/metabo15030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Tumor cells engage in continuous self-replication by utilizing a large number of resources and capabilities, typically within an aberrant metabolic regulatory network to meet their own demands. This metabolic dysregulation leads to the formation of the tumor microenvironment (TME) in most solid tumors. Nanomedicines, due to their unique physicochemical properties, can achieve passive targeting in certain solid tumors through the enhanced permeability and retention (EPR) effect, or active targeting through deliberate design optimization, resulting in accumulation within the TME. The use of nanomedicines to target critical metabolic pathways in tumors holds significant promise. However, the design of nanomedicines requires the careful selection of relevant drugs and materials, taking into account multiple factors. The traditional trial-and-error process is relatively inefficient. Artificial intelligence (AI) can integrate big data to evaluate the accumulation and delivery efficiency of nanomedicines, thereby assisting in the design of nanodrugs. Methods: We have conducted a detailed review of key papers from databases, such as ScienceDirect, Scopus, Wiley, Web of Science, and PubMed, focusing on tumor metabolic reprogramming, the mechanisms of action of nanomedicines, the development of nanomedicines targeting tumor metabolism, and the application of AI in empowering nanomedicines. We have integrated the relevant content to present the current status of research on nanomedicines targeting tumor metabolism and potential future directions in this field. Results: Nanomedicines possess excellent TME targeting properties, which can be utilized to disrupt key metabolic pathways in tumor cells, including glycolysis, lipid metabolism, amino acid metabolism, and nucleotide metabolism. This disruption leads to the selective killing of tumor cells and disturbance of the TME. Extensive research has demonstrated that AI-driven methodologies have revolutionized nanomedicine development, while concurrently enabling the precise identification of critical molecular regulators involved in oncogenic metabolic reprogramming pathways, thereby catalyzing transformative innovations in targeted cancer therapeutics. Conclusions: The development of nanomedicines targeting tumor metabolic pathways holds great promise. Additionally, AI will accelerate the discovery of metabolism-related targets, empower the design and optimization of nanomedicines, and help minimize their toxicity, thereby providing a new paradigm for future nanomedicine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| |
Collapse
|
175
|
Meng Y, Sui L, Xu T, Zhao H, Yuan Q, Sun L. Research and Application Prospect of Nanomedicine in Kidney Disease: A Bibliometric Analysis From 2003 to 2024. Int J Nanomedicine 2025; 20:3007-3030. [PMID: 40093546 PMCID: PMC11910916 DOI: 10.2147/ijn.s510016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Kidney disease is a major public health concern that has a significant effect on a patient's life span and quality of life. However, effective treatment for most kidney diseases is lacking. Nanotechnology mainly explores the design, characterization, production, and applications of objects in the nanoscale range and has been widely used in the medical field. To date, there has been an increasing amount of research on the application of nanotechnology in kidney disease. However, systematic bibliometric studies remain rare. In this review, data collected from the Web of Science Core Collection database until December 31, 2024, were subjected to a bibliometric analysis. A total of 1179 articles and reviews were included. The publication trends, countries, institutions, authors, co-authorship, co-citations, journals, keywords, and references pertaining to this topic were examined. The results showed that nanotechnology research in kidney disease is increasing. The leading country, organization, and author were China, Sichuan University, and Professor Peng Huang, respectively. ACS APPLIED MATERIALS & INTERFACES was the top journal among the 464 journals in which articles on nanotechnology in kidney disease were published. KIDNEY INTERNATIONAL was the most cited journal in the field. The most significant increases were shown for "acute kidney disease", "drug delivery", "oxidative stress", "diabetic nephropathy", and "chronic kidney disease", indicating the current research hotspots. Furthermore, the development prospects and challenges of nanotechnology in kidney disease were discussed in this review. How to achieve precise drug delivery to render kidney-targeting therapy a reality may be problematic in future studies.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
| | - Lu Sui
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
| | - Hainan Zhao
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou121001, People’s Republic of China
| | - Quan Yuan
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, People’s Republic of China
| | - Li Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, People’s Republic of China
| |
Collapse
|
176
|
Bao Y, Wu W, Lin J, Yang Y, Lin S, Su J, Qin Y, Wang B, Duan S. Increased HA/CD44/TGFβ signaling implicates in renal fibrosis of a Col4a5 mutant Alport mice. Mol Med 2025; 31:96. [PMID: 40075271 PMCID: PMC11905560 DOI: 10.1186/s10020-025-01146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
X-linked Alport syndrome (XLAS) caused by X-linked COL4A5 gene mutation is a hereditary disease that affects mainly the kidney. XLAS patients, especially males whose single copy of the COL4A5 gene is disrupted, suffer from a life-threatening renal disease, the mechanism of which remains unclear. Renal fibrosis is a characteristic pathology observed in XLAS kidney tissue. However, the molecular path from COL4A5 loss-of-function to fibrotic pathology is largely unknown. On the basis of a previously established XLAS mouse model, our study revealed an activated CD44-TGFβ signaling known to strongly promote fibrosis, along with an increased level of low molecular weight hyaluronan (LMW-HA) instead of high molecular weight hyaluronan (HMW-HA), to activate CD44-dependent TGFβ signaling in XLAS renal tissues. Additionally, hyaluronan synthase 2 (HAS2), an enzyme primarily responsible for HA production, was found to be upregulated in XLAS. In particular, in vitro studies revealed that COL4A5 knockdown in human kidney-derived HEK-293 cells can upregulate HAS2 at both the RNA and protein levels. The novel contribution of our study is finding that COL4A5 deficiency may lead to HAS2 overexpression and HA accumulation to activate CD44-TGFβ signaling, thereby promoting fibrosis, possibly suggesting that HAS2 and CD44 are potential therapeutic targets for impeding renal fibrosis in XLAS.
Collapse
Affiliation(s)
- Yantao Bao
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Weiqing Wu
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Jiyun Lin
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Yuankai Yang
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Sheng Lin
- Shenzhen Health Development Research and Data Management Center, Shenzhen, 518028, Guangdong, China
| | - Jindi Su
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Yueyuan Qin
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Baojiang Wang
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Shan Duan
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China.
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China.
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, 518040, Guandong, China.
| |
Collapse
|
177
|
Zhang H, Chen Y, Wei Y, Zhang X, Ma H. Construction of a CuO 2@PDA Nanozyme with Switchable Dual Enzyme-Mimic Activities for Colorimetric Sensing of Catechol and Hydroquinone. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15886-15895. [PMID: 39999381 DOI: 10.1021/acsami.5c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The development of metal-based redox nanozymes represents a new frontier in pollutant sensing. In this field, designing highly active nanozymes and precisely regulating their enzymatic activity are key challenges. In this work, we report the construction of a copper peroxide@polydopamine (CuO2@PDA) nanozyme with dual enzyme-like activity, mimicking the active centers of laccase and peroxidase. Here, CuO2 acts as the catalytic center, while PDA serves as a carrier to prevent CuO2 aggregation and promotes conversion of CuII/CuI active sites via the reduction effect of its surface catechol groups to complete the catalytic cycle. As expected, the obtained CuO2@PDA nanozyme exhibits significant laccase- and peroxidase-mimetic activities. Moreover, its dual enzymatic activity can be systematically switched by adjusting pH and temperature. Specifically, laccase activity dominates near neutral pH, while CuO2 decomposition into Cu ions and H2O2 at acidic pH triggers peroxidase activity. Similarly, CuO2@PDA exhibits temperature-dependent dual enzymatic activity with peroxidase activity prevailing at low temperatures and laccase activity at high temperatures. According to enzymatic performance and XPS results, a possible catalytic mechanism of the dual enzymatic activity of CuO2@PDA has been proposed. Then, based on the pH-dependent dual enzymatic activity of CuO2@PDA, we constructed a detection system for the isomers of organic pollutants, catechol (CC) and hydroquinone (HQ). The laccase-like activity of CuO2@PDA enables direct oxidation of CC into yellow o-benzoquinone, while HQ discolors the preoxidized substrate generated via the peroxidase-like activity of CuO2@PDA. Moreover, selective sensing for CC and HQ with high sensitivity was achieved in real water samples. This approach can guide the design of nanozymes with multienzymatic activity and unveil their potential uses in environmental pollutant discrimination.
Collapse
Affiliation(s)
- Haiyan Zhang
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yitong Chen
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yanhui Wei
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiaokang Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hongchao Ma
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
178
|
Qiu R, He Y, Zhan J, Li Q, Cai X, Hua S, Wang L, Sun X, Tian Y. Diselenide Nanogels Modulate Mitochondrial Function and Mitigate Oxidative Stress in Cardiomyocytes for Enhanced Cardiac Repair. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15121-15144. [PMID: 40028900 DOI: 10.1021/acsami.4c22685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Mitochondrial dysfunction and oxidative stress are pivotal factors contributing to the loss of cardiac function following heart injury, yet these aspects are frequently underappreciated in the medication design paradigm. Here we have developed diselenide-cross-linked zwitterionic nanogels to restore mitochondrial homeostasis and boost energy supply for damaged heart repair. These nanogels exhibit an enhanced circulation time within the bloodstream post systemic administration and have been observed to concentrate at the site of the damaged myocardium in both myocardial infarct (MI) rat model and cardiotoxic mouse model. Our mechanistic investigations have revealed that these nanogels have the capacity to mitigate the oxidative microenvironment, thereby preserving the mitochondrial function of cardiomyocytes. Moreover, the degradation products of these nanogels have been shown to upregulate intracellular ATP synthesis, which in turn increases cardiac contractility and promotes the recovery of cardiac function. The innovative nanogel system presented herein holds significant potential for clinical translation, offering a therapeutic strategy for the restoration of cardiac function and a fresh perspective on maintaining energy metabolism homeostasis in the treatment of heart injury.
Collapse
Affiliation(s)
- Renjie Qiu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yutong He
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Jiamian Zhan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Qian Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Xiaohui Cai
- School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Shaofeng Hua
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Leyu Wang
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Xiaomin Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ye Tian
- Biomaterials Research Center, School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| |
Collapse
|
179
|
Zheng S, Sun X, Chen K, Zhang M, Zou C, Wang L, Guo Z, Jin Z, Ma Z, Li G, Wu G. Metal-Phenolic Modified Coaxial Electrospun Biomembrane Combined with the Photothermal Effect Enhances Bone Regeneration by Ameliorating Oxidative Stress and Mitochondrial Dysfunction via the PI3K/Akt Signaling Pathway. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15019-15034. [PMID: 40016904 DOI: 10.1021/acsami.4c21265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Critical-sized bone defect regeneration remains a significant clinical challenge due to the complex cascade of biological processes involved. To address this, we developed a sophisticated hierarchical biomembrane (PCS@MPN10) designed to modulate the osteogenic microenvironment. Using coaxial electrospinning, we fabricated a core-shell structure with polylactic acid (PLA) as the membrane base, incorporating simvastatin in the core and chitosan in the shell. The membrane surface was further modified with a tannic acid-iron metal-polyphenol network coating. Our results demonstrated that the biomembrane exhibits excellent biocompatibility, photothermal properties, and significant antibacterial activity. Additionally, the membrane regulates the microenvironment by promoting M1-to-M2 macrophage polarization, showing strong osteogenic potential both in vitro and in vivo. Furthermore, PCS@MPN10+NIR modulates mitochondrial function through the PI3K-AKT pathway, clears mitochondrial reactive oxygen species (ROS), and alleviates cellular oxidative stress, thereby enhancing bone regeneration. Overall, these findings suggest that this biomembrane holds great promise as a strategy for improving bone regeneration in critical-sized defects.
Collapse
Affiliation(s)
- Shikang Zheng
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Xiumei Sun
- Department of Orthodontics, Hospital of Stomatology, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Kai Chen
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Mingjun Zhang
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Chentong Zou
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Lin Wang
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Zhipeng Guo
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518172, P. R. China
| | - Zhaoyi Jin
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Ziyi Ma
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Guanyu Li
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Guomin Wu
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
180
|
Xie L, Zhang K, Pan K, Su X, Zhao X, Li R, Wang Y, Pang H, Fu E, Li Z. Engineered extracellular vesicles promote the repair of acute kidney injury by modulating regulatory T cells and the immune microenvironment. J Transl Med 2025; 23:304. [PMID: 40065372 PMCID: PMC11895318 DOI: 10.1186/s12967-025-06268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common and severe clinical condition. However, the underlying mechanisms of AKI have not been fully elucidated, and effective treatment options remain limited. Studies have shown that immune cells play a critical role in AKI, with regulatory T cells (Tregs) being one of the most important immunosuppressive lymphocytes. Tregs proliferation can attenuate AKI, whereas depletion exacerbates kidney injury. Given that endothelial cells (ECs) are the initial cells that interact with immune cells when they invade the tissue parenchyma, ECs are closely associated with immune reactions. METHODS AND RESULTS In this study, P-selectin binding peptide-extracellular vesicles (PBP-EVs) that target and repair ECs are engineered. Transcriptome sequencing reveals that PBP-EVs reduce the expression of inflammatory genes in AKI mice. Using high-resolution intravital two-photon microscopy (TPM), an increased recruitment of Tregs in the kidneys of AKI Foxp3-EGFP transgenic mice following PBP-EVs treatment is observed, as well as significant Lgr5+ renal stem cell proliferation in AKI Lgr5-CreERT2; R26mTmG mice. Additionally, PBP-EVs treatment result in reduced infiltration of inflammatory cells, pathological damage and fibrosis of AKI mice. Upon depletion of Tregs in Foxp3-DTR transgenic mice, we observe diminished therapeutic effect of PBP-EVs on AKI. CONCLUSIONS The experimental results indicate that PBP-EVs can promote the repair and regeneration of AKI by mitigating endothelial cell damage and subsequently modulating Tregs and the immune microenvironment. These findings provide novel insights and strategies for the treatment of AKI.
Collapse
Affiliation(s)
- Lulu Xie
- School of Medicine, Nankai University, Tianjin, 300071, China
| | | | - Kai Pan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaomin Su
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaotong Zhao
- Institute for Cardiovascular Science, Soochow University, Suzhou, 215006, China
| | - Rui Li
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yixin Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Haotian Pang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Enze Fu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China.
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, 450016, China.
- National Key Laboratory of Kidney Diseases Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
181
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
182
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
183
|
Ye T, Wu Z, Liu X, Wu J, Fu Q, Cao J, Zhang D, Shi P. Engineered mesenchymal stromal cells with bispecific polyvalent peptides suppress excessive neutrophil infiltration and boost therapy. SCIENCE ADVANCES 2025; 11:eadt7387. [PMID: 40053594 PMCID: PMC11887798 DOI: 10.1126/sciadv.adt7387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
Excessive neutrophil infiltration can exacerbate inflammation and tissue damage, contributing to conditions like autoimmune disorders and liver diseases. Mesenchymal stromal cells (MSCs) share homing mechanisms with neutrophils, showing promise for treating such diseases. However, ex vivo expanded MSCs often suffer from reduced homing efficiency due to the loss of essential ligands. Here, we engineer MSCs with P-selectin and E-selectin targeting peptides, assembling them into bispecific polyvalent structures using DNA self-assembly technology. This modification allows engineered MSCs to compete with chemotactic neutrophils for selectin binding sites on endothelial cells. In a mouse model of acute liver failure, engineered MSCs effectively home to the damaged liver and substantially inhibit excessive neutrophil infiltration. The combination of inhibiting neutrophil infiltration and the MSCs' inherent therapeutic properties lead to superior therapeutic outcomes. Single-cell RNA sequencing reveals that engineered MSCs elevate the levels of Marco_macrophage, which have neutrophil-inhibitory effects. Our study offers a perspective for advancing MSC-based therapies in tissue repair.
Collapse
Affiliation(s)
- Tenghui Ye
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Zixin Wu
- Department of General Surgery, Guangzhou Digestive Disease Center, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Xi Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Jiamin Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Qin Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Di Zhang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Peng Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
184
|
Vu Thanh C, Gooding JJ, Kah M. Learning lessons from nano-medicine to improve the design and performances of nano-agrochemicals. Nat Commun 2025; 16:2306. [PMID: 40055366 PMCID: PMC11889108 DOI: 10.1038/s41467-025-57650-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/27/2025] [Indexed: 05/13/2025] Open
Abstract
Sharing concepts and knowledge between medical and agricultural fields can promote the development of improved nano-enabled technologies. A central idea behind drug delivery systems is that the active substances are encapsulated in nanoparticles (nano-medicines) to protect the drugs from premature degradation and allow them to be transported to the target site within the body. After three decades of development, nano-medicines are now used in many practical applications, including clinical oncology, infectious disease, cosmetics, and vaccines. Nano-agrochemicals are increasingly considered to tackle challenges associated with food production, sustainability and food security. Despite obvious differences between nano-medicines and nano-agrochemicals in terms of uptake mechanisms, target and environmental and economic constraints, the principles behind nanoparticle design share many similarities. This article hopes to share experiences and lessons learnt from nano-medicines that will help design more effective and safer nano-agrochemicals.
Collapse
Affiliation(s)
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia.
| | - Melanie Kah
- School of Environment, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
185
|
Cai Q, Guo R, Chen D, Deng Z, Gao J. SynBioNanoDesign: pioneering targeted drug delivery with engineered nanomaterials. J Nanobiotechnology 2025; 23:178. [PMID: 40050980 PMCID: PMC11884119 DOI: 10.1186/s12951-025-03254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/19/2025] [Indexed: 03/10/2025] Open
Abstract
Synthetic biology and nanotechnology fusion represent a transformative approach promoting fundamental and clinical biomedical science development. In SynBioNanoDesign, biological systems are reimagined as dynamic and programmable materials to yield engineered nanomaterials with emerging and specific functionalities. This review elucidates a comprehensive examination of synthetic biology's pivotal role in advancing engineered nanomaterials for targeted drug delivery systems. It begins with exploring the fundamental synergy between synthetic biology and nanotechnology, then highlights the current landscape of nanomaterials in targeted drug delivery applications. Subsequently, the review discusses the design of novel nanomaterials informed by biological principles, focusing on expounding the synthetic biology tools and the potential for developing advanced nanomaterials. Afterward, the research advances of innovative materials design through synthetic biology were systematically summarized, emphasizing the integration of genetic circuitry to program nanomaterial responses. Furthermore, the challenges, current weaknesses and opportunities, prospective directions, and ethical and societal implications of SynBioNanoDesign in drug delivery are elucidated. Finally, the review summarizes the transformative impact that synthetic biology may have on drug-delivery technologies in the future.
Collapse
Affiliation(s)
- Qian Cai
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China
| | - Rui Guo
- National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dafu Chen
- National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiangtao Gao
- National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
186
|
Kou J, Li Y, Zhou C, Wang X, Ni J, Lin Y, Ge H, Zheng D, Chen G, Sun X, Tan Q. Electrospinning in promoting chronic wound healing: materials, process, and applications. Front Bioeng Biotechnol 2025; 13:1550553. [PMID: 40114848 PMCID: PMC11922904 DOI: 10.3389/fbioe.2025.1550553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
In the field of wound treatment, chronic wounds pose a significant burden on the medical system, affecting millions of patients annually. Current treatment methods often fall short in promoting effective wound healing, highlighting the need for innovative approaches. Electrospinning, a technique that has garnered increasing attention in recent years, shows promise in wound care due to its unique characteristics and advantages. Recent studies have explored the use of electrospun nanofibers in wound healing, demonstrating their efficacy in promoting cell growth and tissue regeneration. Researchers have investigated various materials for electrospinning, including polymers, ceramics, carbon nanotubes (CNTs), and metals. Hydrogel, as a biomaterial that has been widely studied in recent years, has the characteristics of a cell matrix. When combined with electrospinning, it can be used to develop wound dressings with multiple functions. This article is a review of the application of electrospinning technology in the field of wound treatment. It introduces the current research status in the areas of wound pathophysiology, electrospinning preparation technology, and dressing development, hoping to provide references and directions for future research.
Collapse
Affiliation(s)
- Jiaxi Kou
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yaodong Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Chen Zhou
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiyu Wang
- Department of Pancreatic and Metabolic Surgery, Medical School of Southeast University, Nanjing Drum Tower Hospital, Nanjing, China
| | - Jian Ni
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yue Lin
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Huaqiang Ge
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Dongfeng Zheng
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Guopu Chen
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xitai Sun
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Department of Pancreatic and Metabolic Surgery, Medical School of Southeast University, Nanjing Drum Tower Hospital, Nanjing, China
| |
Collapse
|
187
|
Tang R, Ding A, Fu C, Umerori K, Rivera M, Alt DS, Carmean CM, Li L, Eppell SJ, Wynshaw-Boris A, Alsberg E. Three-dimensional tissue platform co-laid with native collagen fibers and cells for phenotypic screening of stem cell interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640824. [PMID: 40093051 PMCID: PMC11908223 DOI: 10.1101/2025.02.28.640824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Phenotypic screening of cell-cell and cell-matrix interactions is critical yet challenging for drug discovery and disease modeling. In this study, a scalable 3D tissue platform was developed by co-laying extracted natural insoluble collagen fibers, mesenchymal stem cells, endothelial cells, and neural progenitor cells for phenotypic screening. Cell growth and interactions were enhanced in the co-laid platform, evident through increased cell proliferation, viability, and vascularization. Dense vascular networks rapidly formed through cell-cell and cell-matrix interactions without adding a traditionally needed growth factor set. Both in vitro and implantation studies confirmed that these blood vessels were of human origin. To evaluate the phenotypic screening of cell-cell and cell-matrix interactions, we propose a phenotype screening prototype for stem cell interactions that utilized multivariate analysis encompassing both cell-cell and cell-matrix interactions and demonstrated its effectiveness to screen vasculature formation and autism spectrum disorder (ASD) models. Using the prototype, we confirmed that collagen crosslinking, ROCK, WNT, and YAP pathways impact vasculogenesis. In addition, ASD donor-derived neural progenitor cells can be distinguished from non-ASD control donor-derived neural progenitor cells.
Collapse
|
188
|
Chen H, Wang D, Liu J, Chen J, Hu Y, Ni Y. Augmenting Antitumor Immune Effects through the Coactivation of cGAS-STING and NF-κB Crosstalk in Dendritic Cells and Macrophages by Engineered Manganese Ferrite Nanohybrids. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13375-13390. [PMID: 39964151 DOI: 10.1021/acsami.4c18570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The specific activation of dendritic cells (DCs) and tumor-associated macrophages (TAMs) can activate innate and adaptive immune responses to reverse the tumor immunosuppressive microenvironment. In this study, manganese ferrite nanohybrid MnFe5O8@(M1M-DOX) is synthesized to activate cGAS-STING and NF-κB crosstalk in DCs and TAMs. MnFe5O8, as the source of Fe2+/Fe3+ and Mn2+, is encapsulated with a microdose of doxorubicin (DOX) using an M1 macrophage cytomembrane. Fe2+/Fe3+ and DOX can cooperatively induce tumorous ferroptosis, triggering immunogenic cell death (ICD) that exposes tumor antigens. The release of Fe2+/Fe3+ and Mn2+ has intrinsic dual-immunomodulatory effects on the activation of DCs and the reprogramming of TAMs from the M2 to M1 phenotype. Briefly, Fe2+/Fe3+ activates the NF-κB signaling pathway to trigger the activation of STING signaling. Meanwhile, Mn2+ further enhances the activation of STING and stimulates NF-κB in a cascade-activating manner. Thus, the mutually reinforcing dual activation of cGAS-STING and NF-κB crosstalk prompts the strong maturation of DCs and TAMs, synergistically promoting the infiltration of T cells to inhibit primary tumor growth and localized recurrence. This work proposes a strategy for delivering immunomodulatory metal ions in nanoalloy and harnessing the activation of multisignaling pathways in antigen-presenting cells (APCs) to provide perspectives for tumor immunotherapy.
Collapse
Affiliation(s)
- Heying Chen
- The Key Laboratory of Chinese Ministry of Education in Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Dongqing Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jiahe Liu
- The Key Laboratory of Chinese Ministry of Education in Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Jun Chen
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Hu
- State Key Laboratory of Complex Severe and Rare Diseases, Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yilu Ni
- The Key Laboratory of Chinese Ministry of Education in Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| |
Collapse
|
189
|
Sil S, Mishra K, Pal SK. Liquid Crystal Biosensors: An Overview of Techniques to Monitor Enzyme Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4959-4975. [PMID: 39963995 DOI: 10.1021/acs.langmuir.4c04395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Liquid crystals (LCs) have transformed the world of optoelectronic displays and are now recognized as useful soft materials for a broad range of biomedical applications. Combination of smart sensors with label-free imaging offers intriguing prospects for point-of-care diagnostics. Here, we outline a sophisticated collage of the most important discoveries that show how LC biosensors can be used to monitor different enzymatic activities for the diagnosis of specific disease biomarkers or infections in body fluids, cellular milieu, and clinical samples. In living organisms, enzymes have a primary regulatory role in both accelerating and controlling metabolic reactions. We mention the ubiquitous techniques that are used to fabricate LC-based enzyme biosensors in attaining specific strategies along with greater sensitivity for the detection of clinically important biomolecules.
Collapse
Affiliation(s)
- Soma Sil
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli 140306, India
| | - Kirtika Mishra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli 140306, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli 140306, India
| |
Collapse
|
190
|
Yu M, Liu J, Zhou W, Gu X, Yu S. MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival. Sci Rep 2025; 15:7433. [PMID: 40032983 PMCID: PMC11876340 DOI: 10.1038/s41598-025-90128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025] Open
Abstract
We aimed to predict CD44 expression and assess its prognostic significance in patients with high-grade gliomas (HGG) using non-invasive radiomics models based on machine learning. Enhanced magnetic resonance imaging, along with the corresponding gene expression and clinicopathological data, was downloaded from online database. Kaplan-Meier survival curves, univariate and multivariate COX analyses, and time-dependent receiver operating characteristic were used to assess the prognostic value of CD44. Following the screening of radiomic features using repeat least absolute shrinkage and selection operator, two radiomics models were constructed utilizing logistic regression and support vector machine for validation purposes. The results indicated that CD44 protein levels were higher in HGG compared to normal brain tissues, and CD44 expression emerged as an independent biomarker of diminished overall survival (OS) in patients with HGG. Moreover, two predictive models based on seven radiomic features were built to predict CD44 expression levels in HGG, achieving areas under the curves (AUC) of 0.809 and 0.806, respectively. Calibration and decision curve analysis validated the fitness of the models. Notably, patients with high radiomic scores presented worse OS (p < 0.001). In summary, our results indicated that the radiomics models effectively differentiate CD44 expression level and OS in patients with HGG.
Collapse
Affiliation(s)
- Mingjun Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
- Department of Medical Affairs, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Jinliang Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Wen Zhou
- Department of Pain Management, Dalian Municipal Central Hospital, Dalian, 116033, People's Republic of China
| | - Xiao Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| | - Shijia Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
191
|
Wang K, Sun Y, Zhu K, Liu Y, Zheng X, Yang Z, Man F, Huang L, Zhu Z, Huang Q, Li Y, Dong H, Zhao J, Li Y. Anti-pyroptosis biomimetic nanoplatform loading puerarin for myocardial infarction repair: From drug discovery to drug delivery. Biomaterials 2025; 314:122890. [PMID: 39427429 DOI: 10.1016/j.biomaterials.2024.122890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Pyroptosis is a critical pathological mechanism implicated in myocardial damage following myocardial infarction (MI), and the crosstalk between macrophages and pyroptotic cardiomyocytes presents a formidable challenge for anti-pyroptosis therapies of MI. However, as single-target pyroptosis inhibitors frequently fail to address this crosstalk, the efficacy of anti-pyroptosis treatment post-MI remains inadequate. Therefore, the exploration of more potent anti-pyroptosis approaches is imperative for improving outcomes in MI treatment, particularly in addressing the crosstalk between macrophages and pyroptotic cardiomyocytes. Here, in response to this crosstalk, we engineered an anti-pyroptosis biomimetic nanoplatform (NM@PDA@PU), employing polydopamine (PDA) nanoparticles enveloped with neutrophil membrane (NM) for targeted delivery of puerarin (PU). Notably, network pharmacology is deployed to discern the most efficacious anti-pyroptosis drug (puerarin) among the 7 primary active monomers of TCM formulations widely applied in clinical practice and reveal the effect of puerarin on the crosstalk. Additionally, targeted delivery of puerarin could disrupt the malignant crosstalk between macrophages and pyroptotic cardiomyocytes, and enhance the effect of anti-pyroptosis by not only directly inhibiting cardiomyocytes pyroptosis through NLRP3-CASP1-IL-1β/IL-18 signal pathway, but reshaping the inflammatory microenvironment by reprogramming macrophages to anti-inflammatory M2 subtype. Overall, NM@PDA@PU could enhance anti-pyroptosis effect by disrupting the crosstalk between M1 macrophages and pyroptotic cardiomyocytes to protect cardiomyocytes, ameliorate cardiac function and improve ventricular remodeling, which providing new insights for the efficient treatment of MI.
Collapse
Affiliation(s)
- Kun Wang
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yu Sun
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ke Zhu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, China
| | - Yiqiong Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiao Zheng
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zichen Yang
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fulong Man
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Li Huang
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Li
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haiqing Dong
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China; State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, China.
| | - Yongyong Li
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China; State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, China.
| |
Collapse
|
192
|
Fan L, Shen Y, Lou D, Gu N. Progress in the Computer-Aided Analysis in Multiple Aspects of Nanocatalysis Research. Adv Healthc Mater 2025; 14:e2401576. [PMID: 38936401 DOI: 10.1002/adhm.202401576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Indexed: 06/29/2024]
Abstract
Making the utmost of the differences and advantages of multiple disciplines, interdisciplinary integration breaks the science boundaries and accelerates the progress in mutual quests. As an organic connection of material science, enzymology, and biomedicine, nanozyme-related research is further supported by computer technology, which injects in new vitality, and contributes to in-depth understanding, unprecedented insights, and broadened application possibilities. Utilizing computer-aided first-principles method, high-speed and high-throughput mathematic, physic, and chemic models are introduced to perform atomic-level kinetic analysis for nanocatalytic reaction process, and theoretically illustrate the underlying nanozymetic mechanism and structure-function relationship. On this basis, nanozymes with desirable properties can be designed and demand-oriented synthesized without repeated trial-and-error experiments. Besides that, computational analysis and device also play an indispensable role in nanozyme-based detecting methods to realize automatic readouts with improved accuracy and reproducibility. Here, this work focuses on the crossing of nanocatalysis research and computational technology, to inspire the research in computer-aided analysis in nanozyme field to a greater extent.
Collapse
Affiliation(s)
- Lin Fan
- Medical School of Nanjing University, Nanjing, 210093, P. R. China
- School of Integrated Circuit Science and Engineering (Industry-Education Integration School), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Yilei Shen
- School of Integrated Circuit Science and Engineering (Industry-Education Integration School), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Doudou Lou
- Nanjing Institute for Food and Drug Control, Nanjing, 211198, P. R. China
| | - Ning Gu
- Medical School of Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
193
|
Wei X, Wang L, Xing Z, Chen P, He X, Tuo X, Su H, Zhou G, Liu H, Fan Y. Glutamine synthetase accelerates re-endothelialization of vascular grafts by mitigating endothelial cell dysfunction in a rat model. Biomaterials 2025; 314:122877. [PMID: 39378796 DOI: 10.1016/j.biomaterials.2024.122877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Endothelial cell (EC) dysfunction within the aorta has long been recognized as a prominent contributor to the progression of atherosclerosis and the subsequent failure of vascular graft transplantation. However, the direct relationship between EC dysfunction and vascular remodeling remains to be investigated. In this study, we sought to address this knowledge gap by employing a strategy involving the release of glutamine synthetase (GS), which effectively activated endothelial metabolism and mitigates EC dysfunction. To achieve this, we developed GS-loaded small-diameter vascular grafts (GSVG) through the electrospinning technique, utilizing dual-component solutions consisting of photo-crosslinkable hyaluronic acid and polycaprolactone. Through an in vitro model of oxidized low-density lipoprotein-induced injury in human umbilical vein endothelial cells (HUVECs), we provided compelling evidence that the GSVG promoted the restoration of motility, angiogenic sprouting, and proliferation in dysfunctional HUVECs by enhancing cellular metabolism. Furthermore, the sequencing results indicated that these effects were mediated by miR-122-5p-related signaling pathways. Remarkably, the GSVG also exhibited regulatory capabilities in shifting vascular smooth muscle cells towards a contractile phenotype, mitigating inflammatory responses and thereby preventing vascular calcification. Finally, our data demonstrated that GS incorporation significantly enhanced re-endothelialization of vascular grafts in a ferric chloride-injured rat model. Collectively, our results offer insights into the promotion of re-endothelialization in vascular grafts by restoring dysfunctional ECs through the augmentation of cellular metabolism.
Collapse
Affiliation(s)
- Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Li Wang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Zheng Xing
- School of Pharmacy, Changzhou University, Changzhou, 213164, PR China
| | - Peng Chen
- Department of Ultrasound, The Third Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Xiaoye Tuo
- Department of Reparative and Reconstructive Surgery, 9 Jinyuanzhuang Rd., Peking University Shougang Hospital, PR China
| | - Haoran Su
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China.
| |
Collapse
|
194
|
Kieliszek M, Sapazhenkava K. The Promising Role of Selenium and Yeast in the Fight Against Protein Amyloidosis. Biol Trace Elem Res 2025; 203:1251-1268. [PMID: 38829477 PMCID: PMC11872778 DOI: 10.1007/s12011-024-04245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
In recent years, increasing attention has been paid to research on diseases related to the deposition of misfolded proteins (amyloids) in various organs. Moreover, modern scientists emphasise the importance of selenium as a bioelement necessary for the proper functioning of living organisms. The inorganic form of selenium-sodium selenite (redox-active)-can prevent the formation of an insoluble polymer in proteins. It is very important to undertake tasks aimed at understanding the mechanisms of action of this element in inhibiting the formation of various types of amyloid. Furthermore, yeast cells play an important role in this matter as a eukaryotic model organism, which is intensively used in molecular research on protein amyloidosis. Due to the lack of appropriate treatment in the general population, the problem of amyloidosis remains unsolved. This extracellular accumulation of amyloid is one of the main factors responsible for the occurrence of Alzheimer's disease. The review presented here contains scientific information discussing a brief description of the possibility of amyloid formation in cells and the use of selenium as a factor preventing the formation of these protein aggregates. Recent studies have shown that the yeast model can be successfully used as a eukaryotic organism in biotechnological research aimed at understanding the essence of the entire amyloidosis process. Understanding the mechanisms that regulate the reaction of yeast to selenium and the phenomenon of amyloidosis is important in the aetiology and pathogenesis of various disease states. Therefore, it is imperative to conduct further research and analysis aimed at explaining and confirming the role of selenium in the processes of protein misfolding disorders. The rest of the article discusses the characteristics of food protein amyloidosis and their use in the food industry. During such tests, their toxicity is checked because not all food proteins can produce amyloid that is toxic to cells. It should also be noted that a moderate diet is beneficial for the corresponding disease relief caused by amyloidosis.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland.
| | - Katsiaryna Sapazhenkava
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland
| |
Collapse
|
195
|
Jammes M, Tabasi A, Bach T, Ritter T. Healing the cornea: Exploring the therapeutic solutions offered by MSCs and MSC-derived EVs. Prog Retin Eye Res 2025; 105:101325. [PMID: 39709150 DOI: 10.1016/j.preteyeres.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Affecting a large proportion of the population worldwide, corneal disorders constitute a concerning health hazard associated to compromised eyesight or blindness for most severe cases. In the last decades, mesenchymal stem/stromal cells (MSCs) demonstrated promising abilities in improving symptoms associated to corneal diseases or alleviating these affections, especially through their anti-inflammatory, immunomodulatory and pro-regenerative properties. More recently, MSC therapeutic potential was shown to be mediated by the molecules they release, and particularly by their extracellular vesicles (EVs; MSC-EVs). Consequently, using MSC-EVs emerged as a pioneering strategy to mitigate the risks related to cell therapy while providing MSC therapeutic benefits. Despite the promises given by MSC- and MSC-EV-based approaches, many improvements are considered to optimize the therapeutic significance of these therapies. This review aspires to provide a comprehensive and detailed overview of current knowledge on corneal therapies involving MSCs and MSC-EVs, the strategies currently under evaluation, and the gaps remaining to be addressed for clinical implementation. From encapsulating MSCs or their EVs into biomaterials to enhance the ocular retention time to loading MSC-EVs with therapeutic drugs, a wide range of ground-breaking strategies are currently contemplated to lead to the safest and most effective treatments. Promising research initiatives also include diverse gene therapies and the targeting of specific cell types through the modification of the EV surface, paving the way for future therapeutic innovations. As one of the most important challenges, MSC-EV large-scale production strategies are extensively investigated and offer a wide array of possibilities to meet the needs of clinical applications.
Collapse
Affiliation(s)
- Manon Jammes
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Abbas Tabasi
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Trung Bach
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
196
|
Medina-Ortiz D, Khalifeh A, Anvari-Kazemabad H, Davari MD. Interpretable and explainable predictive machine learning models for data-driven protein engineering. Biotechnol Adv 2025; 79:108495. [PMID: 39645211 DOI: 10.1016/j.biotechadv.2024.108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/21/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Protein engineering through directed evolution and (semi)rational design has become a powerful approach for optimizing and enhancing proteins with desired properties. The integration of artificial intelligence methods has further accelerated protein engineering process by enabling the development of predictive models based on data-driven strategies. However, the lack of interpretability and transparency in these models limits their trustworthiness and applicability in real-world scenarios. Explainable Artificial Intelligence addresses these challenges by providing insights into the decision-making processes of machine learning models, enhancing their reliability and interpretability. Explainable strategies has been successfully applied in various biotechnology fields, including drug discovery, genomics, and medicine, yet its application in protein engineering remains underexplored. The incorporation of explainable strategies in protein engineering holds significant potential, as it can guide protein design by revealing how predictive models function, benefiting approaches such as machine learning-assisted directed evolution. This perspective work explores the principles and methodologies of explainable artificial intelligence, highlighting its relevance in biotechnology and its potential to enhance protein design. Additionally, three theoretical pipelines integrating predictive models with explainable strategies are proposed, focusing on their advantages, disadvantages, and technical requirements. Finally, the remaining challenges of explainable artificial intelligence in protein engineering and future directions for its development as a support tool for traditional protein engineering methodologies are discussed.
Collapse
Affiliation(s)
- David Medina-Ortiz
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany; Departamento de Ingeniería En Computación, Universidad de Magallanes, Avenida Bulnes, 01855, Punta Arenas, Chile.; Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, Santiago, Chile
| | - Ashkan Khalifeh
- Department of Mathematical and Physical Sciences, College of Arts and Sciences, University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Hoda Anvari-Kazemabad
- Departamento de Ingeniería En Computación, Universidad de Magallanes, Avenida Bulnes, 01855, Punta Arenas, Chile
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany.
| |
Collapse
|
197
|
Tian Q, Li S, Tang Z, Zhang Z, Du D, Zhang X, Niu X, Lin Y. Nanozyme-Enabled Biomedical Diagnosis: Advances, Trends, and Challenges. Adv Healthc Mater 2025; 14:e2401630. [PMID: 39139016 DOI: 10.1002/adhm.202401630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Indexed: 08/15/2024]
Abstract
As nanoscale materials with the function of catalyzing substrates through enzymatic kinetics, nanozymes are regarded as potential alternatives to natural enzymes. Compared to protein-based enzymes, nanozymes exhibit attractive characteristics of low preparation cost, robust activity, flexible performance adjustment, and versatile functionalization. These advantages endow them with wide use from biochemical sensing and environmental remediation to medical theranostics. Especially in biomedical diagnosis, the feature of catalytic signal amplification provided by nanozymes makes them function as emerging labels for the detection of biomarkers and diseases, with rapid developments observed in recent years. To provide a comprehensive overview of recent progress made in this dynamic field, here an overview of biomedical diagnosis enabled by nanozymes is provided. This review first summarizes the synthesis of nanozyme materials and then discusses the main strategies applied to enhance their catalytic activity and specificity. Subsequently, representative utilization of nanozymes combined with biological elements in disease diagnosis is reviewed, including the detection of biomarkers related to metabolic, cardiovascular, nervous, and digestive diseases as well as cancers. Finally, some development trends in nanozyme-enabled biomedical diagnosis are highlighted, and corresponding challenges are also pointed out, aiming to inspire future efforts to further advance this promising field.
Collapse
Affiliation(s)
- Qingzhen Tian
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Shu Li
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Zheng Tang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Ziyu Zhang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiao Zhang
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
198
|
Lin C, Lu TW, Hsu FY, Huang TW, Ho MH, Lu HT, Mi FL. An injectable in situ-forming hydrogel with self-activating genipin-chitosan (GpCS) cross-linking and an O 2/Ca 2+ self-supplying capability for wound healing and rapid hemostasis. Carbohydr Polym 2025; 351:123051. [PMID: 39778990 DOI: 10.1016/j.carbpol.2024.123051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Severe traumatic bleeding and chronic diabetic wounds require rapid hemostasis and multifunctional dressings, which remain particularly challenging, especially for non-compressible trauma and irregular wounds with dysregulated microenvironments. Chitosan (CS) can be easily cross-linked with genipin to form GpCS hydrogels. However, developing injectable GpCS hydrogels for biomedical applications faces challenges, particularly in enhancing rapid gel formation and optimizing physical properties. In this study, we present an innovative approach to improve these aspects by designing a novel injectable GpCS hydrogel, strategically enhanced through a calcium peroxide (CaO2)-activated cross-linking reaction. CaO2 played a pivotal role in promoting in situ cross-linking of the GpCS hydrogel, leading to significant improvements in its injectable in situ gel-forming ability, mechanical strength, and self-healing and bioadhesive properties. CaO2 incorporated in the hydrogels rapidly converted to oxygen when combined with catalase (CAT), thereby establishing a self-sustaining oxygen/calcium release system. This system not only promoted hyperoxia and activated the coagulation cascade, facilitating rapid blood clotting, but also significantly accelerated wound healing through enhanced angiogenesis, collagen deposition, and M2 macrophage polarization. These attributes significantly enhanced the capacity of the hydrogel to facilitate wound closure and hemostasis, highlighting its therapeutic value in accelerating recovery and improving healing outcomes in clinical wound care.
Collapse
Affiliation(s)
- Chi Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Tzu-Wei Lu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Fang-Yu Hsu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ming-Hua Ho
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Hsien-Tsung Lu
- Department of Orthopedics, Taipei Medical University Hospital, Taipei City 11031, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Fwu-Long Mi
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
199
|
Cao H, Jiang J, Chen L, Gao L. Mimicomes: Mimicking Multienzyme System by Artificial Design. Adv Healthc Mater 2025; 14:e2402372. [PMID: 39380346 DOI: 10.1002/adhm.202402372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Enzymes are widely distributed in organelles of cells, which are capable of carrying out specific catalytic reactions. In general, several enzymes collaborate to facilitate complex reactions and engage in vital biochemical processes within cells, which are also called cascade systems. The cascade systems are highly efficient, and their dysfunction is associated with a multitude of endogenous diseases. The advent of nanotechnology makes it possible to mimic these cascade systems in nature and realize partial functions of natural biological processes both in vitro and in vivo. To emphasize the significance of artificial cascade systems, mimicomes is first proposed, a new concept that refers to the artificial cascade catalytic systems. Typically, mimicomes are able to mimic specific natural biochemical catalytic processes or facilitate the overall catalytic efficiency of cascade systems. Subsequently, the evolution and development of different types of mimicomes in recent decades are elucidated exhaustedly, from the natural enzyme-based mimicomes (immobilized enzyme and vesicle mimicomes) to the nanozyme-based mimicomes and enzyme-nanozyme hybrid mimicomes. In conclusion, the remaining challenges in the design of multifunctional mimicomes and their potential applications are summarized, offering insights into their future prospects.
Collapse
Affiliation(s)
- Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
200
|
Li L, Yao Z, Salimian KJ, Kong J, Zaheer A, Parian A, Gearhart SL, Mao HQ, Selaru FM. Extracellular Vesicles Delivered by a Nanofiber-Hydrogel Composite Enhance Healing In Vivo in a Model of Crohn's Disease Perianal Fistula. Adv Healthc Mater 2025; 14:e2402292. [PMID: 39240055 PMCID: PMC11882933 DOI: 10.1002/adhm.202402292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/24/2024] [Indexed: 09/07/2024]
Abstract
Perianal fistulas represent a common, aggressive, and disabling complication of Crohn's disease (CD). Despite recent drug developments, novel surgical interventions as well as multidisciplinary treatment approaches, the outcome is dismal, with >50% therapy failure rates. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) offer potential therapeutic benefits for treating fistulizing CD, due to the pro-regenerative paracrine signals. However, a significant obstacle to clinical translation of EV-based therapy is the rapid clearance and short half-life of EVs in vivo. Here, an injectable, biodegradable nanofiber-hydrogel composite (NHC) microgel matrix that serves as a carrier to deliver MSC-derived EVs to a rat model of CD perianal fistula (PAF) is reported. It is found that EV-loaded NHC (EV-NHC) yields the best fistula healing when compared to other treatment arms. The MRI assessment reveals that the EV-NHC reduces inflammation at the fistula site and promotes tissue healing. The enhanced therapeutic outcomes are contributed by extended local retention and sustained release of EVs by NHC. In addition, the EV-NHC effectively reduces inflammation at the fistula site and promotes tissue healing and regeneration via macrophage polarization and neo-vascularization. This EV-NHC platform provides an off-the-shelf solution that facilitates its clinical translation.
Collapse
Affiliation(s)
- Ling Li
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
| | - Zhicheng Yao
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University; Baltimore, Maryland, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
| | - Kevan J. Salimian
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiayuan Kong
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University; Baltimore, Maryland, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
| | - Atif Zaheer
- Department of Radiology & Radiological Sciences, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
| | - Alyssa Parian
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
| | - Susan L. Gearhart
- Division of Colorectal Surgery, Department of Surgery, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University; Baltimore, Maryland, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
| | - Florin M. Selaru
- Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
- Institute for NanoBioTechnology, Johns Hopkins University; Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine; Baltimore, Maryland, USA
- Department of Oncology, Sidney Kimmel Cancer Center, School of Medicine, Johns Hopkins University; Baltimore, Maryland, USA
| |
Collapse
|