151
|
Boer CG, Hatzikotoulas K, Southam L, Stefánsdóttir L, Zhang Y, Coutinho de Almeida R, Wu TT, Zheng J, Hartley A, Teder-Laving M, Skogholt AH, Terao C, Zengini E, Alexiadis G, Barysenka A, Bjornsdottir G, Gabrielsen ME, Gilly A, Ingvarsson T, Johnsen MB, Jonsson H, Kloppenburg M, Luetge A, Lund SH, Mägi R, Mangino M, Nelissen RRGHH, Shivakumar M, Steinberg J, Takuwa H, Thomas LF, Tuerlings M, Babis GC, Cheung JPY, Kang JH, Kraft P, Lietman SA, Samartzis D, Slagboom PE, Stefansson K, Thorsteinsdottir U, Tobias JH, Uitterlinden AG, Winsvold B, Zwart JA, Davey Smith G, Sham PC, Thorleifsson G, Gaunt TR, Morris AP, Valdes AM, Tsezou A, Cheah KSE, Ikegawa S, Hveem K, Esko T, Wilkinson JM, Meulenbelt I, Lee MTM, van Meurs JBJ, Styrkársdóttir U, Zeggini E. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 2021; 184:4784-4818.e17. [PMID: 34450027 PMCID: PMC8459317 DOI: 10.1016/j.cell.2021.07.038] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/26/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently associated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the disease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We provide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and identify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in disease processes and highlight attractive drug targets to accelerate translation.
Collapse
Affiliation(s)
- Cindy G Boer
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Tian T Wu
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - April Hartley
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Musculoskeletal Research Unit, Translation Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK
| | - Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Eleni Zengini
- 4(th) Psychiatric Department, Dromokaiteio Psychiatric Hospital, 12461 Athens, Greece
| | - George Alexiadis
- 1(st) Department of Orthopaedics, KAT General Hospital, 14561 Athens, Greece
| | - Andrei Barysenka
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Thorvaldur Ingvarsson
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland; Department of Orthopedic Surgery, Akureyri Hospital, 600 Akureyri, Iceland
| | - Marianne B Johnsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0316 Oslo, Norway; Research and Communication Unit for Musculoskeletal Health (FORMI), Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, 0424 Oslo, Norway
| | - Helgi Jonsson
- Department of Medicine, Landspitali The National University Hospital of Iceland, 108 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Margreet Kloppenburg
- Departments of Rheumatology and Clinical Epidemiology, Leiden University Medical Center, 9600, 23OORC Leiden, the Netherlands
| | - Almut Luetge
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
| | - Rob R G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Center, 9600, 23OORC Leiden, the Netherlands
| | - Manu Shivakumar
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 1340, Australia
| | - Hiroshi Takuwa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan; Department of Orthopedic Surgery, Shimane University, Shimane 693-8501, Japan
| | - Laurent F Thomas
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; BioCore-Bioinformatics Core Facility, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Margo Tuerlings
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - George C Babis
- 2(nd) Department of Orthopaedics, National and Kapodistrian University of Athens, Medical School, Nea Ionia General Hospital Konstantopouleio, 14233 Athens, Greece
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jae Hee Kang
- Department of Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA 02115, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Steven A Lietman
- Musculoskeletal Institute, Geisinger Health System, Danville, PA 17822, USA
| | - Dino Samartzis
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - P Eline Slagboom
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc., 102 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen Inc., 102 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Jonathan H Tobias
- Musculoskeletal Research Unit, Translation Health Sciences, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol BS10 5NB, UK; MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | - Bendik Winsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - John-Anker Zwart
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Pak Chung Sham
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester M13 9LJ, UK
| | - Ana M Valdes
- Faculty of Medicine and Health Sciences, School of Medicine, University of Nottingham, Nottingham, Nottinghamshire NG5 1PB, UK
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa 411 10, Greece
| | - Kathryn S E Cheah
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway; HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7600 Levanger, Norway
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - J Mark Wilkinson
- Department of Oncology and Metabolism and Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2RX, UK
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Postzone S05-P Leiden University Medical Center, 2333ZC Leiden, the Netherlands
| | - Ming Ta Michael Lee
- Genomic Medicine Institute, Geisinger Health System, Danville, PA 17822, USA; Institute of Biomedical Sciences, Academia Sinica, 115 Taipei, Taiwan
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, Medical Center, 3015CN Rotterdam, the Netherlands
| | | | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, 81675 Munich, Germany.
| |
Collapse
|
152
|
Mahmoudian A, Lohmander LS, Mobasheri A, Englund M, Luyten FP. Early-stage symptomatic osteoarthritis of the knee - time for action. Nat Rev Rheumatol 2021; 17:621-632. [PMID: 34465902 DOI: 10.1038/s41584-021-00673-4] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) remains the most challenging arthritic disorder, with a high burden of disease and no available disease-modifying treatments. Symptomatic early-stage OA of the knee (the focus of this Review) urgently needs to be identified and defined, as efficient early-stage case finding and diagnosis in primary care would enable health-care providers to proactively and substantially reduce the burden of disease through proper management including structured education, exercise and weight management (when needed) and addressing lifestyle-related risk factors for disease progression. Efforts to define patient populations with symptomatic early-stage knee OA on the basis of validated classification criteria are ongoing. Such criteria, as well as the identification of molecular and imaging biomarkers of disease risk and/or progression, would enable well-designed clinical studies, facilitate interventional trials, and aid the discovery and validation of cellular and molecular targets for novel therapies. Treatment strategies, relevant outcomes and ethical issues also need to be considered in the context of the cost-effective management of symptomatic early-stage knee OA. To move forwards, a multidisciplinary and sustained international effort involving all major stakeholders is required.
Collapse
Affiliation(s)
- Armaghan Mahmoudian
- Department of Development & Regeneration, KU Leuven, Leuven, Belgium.,Department of Clinical Sciences Lund, Orthopaedics, Lund University, Lund, Sweden
| | - L Stefan Lohmander
- Department of Clinical Sciences Lund, Orthopaedics, Lund University, Lund, Sweden
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Martin Englund
- Department of Clinical Sciences Lund, Orthopaedics, Lund University, Lund, Sweden
| | - Frank P Luyten
- Department of Development & Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
153
|
Association between Patellofemoral and medial Tibiofemoral compartment osteoarthritis progression: exploring the effect of body weight using longitudinal data from osteoarthritis initiative (OAI). Skeletal Radiol 2021; 50:1845-1854. [PMID: 33686488 DOI: 10.1007/s00256-021-03749-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/25/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To investigate the associations of medial and lateral patellofemoral osteoarthritis (PF-OA) at baseline with symptomatic and radiographic OA outcomes in the medial tibiofemoral compartment (MTFC) over 4 years, according to baseline overweight status. METHODS Data and MRI images of 600 subjects in the FNIH-OA biomarkers consortium were used. Symptomatic worsening and radiographic progression of MTFC-OA were defined using Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain scores and MTFC joint space narrowing (JSN) from baseline to 4-year follow-up. Baseline MRIs were read to establish PF-OA diagnosis. The association between baseline regional PF-OA pattern and odds for MTFC-OA progression was evaluated using regression models (adjusted for relevant confounding covariates including body mass index (BMI), age, sex, PF alignment measurements, KL grade, and knee alignment). To evaluate the effect modifying role for overweight status, stratification analysis was performed (BMI ≥ 25 vs. < 25 kg/m2). RESULTS At baseline, 340 (56.7%), 255 (42.5%), and 199 (33.2%) subjects had OA in the medial, lateral, and both PF compartments. Baseline medial PF-OA was associated with WOMAC pain score and MTFC JSN progression at 4 years (Adjusted OR:1.56[95%CI:1.09-2.23] and 1.59[1.11-2.28], respectively) but not lateral PF-OA. In stratification analysis, overweight status was found to be an effect modifier for medial PF-OA and WOMAC pain (OR in overweight vs. non-overweight subjects:1.65[1.13-2.42] vs. 0.50[0.12-1.82]) as well as MTFC-JSN progression (1.63[1.12-2.4] vs. 0.75[0.19-2.81]). CONCLUSIONS In addition to the known confounding effect of BMI for PF-OA and MTFC-OA, the overweight status may also play an effect modifier role in the association between baseline medial PF-OA and MTFC-OA progression, which is amenable to secondary prevention.
Collapse
|
154
|
A simple inclusion criteria combination increases the rate of cartilage loss in patients with knee osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100188. [DOI: 10.1016/j.ocarto.2021.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 11/20/2022] Open
|
155
|
Abstract
Osteoarthritis (OA) is a chronic, debilitating disease affecting millions of people worldwide. Management of OA involves pharmacological and non-pharmacological approaches. Conventional pharmacological treatments have limited efficacy and are associated with a number of side-effects, restricting the number of patients who can use them. New pharmacological therapies for managing OA are required and a number have been developed targeting different tissues in OA: bone and cartilage, synovium and nerves. However, there has been overall limited success. Disease-modifying osteoarthritis drugs (DMOADs) are a putative class of therapies aimed at improving OA structural pathologies and consequent symptoms. Recent DMOAD studies have demonstrated some promising therapies but also provided new considerations for future trials.
Collapse
Affiliation(s)
- Asim Ghouri
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, Leeds, UK.
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, Chapeltown Rd, Leeds, LS7 4SA, UK.
| |
Collapse
|
156
|
Karsdal MA, Genovese F, Rasmussen DGK, Bay-Jensen AC, Mortensen JH, Holm Nielsen S, Willumsen N, Jensen C, Manon-Jensen T, Jennings L, Reese-Petersen AL, Henriksen K, Sand JM, Bager C, Leeming DJ. Considerations for understanding protein measurements: Identification of formation, degradation and more pathological relevant epitopes. Clin Biochem 2021; 97:11-24. [PMID: 34453894 DOI: 10.1016/j.clinbiochem.2021.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVES There is a need for precision medicine and an unspoken promise of an optimal approach for identification of the right patients for value-based medicine based on big data. However, there may be a misconception that measurement of proteins is more valuable than measurement of fewer selected biomarkers. In population-based research, variation may be somewhat eliminated by quantity. However, this fascination of numbers may limit the attention to and understanding of the single. This review highlights that protein measurements (with collagens as examples) may mean different things depending on the targeted epitope - formation or degradation of tissues, and even signaling potential of proteins. DESIGN AND METHODS PubMed was searched for collagen, neo-epitope, biomarkers. RESULTS Ample examples of assays with specific epitopes, either pathological such as HbA1c, or domain specific such as pro-peptides, which total protein arrays would not have identified were evident. CONCLUSIONS We suggest that big data may be considered as the funnel of data points, in which most important parameters will be selected. If the technical precision is low or the biological accuracy is limited, and we include suboptimal quality of biomarkers, disguised as big data, we may not be able to fulfill the promise of helping patients searching for the optimal treatment. Alternatively, if the technical precision of the total protein quantification is high, but we miss the functional domains with the most considerable biological meaning, we miss the most important and valuable information of a given protein. This review highlights that measurements of the same protein in different ways may provide completely different meanings. We need to understand the pathological importance of each epitope quantified to maximize protein measurements.
Collapse
Affiliation(s)
- M A Karsdal
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark.
| | - F Genovese
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - D G K Rasmussen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - A C Bay-Jensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - J H Mortensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - S Holm Nielsen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - N Willumsen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - C Jensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - T Manon-Jensen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | | | | | - K Henriksen
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - J M Sand
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - C Bager
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| | - D J Leeming
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Denmark
| |
Collapse
|
157
|
Li J, Wang X, Ruan G, Zhu Z, Ding C. Sprifermin: a recombinant human fibroblast growth factor 18 for the treatment of knee osteoarthritis. Expert Opin Investig Drugs 2021; 30:923-930. [PMID: 34427483 DOI: 10.1080/13543784.2021.1972970] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Osteoarthritis (OA) is a serious and incurable disease leading the disability. Surgical treatment is the last but not necessarily the best approach for patients with high risks and costs. However, there are no disease-modifying OA drugs (DMOADs) developed for the disease so far, leaving a huge unmet need for drug treatments. Sprifermin is a recombinant human fibroblast growth factor 18 (rhFGF18) and has been confirmed to have anabolic effects on articular cartilage, which makes it a promising DMOAD. AREAS COVERED The content of this review includes overview of the market, discovery and development, molecular mechanism, preclinical studies, clinical efficacy, safety, and tolerability of sprifermin. It examines the potential of sprifermin as a disease modifying drug for the treatment of knee OA. EXPERT OPINION Sprifermin could be one of the most promising DMOADs, especially for cartilage phenotype. Current studies show good tolerability and no safety concerns. Well-designed phase 3 clinical trials are required to examine its effects on symptoms and cartilage loss in knee OA.
Collapse
Affiliation(s)
- Jia Li
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guangfeng Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Clinical Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
158
|
Keppie SJ, Mansfield JC, Tang X, Philp CJ, Graham HK, Önnerfjord P, Wall A, McLean C, Winlove CP, Sherratt MJ, Pavlovskaya GE, Vincent TL. Matrix-Bound Growth Factors are Released upon Cartilage Compression by an Aggrecan-Dependent Sodium Flux that is Lost in Osteoarthritis. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab037. [PMID: 34423304 PMCID: PMC8374957 DOI: 10.1093/function/zqab037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 01/07/2023]
Abstract
Articular cartilage is a dense extracellular matrix-rich tissue that degrades following chronic mechanical stress, resulting in osteoarthritis (OA). The tissue has low intrinsic repair especially in aged and osteoarthritic joints. Here, we describe three pro-regenerative factors; fibroblast growth factor 2 (FGF2), connective tissue growth factor, bound to transforming growth factor-beta (CTGF-TGFβ), and hepatoma-derived growth factor (HDGF), that are rapidly released from the pericellular matrix (PCM) of articular cartilage upon mechanical injury. All three growth factors bound heparan sulfate, and were displaced by exogenous NaCl. We hypothesised that sodium, sequestered within the aggrecan-rich matrix, was freed by injurious compression, thereby enhancing the bioavailability of pericellular growth factors. Indeed, growth factor release was abrogated when cartilage aggrecan was depleted by IL-1 treatment, and in severely damaged human osteoarthritic cartilage. A flux in free matrix sodium upon mechanical compression of cartilage was visualised by 23Na -MRI just below the articular surface. This corresponded to a region of reduced tissue stiffness, measured by scanning acoustic microscopy and second harmonic generation microscopy, and where Smad2/3 was phosphorylated upon cyclic compression. Our results describe a novel intrinsic repair mechanism, controlled by matrix stiffness and mediated by the free sodium concentration, in which heparan sulfate-bound growth factors are released from cartilage upon injurious load. They identify aggrecan as a depot for sequestered sodium, explaining why osteoarthritic tissue loses its ability to repair. Treatments that restore matrix sodium to allow appropriate release of growth factors upon load are predicted to enable intrinsic cartilage repair in OA. SIGNIFICANCE STATEMENT Osteoarthritis is the most prevalent musculoskeletal disease, affecting 250 million people worldwide.1 We identify a novel intrinsic repair response in cartilage, mediated by aggrecan-dependent sodium flux, and dependent upon matrix stiffness, which results in the release of a cocktail of pro-regenerative growth factors after injury. Loss of aggrecan in late-stage osteoarthritis prevents growth factor release and likely contributes to disease progression. Treatments that restore matrix sodium in osteoarthritis may recover the intrinsic repair response to improve disease outcome.
Collapse
Affiliation(s)
- Stuart J Keppie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | | | - Xiaodi Tang
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Christopher J Philp
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2QX, UK
| | - Helen K Graham
- School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Patrik Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Alanna Wall
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Celia McLean
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - C Peter Winlove
- School of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Michael J Sherratt
- School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Galina E Pavlovskaya
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2QX, UK
| | | |
Collapse
|
159
|
Eckstein F, Hochberg MC, Guehring H, Moreau F, Ona V, Bihlet AR, Byrjalsen I, Andersen JR, Daelken B, Guenther O, Ladel C, Michaelis M, Conaghan PG. Long-term structural and symptomatic effects of intra-articular sprifermin in patients with knee osteoarthritis: 5-year results from the FORWARD study. Ann Rheum Dis 2021; 80:1062-1069. [PMID: 33962962 PMCID: PMC8292562 DOI: 10.1136/annrheumdis-2020-219181] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/12/2021] [Accepted: 03/28/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The FORWARD (FGF-18 Osteoarthritis Randomized Trial with Administration of Repeated Doses) trial assessed efficacy and safety of the potential disease-modifying osteoarthritis drug (DMOAD) sprifermin in patients with knee osteoarthritis. Here, we report 5-year efficacy and safety results. METHODS Patients were randomised to intra-articular sprifermin 100 µg or 30 µg every 6 months (q6mo) or 12 months, or placebo, for 18 months. The primary analysis was at year 2, with follow-up at years 3, 4 and 5. Additional post hoc exploratory analyses were conducted in patients with baseline minimum radiographic joint space width 1.5-3.5 mm and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain 40-90, a subgroup at risk (SAR) of progression. RESULTS 378 (69%) patients completed the 5-year follow-up. A significant dose-response in total femorotibial joint cartilage thickness with sprifermin (trend test, p<0.001) and a 0.05 mm mean difference with sprifermin 100 µg q6mo versus placebo (95% CI 0.00 to 0.10; p=0.015) were sustained to year 5. WOMAC pain scores improved ~50% from baseline in all groups. No patient in the 100 µg q6mo group had replacement of the treated knee. 96%-98% of patients receiving sprifermin and 98% placebo reported adverse events, most were mild or moderate and deemed unrelated to treatment. Adverse event-related study withdrawals were <10%. Differentiation in WOMAC pain between sprifermin 100 µg q6mo and placebo in the SAR (n=161) at year 3 was maintained to year 5 (-10.08; 95% CI -25.68 to 5.53). CONCLUSION In the longest DMOAD trial reported to date, sprifermin maintained long-term structural modification of articular cartilage over 3.5 years post-treatment. Potential translation to clinical benefit was observed in the SAR. TRIAL REGISTRATION NUMBER NCT01919164.
Collapse
Affiliation(s)
- Felix Eckstein
- Institute of Anatomy and Cell Biology, Paracelsus Medical University Salzburg and Nuremberg, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Ainring, Germany
| | - Marc C Hochberg
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Flavie Moreau
- EMD Serono Research and Development Institute, Inc, Billerica, Massachusetts, USA; an affiliate of Merck KGaA, Darmstadt, Germany
| | - Victor Ona
- EMD Serono Research and Development Institute, Inc, Billerica, Massachusetts, USA; an affiliate of Merck KGaA, Darmstadt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Oo WM, Little C, Duong V, Hunter DJ. The Development of Disease-Modifying Therapies for Osteoarthritis (DMOADs): The Evidence to Date. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2921-2945. [PMID: 34262259 PMCID: PMC8273751 DOI: 10.2147/dddt.s295224] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
Osteoarthritis (OA) is a complex heterogeneous articular disease with multiple joint tissue involvement of varying severity and no regulatory-agency-approved disease-modifying drugs (DMOADs). In this review, we discuss the reasons necessitating the development of DMOADs for OA management, the classifications of clinical phenotypes or molecular/mechanistic endotypes from the viewpoint of targeted drug discovery, and then summarize the efficacy and safety profile of a range of targeted drugs in Phase 2 and 3 clinical trials directed to cartilage-driven, bone-driven, and inflammation-driven endotypes. Finally, we briefly put forward the reasons for failures in OA clinical trials and possible steps to overcome these barriers.
Collapse
Affiliation(s)
- Win Min Oo
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Department of Physical Medicine and Rehabilitation, Mandalay General Hospital, University of Medicine, Mandalay, Mandalay, Myanmar
| | - Christopher Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Vicky Duong
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - David J Hunter
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
161
|
Antony B, Singh A. Imaging and Biochemical Markers for Osteoarthritis. Diagnostics (Basel) 2021; 11:1205. [PMID: 34359288 PMCID: PMC8305947 DOI: 10.3390/diagnostics11071205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis in adults that affects more than 500 million people globally [...].
Collapse
Affiliation(s)
- Benny Antony
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia;
| | | |
Collapse
|
162
|
Lai-Zhao Y, Pitchers KK, Appleton CT. Transient anabolic effects of synovium in early post-traumatic osteoarthritis: a novel ex vivo joint tissue co-culture system for investigating synovium-chondrocyte interactions. Osteoarthritis Cartilage 2021; 29:1060-1070. [PMID: 33757858 DOI: 10.1016/j.joca.2021.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a serious joint disease with no disease-modifying medical treatment. To develop treatments targeting synovium, we must improve our understanding of the effects of OA-related changes in synovial physiology on joint tissue outcomes. The aim of this study was to investigate the effects of synovial pathology due to post-traumatic OA (PTOA) on articular chondrocyte physiology. METHODS We first developed and validated a novel joint tissue co-culture system to model the biological interactions between synovium and articular chondrocytes. Whole-joint synovial tissue from a surgical rat model of PTOA vs sham and surgical-naïve controls was placed into a co-culture system with adult primary articular chondrocytes (n = 4-5). The effects of PTOA synovium on chondrocyte anabolic, inflammatory, and catabolic gene expression and sulfated glycosaminoglycan (sGAG) secretion and aggrecan synthesis were tested, and results from early and later stages of PTOA development were compared. RESULTS Synovial injury by arthrotomy (sham surgery) alone decreased primary chondrocyte expression of genes including Col2a1 (0.36 ± 0.15-fold) and Acan (0.41 ± 0.28-fold). Early PTOA synovium rescued the suppression of Acan, induced increased sGAG secretion (3.94 ± 0.44 μg/mL vs surgery-naïve 2.41 ± 0.55 and sham 2.92 ± 0.73 μg/mL controls), and upregulated Mmp3 (3.73 ± 2.62-fold) and Prg4 (4.93 ± 4.29-fold). These effects were lost with later stage PTOA synovium. CONCLUSIONS Early PTOA synovium induces transient anabolic responses in articular chondrocytes rather than pro-inflammatory responses that would require inhibition. These results suggest that PTOA synovium plays at least a partially protective role and that loss of these protective effects may contribute to PTOA progression.
Collapse
Affiliation(s)
- Y Lai-Zhao
- Department of Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada.
| | - K K Pitchers
- Department of Physiology and Pharmacology, The University of Western Ontario, Canada
| | - C T Appleton
- Department of Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, London, Canada.
| |
Collapse
|
163
|
Bjerre-Bastos JJ, Nielsen HB, Andersen JR, Karsdal M, Bay-Jensen AC, Boesen M, Mackey AL, Byrjalsen I, Bihlet AR. Does moderate intensity impact exercise and non-impact exercise induce acute changes in collagen biochemical markers related to osteoarthritis? - An exploratory randomized cross-over trial. Osteoarthritis Cartilage 2021; 29:986-994. [PMID: 33676014 DOI: 10.1016/j.joca.2021.02.569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate acute changes in biochemical markers of cartilage turnover in response to moderate intensity exercise with and without joint impact in humans with knee osteoarthritis. DESIGN We conducted a randomized, cross-over, exploratory clinical study. Twenty subjects with knee osteoarthritis (OA) were randomized, of which twenty completed 30 min of cycling and 15 completed 30 min of running on days 1 week apart. Fasting blood samples were taken before, immediately after and 1, 2, 3, and 24 h after activity was initiated. Midstream spot urine was sampled before and after activity. Serum samples were analyzed for concentrations of fragment of type II collagen degradation, C2M, fragment of type VI collagen degradation, C6M, cartilage oligomeric matrix protein, COMP, marker of type II collagen formation, PRO-C2, and urine for marker of crosslinked type II collagen degradation, CTX-II. To establish a reference, all subjects had similar samples taken during rest on a separate day. Data was analyzed in a restricted maximum likelihood based random effects linear mixed model. RESULTS C2M trended to increase after cycling compared running (13.49%, 95%CI: -0.36-27.34%) and resting (12.88%, 95%CI: 0.2-25.6%) and the type II collagen formation/degradation ratio switched towards degradation after cycling, but not running. C6M trended to decrease after cycling (-8.1%, 95%CI: -14.8 to -1.4%) and running (-6.8%, 95%CI: -14.16-0.55%). CONCLUSION In persons with knee OA moderate intensity exercise without joint impact may induce acute changes in circulating levels of biochemical markers reflecting type II and VI collagen degradation.
Collapse
Affiliation(s)
- J J Bjerre-Bastos
- Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Nordic Bioscience Clinical Development, Herlev, Denmark.
| | - H B Nielsen
- Department of Anesthesia, Zealand University Hospital Roskilde, Denmark; Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark.
| | - J R Andersen
- Nordic Bioscience Clinical Development, Herlev, Denmark.
| | | | | | - M Boesen
- Department of Radiology, Bispebjerg Hospital, Copenhagen, Denmark.
| | - A L Mackey
- Institute of Sports Medicine, Bispebjerg Hospital, Copenhagen, Denmark.
| | - I Byrjalsen
- Nordic Bioscience Clinical Development, Herlev, Denmark.
| | - A R Bihlet
- Nordic Bioscience Clinical Development, Herlev, Denmark.
| |
Collapse
|
164
|
Haberkamp S, Oláh T, Orth P, Cucchiarini M, Madry H. Analysis of spatial osteochondral heterogeneity in advanced knee osteoarthritis exposes influence of joint alignment. Sci Transl Med 2021; 12:12/562/eaba9481. [PMID: 32967975 DOI: 10.1126/scitranslmed.aba9481] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is considerably affected by joint alignment. Here, we investigate the patterns of spatial osteochondral heterogeneity in patients with advanced varus knee OA together with clinical data. We report strong correlations of osteochondral parameters within individual topographical patterns, highlighting their fundamental and location-dependent interactions in OA. We further identify site-specific effects of varus malalignment on the lesser loaded compartment and, conversely, an unresponsive overloaded compartment. Last, we trace compensatory mechanisms to the overloaded subarticular spongiosa in patients with additional high body weight. We therefore propose to consider and to determine axial alignment in clinical trials when selecting the location to assess structural changes in OA. Together, these findings broaden the scientific basis of therapeutic load redistribution and weight loss in varus knee OA.
Collapse
Affiliation(s)
- Sophie Haberkamp
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany
| | - Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
165
|
Madry H, Grässel S, Nöth U, Relja B, Bernstein A, Docheva D, Kauther MD, Katthagen JC, Bader R, van Griensven M, Wirtz DC, Raschke MJ, Huber-Lang M. The future of basic science in orthopaedics and traumatology: Cassandra or Prometheus? Eur J Med Res 2021; 26:56. [PMID: 34127057 PMCID: PMC8200553 DOI: 10.1186/s40001-021-00521-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Orthopaedic and trauma research is a gateway to better health and mobility, reflecting the ever-increasing and complex burden of musculoskeletal diseases and injuries in Germany, Europe and worldwide. Basic science in orthopaedics and traumatology addresses the complete organism down to the molecule among an entire life of musculoskeletal mobility. Reflecting the complex and intertwined underlying mechanisms, cooperative research in this field has discovered important mechanisms on the molecular, cellular and organ levels, which subsequently led to innovative diagnostic and therapeutic strategies that reduced individual suffering as well as the burden on the society. However, research efforts are considerably threatened by economical pressures on clinicians and scientists, growing obstacles for urgently needed translational animal research, and insufficient funding. Although sophisticated science is feasible and realized in ever more individual research groups, a main goal of the multidisciplinary members of the Basic Science Section of the German Society for Orthopaedics and Trauma Surgery is to generate overarching structures and networks to answer to the growing clinical needs. The future of basic science in orthopaedics and traumatology can only be managed by an even more intensified exchange between basic scientists and clinicians while fuelling enthusiasm of talented junior scientists and clinicians. Prioritized future projects will master a broad range of opportunities from artificial intelligence, gene- and nano-technologies to large-scale, multi-centre clinical studies. Like Prometheus in the ancient Greek myth, transferring the elucidating knowledge from basic science to the real (clinical) world will reduce the individual suffering from orthopaedic diseases and trauma as well as their socio-economic impact.
Collapse
Affiliation(s)
- Henning Madry
- Institute of Experimental Orthopaedics and Osteoarthritis Research, Saarland University, Homburg, Germany
| | - Susanne Grässel
- Experimental Orthopedics, Department of Orthopedic Surgery, University of Regensburg, Regensburg, Germany
| | - Ulrich Nöth
- Department of Orthopaedics and Trauma Surgery, Evangelisches Waldkrankenhaus Berlin Spandau, Berlin, Germany
| | - Borna Relja
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Anke Bernstein
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Max Daniel Kauther
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Essen, Essen, Germany
| | - Jan Christoph Katthagen
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Rainer Bader
- Department of Orthopaedics, Research Lab for Biomechanics and Implant Technology, Rostock University Medical Center, Rostock, Germany
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN-Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Dieter C Wirtz
- Department of Orthopaedics and Trauma Surgery, University Hopsital Bonn, Bonn, Germany
| | - Michael J Raschke
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Helmholzstr. 8/1, Ulm, Germany.
| |
Collapse
|
166
|
Hayashi D, Roemer FW, Guermazi A. How to effectively utilize imaging in disease-modifying treatments for osteoarthritis clinical trials: the radiologist's perspective. Expert Rev Mol Diagn 2021; 21:673-684. [PMID: 34015975 DOI: 10.1080/14737159.2021.1933444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction: One of the reasons for failures of disease-modifying osteoarthritis drug clinical trials has been the radiography-based definition of structural eligibility criteria. Imaging, particularly MRI, has a critical role in planning and conducting clinical trials of osteoarthritis.Areas covered: A literature search was performed using keywords including 'osteoarthritis,' 'knee,' 'MRI,' 'intra-articular injection,' 'semiquantitative scoring,' 'clinical trial,' and other specific terms where relevant. The core concepts of using MRI in osteoarthritis clinical trials are explained focusing on knee osteoarthritis, including its role in determining patient eligibility and inclusion/exclusion criteria as well as outcome measures from the expert musculoskeletal radiologist's perspective. A brief overview of statistical analyses that should be deployed in clinical trials utilizing semiquantitative MRI analyses is discussed.Expert opinion: In order to increase chances to detect measurable efficacy effects, investigators should consider utilizing MRI from screening to outcome assessment. Recognition of several phenotypes of osteoarthritis helps in participant stratification and will lead to more targeted clinical trials. Inclusion and exclusion criteria need to be defined using not only radiography but also MRI. Correct intra-articular injection of investigational compounds is critically important if intra-articular drug delivery is required, and such procedure should be performed and documented using appropriate imaging guidance.
Collapse
Affiliation(s)
- Daichi Hayashi
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA, USA.,Department of Radiology, Stony Brook University, Renaissance School of Medicine, State University of New York, Stony Brook, NY, USA
| | - Frank W Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA, USA.,Department of Radiology, Friedrich-Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ali Guermazi
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA, USA.,Department of Radiology, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
167
|
Wirth W, Eckstein F, Kemnitz J, Baumgartner CF, Konukoglu E, Fuerst D, Chaudhari AS. Accuracy and longitudinal reproducibility of quantitative femorotibial cartilage measures derived from automated U-Net-based segmentation of two different MRI contrasts: data from the osteoarthritis initiative healthy reference cohort. MAGMA (NEW YORK, N.Y.) 2021; 34:337-354. [PMID: 33025284 PMCID: PMC8154803 DOI: 10.1007/s10334-020-00889-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/22/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To evaluate the agreement, accuracy, and longitudinal reproducibility of quantitative cartilage morphometry from 2D U-Net-based automated segmentations for 3T coronal fast low angle shot (corFLASH) and sagittal double echo at steady-state (sagDESS) MRI. METHODS 2D U-Nets were trained using manual, quality-controlled femorotibial cartilage segmentations available for 92 Osteoarthritis Initiative healthy reference cohort participants from both corFLASH and sagDESS (n = 50/21/21 training/validation/test-set). Cartilage morphometry was computed from automated and manual segmentations for knees from the test-set. Agreement and accuracy were evaluated from baseline visits (dice similarity coefficient: DSC, correlation analysis, systematic offset). The longitudinal reproducibility was assessed from year-1 and -2 follow-up visits (root-mean-squared coefficient of variation, RMSCV%). RESULTS Automated segmentations showed high agreement (DSC 0.89-0.92) and high correlations (r ≥ 0.92) with manual ground truth for both corFLASH and sagDESS and only small systematic offsets (≤ 10.1%). The automated measurements showed a similar test-retest reproducibility over 1 year (RMSCV% 1.0-4.5%) as manual measurements (RMSCV% 0.5-2.5%). DISCUSSION The 2D U-Net-based automated segmentation method yielded high agreement compared with manual segmentation and also demonstrated high accuracy and longitudinal test-retest reproducibility for morphometric analysis of articular cartilage derived from it, using both corFLASH and sagDESS.
Collapse
Affiliation(s)
- Wolfgang Wirth
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology, Paracelsus Medical University Salzburg and Nuremberg, Strubergasse 21, 5020, Salzburg, Austria.
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria.
- Chondrometrics GmbH, Ainring, Germany.
| | - Felix Eckstein
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology, Paracelsus Medical University Salzburg and Nuremberg, Strubergasse 21, 5020, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Ainring, Germany
| | - Jana Kemnitz
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology, Paracelsus Medical University Salzburg and Nuremberg, Strubergasse 21, 5020, Salzburg, Austria
| | | | | | - David Fuerst
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology, Paracelsus Medical University Salzburg and Nuremberg, Strubergasse 21, 5020, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Ainring, Germany
| | | |
Collapse
|
168
|
Response letter to the Editor. Semin Arthritis Rheum 2021; 52:151839. [PMID: 34006385 DOI: 10.1016/j.semarthrit.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 11/20/2022]
|
169
|
Riddle DL. Transparency and the reporting of subgroup analyses by Guehring and colleagues. Semin Arthritis Rheum 2021; 51:e1. [PMID: 34134895 DOI: 10.1016/j.semarthrit.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Daniel L Riddle
- Departments of Physical Therapy, Orthopaedic Surgery and Rheumatology, Virginia Commonwealth University, Richmond, VA 23298-0224.
| |
Collapse
|
170
|
Abstract
Osteoarthritis affects hundreds of millions of people worldwide, and its prevalence is constantly increasing. While there is currently no treatment that can alter the course of the disease, promising therapeutic strategies and novel targets are being investigated. Innovative cell therapies are already reaching clinical trials, and recent progress in our understanding of the disease is opening new routes for gene therapy. In the long term, the development of new biofabrication tools, such as 3D bioprinting, may pave the way for personalized mini-joint models that could be used to screen drugs and to personalize treatments. This review provides an overview of the most promising therapeutic approaches in the field of osteoarthritis, from upcoming treatments to those that are yet to be discovered.
Collapse
|
171
|
Yazici Y, McAlindon TE, Gibofsky A, Lane NE, Lattermann C, Skrepnik N, Swearingen CJ, Simsek I, Ghandehari H, DiFrancesco A, Gibbs J, Tambiah JRS, Hochberg MC. A Phase 2b randomized trial of lorecivivint, a novel intra-articular CLK2/DYRK1A inhibitor and Wnt pathway modulator for knee osteoarthritis. Osteoarthritis Cartilage 2021; 29:654-666. [PMID: 33588087 DOI: 10.1016/j.joca.2021.02.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/13/2021] [Accepted: 02/07/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Lorecivivint (LOR; SM04690), an investigational Wnt pathway modulator, previously demonstrated patient-reported and radiographic outcome improvements vs placebo in clinically relevant subjects with moderate to severe knee osteoarthritis (OA). This study's objective was to identify effective LOR doses. DESIGN Subjects in this 24-week, Phase 2b, multicenter, randomized, double-blind, placebo (PBO)-controlled trial received an intra-articular injection of 2 mL LOR (0.03, 0.07, 0.15, or 0.23 mg), PBO, or dry-needle sham. The primary efficacy endpoints were changes in Pain NRS [0-10], WOMAC Pain [0-100], WOMAC Function [0-100], and radiographic mJSW outcomes, which were measured using baseline-adjusted analysis of covariance at Week 24. Multiple Comparison Procedure-Modeling (MCP-Mod) was performed for dose modeling. RESULTS In total, 695/700 subjects were treated. Pain NRS showed significant improvements vs PBO after treatment with 0.07 mg and 0.23 mg LOR at Weeks 12 (-0.96, 95% CI [-1.54, -0.37], P = 0.001; -0.78 [-1.39, -0.17], P = 0.012) and 24 (-0.70 [-1.34, -0.06], P = 0.031; -0.82 [-1.51, -0.12], P = 0.022). Additionally, 0.07 mg LOR significantly improved WOMAC Pain and Function subscores vs PBO at Week 12 (P = 0.04, P = 0.021), and 0.23 mg LOR significantly improved both WOMAC subscores at Week 24 (P = 0.031, P = 0.017). No significant differences from PBO were observed for other doses. No radiographic progression was observed in any group at Week 24. MCP-Mod identified 0.07 mg LOR as the lowest effective dose. CONCLUSION This 24-week Phase 2b trial demonstrated the efficacy of LOR on PROs in knee OA subjects. The optimal dose for future studies was identified as 0.07 mg LOR.
Collapse
Affiliation(s)
- Y Yazici
- Samumed, LLC, San Diego, CA, USA; New York University School of Medicine, New York, NY, USA.
| | | | - A Gibofsky
- Weill Cornell Medical College, New York, NY, USA
| | - N E Lane
- University of California Davis Medical School, Burlingame, CA, USA
| | | | - N Skrepnik
- Tucson Orthopaedic Institute, Tucson, AZ, USA
| | | | - I Simsek
- Samumed, LLC, San Diego, CA, USA
| | | | | | - J Gibbs
- Samumed, LLC, San Diego, CA, USA
| | | | | |
Collapse
|
172
|
Rui F, Jiawei K, Yuntao H, Xinran L, Jiani H, Ruixue M, Rui L, Na Z, Meihong X, Yong L. Undenatured type II collagen prevents and treats osteoarthritis and motor function degradation in T2DM patients and db/db mice. Food Funct 2021; 12:4373-4391. [PMID: 33890588 DOI: 10.1039/d0fo03011b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osteoarthritis (OA) has been scarcely researched among patients with diabetes mellitus. This study aims to confirm the preventive and therapeutic effects of undenatured type II collagen (UC II) on OA in aging db/db mice and in patients with T2DM. Firstly, aging db/db mice were randomly assigned to three groups: the UC II intervention (UC II) group, old model (OM) group and positive control group. Meanwhile db/m mice and young db/db mice were used as the normal control and young control groups, respectively. Secondly, fifty-five T2DM patients diagnosed with knee OA were randomly assigned to two groups: UC-II and placebo control groups. After a three-month intervention in both mice and T2DM patients, the subjects' gait and physical activities were assessed and the serum biomarkers including inflammatory cytokines, oxidative stress factors and matrix metalloproteinases (MMPs) were measured. Compared with the OM group mice, those in the UC II group showed a significantly greater superiority in terms of motor functions including the movement trajectories area (163.25 ± 20.3 vs. 78.52 ± 20.14 cm2), the tremor index (0.42 vs. 1.23), standing time (left hind: 0.089 ± 0.03 vs. 0.136 ± 0.04 s), swing (right front: 0.12 ± 0.02 vs. 0.216 ± 0.02 s), stride length (right hind: 7.2 ± 0.9 vs. 5.7 ± 1.1 cm), step cycle (right hind: 0.252 ± 0.05 vs. 0.478 ± 0.11 s) and cadence (14.12 ± 2.7 vs. 7.35 ± 4.4 steps per s). In addition, the levels of IL-4, IL-10, CTX- II and TGF-β in the UC II group were 1.74, 2.23, 1.67 and 1.84 times higher than those in the OM group, respectively, while the levels of MMP-3 and MMP-13 in the UC II group were half those in the OM group. Correspondingly, UC II intervention significantly decreased the scores of pain, stiffness and physical function (p < 0.05), whereas the 6 MWT and total MET distances in the UC II group increased remarkably (p < 0.05). After a three-month period of intervention, the varus angle significantly decreased from 4.6 ± 2.0° to 3.0 ± 1.4° and the knee flexion range obviously increased from 57.9 ± 14.0° to 66.9 ± 10.4°. Importantly, the declining trend in the levels of hs-CRP and MDA and the incremental trend in the SOD level were consistent in the db/db mice and OA patients following UC II administration.
Collapse
Affiliation(s)
- Fan Rui
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Cherifi C, Monteagudo S, Lories RJ. Promising targets for therapy of osteoarthritis: a review on the Wnt and TGF-β signalling pathways. Ther Adv Musculoskelet Dis 2021; 13:1759720X211006959. [PMID: 33948125 PMCID: PMC8053758 DOI: 10.1177/1759720x211006959] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is the most common chronic joint disorder worldwide, with a high personal burden for the patients and an important socio-economic impact. Current therapies are largely limited to pain management and rehabilitation and exercise strategies. For advanced cases, joint replacement surgery may be the only option. Hence, there is an enormous need for the development of effective and safe disease-modifying anti-OA drugs. A strong focus in OA research has been on the identification and role of molecular signalling pathways that contribute to the balance between anabolism and catabolism in the articular cartilage. In this context, most insights have been gained in understanding the roles of the transforming growth factor-beta (TGF-β) and the Wingless-type (Wnt) signalling cascades. The emerging picture demonstrates a high degree of complexity with context-dependent events. TGF-β appears to protect cartilage under healthy conditions, but shifts in its receptor use and subsequent downstream signalling may be deleterious in aged individuals or in damaged cartilage. Likewise, low levels of Wnt activity appear important to sustain chondrocyte viability but excessive activation is associated with progressive joint damage. Emerging clinical data suggest some potential for the use of sprifermin, a recombinant forms of fibroblast growth factor 18, a distant TGF-β superfamily member, and for lorecivivint, a Wnt pathway modulator.
Collapse
Affiliation(s)
- Chahrazad Cherifi
- Department of Development and Regeneration, KU Leuven, Skeletal Biology and Engineering Research Centre, Leuven, Belgium
| | - Silvia Monteagudo
- Department of Development and Regeneration, KU Leuven, Skeletal Biology and Engineering Research Centre, Leuven, Belgium
| | - Rik J Lories
- Department of Development and Regeneration, KU Leuven, Skeletal Biology and Engineering Research Centre, Box 813 O&N, Herestraat 49, Leuven 3000, Belgium; Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
174
|
Cai X, Yuan S, Zeng Y, Wang C, Yu N, Ding C. New Trends in Pharmacological Treatments for Osteoarthritis. Front Pharmacol 2021; 12:645842. [PMID: 33935742 PMCID: PMC8085504 DOI: 10.3389/fphar.2021.645842] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is the leading cause of function loss and disability among the elderly, with significant burden on the individual and society. It is a severe disease for its high disability rates, morbidity, costs, and increased mortality. Multifactorial etiologies contribute to the occurrence and development of OA. The heterogeneous condition poses a challenge for the development of effective treatment for OA; however, emerging treatments are promising to bring benefits for OA management in the future. This narrative review will discuss recent developments of agents for the treatment of OA, including potential disease-modifying osteoarthritis drugs (DMOADs) and novel therapeutics for pain relief. This review will focus more on drugs that have been in clinical trials, as well as attractive drugs with potential applications in preclinical research. In the past few years, it has been realized that a complex interaction of multifactorial mechanisms is involved in the pathophysiology of OA. The authors believe there is no miracle therapeutic strategy fitting for all patients. OA phenotyping would be helpful for therapy selection. A variety of potential therapeutics targeting inflammation mechanisms, cellular senescence, cartilage metabolism, subchondral bone remodeling, and the peripheral nociceptive pathways are expected to reshape the landscape of OA treatment over the next few years. Precise randomized controlled trials (RCTs) are expected to identify the safety and efficacy of novel therapies targeting specific mechanisms in OA patients with specific phenotypes.
Collapse
Affiliation(s)
- Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shiwen Yuan
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yanting Zeng
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Cuicui Wang
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Na Yu
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Changhai Ding
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
175
|
Zeng N, Chen XY, Yan ZP, Li JT, Liao T, Ni GX. Efficacy and safety of sprifermin injection for knee osteoarthritis treatment: a meta-analysis. Arthritis Res Ther 2021; 23:107. [PMID: 33836824 PMCID: PMC8034149 DOI: 10.1186/s13075-021-02488-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/22/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To perform a meta-analysis comparing the structural progression and clinical symptom outcomes as well as adverse events experienced from intra-articular injections of sprifermin compared to a placebo treatment for patients with knee osteoarthritis (KOA). METHOD We systematically searched the literature for studies that compared long-term outcomes between sprifermin and placebo injections for KOA treatment. Meta-analysis was performed with RevMan5.3 using an inverse variance approach with fixed or random effects models. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated. RESULTS Eight studies were included. Overall, there was significantly less improvement of WOMAC total scores in patients receiving sprifermin, compared with the placebo (mean difference (MD) = 3.23, 95% CI 0.76-5.69; I2 = 0%; P = 0.01). Further, sprifermin injection patients gained more, and lost less, cartilage thickness and volume in total femorotibial joint (cartilage thickness: standardized mean differences (SMD) = 0.55, 95% CI 0.26-0.84; I2 = 78%; P = 0.0002; cartilage volume: SMD = 0.39, 95% CI 0.20-0.58; I2 = 49%; P < 0.0001). Changes in the cartilage surface morphology of the medial tibio-femoral joint (MD = -0.30, 95% CI -0.44 to -0.16; I2 = 0%; P < 0.0001) and patello-femoral joint (MD = -0.22; 95% CI -0.37 to -0.07; I2 = 0%; P = 0.004) showed a significant difference between the sprifermin and placebo injections. Moreover, there were no significant differences between sprifermin and the placebo in the risk of treatment-emergent adverse events (OR = 1.05; 95% CI 0.52-2.14; I2 = 48%; P = 0.89). CONCLUSION The data from the included studies provide strong evidence to determine the effect of intra-articular sprifermin on joint structure in individuals with KOA and show no specific adverse effects. Nevertheless, intra-articular sprifermin did not likely have any positive effect on symptom alleviation.
Collapse
Affiliation(s)
- Ni Zeng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xin-Yuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhi-Peng Yan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jie-Ting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Tao Liao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guo-Xin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China.
| |
Collapse
|
176
|
Abstract
PURPOSE OF REVIEW Osteoarthritis is a degenerative joint disease that features pain as a hallmark symptom. This review summarises progress and obstacles in our understanding of pain mechanisms in arthritis. RECENT FINDINGS Pain phenotypes in osteoarthritis are poorly characterized in clinical studies and animal studies are largely carti-centric. Different animal models incur variable disease progression patterns and activation of distinct pain pathways, but studies reporting both structural and pain outcomes permit better translational insights. In patients, classification of osteoarthritis disease severity is only based on structural integrity of the joint, but pain outcomes do not consistently correlate with joint damage. The complexity of this relationship underlines the need for pain detection in criteria for osteoarthritis classification and patient-reported outcome measures. SUMMARY Variable inflammatory and neuropathic components and spatiotemporal evolution underlie the heterogeneity of osteoarthritis pain phenotypes, which must be considered to adequately stratify patients. Revised classification of osteoarthritis at different stages encompassing both structural and pain outcomes would significantly improve detection and diagnosis at both early and late stages of disease. These are necessary advancements in the field that would also improve trial design and provide better understanding of basic mechanisms of disease progression and pain in osteoarthritis.
Collapse
|
177
|
Wirth W, Eckstein F, Culvenor AG, Hudelmaier MI, Stefan Lohmander L, Frobell RB. Early anterior cruciate ligament reconstruction does not affect 5 year change in knee cartilage thickness: secondary analysis of a randomized clinical trial. Osteoarthritis Cartilage 2021; 29:518-526. [PMID: 33549723 DOI: 10.1016/j.joca.2021.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/30/2020] [Accepted: 01/20/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare 5-year change in femorotibial cartilage thickness in 121 young, active adults with an acute anterior cruciate ligament (ACL) tear randomized to a strategy of structured rehabilitation plus early ACL reconstruction (ACLR) or structured rehabilitation plus optional delayed ACLR. DESIGN 62 patients were randomized to early ACLR, 59 to optional delayed ACLR. Magnetic resonance imaging (MRI) was acquired within 4 weeks of injury, at two- and 5-years follow-up. Main outcome was 5-year change in overall femorotibial cartilage thickness. Secondary outcomes included the location-independent cartilage ChangeScore, summarizing thinning and thickening in 16 femorotibial subregions. An exploratory as-treated comparison was performed additionally. RESULTS Baseline and at least one follow-up MRI were available for 117 patients. Over 5 years, a comparable increase in overall femorotibial cartilage thickness was observed for patients randomized to early ACLR (n = 59) and patients randomized to optional delayed ACLR (n = 58, adjusted mean difference: -5 μm, 95% CI: [-118, 108]μm). However, the location-independent cartilage ChangeScore was greater in those treated with early ACLR than in patients treated with optional delayed ACLR (adjusted mean difference: 403 μm [119, 687]μm). As-treated analysis showed no between-group differences for the main outcome, while the location-independent cartilage ChangeScore was greater for patients treated with early (adjusted mean difference: 632 μm [268, 996]μm) or delayed ACLR (adjusted mean difference: 449 μm [108, 791]μm) than for patients treated with rehabilitation alone. CONCLUSIONS In young active adults with acute ACL-injury, choice of treatment strategy for the injured ACL did not modify the magnitude of 5-year change in overall femorotibial cartilage thickness. TRIAL REGISTRATION ISRCTN84752559.
Collapse
Affiliation(s)
- W Wirth
- Department for Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria; Chondrometrics GmbH, Ainring, Germany.
| | - F Eckstein
- Department for Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria; Chondrometrics GmbH, Ainring, Germany.
| | - A G Culvenor
- Department for Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria; La Trobe Sport & Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia.
| | - M I Hudelmaier
- Department for Imaging & Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria.
| | - L Stefan Lohmander
- Department of Clinical Sciences Lund, Orthopaedics, Lund University, Lund, Sweden.
| | - R B Frobell
- Department of Clinical Sciences Lund, Orthopaedics, Lund University, Lund, Sweden.
| |
Collapse
|
178
|
Candidates for Intra-Articular Administration Therapeutics and Therapies of Osteoarthritis. Int J Mol Sci 2021; 22:ijms22073594. [PMID: 33808364 PMCID: PMC8036705 DOI: 10.3390/ijms22073594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) of the knee is a disease that significantly decreases the quality of life due to joint deformation and pain caused by degeneration of articular cartilage. Since the degeneration of cartilage is irreversible, intervention from an early stage and control throughout life is important for OA treatment. For the treatment of early OA, the development of a disease-modifying osteoarthritis drug (DMOAD) for intra-articular (IA) injection, which is attracting attention as a point-of-care therapy, is desired. In recent years, the molecular mechanisms involved in OA progression have been clarified while new types of drug development methods based on gene sequences have been established. In addition to conventional chemical compounds and protein therapeutics, the development of DMOAD from the new modalities such as gene therapy and oligonucleotide therapeutics is accelerating. In this review, we have summarized the current status and challenges of DMOAD for IA injection, especially for protein therapeutics, gene therapy, and oligonucleotide therapeutics.
Collapse
|
179
|
Serum C-reactive protein metabolite (CRPM) is associated with incidence of contralateral knee osteoarthritis. Sci Rep 2021; 11:6583. [PMID: 33753821 PMCID: PMC7985384 DOI: 10.1038/s41598-021-86064-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
The heterogeneous nature of osteoarthritis (OA) and the need to subtype patients is widely accepted in the field. The biomarker CRPM, a metabolite of C-reactive protein (CRP), is released to the circulation during inflammation. Blood CRPM levels have shown to be associated with disease activity and response to treatment in rheumatoid arthritis (RA). We investigated the level of blood CRPM in OA compared to RA using data from two phase III knee OA and two RA studies (N = 1591). Moreover, the association between CRPM levels and radiographic progression was investigated. The mean CRPM levels were significantly lower in OA (8.5 [95% CI 8.3–8.8] ng/mL, n = 781) compared to the RA patients (12.8 [9.5–16.0] ng/mL, n = 60); however, a significant subset of OA patients (31%) had CRPM levels (≥ 9 ng/mL) comparable to RA. Furthermore, OA patients (n = 152) with CRPM levels ≥ 9 ng/mL were more likely to develop contra-lateral knee OA assessed by X-ray over a two-year follow-up period with an odds ratio of 2.2 [1.0–4.7]. These data suggest that CRPM is a blood-based biochemical marker for early identification OA patients with an inflammatory phenotype.
Collapse
|
180
|
Geng Q, Zhang H, Cui Y, Wei Q, Wang S. Febuxostat mitigates IL-18-induced inflammatory response and reduction of extracellular matrix gene. Am J Transl Res 2021; 13:979-987. [PMID: 33841634 PMCID: PMC8014396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a disease commonly diagnosed in the elderly population. It is reported that the reduction of extracellular matrix and infiltrated inflammation are two main factors responsible for the pathogenesis of OA. This investigation aims to explore the potential protective effects of Febuxostat against IL-18-induced insults in chondrocytes, as well as the possible mechanism. MATERIALS AND METHODS The viability of chondrocytes was evaluated using the MTT assay. QRT-PCR and ELISA were used to measure the expressions and concentrations of IL-6, TNF-α, and CCL5, respectively. The accumulation of glycosaminoglycans (GAGs) was measured using Alcian blue assay. The chondrocytes were transfected with siRNA against Sox-9 in order to establish the Sox-9 knock-down chondrocytes. The expressions of iNOS, Col2a1, Acan, and Sox-9 were measured using qRT-PCR. The production of NO was measured using Diaminofluorescein-FM diacetate (DAF-FM DA) staining. RESULTS The up-regulated expressions of IL-6, TNF-α, CCL5, iNOS, and NO stimulated by IL-18 were down-regulated by the introduction of Febuxostat. The expressions of Col2a1, Acan, and Sox-9 were significantly reduced by IL-18 but greatly promoted by Febuxostat. The increased gene expressions of Col2a1 and Acan induced by Febuxostat were abolished by knocking down Sox-9 in the chondrocytes. CONCLUSION Febuxostat might mitigate IL-18-induced inflammatory response and reduction of the extracellular matrix gene mediated by Sox-9.
Collapse
Affiliation(s)
- Qin Geng
- Department of Rheumatology, Shandong Zibo Central Hospital Zibo 255036, Shandong, China
| | - Hongju Zhang
- Department of Rheumatology, Shandong Zibo Central Hospital Zibo 255036, Shandong, China
| | - Yanhui Cui
- Department of Rheumatology, Shandong Zibo Central Hospital Zibo 255036, Shandong, China
| | - Qiaofeng Wei
- Department of Rheumatology, Shandong Zibo Central Hospital Zibo 255036, Shandong, China
| | - Shujun Wang
- Department of Rheumatology, Shandong Zibo Central Hospital Zibo 255036, Shandong, China
| |
Collapse
|
181
|
Mei X, Villamagna IJ, Nguyen T, Beier F, Appleton CT, Gillies ER. Polymer particles for the intra-articular delivery of drugs to treat osteoarthritis. Biomed Mater 2021; 16. [PMID: 33711838 DOI: 10.1088/1748-605x/abee62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/12/2021] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a leading cause of chronic disability. It is a progressive disease, involving pathological changes to the entire joint, resulting in joint pain, stiffness, swelling, and loss of mobility. There is currently no disease-modifying pharmaceutical treatment for OA, and the treatments that do exist suffer from significant side effects. An increasing understanding of the molecular pathways involved in OA is leading to many potential drug targets. However, both current and new therapies can benefit from a targeted approach that delivers drugs selectively to joints at therapeutic concentrations, while limiting systemic exposure to the drugs. Delivery systems including hydrogels, liposomes, and various types of particles have been explored for intra-articular drug delivery. This review will describe progress over the past several years in the development of polymer-based particles for OA treatment, as well as their in vitro, in vivo, and clinical evaluation. Systems based on biopolymers such as polysaccharides and polypeptides, as well as synthetic polyesters, poly(ester amide)s, thermoresponsive polymers, poly(vinyl alcohol), amphiphilic polymers, and dendrimers will be described. We will discuss the role of particle size, biodegradability, and mechanical properties in the behavior of the particles in the joint, and the challenges to be addressed in future research.
Collapse
Affiliation(s)
- Xueli Mei
- Department of Chemistry, Western University, 1151 Richmond St., London, Ontario, N6A 5B7, CANADA
| | - Ian J Villamagna
- School of Biomedical Engineering, Western University, 1151 Richmond St., London, Ontario, N6A 5B9, CANADA
| | - Tony Nguyen
- Department of Chemistry, Western University, 1151 Richmond St., London, Ontario, N6A 5B7, CANADA
| | - Frank Beier
- Department of Physiology and Pharmacology, Western University, 1151 Richmond St., London, Ontario, N6A 3B7, CANADA
| | - C Thomas Appleton
- Department of Physiology and Pharmacology, Department of Medicine, Western University, 1151 Richmond St., London, Ontario, N6A 3B7, CANADA
| | - Elizabeth R Gillies
- Department of Chemistry and Department of Chemical and Biochemical Engineering, Western University, 1151 Richmond St., London, Ontario, N6A 5B7, CANADA
| |
Collapse
|
182
|
Guehring H, Moreau F, Daelken B, Ladel C, Guenther O, Bihlet AR, Wirth W, Eckstein F, Hochberg M, Conaghan PG. The effects of sprifermin on symptoms and structure in a subgroup at risk of progression in the FORWARD knee osteoarthritis trial. Semin Arthritis Rheum 2021; 51:450-456. [PMID: 33752164 DOI: 10.1016/j.semarthrit.2021.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To assess pain outcomes and cartilage thickness change in a subgroup at risk (SAR) of further progression in the FORWARD trial of knee osteoarthritis patients treated with sprifermin. METHODS Patients were randomised 1:1:1:1:1 to: sprifermin 100 µg every 6 months (q6mo), 100 µg q12mo, 30 µg q6mo, 30 µg q12mo, or placebo for 18 months. SAR was defined as baseline medial or lateral minimum joint-space width (mJSW) 1.5-3.5 mm and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score 40-90 units. Follow-up to 3 years was included in the analysis. Treatment benefit was explored by repeated measures, linear dose-effect trends by timepoint. RESULTS The SAR comprised 161 (29%) of 549 patients. Mean difference (95% CI) in WOMAC pain at year 3 for sprifermin 100 µg q6mo vs placebo SAR was -8.75 (-22.42, 4.92) for SAR vs 0.97 (-6.22, 8.16) for the intent-to-treat population. SAR placebo patients lost more cartilage over 2 years than the modified ITT (mITT) placebo arm (mean change from baseline, mm [SD]: -0.05 [0.10] vs -0.02 [0.07]). Net total femorotibial joint thickness gain with sprifermin 100 µg q6mo (adjusted mean difference from placebo [95% CI] was similar in the SAR and in the mITT group: 0.06 [0.01, 0.11] vs 0.05 [0.03, 0.07]). CONCLUSIONS Selection for low mJSW and moderate-to-high pain at baseline resulted in more rapid disease progression and demonstrated translation of structure modification (with maintained net benefit on total cartilage thickness) into symptomatic benefit. This subgroup may represent a target population for future trials. CLINICAL TRIAL REGISTRATION NCT01919164.
Collapse
Affiliation(s)
| | - Flavie Moreau
- EMD Serono Research and Development Institute, Inc., Billerica, MA, USA
| | | | | | | | | | - Wolfgang Wirth
- Chondrometrics GmbH, Ainring, Germany; Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Felix Eckstein
- Chondrometrics GmbH, Ainring, Germany; Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Marc Hochberg
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, UK.
| |
Collapse
|
183
|
Luo Y, Samuels J, Krasnokutsky S, Byrjalsen I, Kraus VB, He Y, Karsdal MA, Abramson SB, Attur M, Bay-Jensen AC. A low cartilage formation and repair endotype predicts radiographic progression of symptomatic knee osteoarthritis. J Orthop Traumatol 2021; 22:10. [PMID: 33687578 PMCID: PMC7943687 DOI: 10.1186/s10195-021-00572-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Background Osteoarthritis (OA) is a disease with multiple endotypes. A hallmark of OA is loss of cartilage; however, it is evident that the rate of cartilage loss differs among patients, which may partly be attributed to differential capacity for cartilage repair. We hypothesize that a low cartilage repair endotype exists and that such endotypes are more likely to progress radiographically. The aim of this study is to examine the associations of level of cartilage formation with OA severity and radiographic OA progression. We used the blood-based marker PRO-C2, reflecting type II collagen formation, to assess levels of cartilage formation. Materials and methods The type II collagen propeptide PRO-C2 was measured in the serum/plasma of knee OA subjects from New York University (NYU, n = 106) and a subcohort of the phase III oral salmon calcitonin (sCT) trial SMC021-2301 (SMC, n = 147). Risk of radiographic medial joint space narrowing (JSN) over 24 months was compared between quartiles (very low, low, moderate, and high) of PRO-C2. Associations were adjusted for age, gender, BMI, race, baseline pain levels, and baseline joint space width. Results In both the NYU and SMC cohorts, subjects with low PRO-C2 levels had greater JSN compared with subjects with high PRO-C2. Mean difference in JSN between subjects with very low and high levels of PRO-C2 was 0.65 mm (p = 0.002), corresponding to a 3.4 (1.4–8.6)-fold higher risk of progression. There was no significant effect of sCT treatment, compared with placebo, on JSN over 2 years before stratification based on baseline PRO-C2. However, there were proportionately fewer progressors in the sCT arm of the very low/low PRO-C2 group compared with the moderate/high group (Chi squared = 6.5, p = 0.011). Conclusion Serum/plasma level of type II collagen formation, PRO-C2, may be an objective indicator of a low cartilage repair endotype, displaying radiographic progression and superior response to a proanabolic drug. Level of evidence Level III post hoc exploratory analysis of one longitudinal cohort and a sub-study from one phase III clinical trial.
Collapse
Affiliation(s)
- Yunyun Luo
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 207, 2730, Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Samuels
- Division of Rheumatology, NYU School of Medicine and NYU Langone Orthopaedic Hospital, New York, USA
| | - Svetlana Krasnokutsky
- Division of Rheumatology, NYU School of Medicine and NYU Langone Orthopaedic Hospital, New York, USA
| | | | - Virginia B Kraus
- Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, USA.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, USA
| | - Yi He
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 207, 2730, Herlev, Denmark
| | - Morten A Karsdal
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 207, 2730, Herlev, Denmark
| | - Steven B Abramson
- Division of Rheumatology, NYU School of Medicine and NYU Langone Orthopaedic Hospital, New York, USA
| | - Mukundan Attur
- Division of Rheumatology, NYU School of Medicine and NYU Langone Orthopaedic Hospital, New York, USA
| | - Anne C Bay-Jensen
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 207, 2730, Herlev, Denmark.
| |
Collapse
|
184
|
From Pathogenesis to Therapy in Knee Osteoarthritis: Bench-to-Bedside. Int J Mol Sci 2021; 22:ijms22052697. [PMID: 33800057 PMCID: PMC7962130 DOI: 10.3390/ijms22052697] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is currently the most widespread musculoskeletal condition and primarily affects weight-bearing joints such as the knees and hips. Importantly, knee OA remains a multifactorial whole-joint disease, the appearance and progression of which involves the alteration of articular cartilage as well as the synovium, subchondral bone, ligaments, and muscles through intricate pathomechanisms. Whereas it was initially depicted as a predominantly aging-related and mechanically driven condition given its clear association with old age, high body mass index (BMI), and joint malalignment, more recent research identified and described a plethora of further factors contributing to knee OA pathogenesis. However, the pathogenic intricacies between the molecular pathways involved in OA prompted the study of certain drugs for more than one therapeutic target (amelioration of cartilage and bone changes, and synovial inflammation). Most clinical studies regarding knee OA focus mainly on improvement in pain and joint function and thus do not provide sufficient evidence on the possible disease-modifying properties of the tested drugs. Currently, there is an unmet need for further research regarding OA pathogenesis as well as the introduction and exhaustive testing of potential disease-modifying pharmacotherapies in order to structure an effective treatment plan for these patients.
Collapse
|
185
|
Abstract
Importance Osteoarthritis (OA) is the most common joint disease, affecting an estimated more than 240 million people worldwide, including an estimated more than 32 million in the US. Osteoarthritis is the most frequent reason for activity limitation in adults. This Review focuses on hip and knee OA. Observations Osteoarthritis can involve almost any joint but typically affects the hands, knees, hips, and feet. It is characterized by pathologic changes in cartilage, bone, synovium, ligament, muscle, and periarticular fat, leading to joint dysfunction, pain, stiffness, functional limitation, and loss of valued activities, such as walking for exercise and dancing. Risk factors include age (33% of individuals older than 75 years have symptomatic and radiographic knee OA), female sex, obesity, genetics, and major joint injury. Persons with OA have more comorbidities and are more sedentary than those without OA. The reduced physical activity leads to a 20% higher age-adjusted mortality. Several physical examination findings are useful diagnostically, including bony enlargement in knee OA and pain elicited with internal hip rotation in hip OA. Radiographic indicators include marginal osteophytes and joint space narrowing. The cornerstones of OA management include exercises, weight loss if appropriate, and education-complemented by topical or oral nonsteroidal anti-inflammatory drugs (NSAIDs) in those without contraindications. Intra-articular steroid injections provide short-term pain relief and duloxetine has demonstrated efficacy. Opiates should be avoided. Clinical trials have shown promising results for compounds that arrest structural progression (eg, cathepsin K inhibitors, Wnt inhibitors, anabolic growth factors) or reduce OA pain (eg, nerve growth factor inhibitors). Persons with advanced symptoms and structural damage are candidates for total joint replacement. Racial and ethnic disparities persist in the use and outcomes of joint replacement. Conclusions and Relevance Hip and knee OA are highly prevalent and disabling. Education, exercise and weight loss are cornerstones of management, complemented by NSAIDs (for patients who are candidates), corticosteroid injections, and several adjunctive medications. For persons with advanced symptoms and structural damage, total joint replacement effectively relieves pain.
Collapse
Affiliation(s)
- Jeffrey N. Katz
- Orthopedic and Arthritis Center for Outcomes Research, Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard Chan School of Public Health, Boston, MA, USA
| | - Kaetlyn R. Arant
- Orthopedic and Arthritis Center for Outcomes Research, Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard F. Loeser
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
186
|
McClurg O, Tinson R, Troeberg L. Targeting Cartilage Degradation in Osteoarthritis. Pharmaceuticals (Basel) 2021; 14:ph14020126. [PMID: 33562742 PMCID: PMC7916085 DOI: 10.3390/ph14020126] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis is a common, degenerative joint disease with significant socio-economic impact worldwide. There are currently no disease-modifying drugs available to treat the disease, making this an important area of pharmaceutical research. In this review, we assessed approaches being explored to directly inhibit metalloproteinase-mediated cartilage degradation and to counteract cartilage damage by promoting growth factor-driven repair. Metalloproteinase-blocking antibodies are discussed, along with recent clinical trials on FGF18 and Wnt pathway inhibitors. We also considered dendrimer-based approaches being developed to deliver and retain such therapeutics in the joint environment. These may reduce systemic side effects while improving local half-life and concentration. Development of such targeted anabolic therapies would be of great benefit in the osteoarthritis field.
Collapse
|
187
|
|
188
|
Osteoarthritis year in review 2020: imaging. Osteoarthritis Cartilage 2021; 29:170-179. [PMID: 33418028 DOI: 10.1016/j.joca.2020.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 12/17/2020] [Indexed: 02/02/2023]
Abstract
This narrative "Year in Review" highlights a selection of articles published between January 2019 and April 2020, to be presented at the OARSI World Congress 2020 within the field of osteoarthritis (OA) imaging. Articles were obtained from a PubMed search covering the above period, utilizing a variety of relevant search terms. We then selected original and review studies on OA-related imaging in humans, particularly those with direct clinical relevance, with a focus on the knee. Topics selected encompassed clinically relevant models of early OA, particularly imaging applications on cruciate ligament rupture, as these are of direct clinical interest and provide potential opportunity to evaluate preventive therapy. Further, imaging applications on structural modification of articular tissues in patients with established OA, by non-pharmacological, pharmacological and surgical interventions are summarized. Finally, novel deep learning approaches to imaging are reviewed, as these facilitate implementation and scaling of quantitative imaging application in clinical trials and clinical practice. Methodological or observational studies outside these key focus areas were not included. Studies focused on biology, biomechanics, biomarkers, genetics and epigenetics, and clinical studies that did not contain an imaging component are covered in other articles within the OARSI "Year in Review" series. In conclusion, exciting progress has been made in clinically validating human models of early OA, and the field of automated articular tissue segmentation. Most importantly though, it has been shown that structure modification of articular cartilage is possible, and future research should focus on the translation of these structural findings to clinical benefit.
Collapse
|
189
|
Reed KSM, Ulici V, Kim C, Chubinskaya S, Loeser RF, Phanstiel DH. Transcriptional response of human articular chondrocytes treated with fibronectin fragments: an in vitro model of the osteoarthritis phenotype. Osteoarthritis Cartilage 2021; 29:235-247. [PMID: 33248223 PMCID: PMC7870543 DOI: 10.1016/j.joca.2020.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Fibronectin is a matrix protein that is fragmented during cartilage degradation in osteoarthritis (OA). Treatment of chondrocytes with fibronectin fragments (FN-f) has been used to model OA in vitro, but the system has not been fully characterized. This study sought to define the transcriptional response of chondrocytes to FN-f, and directly compare it to responses traditionally observed in OA. DESIGN Normal human femoral chondrocytes isolated from tissue donors were treated with either FN-f or PBS (control) for 3, 6, or 18 h. RNA-seq libraries were compared between time-matched FN-f and control samples in order to identify changes in gene expression over time. Differentially expressed genes were compared to a published OA gene set and used for pathway, transcription factor motif, and kinome analysis. RESULTS FN-f treatment resulted in 3,914 differentially expressed genes over the time course. Genes that are up- or downregulated in OA were significantly up- (P < 0.00001) or downregulated (P < 0.0004) in response to FN-f. Early response genes were involved in proinflammatory pathways, whereas many late response genes were involved in ferroptosis. The promoters of upregulated genes were enriched for NF-κB, AP-1, and IRF motifs. Highly upregulated kinases included CAMK1G, IRAK2, and the uncharacterized kinase DYRK3, while growth factor receptors TGFBR2 and FGFR2 were downregulated. CONCLUSIONS FN-f treatment of normal human articular chondrocytes recapitulated many key aspects of the OA chondrocyte phenotype. This in vitro model is promising for future OA studies, especially considering its compatibility with genomics and genome-editing techniques.
Collapse
Affiliation(s)
- K S M Reed
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - V Ulici
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - C Kim
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - S Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.
| | - R F Loeser
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - D H Phanstiel
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
190
|
Makarczyk MJ, Gao Q, He Y, Li Z, Gold MS, Hochberg MC, Bunnell BA, Tuan RS, Goodman SB, Lin H. Current Models for Development of Disease-Modifying Osteoarthritis Drugs. Tissue Eng Part C Methods 2021; 27:124-138. [PMID: 33403944 PMCID: PMC8098772 DOI: 10.1089/ten.tec.2020.0309] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a painful and disabling disease that affects millions of people worldwide. Symptom-alleviating treatments exist, although none with long-term efficacy. Furthermore, there are currently no disease-modifying OA drugs (DMOADs) with demonstrated efficacy in OA patients, which is, in part, attributed to a lack of full understanding of the pathogenesis of OA. The inability to translate findings from basic research to clinical applications also highlights the deficiencies in the available OA models at simulating the clinically relevant pathologies and responses to treatments in humans. In this review, the current status in the development of DMOADs will be first presented, with special attention to those in Phase II-IV clinical trials. Next, current in vitro, ex vivo, and in vivo OA models are summarized and the respective advantages and disadvantages of each are highlighted. Of note, the development and application of microphysiological or tissue-on-a-chip systems for modeling OA in humans are presented and the issues that need to be addressed in the future are discussed. Microphysiological systems should be given serious consideration for their inclusion in the DMOAD development pipeline, both for their ability to predict drug safety and efficacy in human clinical trials at present, as well as for their potential to serve as a test platform for personalized medicine. Impact statement At present, no disease-modifying osteoarthritis (OA) drugs (DMOADs) have been approved for widespread clinical use by regulatory bodies. The failure of developing effective DMOADs is likely owing to multiple factors, not the least of which are the intrinsic differences between the intact human knee joint and the preclinical models. This work summarizes the current OA models for the development of DMOADs, discusses the advantages/disadvantages of each, and then proposes future model development to aid in the discovery of effective and personalized DMOADs. The review also highlights the microphysiological systems, which are emerging as a new platform for drug development.
Collapse
Affiliation(s)
- Meagan J. Makarczyk
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, California, USA
| | - Yuchen He
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhong Li
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael S. Gold
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark C. Hochberg
- Department of Medicine and Epidemiology and Public Health, University of Maryland, Baltimore, Maryland, USA
| | - Bruce A. Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, California, USA
- Department of Bioengineering, Stanford University, California, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
191
|
Peat G, Thomas MJ. Osteoarthritis year in review 2020: epidemiology & therapy. Osteoarthritis Cartilage 2021; 29:180-189. [PMID: 33242603 DOI: 10.1016/j.joca.2020.10.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 10/29/2020] [Indexed: 02/02/2023]
Abstract
This personal choice of research themes and highlights from within the past year (1 May 2019 to 14 April 2020) spans descriptive, analytical-observational, and intervention studies. Descriptive estimates of the burden of osteoarthritis continue to underscore its position as a leading cause of disability worldwide, but whose burden is often felt greatest among disadvantaged and marginalised communities. Many of the major drivers of that burden are known but epidemiological studies continue the important work of elaborating on their timing, dose, specificity, and reversibility and placing them within an appropriate multi-level framework. A similar process of elaboration is seen also in studies (re-)estimating the relative benefits and risks of existing interventions, in some cases helping to identify low-value care, unwarranted variation, and initiating processes of deprescribing and decommissioning. Such research need not engender therapeutic nihilism. Our review closes by highlighting some emerging evidence on the efficacy and safety of novel therapeutic interventions and with a selective roll-call of methodological and meta-research in OA illustrating the continued commitment to improving research quality.
Collapse
Affiliation(s)
- G Peat
- Primary Care Centre Versus Arthritis, School of Medicine, Faculty of Medicine & Health Sciences, Keele University, Keele, UK.
| | - M J Thomas
- Primary Care Centre Versus Arthritis, School of Medicine, Faculty of Medicine & Health Sciences, Keele University, Keele, UK; Haywood Academic Rheumatology Centre, Midlands Partnership NHS Foundation Trust, Haywood Hospital, Staffordshire, UK
| |
Collapse
|
192
|
Pierson E, Cutler DM, Leskovec J, Mullainathan S, Obermeyer Z. An algorithmic approach to reducing unexplained pain disparities in underserved populations. Nat Med 2021; 27:136-140. [PMID: 33442014 DOI: 10.1038/s41591-020-01192-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Underserved populations experience higher levels of pain. These disparities persist even after controlling for the objective severity of diseases like osteoarthritis, as graded by human physicians using medical images, raising the possibility that underserved patients' pain stems from factors external to the knee, such as stress. Here we use a deep learning approach to measure the severity of osteoarthritis, by using knee X-rays to predict patients' experienced pain. We show that this approach dramatically reduces unexplained racial disparities in pain. Relative to standard measures of severity graded by radiologists, which accounted for only 9% (95% confidence interval (CI), 3-16%) of racial disparities in pain, algorithmic predictions accounted for 43% of disparities, or 4.7× more (95% CI, 3.2-11.8×), with similar results for lower-income and less-educated patients. This suggests that much of underserved patients' pain stems from factors within the knee not reflected in standard radiographic measures of severity. We show that the algorithm's ability to reduce unexplained disparities is rooted in the racial and socioeconomic diversity of the training set. Because algorithmic severity measures better capture underserved patients' pain, and severity measures influence treatment decisions, algorithmic predictions could potentially redress disparities in access to treatments like arthroplasty.
Collapse
Affiliation(s)
- Emma Pierson
- Department of Computer Science, Stanford University, Stanford, CA, USA.,Microsoft Research, Cambridge, MA, USA
| | - David M Cutler
- Department of Economics, Harvard University, Cambridge, MA, USA
| | - Jure Leskovec
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Ziad Obermeyer
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
193
|
Hunter DJ, Deveza LA, Collins JE, Losina E, Nevitt MC, Roemer FW, Guermazi A, Bowes MA, Dam EB, Eckstein F, Lynch JA, Katz JN, Kwoh CK, Hoffmann S, Kraus VB. Multivariable modeling of biomarker data from the phase 1 Foundation for the NIH Osteoarthritis Biomarkers Consortium. Arthritis Care Res (Hoboken) 2021; 74:1142-1153. [PMID: 33421361 DOI: 10.1002/acr.24557] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To determine the optimal combination of imaging and biochemical biomarkers to predict knee osteoarthritis (OA) progression. METHODS Nested case-control study from the FNIH OA Biomarkers Consortium of participants with Kellgren-Lawrence grade 1-3 and complete biomarker data (n=539 to 550). Cases were knees with radiographic and pain progression between 24-48 months from baseline. Radiographic progression only was assessed in secondary analyses. Biomarkers (baseline and 24-month changes) with p<0.10 in univariate analysis were selected, including MRI (quantitative (Q) cartilage thickness and volume; semi-quantitative (SQ) MRI markers; bone shape and area; Q meniscal volume), radiographic (trabecular bone texture (TBT)), and serum and/or urine biochemical markers. Multivariable logistic regression models were built using three different step-wise selection methods (complex vs. parsimonious models). RESULTS Among baseline biomarkers, the number of locations affected by osteophytes (SQ), Q central medial femoral and central lateral femoral cartilage thickness, patellar bone shape, and SQ Hoffa-synovitis predicted progression in most models (C-statistics 0.641-0.671). 24-month changes in SQ MRI markers (effusion-synovitis, meniscal morphology, and cartilage damage), Q central medial femoral cartilage thickness, Q medial tibial cartilage volume, Q lateral patellofemoral bone area, horizontal TBT (intercept term), and urine NTX-I predicted progression in most models (C-statistics 0.680-0.724). A different combination of imaging and biochemical biomarkers (baseline and 24-month change) predicted radiographic progression only, with higher C-statistics (0.716-0.832). CONCLUSION This study highlights the combination of biomarkers with potential prognostic utility in OA disease-modifying trials. Properly qualified, these biomarkers could be used to enrich future trials with participants likely to progress.
Collapse
Affiliation(s)
- David J Hunter
- Department of Rheumatology, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, Australia
| | - Leticia A Deveza
- Department of Rheumatology, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, Australia
| | - Jamie E Collins
- Orthopaedic and Arthritis Center for Outcomes Research, Department of Orthopedic Surgery, Brigham and Women's Hospital Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Elena Losina
- Orthopaedic and Arthritis Center for Outcomes Research, Department of Orthopedic Surgery, Brigham and Women's Hospital Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Michael C Nevitt
- University of California-San Francisco, San Francisco, CA, United States
| | - Frank W Roemer
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA, USA.,Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ali Guermazi
- Quantitative Imaging Center, Department of Radiology, Boston University School of Medicine, Boston, MA, USA
| | - Michael A Bowes
- Imorphics Ltd, a wholly-owned subsidiary of Stryker Corp, Manchester, UK
| | - Erik B Dam
- Department of Computer Science, University of Copenhagen, Denmark.,Biomediq, Copenhagen, Denmark
| | - Felix Eckstein
- Department of Imaging & Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg & Nuremberg, Salzburg, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria.,Chondrometrics GmbH, Ainring, Germany
| | - John A Lynch
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, USA
| | - Jeffrey N Katz
- Orthopaedic and Arthritis Center for Outcomes Research, Department of Orthopedic Surgery, Brigham and Women's Hospital Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - C Kent Kwoh
- University of Arizona, Arthritis Center & Division of Rheumatology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Steve Hoffmann
- Foundation for the National Institutes of Health, North Bethesda, MD, USA
| | - Virginia B Kraus
- Duke Molecular Physiology Institute and Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, NC, 27701, USA
| |
Collapse
|
194
|
Affiliation(s)
- Leena Sharma
- From Northwestern University Feinberg School of Medicine, Chicago
| |
Collapse
|
195
|
Seo SS, Lee IS, Lee GH. Intra-articular Injection Therapy and Biologic Treatment. A STRATEGIC APPROACH TO KNEE ARTHRITIS TREATMENT 2021:171-212. [DOI: 10.1007/978-981-16-4217-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
196
|
Vincent TL. 2021: The Year We Rewrite the Osteoarthritis Textbooks? FUNCTION 2020; 2:zqaa043. [PMID: 34223170 PMCID: PMC8248874 DOI: 10.1093/function/zqaa043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/06/2023] Open
Affiliation(s)
- Tonia L Vincent
- Centre for OA Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
197
|
Eckstein F, Chaudhari AS, Fuerst D, Gaisberger M, Kemnitz J, Baumgartner CF, Konukoglu E, Hunter DJ, Wirth W. A Deep Learning Automated Segmentation Algorithm Accurately Detects Differences in Longitudinal Cartilage Thickness Loss - Data from the FNIH Biomarkers Study of the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 2020; 74:929-936. [PMID: 33337584 PMCID: PMC9321555 DOI: 10.1002/acr.24539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/11/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022]
Abstract
Objective To study the longitudinal performance of fully automated cartilage segmentation in knees with radiographic osteoarthritis (OA), we evaluated the sensitivity to change in progressor knees from the Foundation for the National Institutes of Health OA Biomarkers Consortium between the automated and previously reported manual expert segmentation, and we determined whether differences in progression rates between predefined cohorts can be detected by the fully automated approach. Methods The OA Initiative Biomarker Consortium was a nested case–control study. Progressor knees had both medial tibiofemoral radiographic joint space width loss (≥0.7 mm) and a persistent increase in Western Ontario and McMaster Universities Osteoarthritis Index pain scores (≥9 on a 0–100 scale) after 2 years from baseline (n = 194), whereas non‐progressor knees did not have either of both (n = 200). Deep‐learning automated algorithms trained on radiographic OA knees or knees of a healthy reference cohort (HRC) were used to automatically segment medial femorotibial compartment (MFTC) and lateral femorotibial cartilage on baseline and 2‐year follow‐up magnetic resonance imaging. Findings were compared with previously published manual expert segmentation. Results The mean ± SD MFTC cartilage loss in the progressor cohort was –181 ± 245 μm by manual segmentation (standardized response mean [SRM] –0.74), –144 ± 200 μm by the radiographic OA–based model (SRM –0.72), and –69 ± 231 μm by HRC‐based model segmentation (SRM –0.30). Cohen's d for rates of progression between progressor versus the non‐progressor cohort was –0.84 (P < 0.001) for manual, –0.68 (P < 0.001) for the automated radiographic OA model, and –0.14 (P = 0.18) for automated HRC model segmentation. Conclusion A fully automated deep‐learning segmentation approach not only displays similar sensitivity to change of longitudinal cartilage thickness loss in knee OA as did manual expert segmentation but also effectively differentiates longitudinal rates of loss of cartilage thickness between cohorts with different progression profiles.
Collapse
Affiliation(s)
- Felix Eckstein
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology, Paracelsus Medical University Salzburg and Nuremberg, Salzburg, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria.,Chondrometrics GmbH, Ainring, Germany
| | | | - David Fuerst
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology, Paracelsus Medical University Salzburg and Nuremberg, Salzburg, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria.,Chondrometrics GmbH, Ainring, Germany
| | - Martin Gaisberger
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria.,Institute of Physiology and Pathophysiology, Paracelsus Medical University Salzburg and Nuremberg, Salzburg, Austria.,Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Jana Kemnitz
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology, Paracelsus Medical University Salzburg and Nuremberg, Salzburg, Austria
| | | | | | - David J Hunter
- Rheumatology Department, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Wolfgang Wirth
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy and Cell Biology, Paracelsus Medical University Salzburg and Nuremberg, Salzburg, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria.,Chondrometrics GmbH, Ainring, Germany
| |
Collapse
|
198
|
Clinical and biochemical factors associated with risk of total joint replacement and radiographic progression in osteoarthritis: Data from two phase III clinical trials. Semin Arthritis Rheum 2020; 50:1374-1381. [DOI: 10.1016/j.semarthrit.2020.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 01/08/2023]
|
199
|
|
200
|
Peng Z, Sun H, Bunpetch V, Koh Y, Wen Y, Wu D, Ouyang H. The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration. Biomaterials 2020; 268:120555. [PMID: 33285440 DOI: 10.1016/j.biomaterials.2020.120555] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is a major cause of disability and socioeconomic loss worldwide. However, the current pharmacological approaches used to treat OA are largely palliative. Being the hallmark of OA, the cartilage extracellular matrix (ECM) destruction and abnormal homeostasis is gaining more attention as a therapeutic target in cartilage regeneration. Moreover, during the progression of OA, the cartilage ECM shows significant pathological alternations, which can be promising biomarkers in identifying the pathological stages of OA. In this review, we summarize the role of abnormal ECM homeostasis in the joint cartilage during OA. Furthermore, we provide an update on the cartilage ECM derived biomarkers and regenerative medicine therapies targeting cartilage ECM which includes preclinical animal models study and clinical trials.
Collapse
Affiliation(s)
- Zhi Peng
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Sun
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiwen Koh
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Wen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongmei Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|