151
|
Tomaszewski N, He X, Solomon V, Lee M, Mack WJ, Quinn JF, Braskie MN, Yassine HN. Effect of APOE Genotype on Plasma Docosahexaenoic Acid (DHA), Eicosapentaenoic Acid, Arachidonic Acid, and Hippocampal Volume in the Alzheimer's Disease Cooperative Study-Sponsored DHA Clinical Trial. J Alzheimers Dis 2020; 74:975-990. [PMID: 32116250 PMCID: PMC7156328 DOI: 10.3233/jad-191017] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (AA) play key roles in several metabolic processes relevant to Alzheimer's disease (AD) pathogenesis and neuroinflammation. Carrying the APOEɛ4 allele (APOE4) accelerates omega-3 polyunsaturated fatty acid (PUFA) oxidation. In a pre-planned subgroup analysis of the Alzheimer's Disease Cooperative Study-sponsored DHA clinical trial, APOE4 carriers with mild probable AD had no improvements in cognitive outcomes compared to placebo, while APOE 4 non-carriers showed a benefit from DHA supplementation. OBJECTIVE We sought to clarify the effect of APOEɛ4/ɛ4 on both the ratio of plasma DHA and EPA to AA, and on hippocampal volumes after DHA supplementation. METHODS Plasma fatty acids and APOE genotype were obtained in 275 participants randomized to 18 months of DHA supplementation or placebo. A subset of these participants completed brain MRI imaging (n = 86) and lumbar punctures (n = 53). RESULTS After the intervention, DHA-treated APOEɛ3/ɛ3 and APOEɛ2/ɛ3 carriers demonstrated significantly greater increase in plasma DHA/AA compared to ɛ4/ɛ4 carriers. APOEɛ2/ɛ3 had a greater increase in plasma EPA/AA and less decline in left and right hippocampal volumes compared to compared to ɛ4/ɛ4 carriers. The change in plasma and cerebrospinal fluid DHA/AA was strongly correlated. Greater baseline and increase in plasma EPA/AA was associated with a lower decrease in the right hippocampal volume, but only in APOE 4 non-carriers. CONCLUSION The lower increase in plasma DHA/AA and EPA/AA in APOEɛ4/ɛ4 carriers after DHA supplementation reduces brain delivery and affects the efficacy of DHA supplementation.
Collapse
Affiliation(s)
- Natalie Tomaszewski
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xulei He
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Victoria Solomon
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mitchell Lee
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wendy J. Mack
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University, Portland VA Medical Center
| | - Meredith N. Braskie
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hussein N. Yassine
- Department of Medicine, University of Southern California, Los Angeles, CA, USA
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
152
|
Fatty acid metabolism in the progression and resolution of CNS disorders. Adv Drug Deliv Rev 2020; 159:198-213. [PMID: 31987838 DOI: 10.1016/j.addr.2020.01.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Recent advances in lipidomics and metabolomics have unveiled the complexity of fatty acid metabolism and the fatty acid lipidome in health and disease. A growing body of evidence indicates that imbalances in the metabolism and level of fatty acids drive the initiation and progression of central nervous system (CNS) disorders such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Here, we provide an in-depth overview on the impact of the β-oxidation, synthesis, desaturation, elongation, and peroxidation of fatty acids on the pathophysiology of these and other neurological disorders. Furthermore, we discuss the impact of individual fatty acids species, acquired through the diet or endogenously synthesized in mammals, on neuroinflammation, neurodegeneration, and CNS repair. The findings discussed in this review highlight the therapeutic potential of modulators of fatty acid metabolism and the fatty acid lipidome in CNS disorders, and underscore the diagnostic value of lipidome signatures in these diseases.
Collapse
|
153
|
Bowman GL, Dodge HH, Guyonnet S, Zhou N, Donohue J, Bichsel A, Schmitt J, Hooper C, Bartfai T, Andrieu S, Vellas B. A blood-based nutritional risk index explains cognitive enhancement and decline in the multidomain Alzheimer prevention trial. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:953-963. [PMID: 31921969 PMCID: PMC6944714 DOI: 10.1016/j.trci.2019.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction Multinutrient approaches may produce more robust effects on brain health through interactive qualities. We hypothesized that a blood-based nutritional risk index (NRI) including three biomarkers of diet quality can explain cognitive trajectories in the multidomain Alzheimer prevention trial (MAPT) over 3-years. Methods The NRI included erythrocyte n-3 polyunsaturated fatty acids (n-3 PUFA 22:6n-3 and 20:5n-3), serum 25-hydroxyvitamin D, and plasma homocysteine. The NRI scores reflect the number of nutritional risk factors (0–3). The primary outcome in MAPT was a cognitive composite Z score within each participant that was fit with linear mixed-effects models. Results Eighty percent had at lease one nutritional risk factor for cognitive decline (NRI ≥1: 573 of 712). Participants presenting without nutritional risk factors (NRI=0) exhibited cognitive enhancement (β = 0.03 standard units [SU]/y), whereas each NRI point increase corresponded to an incremental acceleration in rates of cognitive decline (NRI-1: β = −0.04 SU/y, P = .03; NRI-2: β = −0.08 SU/y, P < .0001; and NRI-3: β = −0.11 SU/y, P = .0008). Discussion Identifying and addressing these well-established nutritional risk factors may reduce age-related cognitive decline in older adults; an observation that warrants further study. Multi-nutrient approaches may produce more robust effects through interactive properties Nutritional risk index can objectively quantify nutrition-related cognitive changes Optimum nutritional status associated with cognitive enhancement over 3-years Suboptimum nutritional status associated with cognitive decline over 3-years Optimizing this nutritional risk index may promote cognitive health in older adults
Collapse
Affiliation(s)
- Gene L Bowman
- Department of Nutrition and Brain Health, Nestlé Institute of Health Sciences, EPFL Campus, Lausanne, Switzerland.,Department of Neurology and Layton Aging and Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hiroko H Dodge
- Department of Neurology and Layton Aging and Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR, USA.,Department of Neurology and Michigan Alzheimer's Disease Center, University of Michigan, Ann Arbor, MI, USA
| | - Sophie Guyonnet
- Department of Internal Medicine and Geriatrics, Gerontopole, CHU, Toulouse, France.,LEASP UMR1027 INSERM, University Paul Sabatier, France
| | - Nina Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Juliana Donohue
- Department of Nutrition and Brain Health, Nestlé Institute of Health Sciences, EPFL Campus, Lausanne, Switzerland
| | - Aline Bichsel
- Department of Nutrition and Brain Health, Nestlé Institute of Health Sciences, EPFL Campus, Lausanne, Switzerland
| | - Jeroen Schmitt
- Clinical Development Unit, Nestle Research, Lausanne, Switzerland
| | - Claudie Hooper
- Department of Internal Medicine and Geriatrics, Gerontopole, CHU, Toulouse, France
| | - Tamas Bartfai
- Department of Neurochemistry, Stockholm University, Sweden
| | - Sandrine Andrieu
- LEASP UMR1027 INSERM, University Paul Sabatier, France.,Department of Public Health, CHU de Toulouse, Toulouse, France
| | - Bruno Vellas
- Department of Internal Medicine and Geriatrics, Gerontopole, CHU, Toulouse, France.,LEASP UMR1027 INSERM, University Paul Sabatier, France
| | | |
Collapse
|
154
|
Hanson AJ, Banks WA, Bettcher LF, Pepin R, Raftery D, Craft S. Cerebrospinal fluid lipidomics: effects of an intravenous triglyceride infusion and apoE status. Metabolomics 2019; 16:6. [PMID: 31832778 PMCID: PMC7147960 DOI: 10.1007/s11306-019-1627-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/07/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION High-fat diets increase risk for Alzheimer's disease, but individuals with the risk gene APOE ε4 (E4) paradoxically have improved memory soon after high fat feeding. Little is known about how dietary lipids affect CNS lipids, especially in older adults. OBJECTIVES We analyzed the lipidomic signature of cerebrospinal fluid (CSF) in older adults who underwent both a saline and TG infusion. We further analyzed these data by E4 carrier status. METHODS Older adults (n = 21, age 67.7 ± 8.6) underwent a 5-h TG and saline infusion on different days in random crossover design; lumbar CSF was collected at the end of the infusion. Lipids were extracted using dichloromethane/methanol and 13 classes of lipids analyzed using the Lipidyzer platform consisting of an AB Sciex 5500 MS/MS QTraps system equipped with a SelexION for differential mobility spectrometry (DMS). Multiple reaction monitoring was used to target and quantify 1070 lipids in positive and negative ionization modes with and without DMS. RESULTS The TG infusion increased total lipids in the CSF, including the appearance of more lipids at the detection limit in the TG samples compared to saline (Chi square p < 0.0001). The infusion increased the total level of diacylglycerols and lysophosphatidylcholines and reduced dihydroceramides. Of the possible 1070 lipids detectable, we found 348 after saline and 365 after TG infusion. Analysis using MetaboAnalyst revealed 11 specific lipids that changed; five of these lipids decreased after TG infusion, and four of them differed by E4 status, but none differed by cognitive diagnosis or sex. CONCLUSION These results in older adults show that blood lipids affect lipid profiles in CSF and such profiles are modified by APOE status. This suggests that how the CNS handles lipids may be important in the AD phenotype.
Collapse
Affiliation(s)
- Angela J Hanson
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - William A Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Lisa F Bettcher
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Robert Pepin
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA
| | - Suzanne Craft
- Wake Forest School of Medicine, Department of Internal Medicine, Winston-Salem, NC, USA
| |
Collapse
|
155
|
Ahmmed MK, Ahmmed F, Tian HS, Carne A, Bekhit AED. Marine omega-3 (n-3) phospholipids: A comprehensive review of their properties, sources, bioavailability, and relation to brain health. Compr Rev Food Sci Food Saf 2019; 19:64-123. [PMID: 33319514 DOI: 10.1111/1541-4337.12510] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
For several decades, there has been considerable interest in marine-derived long chain n-3 fatty acids (n-3 LCPUFAs) due to their outstanding health benefits. n-3 LCPUFAs can be found in nature either in triglycerides (TAGs) or in phospholipid (PL) form. From brain health point of view, PL n-3 is more bioavailable and potent compared to n-3 in TAG form, as only PL n-3 is able to cross the blood-brain barrier and can be involved in brain biochemical reactions. However, PL n-3 has been ignored in the fish oil industry and frequently removed as an impurity during degumming processes. As a result, PL products derived from marine sources are very limited compared to TAG products. Commercially, PLs are being used in pharmaceutical industries as drug carriers, in food manufacturing as emulsifiers and in cosmetic industries as skin care agents, but most of the PLs used in these applications are produced from vegetable sources that contain less (without EPA, DPA, and DHA) or sometimes no n-3 LCPUFAs. This review provides a comprehensive account of the properties, structures, and major sources of marine PLs, and provides focussed discussion of their relationship to brain health. Epidemiological, laboratory, and clinical studies on n-3 LCPUFAs enriched PLs using different model systems in relation to brain and mental health that have been published over the past few years are discussed in detail.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Science, University of Otago, Dunedin, New Zealand.,Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi, Bangladesh
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
156
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid β in the form of extracellular plaques and by intracellular neurofibrillary tangles, with eventual neurodegeneration and dementia. There is currently no disease-modifying treatment though several symptomatic medications exist with modest benefit on cognition. Acetylcholinesterase inhibitors have a consistent benefit across all stages of dementia; their benefit in mild cognitive impairment and prodromal AD is unproven. Memantine has a smaller benefit on cognition overall which is limited to the moderate to severe stages, and the combination of a cholinesterase inhibitor and memantine may have additional efficacy. Evidence for the efficacy of vitamin E supplementation and medical foods is weak but might be considered in the context of cost, availability, and safety in individual patients. Apparently promising disease-modifying interventions, mostly addressing the amyloid cascade hypothesis of AD, have recently failed to demonstrate efficacy so novel approaches must be considered.
Collapse
Affiliation(s)
- Elizabeth Joe
- Alzheimer Disease Research Center, Department of Neurology, Keck School of Medicine at USC, 1520 San Pablo Street Suite 3000, Los Angeles, CA 90033, USA
| | - John M Ringman
- Alzheimer Disease Research Center, Department of Neurology, Keck School of Medicine at USC, 1520 San Pablo Street Suite 3000, Los Angeles, CA 90033, USA
| |
Collapse
|
157
|
Zhang X, Han H, Ge X, Liu L, Wang T, Yu H. Effect of n-3 long-chain polyunsaturated fatty acids on mild cognitive impairment: a meta-analysis of randomized clinical trials. Eur J Clin Nutr 2019; 74:548-554. [PMID: 31804628 DOI: 10.1038/s41430-019-0544-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/09/2022]
Abstract
N-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have positive effect on cognitive function with mild cognitive impairment (MCI) is still controversial. The aim for this meta-analysis was to assess the scientific evidence published in the last 10 years on the effects of n-3 LC-PUFAs intake on MCI patients to explore whether n-3 LC-PUFAs have positive effective. A comprehensive literature search was developed using the Google Scholar, EMBASE, and PubMed database. The pooled effect for all studies was calculated using random-effects model. And the terms of weighted mean difference (WMD) with 95% confidence interval (CI) was pooled and indicated the effects. Heterogeneity was assessed by I2 statistics. A total of seven randomized clinical trials involving 213 cases of intervention and 221 cases of placebo were included in this analysis. Compared with placebo, n-3 LC-PUFAs supplements effectively improved cognition in elders with MCI (WMD = 0.85, 95% CI: 0.04-1.67, Z = 2.05, P = 0.04). Slight heterogeneity was detected across studies. Our results provided further evidence that n-3 LC-PUFAs may have beneficial effect in elderly with MCI.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Department of Health Statistics, School of Public Health, Shanxi Provincial Key Laboratory of Major Disease Risk Assessment, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001, China
| | - Hongjuan Han
- Department of Mathematics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Ge
- Department of Health Statistics, School of Public Health, Shanxi Provincial Key Laboratory of Major Disease Risk Assessment, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001, China
| | - Long Liu
- Department of Health Statistics, School of Public Health, Shanxi Provincial Key Laboratory of Major Disease Risk Assessment, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001, China
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Provincial Key Laboratory of Major Disease Risk Assessment, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001, China.,Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Provincial Key Laboratory of Major Disease Risk Assessment, Shanxi Medical University, 56 South XinJian Road, Taiyuan, 030001, China. .,Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China.
| |
Collapse
|
158
|
Sugasini D, Yalagala PCR, Goggin A, Tai LM, Subbaiah PV. Enrichment of brain docosahexaenoic acid (DHA) is highly dependent upon the molecular carrier of dietary DHA: lysophosphatidylcholine is more efficient than either phosphatidylcholine or triacylglycerol. J Nutr Biochem 2019; 74:108231. [PMID: 31665653 PMCID: PMC6885117 DOI: 10.1016/j.jnutbio.2019.108231] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/07/2019] [Accepted: 08/15/2019] [Indexed: 12/27/2022]
Abstract
Docosahexaenoic acid (DHA) is highly concentrated in the brain, and its deficiency is associated with several neurological disorders including Alzheimer's disease. However, the currently used supplements do not appreciably enrich brain DHA, although they enrich most other tissues. We tested the hypothesis that the ability of the dietary carrier to augment brain DHA depends upon the generation of DHA-lysophosphatidylcholine (LPC), the preferred carrier of DHA across the blood brain barrier. We compared the efficacy of DHA-triacylglycerol (TAG), di-DHA phosphatidylcholine (PC) and DHA-LPC to enrich brain DHA following their gavage to normal rats for 30 days, all at a dose of 10 mg DHA/day. The results show that DHA from TAG, which is released as free DHA or monoacylglycerol during digestion and is absorbed as TAG in chylomicrons, was incorporated preferentially into adipose tissue and heart but not into brain. In contrast, LPC-DHA increased brain DHA by up to 100% but had no effect on adipose tissue. Di-DHA PC, which generates both free DHA and LPC-DHA during the digestion, enriched DHA in brain, as well as in heart and liver. Brain-derived neurotrophic factor was increased by di-DHA PC and DHA-LPC, but not by TAG-DHA, showing that enrichment of brain DHA correlated with its functional effect. We conclude that dietary DHA from TAG or from natural PC (sn-2 position) is not suitable for brain enrichment, whereas DHA from LPC (at either sn-1 or sn-2 position) or from sn-1 position of PC efficiently enriches the brain and is functionally effective.
Collapse
Affiliation(s)
- Dhavamani Sugasini
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago
| | - Poorna C R Yalagala
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago
| | - Alexis Goggin
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago
| | - Papasani V Subbaiah
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago; Jesse Brown VA Medical Center, Chicago, IL 60612.
| |
Collapse
|
159
|
Dasilva G, Medina I. Lipidomic methodologies for biomarkers of chronic inflammation in nutritional research: ω-3 and ω-6 lipid mediators. Free Radic Biol Med 2019; 144:90-109. [PMID: 30902758 DOI: 10.1016/j.freeradbiomed.2019.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/20/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
The evolutionary history of hominins has been characterized by significant dietary changes, which include the introduction of meat eating, cooking, and the changes associated with plant and animal domestication. The Western pattern diet has been linked with the onset of chronic inflammation, and serious health problems including obesity, metabolic syndrome, and cardiovascular diseases. Diets enriched with ω-3 marine PUFAs have revealed additional improvements in health status associated to a reduction of proinflammatory ω-3 and ω-6 lipid mediators. Lipid mediators are produced from enzymatic and non-enzymatic oxidation of PUFAs. Interest in better understanding the occurrence of these metabolites has increased exponentially as a result of the growing evidence of their role on inflammatory processes, control of the immune system, cell signaling, onset of metabolic diseases, or even cancer. The scope of this review has been to highlight the recent findings on: a) the formation of lipid mediators and their role in different inflammatory and metabolic conditions, b) the direct use of lipid mediators as antiinflammatory drugs or the potential of new drugs as a new therapeutic option for the synthesis of antiinflammatory or resolving lipid mediators and c) the impact of nutritional interventions to modulate lipid mediators synthesis towards antiinflammatory conditions. In a second part, we have summarized methodological approaches (Lipidomics) for the accurate analysis of lipid mediators. Although several techniques have been used, most authors preferred the combination of SPE with LC-MS. Advantages and disadvantages of each method are herein addressed, as well as the main LC-MS difficulties and challenges for the establishment of new biomarkers and standardization of experimental designs, and finally to deepen the study of mechanisms involved on the inflammatory response.
Collapse
Affiliation(s)
- Gabriel Dasilva
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), c/Eduardo Cabello 6, 36208, Vigo, Spain.
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), c/Eduardo Cabello 6, 36208, Vigo, Spain
| |
Collapse
|
160
|
Berkowitz CL, Mosconi L, Rahman A, Scheyer O, Hristov H, Isaacson RS. Clinical Application of APOE in Alzheimer's Prevention: A Precision Medicine Approach. JPAD-JOURNAL OF PREVENTION OF ALZHEIMERS DISEASE 2019; 5:245-252. [PMID: 30298183 DOI: 10.14283/jpad.2018.35] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Population-attributable risk models estimate that up to one-third of Alzheimer's disease (AD) cases may be preventable through risk factor modification. The field of AD prevention has largely focused on addressing these factors through universal risk reduction strategies for the general population. However, targeting these strategies in a clinical precision medicine fashion, including the use of genetic risk factors, allows for potentially greater impact on AD risk reduction. Apolipoprotein E (APOE), and specifically the APOE ε4 variant, is one of the most well-established genetic influencers on late-onset AD risk. In this review, we evaluate the impact of APOE ε4 carrier status on AD prevention interventions, including lifestyle, nutrigenomic, pharmacogenomic, AD comorbidities, and other biological and behavioral considerations. Using a clinical precision medicine strategy that incorporates APOE ε4 carrier status may provide a highly targeted and distinct approach to AD prevention with greater potential for success.
Collapse
Affiliation(s)
- C L Berkowitz
- Richard S. Isaacson, MD, Department of Neurology, Weill Cornell Medicine and NewYork-Presbyterian, 428 East 72nd St, Suite 500, Room 407, New York, NY, 10021; Tel: (212) 746-3645,
| | | | | | | | | | | |
Collapse
|
161
|
Burns DK, Chiang C, Welsh-Bohmer KA, Brannan SK, Culp M, O'Neil J, Runyan G, Harrigan P, Plassman BL, Lutz M, Lai E, Haneline S, Yarnall D, Yarbrough D, Metz C, Ponduru S, Sundseth S, Saunders AM. The TOMMORROW study: Design of an Alzheimer's disease delay-of-onset clinical trial. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:661-670. [PMID: 31720367 PMCID: PMC6838537 DOI: 10.1016/j.trci.2019.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction Alzheimer's disease (AD) is a continuum with neuropathologies manifesting years before clinical symptoms; thus, AD research is attempting to identify more disease-modifying approaches to test treatments administered before full disease expression. Designing such trials in cognitively normal elderly individuals poses unique challenges. Methods The TOMMORROW study was a phase 3 double-blind, parallel-group study designed to support qualification of a novel genetic biomarker risk assignment algorithm (BRAA) and to assess efficacy and safety of low-dose pioglitazone to delay onset of mild cognitive impairment due to AD. Eligible participants were stratified based on the BRAA (using TOMM40 rs 10524523 genotype, Apolipoprotein E genotype, and age), with high-risk individuals receiving low-dose pioglitazone or placebo and low-risk individuals receiving placebo. The primary endpoint was time to the event of mild cognitive impairment due to AD. The primary objectives were to compare the primary endpoint between high- and low-risk placebo groups (for BRAA qualification) and between high-risk pioglitazone and high-risk placebo groups (for pioglitazone efficacy). Approximately 300 individuals were also asked to participate in a volumetric magnetic resonance imaging substudy at selected sites. Results The focus of this paper is on the design of the study; study results will be presented in a separate paper. Discussion The design of the TOMMORROW study addressed many key challenges to conducting a dual-objective phase 3 pivotal AD clinical trial in presymptomatic individuals. Experiences from planning and executing the TOMMORROW study may benefit future AD prevention/delay-of-onset trials.
Collapse
Affiliation(s)
| | - Carl Chiang
- Zinfandel Pharmaceuticals, Inc., Durham, NC, USA
| | - Kathleen A Welsh-Bohmer
- Department of Neurology, Bryan Alzheimer's Disease Research Center, Duke University School of Medicine, Durham, NC, USA
| | | | - Meredith Culp
- Takeda Development Center Americas, Inc., Deerfield, IL, USA
| | - Janet O'Neil
- Takeda Development Center Americas, Inc., Deerfield, IL, USA
| | - Grant Runyan
- Takeda Development Center Americas, Inc., Deerfield, IL, USA
| | | | - Brenda L Plassman
- Department of Neurology, Bryan Alzheimer's Disease Research Center, Duke University School of Medicine, Durham, NC, USA
| | - Michael Lutz
- Department of Neurology, Bryan Alzheimer's Disease Research Center, Duke University School of Medicine, Durham, NC, USA
| | - Eric Lai
- Takeda Development Center Americas, Inc., Deerfield, IL, USA
| | | | | | | | - Craig Metz
- Zinfandel Pharmaceuticals, Inc., Durham, NC, USA
| | - Sridevi Ponduru
- Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
162
|
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) include α-linolenic acid (ALA; 18:3 ω-3), stearidonic acid (SDA; 18:4 ω-3), eicosapentaenoic acid (EPA; 20:5 ω-3), docosapentaenoic acid (DPA; 22:5 ω-3), and docosahexaenoic acid (DHA; 22:6 ω-3). In the past few decades, many epidemiological studies have been conducted on the myriad health benefits of omega-3 PUFAs. In this review, we summarized the structural features, properties, dietary sources, metabolism, and bioavailability of omega-3 PUFAs and their effects on cardiovascular disease, diabetes, cancer, Alzheimer's disease, dementia, depression, visual and neurological development, and maternal and child health. Even though many health benefits of omega-3 PUFAs have been reported in the literature, there are also some controversies about their efficacy and certain benefits to human health.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada;
| | - Priyatharini Ambigaipalan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada;
| |
Collapse
|
163
|
Docosahexaenoic acid,22:6n-3: Its roles in the structure and function of the brain. Int J Dev Neurosci 2019; 79:21-31. [PMID: 31629800 DOI: 10.1016/j.ijdevneu.2019.10.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Docosahexaenoic acid,22:6n-3 (DHA) and its metabolites are vital for the structure and functional brain development of the fetus and infants, and also for maintenance of healthy brain function of adults. DHA is thought to be an essential nutrient required throughout the life cycle for the maintenance of overall brain health. The mode of actions of DHA and its derivatives at both cellular and molecular levels in the brain are emerging. DHA is the major prevalent fatty acid in the brain membrane. The brain maintains its fatty acid levels mainly via the uptake of plasma free fatty acids. Therefore, circulating plasma DHA is significantly related to cognitive abilities during ageing and is inversely associated with cognitive decline. The signaling pathways of DHA and its metabolites are involved in neurogenesis, antinociceptive effects, anti-apoptotic effect, synaptic plasticity, Ca2+ homeostasis in brain diseases, and the functioning of nigrostriatal activities. Mechanisms of action of DHA metabolites on various processes in the brain are not yet well known. Epidemiological studies support a link between low habitual intake of DHA and a higher risk of brain disorders. A diet characterized by higher intakes of foods containing high in n-3 fatty acids, and/or lower intake of n-6 fatty acids was strongly associated with a lower Alzheimer's Disease and other brain disorders. Supplementation of DHA improves some behaviors associated with attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior, as well as cognition. Nevertheless, the outcomes of trials with DHA supplementation have been controversial. Many intervention studies with DHA have shown an apparent benefit in brain function. However, clinical trials are needed for definitive conclusions. Dietary deficiency of n-3 fatty acids during fetal development in utero and the postnatal state has detrimental effects on cognitive abilities. Further research in humans is required to assess a variety of clinical outcomes, including quality of life and mental status, by supplementation of DHA.
Collapse
|
164
|
Gubert C, Kong G, Renoir T, Hannan AJ. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol Dis 2019; 134:104621. [PMID: 31628992 DOI: 10.1016/j.nbd.2019.104621] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/14/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
The last decade has witnessed an exponentially growing interest in gut microbiota and the gut-brain axis in health and disease. Accumulating evidence from preclinical and clinical research indicate that gut microbiota, and their associated microbiomes, may influence pathogenic processes and thus the onset and progression of various diseases, including neurological and psychiatric disorders. In fact, gut dysbiosis (microbiota dysregulation) has been associated with a range of neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's and motor neuron disease, as well as multiple sclerosis. The gut microbiota constitutes a dynamic microbial system constantly challenged by many biological variables, including environmental factors. Since the gut microbiota constitute a changeable and experience-dependent ecosystem, they provide potential therapeutic targets that can be modulated as new interventions for dysbiosis-related disorders, including neurodegenerative diseases. This article reviews the evidence for environmental modulation of gut microbiota and its relevance to brain disorders, exploring in particular the implications for neurodegenerative diseases. We will focus on three major environmental factors that are known to influence the onset and progression of those diseases, namely exercise, diet and stress. Further exploration of environmental modulation, acting via both peripheral (e.g. gut microbiota and associated metabolic dysfunction or 'metabolopathy') and central (e.g. direct effects on CNS neurons and glia) mechanisms, may lead to the development of novel therapeutic approaches, such as enviromimetics, for a wide range of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Geraldine Kong
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
165
|
Rod-In W, Monmai C, Lee SM, Jung SK, You S, Park WJ. Anti-Inflammatory Effects of Lipids Extracted from Arctoscopus japonicus Eggs on LPS-Stimulated RAW264.7 Cells. Mar Drugs 2019; 17:md17100580. [PMID: 31614594 PMCID: PMC6836062 DOI: 10.3390/md17100580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Arctoscopus japonicus is a cold-water marine fish. The present study investigated the fatty acid composition of A. japonicus egg lipids and their anti-inflammatory effects on LPS-stimulated RAW246.7 macrophages. The results showed that A. japonicus egg lipids contained primarily polyunsaturated fatty acids (52.9% of the total fatty acid content; mostly eicosapentaenoic acid [EPA, 21.2 ± 0.5%] and docosahexaenoic acid [DHA, 25.9 ± 0.1%]), followed by monounsaturated fatty acids and saturated fatty acids (23.7% and 23.4%, respectively). A. japonicus egg lipids significantly decreased nitric oxide (NO) production and suppressed the expression of immune-associated genes such as iNOS, COX-2, IL-1β, IL-6, and TNF-α LPS-stimulated RAW246.7 macrophages in dose-dependent manner. A. japonicus egg lipids also reduced the phosphorylation levels of NF-κB p-65, p38, ERK1/2, and JNK, key components of the NF-κB and MAPK pathways, suggesting that the lipid-induced anti-inflammatory activity is related to these signaling pathways. These results indicate that the lipids extracted from A. japonicus eggs have potential biofunctions and might be useful for regulating inflammation in macrophages.
Collapse
Affiliation(s)
- Weerawan Rod-In
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Korea.
| | - Chaiwat Monmai
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Korea.
| | - Sang-Min Lee
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Korea.
| | - Seok-Kyu Jung
- Department of Horticulture, Daegu Catholic University, Gyeongsan, Gyeongbuk 38430, Korea.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Korea.
| | - Woo Jung Park
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Korea.
| |
Collapse
|
166
|
Takeyama E, Islam A, Watanabe N, Tsubaki H, Fukushima M, Mamun MA, Sato S, Sato T, Eto F, Yao I, Ito TK, Horikawa M, Setou M. Dietary Intake of Green Nut Oil or DHA Ameliorates DHA Distribution in the Brain of a Mouse Model of Dementia Accompanied by Memory Recovery. Nutrients 2019; 11:E2371. [PMID: 31590339 PMCID: PMC6835595 DOI: 10.3390/nu11102371] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/31/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022] Open
Abstract
Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, has significant healthbenefits. Previous studies reported decreased levels of DHA and DHA-containing phosphatidylcholines inthe brain of animals suffering from Alzheimer's disease, the most common type of dementia; furthermore,DHA supplementation has been found to improve brain DHA levels and memory efficiency in dementia. Oilextracted from the seeds of Plukenetia volubilis (green nut oil; GNO) is also expected to have DHA like effectsas it contains approximately 50% α-linolenic acid, a precursor of DHA. Despite this, changes in the spatialdistribution of DHA in the brain of animals with dementia following GNO or DHA supplementation remainunexplored. In this study, desorption electrospray ionization imaging mass spectrometry (DESI-IMS) wasapplied to observe the effects of GNO or DHA supplementation upon the distribution of DHA in the brain ofmale senescence-accelerated mouse-prone 8 (SAMP8) mice, a mouse model of dementia. DESI-IMS revealedthat brain DHA distribution increased 1.85-fold and 3.67-fold in GNO-fed and DHA-fed SAMP8 mice,respectively, compared to corn oil-fed SAMP8 mice. Memory efficiency in SAMP8 mice was also improvedby GNO or DHA supplementation. In summary, this study suggests the possibility of GNO or DHAsupplementation for the prevention of dementia.
Collapse
Affiliation(s)
- Emiko Takeyama
- Department of Food Science and Nutrition, Graduate School of Human Life Sciences, Showa Women's University, 1-7-57 Taishido, Setagaya-ku, 154-8533 Tokyo, Japan.
- Institute of Women's Health Sciences, Showa Women's University, 1-7-57 Taishido, Setagaya-ku, Tokyo 154-8533, Japan.
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Nakamichi Watanabe
- Department of Food Science and Nutrition, Graduate School of Human Life Sciences, Showa Women's University, 1-7-57 Taishido, Setagaya-ku, 154-8533 Tokyo, Japan.
- Institute of Women's Health Sciences, Showa Women's University, 1-7-57 Taishido, Setagaya-ku, Tokyo 154-8533, Japan.
| | - Hiroe Tsubaki
- The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa-si, Tokyo 190-8562, Japan.
| | - Masako Fukushima
- Institute of Women's Health Sciences, Showa Women's University, 1-7-57 Taishido, Setagaya-ku, Tokyo 154-8533, Japan.
| | - Md Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Shumpei Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Fumihiro Eto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- Department of Optical Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Ikuko Yao
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- Department of Optical Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Takashi K Ito
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Makoto Horikawa
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| |
Collapse
|
167
|
Chang D, Zhao J, Zhang X, Lian H, Du X, Yuan R, Wen Y, Gao L. Effect of ketamine combined with DHA on lipopolysaccharide-induced depression-like behavior in rats. Int Immunopharmacol 2019; 75:105788. [PMID: 31377587 DOI: 10.1016/j.intimp.2019.105788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 11/19/2022]
Abstract
Depression has become a common mental illness, and studies have shown that neuroinflammation is associated with depression. Ketamine is a rapid antidepressant. In order to obtain better antidepressant effects, it is necessary to explore the efficacy of combination therapy with ketamine and other antidepressants. DHA is an unsaturated fatty acid with excellent application prospects due to its safety and antidepressant effects. This study was designed to investigate the effect of ketamine combined with DHA on lipopolysaccharide-induced depression-like behavior. In behavioral experiments, lipopolysaccharide prolongs the immobility time of the forced swimming and tail suspension tests in rats and reduces the sucrose preference. The combination of ketamine and DHA can reverse these changes and work better than the single application. Nissl staining showed that ketamine combined with DHA can reverse the nerve damage caused by lipopolysaccharide. Cell morphology observation the combination of ketamine and DHA group was more complete than that of LPS group. The combination of ketamine and DHA significantly decreased the levels of IL-1, IL-6 and TNF-ɑin hippocampus and PC12 cells and increased the content of BDNF. Immunofluorescence results showed that ketamine combined with DHA can effectively inhibit PP65 nuclear translocation. Western blot results showed that ketamine combined with DHA can effectively inhibit the expression of NF-KB in hippocampus and PC12 cells, and increase the expression of P-CREB and BDNF. In summary, the combination of ketamine with DHA may be a more effective treatment for depression caused by inflammation and is mediated by inhibition of the inflammatory pathway.
Collapse
Affiliation(s)
- Daiyue Chang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin 150030, China
| | - Jinghua Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin 150030, China
| | - Xintong Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin 150030, China
| | - HuiMin Lian
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin 150030, China
| | - XueMan Du
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin 150030, China
| | - Rui Yuan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin 150030, China
| | - Yajing Wen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin 150030, China
| | - Li Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin 150030, China.
| |
Collapse
|
168
|
Avallone R, Vitale G, Bertolotti M. Omega-3 Fatty Acids and Neurodegenerative Diseases: New Evidence in Clinical Trials. Int J Mol Sci 2019; 20:E4256. [PMID: 31480294 PMCID: PMC6747747 DOI: 10.3390/ijms20174256] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 01/17/2023] Open
Abstract
A nutritional approach could be a promising strategy to prevent or slow the progression of neurodegenerative diseases such as Parkinson's and Alzheimer's disease, since there is no effective therapy for these diseases so far. The beneficial effects of omega-3 fatty acids are now well established by a plethora of studies through their involvement in multiple biochemical functions, including synthesis of anti-inflammatory mediators, cell membrane fluidity, intracellular signaling, and gene expression. This systematic review will consider epidemiological studies and clinical trials that assessed the impact of supplementation or dietary intake of omega-3 polyunsaturated fatty acids on neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Indeed, treatment with omega-3 fatty acids, being safe and well tolerated, represents a valuable and biologically plausible tool in the management of neurodegenerative diseases in their early stages.
Collapse
Affiliation(s)
- Rossella Avallone
- Department of Life Sciences, Modena and Reggio Emilia University, 41125 Modena, Italy.
| | - Giovanni Vitale
- Department of Life Sciences, Modena and Reggio Emilia University, 41125 Modena, Italy
| | - Marco Bertolotti
- Division of Geriatric Medicine, Department of Biomedical, Metabolic and Neural Sciences, and Center for Gerontological Evaluation and Research, Modena and Reggio Emilia University, 41126 Modena, Italy
| |
Collapse
|
169
|
Cummings J, Passmore P, McGuinness B, Mok V, Chen C, Engelborghs S, Woodward M, Manzano S, Garcia-Ribas G, Cappa S, Bertolucci P, Chu LW. Souvenaid in the management of mild cognitive impairment: an expert consensus opinion. ALZHEIMERS RESEARCH & THERAPY 2019; 11:73. [PMID: 31421681 PMCID: PMC6698334 DOI: 10.1186/s13195-019-0528-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Background Mild cognitive impairment (MCI) among an aging global population is a growing challenge for healthcare providers and payers. In many cases, MCI is an ominous portent for dementia. Early and accurate diagnosis of MCI provides a window of opportunity to improve the outcomes using a personalized care plan including lifestyle modifications to reduce the impact of modifiable risk factors (for example, blood pressure control and increased physical activity), cognitive training, dietary advice, and nutritional support. Souvenaid is a once-daily drink containing a mixture of precursors and cofactors (long-chain omega-3 fatty acids, uridine, choline, B vitamins, vitamin C, vitamin E, and selenium), which was developed to support the formation and function of neuronal membranes and synapses. Healthcare providers, patients, and carers require expert advice about the use of Souvenaid. Methods An international panel of experts was convened to review the evidence and to make recommendations about the diagnosis and management of MCI, identification of candidates for Souvenaid, and use of Souvenaid in real-world practice. This article provides a summary of the expert opinions and makes recommendations for clinical practice and future research. Summary of opinion Early diagnosis of MCI requires the use of suitable neuropsychological tests combined with a careful clinical history. A multimodal approach is recommended; dietary and nutritional interventions should be considered alongside individualized lifestyle modifications. Although single-agent nutritional supplements have failed to produce cognitive benefits for patients with MCI, a broader nutritional approach warrants consideration. Evidence from randomized controlled trials suggests that Souvenaid should be considered as an option for some patients with early Alzheimer’s disease (AD), including those with MCI due to AD (prodromal AD). Conclusion Early and accurate diagnosis of MCI provides a window of opportunity to improve the outcomes using a multimodal management approach including lifestyle risk factor modification and consideration of the multinutrient Souvenaid. Electronic supplementary material The online version of this article (10.1186/s13195-019-0528-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Department of Brain Health, School of Integrated Health Sciences, UNLV; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA.
| | - Peter Passmore
- Centre for Public Health, Institute of Clinical Sciences, Queens University Belfast, Belfast, UK
| | - Bernadette McGuinness
- Centre for Public Health, Institute of Clinical Sciences, Queens University Belfast, Belfast, UK
| | - Vincent Mok
- Therese Pei Fong Chow Research Center for Prevention of Dementia, Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Christopher Chen
- Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Sebastiaan Engelborghs
- Reference Centre for Biological Markers of Dementia (BIODEM), University of Antwerp, Antwerp, Belgium.,Department of Neurology, Centre for Neurosciences, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Michael Woodward
- Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | | | | | - Stefano Cappa
- University School for Advanced Studies IUSS, Pavia and IRCCS Istituto Centro, S. Giovanni di Dio, Brescia, Italy
| | - Paulo Bertolucci
- Service of Cognitive and Behavioral Neurology, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Leung-Wing Chu
- Department of Medicine, The University of Hong Kong and Hong Kong Brain Memory Centre, Hong Kong Special Administrative Region, China
| |
Collapse
|
170
|
Soldevila-Domenech N, Boronat A, Langohr K, de la Torre R. N-of-1 Clinical Trials in Nutritional Interventions Directed at Improving Cognitive Function. Front Nutr 2019; 6:110. [PMID: 31396517 PMCID: PMC6663977 DOI: 10.3389/fnut.2019.00110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/08/2019] [Indexed: 12/30/2022] Open
Abstract
Longer life expectancy has led to an increase in the prevalence of age-related cognitive decline and dementia worldwide. Due to the current lack of effective treatment for these conditions, preventive strategies represent a research priority. A large body of evidence suggests that nutrition is involved in the pathogenesis of age-related cognitive decline, but also that it may play a critical role in slowing down its progression. At a population level, healthy dietary patterns interventions, such as the Mediterranean and the MIND diets, have been associated with improved cognitive performance and a decreased risk of neurodegenerative disease development. In the era of evidence-based medicine and patient-centered healthcare, personalized nutritional recommendations would offer a considerable opportunity in preventing cognitive decline progression. N-of-1 clinical trials have emerged as a fundamental design in evidence-based medicine. They consider each individual as the only unit of observation and intervention. The aggregation of series of N-of-1 clinical trials also enables population-level conclusions. This review provides a general view of the current scientific evidence regarding nutrition and cognitive decline, and critically states its limitations when translating results into the clinical practice. Furthermore, we suggest methodological strategies to develop N-of-1 clinical trials focused on nutrition and cognition in an older population. Finally, we evaluate the potential challenges that researchers may face when performing studies in precision nutrition and cognition.
Collapse
Affiliation(s)
- Natalia Soldevila-Domenech
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Klaus Langohr
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Barcelona/Barcelonatech, Barcelona, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
171
|
Torshin IY, Gromova OA, Kobalava ZD. Concerning the “repression” of ω -3 polyunsaturated fatty acids by adepts of evidence-based medicine. ACTA ACUST UNITED AC 2019. [DOI: 10.17749/2070-4909.2019.12.2.91-114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- I. Yu. Torshin
- Federal Research Center “Informatics and Management”, Russian Academy of Sciences; Moscow State University
| | - O. A. Gromova
- Federal Research Center “Informatics and Management”, Russian Academy of Sciences; Moscow State University
| | | |
Collapse
|
172
|
Quinn JF. Lost in Translation? Finding Our Way To Effective Alzheimer's Disease Therapies. J Alzheimers Dis 2019; 64:S33-S39. [PMID: 29758942 DOI: 10.3233/jad-179930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Efforts over the past two decades to develop effective disease-modifying treatments for Alzheimer's disease have been disappointing, while parallel efforts in another chronic neurologic disease, multiple sclerosis, have been remarkably productive. In an effort to advance development of therapeutics for Alzheimer's disease, these two fields are contrasted in terms of the utility of animal models, definition of study populations, and utility of biomarkers. Possible solutions are suggested, and the review concludes with description of some active peer-reviewed, publicly funded clinical studies which address some of the identified weaknesses in past clinical trials for age-related dementia.
Collapse
Affiliation(s)
- Joseph F Quinn
- Oregon Health and Science University, Portland VA Medical Center, Department of Neurology, Portland, OR, USA
| |
Collapse
|
173
|
Fiala M, Restrepo L, Pellegrini M. Immunotherapy of Mild Cognitive Impairment by ω-3 Supplementation: Why Are Amyloid-β Antibodies and ω-3 Not Working in Clinical Trials? J Alzheimers Dis 2019; 62:1013-1022. [PMID: 29103035 PMCID: PMC5870008 DOI: 10.3233/jad-170579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article reviews the basic tenets of a clinical approach to effective immunotherapy of Alzheimer's disease (AD) in patients with mild cognitive impairment (MCI). Although one randomized controlled study in early MCI patients by fish-derived omega-3 fatty acids (ω-3) showed slowing of disease progression, large clinical trials with different products have failed to show cognitive effects. Macrophages of healthy subjects phagocytize and degrade amyloid-β1 - 42 (Aβ) in the brain tissues, whereas macrophages of patients with AD and MCI are functionally defective. ω-3 and ω-3-derived specialized proresolving mediators (SPMs), such as resolvin D1, have powerful biochemical and immunological effects, which may repair the functions of MCI patients' macrophages in the brain's clearance of Aβ. Unfortunately, ω-3 products on the market have a variable quality. Nutritional supplementation with a combination drink called Smartfish with an emulsion of ω-3 and other fatty acids, antioxidants, 1,25-dihydroxy vitamin D3, and resveratrol improved the innate immune system of MCI patients by modulation of macrophage type to the pro-phagocytic M1-M2 type with an effective unfolded protein response against endoplasmic reticulum stress. Some MCI patients maintained their initial cognitive status for three years on Smartfish supplementation. Future randomized clinical trials should investigate the immune effects of ω-3, 1,25-dihydroxy vitamin D3, and SPMs on macrophage type, function, and biochemistry in parallel with cognitive effects.
Collapse
Affiliation(s)
- Milan Fiala
- Department of Molecular, Cell, and Developmental Biology, UCLA Life Sciences, Los Angeles, CA, USA
| | - Lucas Restrepo
- Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, UCLA Life Sciences, Los Angeles, CA, USA
| |
Collapse
|
174
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MDC. Natural Compounds for Alzheimer's Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. Int J Mol Sci 2019; 20:E2313. [PMID: 31083327 PMCID: PMC6539304 DOI: 10.3390/ijms20092313] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder related with the increase of age and it is the main cause of dementia in the world. AD affects cognitive functions, such as memory, with an intensity that leads to several functional losses. The continuous increase of AD incidence demands for an urgent development of effective therapeutic strategies. Despite the extensive research on this disease, only a few drugs able to delay the progression of the disease are currently available. In the last years, several compounds with pharmacological activities isolated from plants, animals and microorganisms, revealed to have beneficial effects for the treatment of AD, targeting different pathological mechanisms. Thus, a wide range of natural compounds may play a relevant role in the prevention of AD and have proven to be efficient in different preclinical and clinical studies. This work aims to review the natural compounds that until this date were described as having significant benefits for this neurological disease, focusing on studies that present clinical trials.
Collapse
Affiliation(s)
- Stephanie Andrade
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria João Ramalho
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Joana Angélica Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria do Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
175
|
Pardeshi R, Bolshette N, Gadhave K, Arfeen M, Ahmed S, Jamwal R, Hammock BD, Lahkar M, Goswami SK. Docosahexaenoic Acid Increases the Potency of Soluble Epoxide Hydrolase Inhibitor in Alleviating Streptozotocin-Induced Alzheimer's Disease-Like Complications of Diabetes. Front Pharmacol 2019; 10:288. [PMID: 31068802 PMCID: PMC6491817 DOI: 10.3389/fphar.2019.00288] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 01/05/2023] Open
Abstract
Diabetes is a risk factor for Alzheimer's disease and it is associated with significant memory loss. In the present study, we hypothesized that the soluble epoxide hydrolase (sEH) inhibitor N-[1-(1-oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl)-urea (also known as TPPU) could alleviate diabetes-aggravated Alzheimer's disease-like symptoms by improving memory and cognition, and reducing the oxidative stress and inflammation associated with this condition. Also, we evaluated the effect of edaravone, an antioxidant on diabetes-induced Alzheimer's-like complications and the additive effect of docosahexaenoic acid (DHA) on the efficacy of TPPU. Diabetes was induced in male Sprague-Dawley rats by intraperitoneally administering streptozotocin (STZ). Six weeks after induction of diabetes, animals were either treated with vehicle, edaravone (3 or 10 mg/kg), TPPU (1 mg/kg) or TPPU (1 mg/kg) + DHA (100 mg/kg) for 2 weeks. The results demonstrate that the treatments increased the memory response of diabetic rats, in comparison to untreated diabetic rats. Indeed, DHA + TPPU were more effective than TPPU alone in reducing the symptoms monitored. All drug treatments reduced oxidative stress and minimized inflammation in the brain of diabetic rats. Expression of the amyloid precursor protein (APP) was increased in the brain of diabetic rats. Treatment with edaravone (10 mg/kg), TPPU or TPPU + DHA minimized the level of APP. The activity of acetylcholinesterase (AChE) which metabolizes acetylcholine was increased in the brain of diabetic rats. All the treatments except edaravone (3 mg/kg) were effective in decreasing the activity of AChE and TPPU + DHA was more efficacious than TPPU alone. Intriguingly, the histological changes in hippocampus after treatment with TPPU + DHA showed significant protection of neurons against STZ-induced neuronal damage. Overall, we found that DHA improved the efficacy of TPPU in increasing neuronal survival and memory, decreasing oxidative stress and inflammation possibly by stabilizing anti-inflammatory and neuroprotective epoxides of DHA. In the future, further evaluating the detailed mechanisms of action of sEH inhibitor and DHA could help to develop a strategy for the management of Alzheimer's-like complications in diabetes.
Collapse
Affiliation(s)
- Rohit Pardeshi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Nityanand Bolshette
- Institutional Level Biotech Hub (IBT Hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Mohammad Arfeen
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Sahabuddin Ahmed
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Rohitash Jamwal
- Biomedical and Pharmaceutical Sciences, The University of Rhode Island, Kingston, RI, United States
| | - Bruce D. Hammock
- Hammock Laboratory of Pesticide Biotechnology, Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Mangala Lahkar
- Institutional Level Biotech Hub (IBT Hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Sumanta Kumar Goswami
- Hammock Laboratory of Pesticide Biotechnology, Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
176
|
Randomized Trial of Marine n-3 Polyunsaturated Fatty Acids for the Prevention of Cerebral Small Vessel Disease and Inflammation in Aging (PUFA Trial): Rationale, Design and Baseline Results. Nutrients 2019; 11:nu11040735. [PMID: 30934894 PMCID: PMC6521224 DOI: 10.3390/nu11040735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Vascular risk factors for age-related cognitive decline are significant, and their management may ultimately prove the most successful strategy for reducing risk and sustaining cognitive health. This randomized, double-blinded, placebo-controlled trial with parallel group allocation to either marine n-3 polyunsaturated fatty acids (n-3 PUFA) or soybean oil placebo assesses the effects on the total volume of accumulation in cerebral white matter hyperintensities (WMH), a potentially modifiable neurovascular component of age-related cognitive decline. Total WMH accumulation over 3 years is the primary endpoint. The safety and efficacy of n-3 PUFA is evaluated in older adults with significant WMH and suboptimum plasma n-3 PUFA as inclusion criteria. One hundred and two non-demented older adults were enrolled with a mean age of 81.1 (±4.4) years, WMH of 19.4 (±16.1) cm3, and a plasma n-3 PUFA of 86.64 (±29.21) µg/mL. 61% were female, 28% were apolipoprotein E epsilon 4 carriers, and the mean mini-mental state exam (MMSE) was 27.9 (±1.7). This trial provides an initial evaluation of n-3 PUFA effects on WMH, a reproducible and valid risk biomarker for cognitive decline, as well as on inflammatory biomarkers thought to play a role in WMH accumulation. We present the baseline results and operational experience of enriching a study population on advanced age, blood n-3 PUFA, and magnetic resonance imaging (MRI) derived WMH with biomarker outcomes (WMH, inflammation markers) in a dementia prevention paradigm.
Collapse
|
177
|
The effects of omega-3 fatty acid deficiency during development on oxidative fatty acid degradation during maturity in a mouse model of Alzheimer's disease. Neurobiol Aging 2019; 79:66-74. [PMID: 31029017 DOI: 10.1016/j.neurobiolaging.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Metabolic conditions during brain development may have long-term consequences on brain metabolism, thereby influencing the risk of neurodegenerative disease in later life. To ascertain the long-term consequences of omega-3 (ω3) fatty acid deficiency during brain development on oxidative fatty acid degradation in the brain and the development of Alzheimer-like pathology, wild-type (WT) female mice were fed diets that were either replete or deficient in ω3 fatty acids for 5 weeks. These females were then mated with hemizygous 5xFAD male transgenic (TG) mouse models of Alzheimer's disease, and the progeny were continued on diets that were either ω3-replete or ω3-deficient. When the progeny were 6 months of age, they received radiolabeled arachidonic acid (ARA) by intracerebroventricular injection. Five days after these injections, the brains were harvested and oxidative degradation of the radiolabeled ARA was characterized. Among the progeny of female mice on an ω3-replete diet, TG progeny had lower PSD-95 expression and higher oxidative ARA degradation than WT progeny. Progeny on an ω3-deficient diet, however, had no significant differences in PSD-95 expression between TG and WT mice, or in the extent of ARA degradation. In TG mice, an ω3-deficient diet reduced oxidative ARA degradation to a greater extent than in WT mice. The reductions in oxidative ARA degradation occurred even if the progeny of female mice on an ω3-deficient diet resumed an ω3-replete diet immediately on weaning. These results demonstrate that dietary ω3 fatty acid deficiency during development can cause long-term changes in the expression of a synaptic marker and long-term reductions in the rate of ARA degradation in the WT brain, which are not completely alleviated by an ω3-replete diet after weaning. The elimination of differences between TG and WT mice by an ω3-deficient diet suggests that mechanisms regulating PSD-95 expression and the oxidative degradation of ARA are related and that the timing of dietary ω3 intake during development may influence Alzheimer's disease-related pathological changes later in life.
Collapse
|
178
|
Provenza FD, Kronberg SL, Gregorini P. Is Grassfed Meat and Dairy Better for Human and Environmental Health? Front Nutr 2019; 6:26. [PMID: 30941351 PMCID: PMC6434678 DOI: 10.3389/fnut.2019.00026] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/22/2019] [Indexed: 01/29/2023] Open
Abstract
The health of livestock, humans, and environments is tied to plant diversity-and associated phytochemical richness-across landscapes. Health is enhanced when livestock forage on phytochemically rich landscapes, is reduced when livestock forage on simple mixture or monoculture pastures or consume high-grain rations in feedlots, and is greatly reduced for people who eat highly processed diets. Circumstantial evidence supports the hypothesis that phytochemical richness of herbivore diets enhances biochemical richness of meat and dairy, which is linked with human and environmental health. Among many roles they play in health, phytochemicals in herbivore diets protect meat and dairy from protein oxidation and lipid peroxidation that cause low-grade systemic inflammation implicated in heart disease and cancer in humans. Yet, epidemiological and ecological studies critical of red meat consumption do not discriminate among meats from livestock fed high-grain rations as opposed to livestock foraging on landscapes of increasing phytochemical richness. The global shift away from phytochemically and biochemically rich wholesome foods to highly processed diets enabled 2.1 billion people to become overweight or obese and increased the incidence of type II diabetes, heart disease, and cancer. Unimpeded, these trends will add to a projected substantial increase in greenhouse gas emissions (GHGE) from producing food and clearing land by 2050. While agriculture contributes one quarter of GHGE, livestock can play a sizable role in climate mitigation. Of 80 ways to alleviate climate change, regenerative agriculture-managed grazing, silvopasture, tree intercropping, conservation agriculture, and farmland restoration-jointly rank number one as ways to sequester GHG. Mitigating the impacts of people in the Anthropocene can be enabled through diet to improve human and environmental health, but that will require profound changes in society. People will have to learn we are members of nature's communities. What we do to them, we do to ourselves. Only by nurturing them can we nurture ourselves.
Collapse
Affiliation(s)
| | - Scott L. Kronberg
- Northern Great Plains Research Laboratory, Agricultural Research Service (USDA), Mandan, ND, United States
| | - Pablo Gregorini
- Department of Agricultural Science, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
179
|
Zwilling CE, Talukdar T, Zamroziewicz MK, Barbey AK. Nutrient biomarker patterns, cognitive function, and fMRI measures of network efficiency in the aging brain. Neuroimage 2019; 188:239-251. [DOI: 10.1016/j.neuroimage.2018.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 11/26/2022] Open
|
180
|
Chen ST, Volle D, Jalil J, Wu P, Small GW. Health-Promoting Strategies for the Aging Brain. Am J Geriatr Psychiatry 2019; 27:213-236. [PMID: 30686664 DOI: 10.1016/j.jagp.2018.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/31/2022]
Abstract
As the world's population ages and people live longer, the changes in the aging brain present substantial challenges to our health and society. With greater longevity come age-related diseases, many of which have direct and indirect influences on the health of the brain. Although there is some degree of predictable decline in brain functioning with aging, meaningful cognitive decline is not inevitable and is perhaps preventable. In this review, we present the case that the course of aging-related brain disease and dysfunction can be modified. We present the evidence for conditions and risk factors that may contribute to cognitive decline and dementia and for interventions that may mitigate their impact on cognitive functioning later in life, or even prevent them and their cognitive sequelae from developing. Although much work remains to be done to meet the challenges of the aging brain, strategies to promote its health have been demonstrated and offer much promise, which can only be realized if we mount a vigorous public health effort to implement these strategies.
Collapse
Affiliation(s)
- Stephen T Chen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles; the University of California, Los Angeles, Longevity Center, Los Angeles; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles.
| | - Dax Volle
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles; the University of California, Los Angeles, Longevity Center, Los Angeles; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles
| | - Jason Jalil
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles; the University of California, Los Angeles, Longevity Center, Los Angeles; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles
| | - Pauline Wu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles; the University of California, Los Angeles, Longevity Center, Los Angeles; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles
| | - Gary W Small
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles; the University of California, Los Angeles, Longevity Center, Los Angeles; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles
| |
Collapse
|
181
|
Hamasaki A, Akazawa N, Yoshikawa T, Myoenzono K, Tanahashi K, Sawano Y, Nakata Y, Maeda S. Combined effects of lactotripeptide and aerobic exercise on cognitive function and cerebral oxygenation in middle-aged and older adults. Am J Clin Nutr 2019; 109:353-360. [PMID: 30624594 DOI: 10.1093/ajcn/nqy235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022] Open
Abstract
Background Age-related declines in cognitive function and cerebral perfusion increase the risk of dementia. Although nutrition and exercise may be effective in reducing cognitive decline, the effect of lactotripeptide (LTP) on cerebral oxygenation and hemodynamics remains unclear. Objectives The aim of this study was to investigate the effects of LTP ingestion on cerebral oxygenation, cognitive function, and vascular function in middle-aged and older adults with or without an exercise intervention. Methods We recruited 2 separate groups of participants, one with and one without an exercise intervention. Each group was then randomly assigned into a placebo group and an LTP group. The participants ingested a placebo or LTP every day. The exercise group performed aerobic exercises 4-6 d/wk. Before and after the 8-wk intervention, we measured oxygenated hemoglobin (oxy-Hb) concentration (oxy-Hb change) in the prefrontal cortex during the Stroop task (primary outcome), Stroop interference time, and carotid artery β-stiffness (both secondary outcomes). Results Sixty-four participants completed the study. Changes in oxy-Hb signal in the prefrontal cortex were greater in the LTP group than in the placebo group under both the exercise and nonexercise conditions (P < 0.05). In addition, the magnitude of improvement in the oxy-Hb change in the left prefrontal cortex was correlated with Stroop interference (r = -0.39, P < 0.05) and carotid β-stiffness (r = -0.41, P < 0.05). Conclusions An 8-wk intake of LTP increased cerebral oxygenation in the prefrontal cortex region in middle-aged and older adults, with and without exercise. The intervention-induced improvements in brain neural activation were associated with cognitive and vascular function. This trial was registered at www.umin.ac.jp as UMIN000022313.
Collapse
Affiliation(s)
- Ai Hamasaki
- Graduate School of Comprehensive Human Sciences
| | - Nobuhiko Akazawa
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Sport Research, Japan Institute of Sports Sciences, Tokyo, Japan
| | | | | | | | | | - Yoshio Nakata
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
182
|
Abstract
PURPOSE OF REVIEW Various groups have explored the effect of apolipoprotein E (APOE) on neurodegeneration through nutritional and metabolic alterations. In this review, we hope to summarize recent findings in humans as well as preclinical APOE models. RECENT FINDINGS Metabolic pathways including lipid metabolism appear to play a large role in the pathophysiology of Alzheimer's disease. Carrier status of the E4 variant of the APOE gene is the strongest genetic risk factor for Alzheimer's disease, and increasing evidence suggests that E4 carriers may respond differently to a host of dietary and metabolic-related treatments. A new appreciation is forming for the role of APOE in cerebral metabolism, and how nutritional factors may impact this role. SUMMARY Considering the role dietary factors play in APOE-associated cognitive decline will help us to understand how nutritional interventions may facilitate or mitigate disease progression.
Collapse
Affiliation(s)
- Brandon C. Farmer
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Lance A. Johnson
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Angela J. Hanson
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Healthcare System, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
183
|
Sylvestre DA, Taha AY. Long-chain omega-3 polyunsaturated fatty acids and neuroinflammation - Efficacy may depend on dietary alpha-linolenic and linoleic acid background levels. Brain Behav Immun 2019; 76:3-4. [PMID: 30468860 DOI: 10.1016/j.bbi.2018.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Duncan A Sylvestre
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
184
|
Fernández-Sanz P, Ruiz-Gabarre D, García-Escudero V. Modulating Effect of Diet on Alzheimer's Disease. Diseases 2019; 7:E12. [PMID: 30691140 PMCID: PMC6473547 DOI: 10.3390/diseases7010012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
As life expectancy is growing, neurodegenerative disorders, such as Alzheimer's disease, are increasing. This disease is characterised by the accumulation of intracellular neurofibrillary tangles formed by hyperphosphorylated tau protein, senile plaques composed of an extracellular deposit of β-amyloid peptide (Aβ), and neuronal loss. This is accompanied by deficient mitochondrial function, increased oxidative stress, altered inflammatory response, and autophagy process impairment. The present study gathers scientific evidence that demonstrates that specific nutrients exert a direct effect on both Aβ production and Tau processing and their elimination by autophagy activation. Likewise, certain nutrients can modulate the inflammatory response and the oxidative stress related to the disease. However, the extent to which these effects come with beneficial clinical outcomes remains unclear. Even so, several studies have shown the benefits of the Mediterranean diet on Alzheimer's disease, due to its richness in many of these compounds, to which can be attributed their neuroprotective properties due to the pleiotropic effect they show on the aforementioned processes. These indications highlight the potential role of adequate dietary recommendations for clinical management of both Alzheimer's diagnosed patients and those in risk of developing it, emphasising once again the importance of diet on health.
Collapse
Affiliation(s)
- Paloma Fernández-Sanz
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| | - Daniel Ruiz-Gabarre
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| | - Vega García-Escudero
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| |
Collapse
|
185
|
Huisa BN, Thomas RG, Jin S, Oltersdorf T, Taylor C, Feldman HH. Memantine and Acetylcholinesterase Inhibitor Use in Alzheimer’s Disease Clinical Trials: Potential for Confounding by Indication. J Alzheimers Dis 2019; 67:707-713. [DOI: 10.3233/jad-180684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Branko N. Huisa
- Department of Neurosciences, University of California, San Diego, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California, San Diego, CA, USA
| | - Ronald G. Thomas
- Department of Neurosciences, University of California, San Diego, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California, San Diego, CA, USA
- Department of Family Medicine and Public Health, University of California, San Diego, CA, USA
| | - Shelia Jin
- Department of Neurosciences, University of California, San Diego, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California, San Diego, CA, USA
| | - Tilman Oltersdorf
- Alzheimer’s Disease Cooperative Study, University of California, San Diego, CA, USA
| | - Curtis Taylor
- Alzheimer’s Disease Cooperative Study, University of California, San Diego, CA, USA
| | - Howard H. Feldman
- Department of Neurosciences, University of California, San Diego, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California, San Diego, CA, USA
| |
Collapse
|
186
|
Omega-3 Polyunsaturated Fatty Acid Deficiency and Progressive Neuropathology in Psychiatric Disorders: A Review of Translational Evidence and Candidate Mechanisms. Harv Rev Psychiatry 2019; 27:94-107. [PMID: 30633010 PMCID: PMC6411441 DOI: 10.1097/hrp.0000000000000199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Meta-analytic evidence indicates that mood and psychotic disorders are associated with both omega-3 polyunsaturated fatty acid (omega-3 PUFA) deficits and progressive regional gray and white matter pathology. Although the association between omega-3 PUFA insufficiency and progressive neuropathological processes remains speculative, evidence from translational research suggests that omega-3 PUFA insufficiency may represent a plausible and modifiable risk factor not only for enduring neurodevelopmental abnormalities in brain structure and function, but also for increased vulnerability to neurodegenerative processes. Recent evidence from human neuroimaging studies suggests that lower omega-3 PUFA intake/status is associated with accelerated gray matter atrophy in healthy middle-aged and elderly adults, particularly in brain regions consistently implicated in mood and psychotic disorders, including the amygdala, anterior cingulate, hippocampus, prefrontal cortex, and temporal cortex. Human neuroimaging evidence also suggests that both low omega-3 PUFA intake/status and psychiatric disorders are associated with reductions in white matter microstructural integrity and increased rates of white matter hyperintensities. Preliminary evidence suggests that increasing omega-3 PUFA status is protective against gray matter atrophy and deficits in white matter microstructural integrity in patients with mood and psychotic disorders. Plausible mechanisms mediating this relationship include elevated pro-inflammatory signaling, increased synaptic regression, and reductions in cerebral perfusion. Together these associations encourage additional neuroimaging research to directly investigate whether increasing omega-3 PUFA status can mitigate neuropathological processes in patients with, or at high risk for, psychiatric disorders.
Collapse
|
187
|
Chitre NM, Moniri NH, Murnane KS. Omega-3 Fatty Acids as Druggable Therapeutics for Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:735-749. [PMID: 31724519 PMCID: PMC7204890 DOI: 10.2174/1871527318666191114093749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/07/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders are commonly associated with a complex pattern of pathophysiological hallmarks, including increased oxidative stress and neuroinflammation, which makes their treatment challenging. Omega-3 Fatty Acids (O3FA) are natural products with reported neuroprotective, anti-inflammatory, and antioxidant effects. These effects have been attributed to their incorporation into neuronal membranes or through the activation of intracellular or recently discovered cell-surface receptors (i.e., Free-Fatty Acid Receptors; FFAR). Molecular docking studies have investigated the roles of O3FA as agonists of FFAR and have led to the development of receptor-specific targeted agonists for therapeutic purposes. Moreover, novel formulation strategies for targeted delivery of O3FA to the brain have supported their development as therapeutics for neurodegenerative disorders. Despite the compelling evidence of the beneficial effects of O3FA for several neuroprotective functions, they are currently only available as unregulated dietary supplements, with only a single FDA-approved prescription product, indicated for triglyceride reduction. This review highlights the relative safety and efficacy of O3FA, their drug-like properties, and their capacity to be formulated in clinically viable drug delivery systems. Interestingly, the presence of cardiac conditions such as hypertriglyceridemia is associated with brain pathophysiological hallmarks of neurodegeneration, such as neuroinflammation, thereby further suggesting potential therapeutic roles of O3FA for neurodegenerative disorders. Taken together, this review article summarizes and integrates the compelling evidence regarding the feasibility of developing O3FA and their synthetic derivatives as potential drugs for neurodegenerative disorders.
Collapse
Affiliation(s)
- Neha M. Chitre
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| | - Nader H. Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| | - Kevin S. Murnane
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| |
Collapse
|
188
|
Basic eluent for rapid and comprehensive analysis of fatty acid isomers using reversed-phase high performance liquid chromatography/Fourier transform mass spectrometry. J Chromatogr A 2019; 1585:113-120. [DOI: 10.1016/j.chroma.2018.11.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/27/2018] [Accepted: 11/07/2018] [Indexed: 11/20/2022]
|
189
|
Cummings J. The Role of Biomarkers in Alzheimer's Disease Drug Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:29-61. [PMID: 30747416 DOI: 10.1007/978-3-030-05542-4_2] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomarkers have a key role in Alzheimer's disease (AD) drug development. Biomarkers can assist in diagnosis, demonstrate target engagement, support disease modification, and monitor for safety. The amyloid (A), tau (T), neurodegeneration (N) Research Framework emphasizes brain imaging and CSF measures relevant to disease diagnosis and staging and can be applied to drug development and clinical trials. Demonstration of target engagement in Phase 2 is critical before advancing a treatment candidate to Phase 3. Trials with biomarker outcomes are shorter and smaller than those required to show clinical benefit and are important to understanding the biological impact of an agent and inform go/no-go decisions. Companion diagnostics are required for safe and effective use of treatments and may emerge in AD drug development programs. Complementary biomarkers inform the use of therapies but are not mandatory for use. Biomarkers promise to de-risk AD drug development, attract sponsors to AD research, and accelerate getting new drugs to those with or at risk for AD.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA.
| |
Collapse
|
190
|
Kanubaddi KR, Yang SH, Wu LW, Lee CH, Weng CF. Nanoparticle-conjugated nutraceuticals exert prospectively palliative of amyloid aggregation. Int J Nanomedicine 2018; 13:8473-8485. [PMID: 30587972 PMCID: PMC6294069 DOI: 10.2147/ijn.s179484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, the most common causes of dementia is a multifactorial pathology categorized by a complex etiology. Numerous nutraceuticals have been clinically evaluated, but some of the trials failed. However, natural compounds have some limitations due to their poor bioavailability, ineffective capability to cross the blood-brain barrier, or less therapeutic effects on AD. To overcome these disadvantages, nanoparticle-conjugated natural products could promote the bioavailability and enhance the therapeutic efficacy of AD when compared with a naked drug. This application generates and implements new prospect for drug discovery in neurodegenerative diseases. In this article, we confer AD pathology, review natural products in clinical trials, and ascertain the importance of nanomedicine coupled with natural compounds for AD.
Collapse
Affiliation(s)
- Kiran Reddy Kanubaddi
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan,
| | - Shin-Han Yang
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan,
| | - Li-Wei Wu
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan,
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan,
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan,
| |
Collapse
|
191
|
Liu Y, Wei M, Yue K, Hu M, Li S, Men L, Pi Z, Liu Z, Liu Z. Study on Urine Metabolic Profile of Aβ25–35-Induced Alzheimer's Disease Using UHPLC-Q-TOF-MS. Neuroscience 2018; 394:30-43. [DOI: 10.1016/j.neuroscience.2018.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/28/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022]
|
192
|
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KHO, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11:CD003177. [PMID: 30521670 PMCID: PMC6517311 DOI: 10.1002/14651858.cd003177.pub4] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Researchers have suggested that omega-3 polyunsaturated fatty acids from oily fish (long-chain omega-3 (LCn3), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)), as well as from plants (alpha-linolenic acid (ALA)) benefit cardiovascular health. Guidelines recommend increasing omega-3-rich foods, and sometimes supplementation, but recent trials have not confirmed this. OBJECTIVES To assess effects of increased intake of fish- and plant-based omega-3 for all-cause mortality, cardiovascular (CVD) events, adiposity and lipids. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017, plus ClinicalTrials.gov and World Health Organization International Clinical Trials Registry to September 2016, with no language restrictions. We handsearched systematic review references and bibliographies and contacted authors. SELECTION CRITERIA We included randomised controlled trials (RCTs) that lasted at least 12 months and compared supplementation and/or advice to increase LCn3 or ALA intake versus usual or lower intake. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data and assessed validity. We performed separate random-effects meta-analysis for ALA and LCn3 interventions, and assessed dose-response relationships through meta-regression. MAIN RESULTS We included 79 RCTs (112,059 participants) in this review update and found that 25 were at low summary risk of bias. Trials were of 12 to 72 months' duration and included adults at varying cardiovascular risk, mainly in high-income countries. Most studies assessed LCn3 supplementation with capsules, but some used LCn3- or ALA-rich or enriched foods or dietary advice compared to placebo or usual diet. LCn3 doses ranged from 0.5g/d LCn3 to > 5 g/d (16 RCTs gave at least 3g/d LCn3).Meta-analysis and sensitivity analyses suggested little or no effect of increasing LCn3 on all-cause mortality (RR 0.98, 95% CI 0.90 to 1.03, 92,653 participants; 8189 deaths in 39 trials, high-quality evidence), cardiovascular mortality (RR 0.95, 95% CI 0.87 to 1.03, 67,772 participants; 4544 CVD deaths in 25 RCTs), cardiovascular events (RR 0.99, 95% CI 0.94 to 1.04, 90,378 participants; 14,737 people experienced events in 38 trials, high-quality evidence), coronary heart disease (CHD) mortality (RR 0.93, 95% CI 0.79 to 1.09, 73,491 participants; 1596 CHD deaths in 21 RCTs), stroke (RR 1.06, 95% CI 0.96 to 1.16, 89,358 participants; 1822 strokes in 28 trials) or arrhythmia (RR 0.97, 95% CI 0.90 to 1.05, 53,796 participants; 3788 people experienced arrhythmia in 28 RCTs). There was a suggestion that LCn3 reduced CHD events (RR 0.93, 95% CI 0.88 to 0.97, 84,301 participants; 5469 people experienced CHD events in 28 RCTs); however, this was not maintained in sensitivity analyses - LCn3 probably makes little or no difference to CHD event risk. All evidence was of moderate GRADE quality, except as noted.Increasing ALA intake probably makes little or no difference to all-cause mortality (RR 1.01, 95% CI 0.84 to 1.20, 19,327 participants; 459 deaths, 5 RCTs),cardiovascular mortality (RR 0.96, 95% CI 0.74 to 1.25, 18,619 participants; 219 cardiovascular deaths, 4 RCTs), and CHD mortality (1.1% to 1.0%, RR 0.95, 95% CI 0.72 to 1.26, 18,353 participants; 193 CHD deaths, 3 RCTs) and ALA may make little or no difference to CHD events (RR 1.00, 95% CI 0.80 to 1.22, 19,061 participants, 397 CHD events, 4 RCTs, low-quality evidence). However, increased ALA may slightly reduce risk of cardiovascular events (from 4.8% to 4.7%, RR 0.95, 95% CI 0.83 to 1.07, 19,327 participants; 884 CVD events, 5 RCTs, low-quality evidence with greater effects in trials at low summary risk of bias), and probably reduces risk of arrhythmia (3.3% to 2.6%, RR 0.79, 95% CI 0.57 to 1.10, 4,837 participants; 141 events, 1 RCT). Effects on stroke are unclear.Sensitivity analysis retaining only trials at low summary risk of bias moved effect sizes towards the null (RR 1.0) for all LCn3 primary outcomes except arrhythmias, but for most ALA outcomes, effect sizes moved to suggest protection. LCn3 funnel plots suggested that adding in missing studies/results would move effect sizes towards null for most primary outcomes. There were no dose or duration effects in subgrouping or meta-regression.There was no evidence that increasing LCn3 or ALA altered serious adverse events, adiposity or lipids, except LCn3 reduced triglycerides by ˜15% in a dose-dependant way (high-quality evidence). AUTHORS' CONCLUSIONS This is the most extensive systematic assessment of effects of omega-3 fats on cardiovascular health to date. Moderate- and high-quality evidence suggests that increasing EPA and DHA has little or no effect on mortality or cardiovascular health (evidence mainly from supplement trials). Previous suggestions of benefits from EPA and DHA supplements appear to spring from trials with higher risk of bias. Low-quality evidence suggests ALA may slightly reduce CVD event and arrhythmia risk.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Priti Biswas
- University of East AngliaMED/HSCNorwich Research ParkNorwichUKNR4 7TJ
| | - Gabrielle C Thorpe
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Helen J Moore
- Durham UniversityWolfson Research InstituteDurhamUKDH1 3LE
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEarlham RoadNorwichUKNR4 7TJ
| | - Fai K AlAbdulghafoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Carolyn D Summerbell
- Durham UniversityDepartment of Sport and Exercise Science42 Old ElvetDurhamUKDH13HN
| | - Helen V Worthington
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of ManchesterCochrane Oral HealthJR Moore BuildingOxford RoadManchesterUKM13 9PL
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
193
|
Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, Hanson S, Jimoh OF, Ajabnoor SM, Deane KHO, Song F, Hooper L. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11:CD012345. [PMID: 30484282 PMCID: PMC6517012 DOI: 10.1002/14651858.cd012345.pub3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Evidence on the health effects of total polyunsaturated fatty acids (PUFA) is equivocal. Fish oils are rich in omega-3 PUFA and plant oils in omega-6 PUFA. Evidence suggests that increasing PUFA-rich foods, supplements or supplemented foods can reduce serum cholesterol, but may increase body weight, so overall cardiovascular effects are unclear. OBJECTIVES To assess effects of increasing total PUFA intake on cardiovascular disease and all-cause mortality, lipids and adiposity in adults. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase to April 2017 and clinicaltrials.gov and the World Health Organization International Clinical Trials Registry Platform to September 2016, without language restrictions. We checked trials included in relevant systematic reviews. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing higher with lower PUFA intakes in adults with or without cardiovascular disease that assessed effects over 12 months or longer. We included full texts, abstracts, trials registry entries and unpublished data. Outcomes were all-cause mortality, cardiovascular disease mortality and events, risk factors (blood lipids, adiposity, blood pressure), and adverse events. We excluded trials where we could not separate effects of PUFA intake from other dietary, lifestyle or medication interventions. DATA COLLECTION AND ANALYSIS Two review authors independently screened titles and abstracts, assessed trials for inclusion, extracted data, and assessed risk of bias. We wrote to authors of included trials for further data. Meta-analyses used random-effects analysis, sensitivity analyses included fixed-effects and limiting to low summary risk of bias. We assessed GRADE quality of evidence. MAIN RESULTS We included 49 RCTs randomising 24,272 participants, with duration of one to eight years. Eleven included trials were at low summary risk of bias, 33 recruited participants without cardiovascular disease. Baseline PUFA intake was unclear in most trials, but 3.9% to 8% of total energy intake where reported. Most trials gave supplemental capsules, but eight gave dietary advice, eight gave supplemental foods such as nuts or margarine, and three used a combination of methods to increase PUFA.Increasing PUFA intake probably has little or no effect on all-cause mortality (risk 7.8% vs 7.6%, risk ratio (RR) 0.98, 95% confidence interval (CI) 0.89 to 1.07, 19,290 participants in 24 trials), but probably slightly reduces risk of coronary heart disease events from 14.2% to 12.3% (RR 0.87, 95% CI 0.72 to 1.06, 15 trials, 10,076 participants) and cardiovascular disease events from 14.6% to 13.0% (RR 0.89, 95% CI 0.79 to 1.01, 17,799 participants in 21 trials), all moderate-quality evidence. Increasing PUFA may slightly reduce risk of coronary heart disease death (6.6% to 6.1%, RR 0.91, 95% CI 0.78 to 1.06, 9 trials, 8810 participants) andstroke (1.2% to 1.1%, RR 0.91, 95% CI 0.58 to 1.44, 11 trials, 14,742 participants, though confidence intervals include important harms), but has little or no effect on cardiovascular mortality (RR 1.02, 95% CI 0.82 to 1.26, 16 trials, 15,107 participants) all low-quality evidence. Effects of increasing PUFA on major adverse cardiac and cerebrovascular events and atrial fibrillation are unclear as evidence is of very low quality.Increasing PUFA intake probably slightly decreases triglycerides (by 15%, MD -0.12 mmol/L, 95% CI -0.20 to -0.04, 20 trials, 3905 participants), but has little or no effect on total cholesterol (mean difference (MD) -0.12 mmol/L, 95% CI -0.23 to -0.02, 26 trials, 8072 participants), high-density lipoprotein (HDL) (MD -0.01 mmol/L, 95% CI -0.02 to 0.01, 18 trials, 4674 participants) or low-density lipoprotein (LDL) (MD -0.01 mmol/L, 95% CI -0.09 to 0.06, 15 trials, 3362 participants). Increasing PUFA probably has little or no effect on adiposity (body weight MD 0.76 kg, 95% CI 0.34 to 1.19, 12 trials, 7100 participants).Effects of increasing PUFA on serious adverse events such as pulmonary embolism and bleeding are unclear as the evidence is of very low quality. AUTHORS' CONCLUSIONS This is the most extensive systematic review of RCTs conducted to date to assess effects of increasing PUFA on cardiovascular disease, mortality, lipids or adiposity. Increasing PUFA intake probably slightly reduces risk of coronary heart disease and cardiovascular disease events, may slightly reduce risk of coronary heart disease mortality and stroke (though not ruling out harms), but has little or no effect on all-cause or cardiovascular disease mortality. The mechanism may be via TG reduction.
Collapse
Affiliation(s)
- Asmaa S Abdelhamid
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Nicole Martin
- University College LondonInstitute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Charlene Bridges
- University College LondonInstitute of Health Informatics Research222 Euston RoadLondonUKNW1 2DA
| | - Julii S Brainard
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Xia Wang
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Tracey J Brown
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Sarah Hanson
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Oluseyi F Jimoh
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Sarah M Ajabnoor
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Katherine HO Deane
- University of East AngliaSchool of Health SciencesEdith Cavell BuildingNorwichUKNR4 7TJ
| | - Fujian Song
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | - Lee Hooper
- University of East AngliaNorwich Medical SchoolNorwich Research ParkNorwichNorfolkUKNR4 7TJ
| | | |
Collapse
|
194
|
Effect of Varying Concentrations of Docosahexaenoic Acid on Amyloid Beta (1⁻42) Aggregation: An Atomic Force Microscopy Study. Molecules 2018; 23:molecules23123089. [PMID: 30486385 PMCID: PMC6321163 DOI: 10.3390/molecules23123089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 01/04/2023] Open
Abstract
Healthcare has advanced significantly, bringing with it longer life expectancies and a growing population of elders who suffer from dementia, specifically Alzheimer’s disease (AD). The amyloid beta (Aβ) peptide has been implicated in the cause of AD, where the peptides undergo a conformational change and form neurotoxic amyloid oligomers which cause neuronal cell death. While AD has no cure, preventative measures are being designed to either slow down or stop the progression of this neurodegenerative disease. One of these measures involves dietary supplements with polyunsaturated fatty acids such as docosahexaenoic acid (DHA). This omega-3 fatty acid is a key component of brain development and has been suggested to reduce the progression of cognitive decline. However, different studies have yielded different results as to whether DHA has positive, negative, or no effects on Aβ fibril formation. We believe that these discrepancies can be explained with varying concentrations of DHA. Here, we test the inhibitory effect of different concentrations of DHA on amyloid fibril formation using atomic force microscopy. Our results show that DHA has a strong inhibitory effect on Aβ1–42 fibril formation at lower concentrations (50% reduction in fibril length) than higher concentrations above its critical micelle concentration (70% increase in fibril length and three times the length of those at lower concentrations). We provide evidence that various concentrations of DHA can play a role in the inhibitory effects of amyloid fibril formation in vitro and help explain the discrepancies observed in previous studies.
Collapse
|
195
|
Oleson S, Eagan D, Kaur S, Hertzing WJ, Alkatan M, Davis JN, Tanaka H, Haley AP. Apolipoprotein E genotype moderates the association between dietary polyunsaturated fat and brain function: an exploration of cerebral glutamate and cognitive performance. Nutr Neurosci 2018; 23:696-705. [PMID: 30465491 DOI: 10.1080/1028415x.2018.1547857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: To investigate the effect of Apolipoprotein E (APOE) genotype on the association between dietary polyunsaturated fat (PUFA), cognitive function, and cerebral glutamate. Methods: A participant sample of 122 middle-aged adults were grouped according to APOE genotype (ϵ4 carrier or ϵ4 non-carrier) and asked to record dietary intake for three consecutive days. All participants also underwent neuropsychological testing and a proton magnetic resonance spectroscopy (1H MRS) scan to assess glutamate in the posterior cingulate cortex. Results: Multiple regression analyses revealed a significant interaction between APOE genotype and PUFA intake on memory performance, F(1,113) = 6.749, p = .016. Greater PUFA intake was associated with better memory performance in healthy middle-aged adults who were APOE ϵ4 non-carriers, but not for ϵ4 carriers. Furthermore, there was a significant interaction between APOE genotype and PUFA intake on cerebral glutamate, in that dietary PUFA was associated with greater cerebral glutamate in APOE ϵ4 carriers, but not for ϵ4 non-carriers, F(1,114) = 5.173, p = .025. Conclusions: The findings suggest that PUFA action on the brain differs according to APOE polymorphism and points towards cerebral glutamate as a potential marker of genetic risk for Alzheimer's disease (AD). Early treatment consisting of PUFA supplementation that is tailored to APOE genotype may be an important intervention for the prevention of cognitive decline.
Collapse
Affiliation(s)
- Stephanie Oleson
- Department of Psychology, The University of Texas at Austin, USA
| | - Danielle Eagan
- Department of Psychology, The University of Texas at Austin, USA
| | - Sonya Kaur
- Department of Psychology, The University of Texas at Austin, USA
| | | | - Mohammed Alkatan
- Department of Physical Education, The Public Authority for Applied Education and Training, Kuwait City, Kuwait.,Department of Kinesiology and Health Education, The University of Texas at Austin, USA
| | - Jaimie N Davis
- Department of Nutritional Sciences, The University of Texas at Austin, USA
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, USA
| | - Andreana P Haley
- Department of Psychology, The University of Texas at Austin, USA
| |
Collapse
|
196
|
Solfrizzi V, Agosti P, Lozupone M, Custodero C, Schilardi A, Valiani V, Santamato A, Sardone R, Dibello V, Di Lena L, Stallone R, Ranieri M, Bellomo A, Greco A, Daniele A, Seripa D, Sabbà C, Logroscino G, Panza F. Nutritional interventions and cognitive-related outcomes in patients with late-life cognitive disorders: A systematic review. Neurosci Biobehav Rev 2018; 95:480-498. [PMID: 30395922 DOI: 10.1016/j.neubiorev.2018.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 12/30/2022]
Abstract
There have been a large number of observational studies on the impact of nutrition on neuroprotection, however, there was a lack of evidence from randomized clinical trials (RCTs). In the present systematic review, from the 32 included RCTs published in the last four years (2014-2017) in patients aged 60 years and older with different late-life cognitive disorders, nutritional intervention through medical food/nutraceutical supplementation and multidomain approach improved magnetic resonance imaging findings and other cognitive-related biomarkers, but without clear effect on cognition in mild Alzheimer's disease (AD) and mild cognitive impairment (MCI). Antioxidant-rich foods (nuts, grapes, cherries) and fatty acid supplementation, mainly n-3 polyunsaturated fatty acids (PUFA), improved specific cognitive domains and cognitive-related outcomes in MCI, mild-to-moderate dementia, and AD. Antioxidant vitamin and trace element supplementations improved only cognitive-related outcomes and biomarkers, high-dose B vitamin supplementation in AD and MCI patients improved cognitive outcomes in the subjects with a high baseline plasma n-3 PUFA, while folic acid supplementation had positive impact on specific cognitive domains in those with high homocysteine.
Collapse
Affiliation(s)
- Vincenzo Solfrizzi
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy.
| | - Pasquale Agosti
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Carlo Custodero
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Andrea Schilardi
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Vincenzo Valiani
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Andrea Santamato
- Physical Medicine and Rehabilitation Section, "OORR Hospital", University of Foggia, Foggia, Italy
| | - Rodolfo Sardone
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy; Interdisciplinary Department of Medicine (DIM), Section of Dentistry, University of Bari AldoMoro, Bari, Italy
| | - Vittorio Dibello
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luca Di Lena
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy; Interdisciplinary Department of Medicine (DIM), Section of Dentistry, University of Bari AldoMoro, Bari, Italy
| | - Roberta Stallone
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy; Interdisciplinary Department of Medicine (DIM), Section of Dentistry, University of Bari AldoMoro, Bari, Italy
| | - Maurizio Ranieri
- Physical Medicine and Rehabilitation Section, "OORR Hospital", University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Greco
- Geriatric Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Davide Seripa
- Geriatric Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy
| | - Carlo Sabbà
- Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari 'Aldo Moro', Bari, Italy
| | - Giancarlo Logroscino
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy
| | - Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Geriatric Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy; Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy.
| |
Collapse
|
197
|
Kennedy RE, Cutter GR, Fowler ME, Schneider LS. Association of Concomitant Use of Cholinesterase Inhibitors or Memantine With Cognitive Decline in Alzheimer Clinical Trials: A Meta-analysis. JAMA Netw Open 2018; 1:e184080. [PMID: 30646339 PMCID: PMC6324361 DOI: 10.1001/jamanetworkopen.2018.4080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
IMPORTANCE Clinical trials in Alzheimer disease (AD) generally allow participants to continue receiving concomitant medications, including cholinesterase inhibitors (ChEIs) and memantine, if the dose is stable. Previous analysis of observational studies indicates such individuals experience greater rate of decline on cognitive testing than those not receiving such medications. OBJECTIVE To investigate whether concomitant use of ChEIs or memantine is associated with cognitive outcomes in AD clinical trials. DATA SOURCES Meta-database of 18 studies from the Alzheimer Disease Cooperative Study and Alzheimer Disease Neuroimaging Initiative. STUDY SELECTION All studies with data on ChEI and memantine use that included assessment of specified outcome measures. DATA EXTRACTION AND SYNTHESIS The analysis estimated annual rate of decline on the Alzheimer Disease Assessment Scale-cognitive subscale (ADAS-cog) using linear mixed-effects models, and compared rates for participants receiving ChEIs and memantine, alone and combined, with participants not receiving either medication using random-effects meta-analysis. MAIN OUTCOMES AND MEASURES Annual rate of change on the ADAS-cog. RESULTS Across 10 studies, of 2714 participants, the mean (SD) age was 75.0 (8.2) years, 58% were female, and 9% were racial/ethnic minorities. There were 906 participants (33.4%) receiving ChEIs, 143 (5.3%) receiving memantine, 923 (34.0%) receiving both, and 742 (27.3%) receiving neither. Meta-analysis showed those receiving ChEIs or memantine were associated with significantly greater annual rate of decline on the ADAS-cog than those receiving neither medication (1.4 points/y; 95% CI, 0.1-2.7). CONCLUSIONS AND RELEVANCE Similar to observational studies, many participants in AD clinical trials receiving ChEIs or memantine experience greater cognitive decline. This difference is nearly as large as the hypothesized effect sizes of the treatments investigated in the trials. Concomitant use of ChEIs or memantine may be confounded with outcomes on the ADAS-cog and should be considered in design of clinical trials of potential therapeutic agents for AD. Post hoc analyses stratifying by ChEIs or memantine must be interpreted cautiously given the potential for confounding.
Collapse
Affiliation(s)
| | | | | | - Lon S. Schneider
- Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
198
|
ten Kate M, Ingala S, Schwarz AJ, Fox NC, Chételat G, van Berckel BNM, Ewers M, Foley C, Gispert JD, Hill D, Irizarry MC, Lammertsma AA, Molinuevo JL, Ritchie C, Scheltens P, Schmidt ME, Visser PJ, Waldman A, Wardlaw J, Haller S, Barkhof F. Secondary prevention of Alzheimer's dementia: neuroimaging contributions. Alzheimers Res Ther 2018; 10:112. [PMID: 30376881 PMCID: PMC6208183 DOI: 10.1186/s13195-018-0438-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND In Alzheimer's disease (AD), pathological changes may arise up to 20 years before the onset of dementia. This pre-dementia window provides a unique opportunity for secondary prevention. However, exposing non-demented subjects to putative therapies requires reliable biomarkers for subject selection, stratification, and monitoring of treatment. Neuroimaging allows the detection of early pathological changes, and longitudinal imaging can assess the effect of interventions on markers of molecular pathology and rates of neurodegeneration. This is of particular importance in pre-dementia AD trials, where clinical outcomes have a limited ability to detect treatment effects within the typical time frame of a clinical trial. We review available evidence for the use of neuroimaging in clinical trials in pre-dementia AD. We appraise currently available imaging markers for subject selection, stratification, outcome measures, and safety in the context of such populations. MAIN BODY Amyloid positron emission tomography (PET) is a validated in-vivo marker of fibrillar amyloid plaques. It is appropriate for inclusion in trials targeting the amyloid pathway, as well as to monitor treatment target engagement. Amyloid PET, however, has limited ability to stage the disease and does not perform well as a prognostic marker within the time frame of a pre-dementia AD trial. Structural magnetic resonance imaging (MRI), providing markers of neurodegeneration, can improve the identification of subjects at risk of imminent decline and hence play a role in subject inclusion. Atrophy rates (either hippocampal or whole brain), which can be reliably derived from structural MRI, are useful in tracking disease progression and have the potential to serve as outcome measures. MRI can also be used to assess comorbid vascular pathology and define homogeneous groups for inclusion or for subject stratification. Finally, MRI also plays an important role in trial safety monitoring, particularly the identification of amyloid-related imaging abnormalities (ARIA). Tau PET to measure neurofibrillary tangle burden is currently under development. Evidence to support the use of advanced MRI markers such as resting-state functional MRI, arterial spin labelling, and diffusion tensor imaging in pre-dementia AD is preliminary and requires further validation. CONCLUSION We propose a strategy for longitudinal imaging to track early signs of AD including quantitative amyloid PET and yearly multiparametric MRI.
Collapse
Affiliation(s)
- Mara ten Kate
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, PO Box 7056, 1007 MB Amsterdam, the Netherlands
| | - Silvia Ingala
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Adam J. Schwarz
- Takeda Pharmaceuticals Comparny, Cambridge, MA USA
- Eli Lilly and Company, Indianapolis, Indiana USA
| | - Nick C. Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Gaël Chételat
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Caen, France
| | - Bart N. M. van Berckel
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | | | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | | | | | - Adriaan A. Lammertsma
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Craig Ritchie
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Philip Scheltens
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, PO Box 7056, 1007 MB Amsterdam, the Netherlands
| | | | - Pieter Jelle Visser
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, PO Box 7056, 1007 MB Amsterdam, the Netherlands
| | - Adam Waldman
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanna Wardlaw
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - Sven Haller
- Affidea Centre de Diagnostic Radiologique de Carouge, Geneva, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
- Insititutes of Neurology and Healthcare Engineering, University College London, London, UK
| |
Collapse
|
199
|
Chianese R, Coccurello R, Viggiano A, Scafuro M, Fiore M, Coppola G, Operto FF, Fasano S, Laye S, Pierantoni R, Meccariello R. Impact of Dietary Fats on Brain Functions. Curr Neuropharmacol 2018; 16:1059-1085. [PMID: 29046155 PMCID: PMC6120115 DOI: 10.2174/1570159x15666171017102547] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Adequate dietary intake and nutritional status have important effects on brain functions and on brain health. Energy intake and specific nutrients excess or deficiency from diet differently affect cognitive processes, emotions, behaviour, neuroendocrine functions and synaptic plasticity with possible protective or detrimental effects on neuronal physiology. Lipids, in particular, play structural and functional roles in neurons. Here the importance of dietary fats and the need to understand the brain mechanisms activated by peripheral and central metabolic sensors. Thus, the manipulation of lifestyle factors such as dietary interventions may represent a successful therapeutic approach to maintain and preserve brain health along lifespan. METHODS This review aims at summarizing the impact of dietary fats on brain functions. RESULTS Starting from fat consumption, nutrient sensing and food-related reward, the impact of gut-brain communications will be discussed in brain health and disease. A specific focus will be on the impact of fats on the molecular pathways within the hypothalamus involved in the control of reproduction via the expression and the release of Gonadotropin-Releasing Hormone. Lastly, the effects of specific lipid classes such as polyunsaturated fatty acids and of the "fattest" of all diets, commonly known as "ketogenic diets", on brain functions will also be discussed. CONCLUSION Despite the knowledge of the molecular mechanisms is still a work in progress, the clinical relevance of the manipulation of dietary fats is well acknowledged and such manipulations are in fact currently in use for the treatment of brain diseases.
Collapse
Affiliation(s)
- Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology, National Research Council (C.N.R.), Rome, Italy.,Fondazione S. Lucia (FSL) IRCCS, Roma, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy
| | - Marika Scafuro
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology, National Research Council (C.N.R.), Rome, Italy.,Fondazione S. Lucia (FSL) IRCCS, Roma, Italy
| | - Giangennaro Coppola
- Department of Medicine, Surgery and Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy.,UO Child and Adolescent Neuropsychiatry, Medical School, University of Salerno, Salerno, Italy
| | | | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sophie Laye
- INRA, Bordeaux University, Nutrition and Integrative Neurobiology, UMR, Bordeaux, France
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
200
|
Abstract
Dietary and supplemental intake of the ω-3 fatty acid docosahexaenoic acid (DHA) reduces risk of Alzheimer’s disease (AD) and ameliorates symptoms. The apolipoprotein E (APOE)4 allele is the strongest risk factor for sporadic AD, exclusive of age. APOE4 carriers respond well to the DHA present in fish but do not respond as well to dietary supplements. The mechanisms behind this varied response remain unknown. I posit that the difference is that fish contain DHA in phospholipid form, whereas fish oil supplements do not. This influences whether DHA is metabolized to nonesterified DHA (free DHA) or a phospholipid form called lysophosphatidylcholine DHA (DHA-lysoPC). Free DHA is transported across the outer membrane leaflet of the blood–brain barrier (BBB) via passive diffusion, and DHA-lysoPC is transported across the inner membrane leaflet of the BBB via the major facilitator superfamily domain-containing protein 2A. I propose that APOE4 carriers have impaired brain transport of free DHA but not of DHA-lysoPC, as a consequence of a breakdown in the outer membrane leaflet of the BBB, putting them at increased risk for AD. Dietary sources of DHA in phospholipid form may provide a means to increase plasma levels of DHA-lysoPC, thereby decreasing the risk of AD.—Patrick, R. P. Role of phosphatidylcholine-DHA in preventing APOE4-associated Alzheimer’s disease.
Collapse
Affiliation(s)
- Rhonda P Patrick
- University of California San Francisco Benioff, Children's Hospital Oakland Research Institute, Oakland, California, USA
| |
Collapse
|