151
|
Yoshida T, Yaegashi H, Toriumi R, Kadomoto S, Iwamoto H, Izumi K, Kadono Y, Ikeda H, Mizokami A. Long response duration to pembrolizumab in metastatic, castration-resistant prostate cancer with microsatellite instability-high and neuroendocrine differentiation: A case report. Front Oncol 2022; 12:912490. [PMID: 36185251 PMCID: PMC9523122 DOI: 10.3389/fonc.2022.912490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe detection of microsatellite instability in urologic cancers is rare, especially in metastatic, castration-resistant prostate cancer with neuroendocrine differentiation.Case presentationThis is a case of a 66-year-old Asian male patient with prostate adenocarcinoma who had metastases at initial presentation. Despite combined androgen deprivation therapy, his prostate-specific antigen (PSA) progressively increased, and prostate re-biopsy revealed small cell carcinoma. He was treated with platinum-based systemic chemotherapy, and his tumor markers, including PSA, remained negative; however, his local symptoms worsened. Subsequently, microsatellite instability-high was detected, and pembrolizumab was administered resulting in complete remission with the resolution of symptoms and continued therapeutic effect for more than 14 months.ConclusionMicrosatellite instability testing should be considered, despite its low detection rate, because the response to pembrolizumab in metastatic, castration-resistant prostate cancer with detectable microsatellite instability is associated with a prolonged duration of response.
Collapse
Affiliation(s)
- Tsukasa Yoshida
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Yaegashi
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- *Correspondence: Hiroshi Yaegashi,
| | - Ren Toriumi
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Suguru Kadomoto
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Iwamoto
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kouji Izumi
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yoshifumi Kadono
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroko Ikeda
- Department of Pathology, Kanazawa University Hospital, Kanazawa, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
152
|
Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, Wu W, Han L, Wang S. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol 2022; 13:964442. [PMID: 36177034 PMCID: PMC9513184 DOI: 10.3389/fimmu.2022.964442] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death protein-1 (PD-1) is a checkpoint receptor expressed on the surface of various immune cells. PD-L1, the natural receptor for PD-1, is mainly expressed in tumor cells. Studies have indicated that PD-1 and PD-L1 are closely associated with the progression of human cancers and are promising biomarkers for cancer therapy. Moreover, the interaction of PD-1 and PD-L1 is one of the important mechanism by which human tumors generate immune escape. This article provides a review on the role of PD-L1/PD-1, mechanisms of immune response and resistance, as well as immune-related adverse events in the treatment of anti-PD-1/PD-L1 immunotherapy in human cancers. Moreover, we summarized a large number of clinical trials to successfully reveal that PD-1/PD-L1 Immune-checkpoint inhibitors have manifested promising therapeutic effects, which have been evaluated from different perspectives, including overall survival, objective effective rate and medium progression-free survival. Finally, we pointed out the current problems faced by PD-1/PD-L1 Immune-checkpoint inhibitors and its future prospects. Although PD-1/PD-L1 immune checkpoint inhibitors have been widely used in the treatment of human cancers, tough challenges still remain. Combination therapy and predictive models based on integrated biomarker determination theory may be the future directions for the application of PD-1/PD-L1 Immune-checkpoint inhibitors in treating human cancers.
Collapse
Affiliation(s)
- Qing Tang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Chen
- Department of Organ Transplantation, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojuan Li
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunqin Long
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Shi
- Department of Cerebrovascular Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaya Yu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wanyin Wu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| | - Ling Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| | - Sumei Wang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Clinical and Basic Research Team of Traditional Chinese Medicine (TCM) Prevention and Treatment of Non small cell lung cancer (NSCLC), Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wanyin Wu, ; Ling Han, ; Sumei Wang,
| |
Collapse
|
153
|
Prostate Cancer Tumor Stroma: Responsibility in Tumor Biology, Diagnosis and Treatment. Cancers (Basel) 2022; 14:cancers14184412. [PMID: 36139572 PMCID: PMC9496870 DOI: 10.3390/cancers14184412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The crosstalk between prostate stroma and its epithelium is essential to tissue homeostasis. Likewise, reciprocal signaling between tumor cells and the stromal compartment is required in tumor progression to facilitate or stimulate key processes such as cell proliferation and invasion. The aim of the present work was to review the current state of knowledge on the significance of tumor stroma in the genesis, progression and therapeutic response of prostate carcinoma. Additionally, we addressed the future therapeutic opportunities. Abstract Prostate cancer (PCa) is a common cancer among males globally, and its occurrence is growing worldwide. Clinical decisions about the combination of therapies are becoming highly relevant. However, this is a heterogeneous disease, ranging widely in prognosis. Therefore, new approaches are needed based on tumor biology, from which further prognostic assessments can be established and complementary strategies can be identified. The knowledge of both the morphological structure and functional biology of the PCa stroma compartment can provide new diagnostic, prognostic or therapeutic possibilities. In the present review, we analyzed the aspects related to the tumor stromal component (both acellular and cellular) in PCa, their influence on tumor behavior and the therapeutic response and their consideration as a new therapeutic target.
Collapse
|
154
|
Zhou M, Ko M, Hoge AC, Luu K, Liu Y, Russell ML, Hannon WW, Zhang Z, Carrot-Zhang J, Beroukhim R, Van Allen EM, Choudhury AD, Nelson PS, Freedman ML, Taplin ME, Meyerson M, Viswanathan SR, Ha G. Patterns of structural variation define prostate cancer across disease states. JCI Insight 2022; 7:e161370. [PMID: 35943799 PMCID: PMC9536266 DOI: 10.1172/jci.insight.161370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
The complex genomic landscape of prostate cancer evolves across disease states under therapeutic pressure directed toward inhibiting androgen receptor (AR) signaling. While significantly altered genes in prostate cancer have been extensively defined, there have been fewer systematic analyses of how structural variation shapes the genomic landscape of this disease across disease states. We uniformly characterized structural alterations across 531 localized and 143 metastatic prostate cancers profiled by whole genome sequencing, 125 metastatic samples of which were also profiled via whole transcriptome sequencing. We observed distinct significantly recurrent breakpoints in localized and metastatic castration-resistant prostate cancers (mCRPC), with pervasive alterations in noncoding regions flanking the AR, MYC, FOXA1, and LSAMP genes enriched in mCRPC and TMPRSS2-ERG rearrangements enriched in localized prostate cancer. We defined 9 subclasses of mCRPC based on signatures of structural variation, each associated with distinct genetic features and clinical outcomes. Our results comprehensively define patterns of structural variation in prostate cancer and identify clinically actionable subgroups based on whole genome profiling.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Minjeong Ko
- Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Anna C.H. Hoge
- Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kelsey Luu
- Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Yuzhen Liu
- Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Magdalena L. Russell
- Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - William W. Hannon
- Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Zhenwei Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, UMass Memorial Medical Center, Worcester, Massachusetts, USA
| | - Jian Carrot-Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eliezer M. Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Atish D. Choudhury
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Peter S. Nelson
- Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Matthew L. Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Srinivas R. Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Gavin Ha
- Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
155
|
Wen R, Zhao H, Zhang D, Chiu CL, Brooks JD. Sialylated glycoproteins as biomarkers and drivers of progression in prostate cancer. Carbohydr Res 2022; 519:108598. [PMID: 35691122 DOI: 10.1016/j.carres.2022.108598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
Abstract
Sialic acids have been implicated in cancer initiation, progression, and immune evasion in diverse human malignancies. Sialylation of terminal glycans on cell surface and secreted glycoproteins is a long-recognized feature of cancer cells. Recently, immune checkpoint inhibitor immunotherapy has tremendously improved the outcomes of patients with various cancers. However, available immunotherapy approaches have had limited efficacy in metastatic castration-resistant prostate cancer. Sialic acid modified glycoproteins in prostate cancers and their interaction with Siglec receptors on tumor infiltrating immune cells might underlie immunosuppressive signaling in prostate cancer. Here, we summarize the function of sialic acids and relevant glycosynthetic enzymes in cancer initiation and progression. We also discuss the possible uses of sialic acids as biomarkers in prostate cancer and the potential methods for targeting Siglec-sialic acid interactions for prostate cancer treatment.
Collapse
Affiliation(s)
- Ru Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dalin Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chun-Lung Chiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
156
|
Targeted Approaches in Metastatic Castration-Resistant Prostate Cancer: Which Data? Cancers (Basel) 2022; 14:cancers14174189. [PMID: 36077726 PMCID: PMC9454420 DOI: 10.3390/cancers14174189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Castration-resistant prostate cancer (CRPC) remains an incurable disease, but some promising innovative treatment options are under investigation. Recent developments in precision medicine have enabled the identification of new predictive biomarkers and potential targeted agents. The purpose of this review is to summarize and discuss new therapeutic approaches for metastatic CRPC (mCRPC), focusing on pathway description, prognostic and/or predictive role of recently discovered molecular alterations, investigation techniques, and potential clinical implications. Abstract Prostate cancer is the second most common diagnosed cancer and the fifth leading cause of cancer-related deaths in men worldwide. Despite significant advances in the management of castration-sensitive prostate cancer, the majority of patients develop a castration-resistant disease after a median duration of treatment of 18–48 months. The transition to a castrate resistance state could rely on alternative survival pathways, some related to androgen-independent mechanisms. Although several agents have been approved in this setting, metastatic castration-resistant prostate cancer (mCRPC) remains a lethal disease. Recent studies revealed some of the complex pathways underlying inherited and acquired mechanisms of resistance to available treatments. A better understanding of these pathways may lead to significant improvements in survival by providing innovative therapeutic targets. The present comprehensive review attempts to provide an overview of recent progress in novel targeted therapies and near-future directions.
Collapse
|
157
|
Schafer JM, Xiao T, Kwon H, Collier K, Chang Y, Abdel-Hafiz H, Bolyard C, Chung D, Yang Y, Sundi D, Ma Q, Theodorescu D, Li X, Li Z. Sex-biased adaptive immune regulation in cancer development and therapy. iScience 2022; 25:104717. [PMID: 35880048 PMCID: PMC9307950 DOI: 10.1016/j.isci.2022.104717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cancer research field is finally starting to unravel the mystery behind why males have a higher incidence and mortality rate than females for nearly all cancer types of the non-reproductive systems. Here, we explain how sex - specifically sex chromosomes and sex hormones - drives differential adaptive immunity across immune-related disease states including cancer, and why males are consequently more predisposed to tumor development. We highlight emerging data on the roles of cell-intrinsic androgen receptors in driving CD8+ T cell dysfunction or exhaustion in the tumor microenvironment and summarize ongoing clinical efforts to determine the impact of androgen blockade on cancer immunotherapy. Finally, we outline a framework for future research in cancer biology and immuno-oncology, underscoring the importance of a holistic research approach to understanding the mechanisms of sex dimorphisms in cancer, so sex will be considered as an imperative factor for guiding treatment decisions in the future.
Collapse
Affiliation(s)
- Johanna M. Schafer
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Tong Xiao
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Hyunwoo Kwon
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
- Medical Scientist Training Program, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Katharine Collier
- Division of Medical Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Yuzhou Chang
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
- Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
| | - Hany Abdel-Hafiz
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Dongjun Chung
- Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
| | - Yuanquan Yang
- Division of Medical Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Debasish Sundi
- Department of Urology, the Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xue Li
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| |
Collapse
|
158
|
Wang I, Song L, Wang BY, Rezazadeh Kalebasty A, Uchio E, Zi X. Prostate cancer immunotherapy: a review of recent advancements with novel treatment methods and efficacy. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:210-233. [PMID: 36051616 PMCID: PMC9428569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy remains to be an appealing treatment option for prostate cancer with some documented promise. Prostate cancer is traditionally considered as an immunologically "cold" tumor with low tumor mutation burden, low expression of PD-L1, sparse T-cell infiltration, and a immunosuppressive tumor microenvironment (TME). Sipuleucel-T (Provenge) is the first FDA approved immunotherapeutic agent for the treatment of asymptomatic or minimally symptomatic metastatic castrate resistant prostate cancer (mCRPC); demonstrating a benefit in overall survival. However various clinical trials by immune checkpoint inhibitors (ICIs) and their combinations with other drugs have shown limited responses in mCRPC. Up to now, only a small subset of patients with mismatch repair deficiency/microsatellite instability high and CDK12 mutations can clinically benefit from ICIs and/or their combinations with other agents, such as DNA damage agents. The existence of a large heterogeneity in genomic alterations and a complex TME in prostate cancer suggests the need for identifying new immunotherapeutic targets. As well as designing personalized immunotherapy strategies based on patient-specific molecular signatures. There is also a need to adjust strategies to overcome histologic barriers such as tissue hypoxia and dense stroma. The racial differences of immunological responses between men of diverse ethnicities also merit further investigation to improve the efficacy of immunotherapy and better patient selection in prostate cancer.
Collapse
Affiliation(s)
- Ian Wang
- Hofstra UniversityHempstead, NY, USA
| | - Liankun Song
- Department of Urology, University of CaliforniaIrvine, Orange, CA 92868, USA
| | - Beverly Y Wang
- Department of Pathology, University of CaliforniaIrvine, Orange, CA 92868, USA
| | | | - Edward Uchio
- Department of Medicine, University of CaliforniaIrvine, Orange, CA 92868, USA
- Chao Family Comprehensive Cancer Center, University of CaliforniaOrange, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of CaliforniaIrvine, Orange, CA 92868, USA
- Department of Medicine, University of CaliforniaIrvine, Orange, CA 92868, USA
- Chao Family Comprehensive Cancer Center, University of CaliforniaOrange, CA 92868, USA
- Department of Pharmaceutical Sciences, University of CaliforniaIrvine, Irvine, CA 92617, USA
| |
Collapse
|
159
|
Wang XH, Wang ZQ, Mu ZY, Zhu LP, Zhong CF, Guo S. The efficacy and safety of immune checkpoint inhibitors in metastatic castration-resistant prostate cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e29715. [PMID: 35945714 PMCID: PMC9351907 DOI: 10.1097/md.0000000000029715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We aim to assess the efficacy and safety profiles of immune checkpoint inhibitors in patients with metastatic castration-resistant prostate cancer using a meta-analysis. METHODS We extracted and examined data from phase I, II and III clinical trials from PubMed, Embase, Web of Science, and Cochrane Library, which included patients with metastatic castration-resistant prostate cancer who were treated with immune checkpoint inhibitors. We performed a meta-analysis to investigate several indexes of efficacy and safety, including the objective response rate, 1-year overall survival (OS) rate, prostate-specific antigen response rate, and adverse event rate of immune checkpoint inhibitors. The material data were calculated and pooled using The R Project for Statistical Computing and STATA 12.0 software. RESULTS We identified 12 clinical trials in our study. We assessed the pooled frequencies of all-grade AEs and grade ≥ 3 AEs first and showed 0.82 (95% CI: 0.74-0.91, I2 = 94%, P < .01) and 0.42 (95% CI: 0.33-0.54, I2 = 96%, P < .01), respectively. The objective response rate was 0.10 (95% CI: 0.04-0.19, I2 = 70%, P < .01), and the 1-year OS and prostate-specific antigen response rate were 0.55 (95% CI: 0.45-0.67, I2 = 93%, P < .01) and 0.18 (95% CI: 0.16-0.20, I2 = 43%, P = .03), respectively. CONCLUSION The immune checkpoint inhibitors therapy was well tolerated and showed potential to improve tumor responses in patients with metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Xing-Hui Wang
- Department of Pathology, People’s hospital of Shouguang, Shandong, China
| | - Zhi-Qiang Wang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong, China
| | - Zhen-Yu Mu
- Department of Neurology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong, China
| | - Li-Ping Zhu
- Department of Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong, China
| | - Chong-Fu Zhong
- Department of Andrology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Shanchun Guo
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA
- *Correspondence: Shanchun Guo, PhD, RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Dr, New Orleans, LA 70125 (e-mail: )
| |
Collapse
|
160
|
Developing New Treatment Options for Castration-Resistant Prostate Cancer and Recurrent Disease. Biomedicines 2022; 10:biomedicines10081872. [PMID: 36009418 PMCID: PMC9405166 DOI: 10.3390/biomedicines10081872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is a major diagnosed cancer among men globally, and about 20% of patients develop metastatic prostate cancer (mPCa) in the initial diagnosis. PCa is a typical androgen-dependent disease; thus, hormonal therapy is commonly used as a standard care for mPCa by inhibiting androgen receptor (AR) activities, or androgen metabolism. Inevitably, almost all PCa will acquire resistance and become castration-resistant PCa (CRPC) that is associated with AR gene mutations or amplification, the presence of AR variants, loss of AR expression toward neuroendocrine phenotype, or other hormonal receptors. Treating CRPC poses a great challenge to clinicians. Research efforts in the last decade have come up with several new anti-androgen agents to prolong overall survival of CRPC patients. In addition, many potential targeting agents have been at the stage of being able to translate many preclinical discoveries into clinical practices. At this juncture, it is important to highlight the emerging strategies including small-molecule inhibitors to AR variants, DNA repair enzymes, cell survival pathway, neuroendocrine differentiation pathway, radiotherapy, CRPC-specific theranostics and immune therapy that are underway or have recently been completed.
Collapse
|
161
|
Kageyama T, Soga N, Sekito S, Kato S, Ogura Y, Kojima T, Kanai M, Inoue T. Dramatic response to pembrolizumab after pseudoprogression in a patient with advanced metastatic castration‐resistant prostate cancer. IJU Case Rep 2022; 5:442-445. [DOI: 10.1002/iju5.12508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Takumi Kageyama
- Department of Nephro‐Urologic Surgery and Andrology Mie University Graduate School of Medicine Tsu Mie Japan
- Department of Urology Aichi Cancer Center Hospital Nagoya Aichi Japan
- Department of Urology Suzuka General Hospital Suzuka Mie Japan
| | - Norihito Soga
- Department of Urology Aichi Cancer Center Hospital Nagoya Aichi Japan
| | - Sho Sekito
- Department of Urology Aichi Cancer Center Hospital Nagoya Aichi Japan
| | - Seiichi Kato
- Department of Pathology and Molecular Diagnostics Aichi Cancer Center Hospital Nagoya Aichi Japan
| | - Yuji Ogura
- Department of Urology Aichi Cancer Center Hospital Nagoya Aichi Japan
| | - Takahiro Kojima
- Department of Urology Aichi Cancer Center Hospital Nagoya Aichi Japan
| | - Masahiro Kanai
- Department of Urology Suzuka General Hospital Suzuka Mie Japan
| | - Takahiro Inoue
- Department of Nephro‐Urologic Surgery and Andrology Mie University Graduate School of Medicine Tsu Mie Japan
| |
Collapse
|
162
|
The Role of Histology-Agnostic Drugs in the Treatment of Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2022; 23:ijms23158535. [PMID: 35955671 PMCID: PMC9369092 DOI: 10.3390/ijms23158535] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
Precision medicine has opened up a new era in the development of anti-cancer agents that is focused on identifying biomarkers predictive of treatment response regardless of tumor histology. Since 2017, the Food and Drug Administration has approved six drugs with histology-agnostic indications: pembrolizumab (both for tumors with the mismatch-repair deficiency (dMMR)/high microsatellite instability (MSI-H) phenotype and for those with the high tumor mutational burden (TMB-H) phenotype), dostarlimab (for dMMR tumors), larotrectinib and entrectinib (for tumors harboring neurotrophic tyrosine receptor kinase (NTRK) fusions), and the combination of dabrafenib plus trametinib (for BRAF V600E-mutated tumors). The genomic alterations targeted by these antineoplastic agents are rare in metastatic castration-resistant prostate cancer (mCRPC). Furthermore, only a small number of mCRPC patients were enrolled in the clinical trials that led to the approval of the above-mentioned drugs. Therefore, we critically reviewed the literature on the efficacy of histology-agnostic drugs in mCRPC patients. Although the available evidence derives from retrospective studies and case reports, our results confirmed the efficacy of pembrolizumab in dMMR/MSI-H mCRPC. In contrast, few data are available for dostarlimab, larotrectinib, entrectinib, and dabrafenib-trametinib in this subset of patients. Large, multi-institutional registries aimed at collecting real-world data are needed to better comprehend the role of tissue-agnostic drugs in mCRPC patients.
Collapse
|
163
|
Graham LS, Schweizer MT. Mismatch repair deficiency and clinical implications in prostate cancer. Prostate 2022; 82 Suppl 1:S37-S44. [PMID: 35358351 DOI: 10.1002/pros.24343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Despite recent therapeutic advances, castration-resistant prostate cancer (CRPC) remains a lethal disease and novel therapies are needed. Precision oncology provides an avenue for developing effective tailored approaches for treating malignancies based on a tumor's molecular profile. Indeed, the presence of mismatch repair deficiency (MMRd) has proven to be an important predictive biomarker for response to immune checkpoint blockade across multiple tumor types, including prostate cancer, and represents a major precision oncology success story. The mismatch repair (MMR) system is integral to maintaining genomic fidelity during cellular replication. Cancers with deficiencies in this system accumulate high numbers of mutations and express many neoantigens that may be recognized by the immune system. The checkpoint inhibitor pembrolizumab has recently been approved for all cancers that are MMR deficient, and several retrospective series have specifically shown that pembrolizumab is effective in MMRd prostate cancer. Although the prevalence of MMRd in CRPC is low (approximately 3%-5% of cases), this is an important subset of men that require a unique therapeutic approach. This review will focus on MMRd in prostate cancer, highlighting the clinical implications, role of immunotherapy, and areas of future research.
Collapse
Affiliation(s)
- Laura S Graham
- Division of Medical Oncology, University of Colorado, Aurora, Colorado, USA
| | - Michael T Schweizer
- Division of Medical Oncology, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
164
|
Peiffer LB, White JR, Jones CB, Slottke RE, Ernst SE, Moran AE, Graff JN, Sfanos KS. Composition of gastrointestinal microbiota in association with treatment response in individuals with metastatic castrate resistant prostate cancer progressing on enzalutamide and initiating treatment with anti-PD-1 (pembrolizumab). Neoplasia 2022; 32:100822. [PMID: 35908379 PMCID: PMC9340532 DOI: 10.1016/j.neo.2022.100822] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 01/04/2023]
Abstract
Recent studies in cancer patients and animal models demonstrate that intestinal microbiota influence the therapeutic efficacy of cancer treatments, including immune checkpoint inhibition. However, no studies to-date have investigated relationships between gastrointestinal microbiota composition and response to checkpoint inhibition in advanced metastatic castrate resistant prostate cancer (mCRPC). We performed 16S rRNA gene sequencing of fecal DNA from 23 individuals with mCRPC progressing on enzalutamide and just prior to treatment with anti-PD-1 (pembrolizumab) to determine whether certain features of the microbiome are associated with treatment response (defined as serum PSA decrease >50% at any time on treatment or radiographic response per RECIST V.1.1). Global bacterial composition was similar between responders and non-responders, as assessed by multiple alpha and beta diversity metrics. However, certain bacterial taxa identified by sequencing across multiple 16S rRNA hypervariable regions were consistently associated with response, including the archetypal oral bacterium Streptococcus salivarius. Quantitative PCR (qPCR) of DNA extracts from fecal samples confirmed increased Streptococcus salivarius fecal levels in responders, whereas qPCR of oral swish DNA extracts showed no relationship between oral Streptococcus salivarius levels and response status. Contrary to previous reports in other cancer types, Akkermansia muciniphila levels were reduced in responder samples as assessed by both 16S rRNA sequencing and qPCR. We further analyzed our data in the context of a previously published “integrated index” describing bacteria associated with response and non-response to checkpoint inhibition. We found that the index was not reflective of response status in our cohort. Lastly, we demonstrate little change in the microbiome over time, and with pembrolizumab treatment. Our results suggest that the association between fecal microbiota and treatment response to immunotherapy may be unique to cancer type and/or previous treatment history.
Collapse
Affiliation(s)
- Lauren B Peiffer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Carli B Jones
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel E Slottke
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Sarah E Ernst
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy E Moran
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Julie N Graff
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA; Portland VA Health Care System, Portland, OR, USA.
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Oncology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
165
|
Chiu PKF, Lee EKC, Chan MTY, Chan WHC, Cheung MH, Lam MHC, Ma ESK, Poon DMC. Genetic Testing and Its Clinical Application in Prostate Cancer Management: Consensus Statements from the Hong Kong Urological Association and Hong Kong Society of Uro-Oncology. Front Oncol 2022; 12:962958. [PMID: 35924163 PMCID: PMC9339641 DOI: 10.3389/fonc.2022.962958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background In recent years, indications for genetic testing in prostate cancer (PC) have expanded from patients with a family history of prostate and/or related cancers to those with advanced castration-resistant disease, and even to early PC patients for determination of the appropriateness of active surveillance. The current consensus aims to provide guidance to urologists, oncologists and pathologists working with Asian PC patients on who and what to test for in selected populations. Methods A joint consensus panel from the Hong Kong Urological Association and Hong Kong Society of Uro-Oncology was convened over a series of 5 physical and virtual meetings. A background literature search on genetic testing in PC was performed in PubMed, ClinicalKey, EBSCOHost, Ovid and ProQuest, and three working subgroups were formed to review and present the relevant evidence. Meeting agendas adopted a modified Delphi approach to ensure that discussions proceed in a structured, iterative and balanced manner, which was followed by an anonymous voting on candidate statements. Of 5 available answer options, a consensus statement was accepted if ≥ 75% of the panelists chose “Accept Completely” (Option A) or “Accept with Some Reservation” (Option B). Results The consensus was structured into three parts: indications for testing, testing methods, and therapeutic implications. A list of 35 candidate statements were developed, of which 31 were accepted. The statements addressed questions on the application of PC genetic testing data and guidelines to Asian patients, including patient selection for germline testing, selection of gene panel and tissue sample, provision of genetic counseling, and use of novel systemic treatments in metastatic castration-resistant PC patients. Conclusion This consensus provides guidance to urologists, oncologists and pathologists working with Asian patients on indications for genetic testing, testing methods and technical considerations, and associated therapeutic implications.
Collapse
Affiliation(s)
- Peter K. F. Chiu
- S.H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eric K. C. Lee
- Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong SAR, China
| | - Marco T. Y. Chan
- Division of Urology, Department of Surgery, Tuen Mun Hospital, Hong Kong SAR, China
| | - Wilson H. C. Chan
- Division of Urology, Department of Surgery, United Christian Hospital, Hong Kong SAR, China
| | - M. H. Cheung
- Division of Urology, Department of Surgery, Tseung Kwan O Hospital, Hong Kong SAR, China
| | - Martin H. C. Lam
- Department of Oncology, United Christian Hospital, Hong Kong SAR, China
| | - Edmond S. K. Ma
- Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Darren M. C. Poon
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Comprehensive Oncology Centre, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
- *Correspondence: Darren M. C. Poon,
| |
Collapse
|
166
|
Blas L, Shiota M, Eto M. Current status and future perspective on the management of metastatic castration-sensitive prostate cancer. Cancer Treat Res Commun 2022; 32:100606. [PMID: 35835707 DOI: 10.1016/j.ctarc.2022.100606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Since 1941, the standard treatment for metastatic castration-sensitive prostate cancer (mCSPC) was androgen deprivation therapy (ADT) by surgical or medical castration with or without first-generation antiandrogen. However, the efficacy of ADT does not last in most cases. In the 2010s, de-intensification by intermittent ADT was evaluated by RCTs for mCSPC to mitigate the treatment-emerged burdens. However, intermittent ADT failed to show non-inferiority in OS for mCSPC and is an optional treatment for selected patients with mCSPC. The treatment for patients with mCSPC has improved in the last years. Currently, based on the evidence from RCTs, intensification treatment by adding docetaxel, novel androgen receptor pathway inhibitors and multimodal treatment using radiotherapy to the primary have become new standard treatments for mCSPC. Furthermore, ongoing RCTs have been investigating the clinical values of more intensified treatments by combining multiple effective treatment for mCSPC. In addition, novel treatment using immunotherapeutics such as anti-PD-1 antibody and precision medicine approach using novel imaging and genomic marker has been investigated vigorously. Thus, we review current treatment evidence obtained by RCTs that included patients with mCSPC. The future key to mCSPC treatment could be personalized medicine including translational and clinical medicine aspects, with molecular testing to assess the biological tumor behavior to optimize clinical decision-making.
Collapse
Affiliation(s)
- Leandro Blas
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
167
|
Yu EY, Kolinsky MP, Berry WR, Retz M, Mourey L, Piulats JM, Appleman LJ, Romano E, Gravis G, Gurney H, Bögemann M, Emmenegger U, Joshua AM, Linch M, Sridhar S, Conter HJ, Laguerre B, Massard C, Li XT, Schloss C, Poehlein CH, de Bono JS. Pembrolizumab Plus Docetaxel and Prednisone in Patients with Metastatic Castration-resistant Prostate Cancer: Long-term Results from the Phase 1b/2 KEYNOTE-365 Cohort B Study. Eur Urol 2022; 82:22-30. [PMID: 35397952 DOI: 10.1016/j.eururo.2022.02.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Patients with metastatic castration-resistant prostate cancer (mCRPC) frequently receive docetaxel after they develop resistance to abiraterone or enzalutamide and need more efficacious treatments. OBJECTIVE To evaluate the efficacy and safety of pembrolizumab plus docetaxel and prednisone in patients with mCRPC. DESIGN, SETTING, AND PARTICIPANTS The trial included patients with mCRPC in the phase 1b/2 KEYNOTE-365 cohort B study who were chemotherapy naïve and who experienced failure of or were intolerant to ≥4 wk of abiraterone or enzalutamide for mCRPC with progressive disease within 6 mo of screening. INTERVENTION Pembrolizumab 200 mg intravenously (IV) every 3 wk (Q3W), docetaxel 75 mg/m2 IV Q3W, and prednisone 5 mg orally twice daily. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoints were safety, the prostate-specific antigen (PSA) response rate, and the objective response rate (ORR) according to Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) by blinded independent central review (BICR). Secondary endpoints included time to PSA progression; the disease control rate (DCR) and duration of response (DOR) according to RECIST v1.1 by BICR; ORR, DCR, DOR, and radiographic progression-free survival (rPFS) according to Prostate Cancer Working Group 3-modified RECIST v1.1 by BICR; and overall survival (OS). RESULTS AND LIMITATIONS Among 104 treated patients, 52 had measurable disease. The median time from allocation to data cutoff (July 9, 2020) was 32.4 mo, during which 101 patients discontinued treatment, 81 (78%) for disease progression. The confirmed PSA response rate was 34% and the confirmed ORR (RECIST v1.1) was 23%. Median rPFS and OS were 8.5 mo and 20.2 mo, respectively. Treatment-related adverse events (TRAEs) occurred in 100 patients (96%). Grade 3-5 TRAEs occurred in 46 patients (44%). Seven AE-related deaths (6.7%) occurred (2 due to treatment-related pneumonitis). Limitations of the study include the single-arm design and small sample size. CONCLUSIONS Pembrolizumab plus docetaxel and prednisone demonstrated antitumor activity in chemotherapy-naïve patients with mCRPC treated with abiraterone or enzalutamide for mCRPC. Safety was consistent with profiles for the individual agents. Further investigation is warranted. PATIENT SUMMARY We evaluated the efficacy and safety of the anti-PD-1 antibody pembrolizumab combined with the chemotherapy drug docetaxel and the steroid prednisone for patients with metastatic prostate cancer resistant to androgen deprivation therapy , and who never received chemotherapy. The combination showed antitumor activity and manageable safety in this patient population. This trial is registered on ClinicalTrials.gov as NCT02861573.
Collapse
Affiliation(s)
- Evan Y Yu
- Department of Medicine, Division of Oncology, University of Washington and Fred Hutchinson Cancer Research Center, G4-830, Seattle, WA, USA.
| | | | - William R Berry
- Department of Medical Oncology, Duke Cancer Center Cary, Cary, NC, USA
| | - Margitta Retz
- Department of Urology, Rechts der Isar Medical Center, Technical University of Munich, Munich, Germany
| | - Loic Mourey
- Department of Medical Oncology, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Josep M Piulats
- Department of Medical Oncology, Catalan Institute of Oncology, Barcelona, Spain
| | - Leonard J Appleman
- Department of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emanuela Romano
- Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France
| | - Gwenaelle Gravis
- Department of Medical Oncology, Institut Paoli Calmettes, Aix-Marseille Université, Marseille, France
| | - Howard Gurney
- Department of Medical Oncology, Macquarie University, Sydney, NSW, Australia
| | - Martin Bögemann
- Department of Urology, University Hospital Münster, Münster, Germany
| | - Urban Emmenegger
- Division of Medical Oncology, Odette Cancer Centre and Sunnybrook Research Institute, Toronto, ON, Canada
| | - Anthony M Joshua
- Department of Medical Oncology, Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia
| | - Mark Linch
- Department of Oncology, University College London Hospital and UCL Cancer Institute, London, UK
| | - Srikala Sridhar
- Cancer Clinical Research Unit, UHN Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Henry J Conter
- Department of Medical Oncology, University of Western Ontario, Brampton, ON, Canada
| | - Brigitte Laguerre
- Department of Medical Oncology, Centre Eugene Marquis, Rennes, France
| | - Christophe Massard
- Department of Drug Development, Gustave Roussy Cancer Campus and Université Paris-Sud, Villejuif, France; Department of Medical Oncology, Gustave Roussy Cancer Campus and Université Paris-Sud, Villejuif, France
| | - Xin Tong Li
- Department of Medical Oncology, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Charles Schloss
- Department of Medical Oncology, Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Johann S de Bono
- Division of Clinical Studies, The Royal Marsden Hospital and The Institute of Cancer Research, London, UK
| |
Collapse
|
168
|
Cabozantinib in combination with atezolizumab in patients with metastatic castration-resistant prostate cancer: results from an expansion cohort of a multicentre, open-label, phase 1b trial (COSMIC-021). Lancet Oncol 2022; 23:899-909. [DOI: 10.1016/s1470-2045(22)00278-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
|
169
|
Zurita AJ, Graf RP, Villacampa G, Raskina K, Sokol E, Jin D, Antonarakis ES, Li G, Huang RSP, Casanova-Salas I, Vivancos A, Carles J, Ross JS, Schrock AB, Oxnard GR, Mateo J. Genomic Biomarkers and Genome-Wide Loss-of-Heterozygosity Scores in Metastatic Prostate Cancer Following Progression on Androgen-Targeting Therapies. JCO Precis Oncol 2022; 6:e2200195. [PMID: 35820087 PMCID: PMC9307307 DOI: 10.1200/po.22.00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To study the impact of standard-of-care hormonal therapies on metastatic prostate cancer (mPC) clinical genomic profiles in real-world practice, with a focus on homologous recombination-repair (HRR) genes. PATIENTS AND METHODS Targeted next-generation sequencing of 1,302 patients with mPC was pursued using the FoundationOne or FoundationOne CDx assays. Longitudinal clinical data for correlative analysis were curated via technology-enabled abstraction of electronic health records. Genomic biomarkers, including individual gene aberrations and genome-wide loss-of-heterozygosity (gLOH) scores, were compared according to biopsy location and time of sample acquisition (androgen deprivation therapy [ADT]-naïve, ADT-progression and post-ADT, and novel hormonal therapies [NHT]-progression), using chi-square and Wilcoxon rank-sum tests. Multivariable analysis used linear regression. False-discovery rate of 0.05 was applied to account for multiple comparisons. RESULTS Eight hundred forty (65%), 132 (10%), and 330 (25%) biopsies were ADT-naïve, ADT-progression, and NHT-progression, respectively. Later-stage samples were enriched for AR, MYC, TP53, PTEN, and RB1 aberrations (all adjusted P values < .05), but prevalence of HRR-related BRCA2, ATM, and CDK12 aberrations remained stable. Primary and metastatic ADT-naïve biopsies presented similar prevalence of TP53 (36% v 31%) and BRCA2 (8% v 7%) aberrations; 81% of ADT-naïve BRCA2-mutated samples presented BRCA2 biallelic loss. Higher gLOH scores were independently associated with HRR genes (BRCA2, PALB2, and FANCA), TP53, and RB1 aberrations, and with prior exposure to hormonal therapies in multivariable analysis. CONCLUSION Prevalence of HRR-gene aberrations remains stable along mPC progression, supporting the use of diagnostic biopsies to guide poly (ADP-ribose) polymerase inhibitor treatment in metastatic castration-resistant prostate cancer. gLOH scores increase with emerging resistance to hormonal therapies, independently of individual HRR gene mutations.
Collapse
Affiliation(s)
- Amado J Zurita
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Guillermo Villacampa
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | | | | | | | | | - Gerald Li
- Foundation Medicine Inc, Cambridge, MA
| | | | - Irene Casanova-Salas
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - Ana Vivancos
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - Joan Carles
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - Jeffrey S Ross
- Foundation Medicine Inc, Cambridge, MA.,SUNY Upstate Medical University, Syracuse, NY
| | | | | | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital Campus, Barcelona, Spain
| |
Collapse
|
170
|
Hatano K, Nonomura N. Genomic Profiling of Prostate Cancer: An Updated Review. World J Mens Health 2022; 40:368-379. [PMID: 34448375 PMCID: PMC9253799 DOI: 10.5534/wjmh.210072] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 12/24/2022] Open
Abstract
Understanding the genomic profiling of prostate cancer is crucial, owing to the emergence of precision medicine to guide therapeutic approaches. Over the last decade, integrative genomic profiling of prostate tumors has provided insights that improve the understanding and treatment of the disease. Minimally invasive liquid biopsy procedures have emerged to investigate cancer-related molecules with the advantage of detecting heterogeneity as well as acquired resistance in cancer. The metastatic castration-resistant prostate cancer (mCRPC) tumors have a highly complex genomic landscape compared to primary prostate tumors; a number of mCRPC harbor clinically actionable molecular alterations, including DNA damage repair (e.g., BRCA1/2 and ATM) and PTEN/phosphoinositide 3-kinase signaling. Heterogeneity in the genomic landscape of prostate cancer has become apparent and genomic alterations of TP53, RB1, AR, and cell cycle pathway are associated with poor clinical outcomes in patients. Prostate cancer with mutant SPOP shows a distinct pattern of genomic alterations, associating with better clinical outcomes. Several genomic profiling tests, which can be used in the clinic, are approved by the U.S. Food and Drug Administration, including MSK-IMPACT, FoundationOne CDx, and FoundationOne Liquid CDx. Here, we review emerging evidence for genomic profiling of prostate cancer, especially focusing on associations between genomic alteration and clinical outcome, liquid biopsy, and actionable molecular alterations.
Collapse
Affiliation(s)
- Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
171
|
He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:198. [PMID: 35750683 PMCID: PMC9232569 DOI: 10.1038/s41392-022-01042-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) affects millions of men globally. Due to advances in understanding genomic landscapes and biological functions, the treatment of PCa continues to improve. Recently, various new classes of agents, which include next-generation androgen receptor (AR) signaling inhibitors (abiraterone, enzalutamide, apalutamide, and darolutamide), bone-targeting agents (radium-223 chloride, zoledronic acid), and poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib, rucaparib, and talazoparib) have been developed to treat PCa. Agents targeting other signaling pathways, including cyclin-dependent kinase (CDK)4/6, Ak strain transforming (AKT), wingless-type protein (WNT), and epigenetic marks, have successively entered clinical trials. Furthermore, prostate-specific membrane antigen (PSMA) targeting agents such as 177Lu-PSMA-617 are promising theranostics that could improve both diagnostic accuracy and therapeutic efficacy. Advanced clinical studies with immune checkpoint inhibitors (ICIs) have shown limited benefits in PCa, whereas subgroups of PCa with mismatch repair (MMR) or CDK12 inactivation may benefit from ICIs treatment. In this review, we summarized the targeted agents of PCa in clinical trials and their underlying mechanisms, and further discussed their limitations and future directions.
Collapse
Affiliation(s)
- Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.,Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|
172
|
Finch A, Clark R, Vesprini D, Lorentz J, Kim RH, Thain E, Fleshner N, Akbari MR, Cybulski C, Narod SA. An appraisal of genetic testing for prostate cancer susceptibility. NPJ Precis Oncol 2022; 6:43. [PMID: 35732815 PMCID: PMC9217944 DOI: 10.1038/s41698-022-00282-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Most criteria for genetic testing for prostate cancer susceptibility require a prior diagnosis of prostate cancer, in particular cases with metastatic disease are selected. Advances in the field are expected to improve outcomes through tailored treatments for men with advanced prostate cancer with germline pathogenic variants, although these are not currently offered in the curative setting. A better understanding of the value of genetic testing for prostate cancer susceptibility in screening, for early detection and prevention is necessary. We review and summarize the literature describing germline pathogenic variants in genes associated with increased prostate cancer risk and aggressivity. Important questions include: what is our ability to screen for and prevent prostate cancer in a man with a germline pathogenic variant and how does knowledge of a germline pathogenic variant influence treatment of men with nonmetastatic disease, with hormone-resistant disease and with metastatic disease? The frequency of germline pathogenic variants in prostate cancer is well described, according to personal and family history of cancer and by stage and grade of disease. The role of these genes in aggressive prostate cancer is also discussed. It is timely to consider whether or not genetic testing should be offered to all men with prostate cancer. The goals of testing are to facilitate screening for early cancers in unaffected high-risk men and to prevent advanced disease in men with cancer.
Collapse
Affiliation(s)
- Amy Finch
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Roderick Clark
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- Division of Urology, University of Toronto, Ontario, Canada
| | - Danny Vesprini
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada
| | - Justin Lorentz
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada
| | - Raymond H Kim
- Familial Cancer Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Emily Thain
- Familial Cancer Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Neil Fleshner
- Division of Urology, Departments of Surgery and Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
| | - Cezary Cybulski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada.
- Dalla Lana School of Public Health, University of Toronto, Ontario, Canada.
| |
Collapse
|
173
|
Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges. Br J Cancer 2022; 127:1394-1402. [PMID: 35715640 PMCID: PMC9553885 DOI: 10.1038/s41416-022-01881-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 12/19/2022] Open
Abstract
Liquid biopsy has been established as a powerful, minimally invasive, tool to detect clinically actionable aberrations across numerous cancer types in real-time. With the development of new therapeutic agents in prostate cancer (PC) including DNA repair targeted therapies, this is especially attractive. However, there is unclarity on how best to screen for PC, improve risk stratification and ultimately how to treat advanced disease. Therefore, there is an urgent need to develop better biomarkers to help guide oncologists' decisions in these settings. Circulating tumour cells (CTCs), exosomes and cell-free DNA/RNA (cfDNA/cfRNA) analysis, including epigenetic features such as methylation, have all shown potential in prognostication, treatment response assessment and detection of emerging mechanisms of resistance. However, there are still challenges to overcome prior to implementing liquid biopsies in routine clinical practice such as preanalytical considerations including blood collection and storage, the cost of CTC isolation and enrichment, low-circulating tumour content as a limitation for genomic analysis and how to better interpret the sequencing data generated. In this review, we describe an overview of the up-to-date clinical opportunities in the management of PC through blood-based liquid biopsies and the next steps for its implementation in personalised treatment guidance.
Collapse
|
174
|
Yuen KC, Tran B, Anton A, Hamidi H, Costello AJ, Corcoran NM, Lawrentschuk N, Rainey N, Semira MCG, Gibbs P, Mariathasan S, Sandhu S, Kadel EE. Molecular classification of hormone-sensitive and castration-resistant prostate cancer, using nonnegative matrix factorization molecular subtyping of primary and metastatic specimens. Prostate 2022; 82:993-1002. [PMID: 35435276 PMCID: PMC9321082 DOI: 10.1002/pros.24346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/12/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Despite the rapidly evolving therapeutic landscape, immunotherapy has demonstrated limited activity in prostate cancer. A greater understanding of the molecular landscape, particularly the expression of immune-related pathways, will inform future immunotherapeutic strategies. Consensus nonnegative matrix factorization (cNMF) is a novel model of molecular classification analyzing gene expression data, focusing on biological interpretation of metagenes and selecting meaningful clusters. OBJECTIVE We aimed to identify molecular subtypes of prostate cancer using cNMF and correlate these with existing biomarkers to inform future immunotherapeutic strategies. METHODS A cohort of archival tumor specimens from hormone-sensitive and castration-resistant disease was studied. Whole transcriptomic profiles were generated using TruSeq RNA Access technology and subjected to cNMF. Comprehensive genomic profiling was performed with the FoundationOne assay. NMF subtypes were characterized by gene expression pathways, genomic alterations and correlated with clinical data, then applied to The Cancer Genome Atlas data set. RESULTS We studied 164 specimens, including 52 castration-resistant and 13 paired primary/metastatic specimens. cNMF identified four distinct subtypes. NMF1 (19%) is enriched for immune-related and stromal-related pathways with transforming growth factor β (TGFβ) signature. NMF2 (36%) is associated with FOXO-mediated transcription signature and AKT signaling, NMF3 (26%) is enriched for ribosomal RNA processing, while NMF4 (19%) is enriched for cell cycle and DNA-repair pathways. The most common gene alterations included TMPRSS22 (42%), TP53 (23%), and DNA-repair genes (19%), occurring across all subtypes. NMF4 is significantly enriched for MYC and Wnt-signaling gene alterations. TMB, CD8 density, and PD-L1 expression were low overall. NMF1 and NMF4 were NMF2 was associated with superior overall survival. CONCLUSIONS Using cNMF, we identified four molecularly distinct subtypes which may inform treatment selection. NMF1 demonstrates the most inflammatory signature with asuppressive TGFβ signature, suggesting potential benefit with immunotherapy combination strategies targeting TGFβ and PD-(L)1. Prospective studies are required to evaluate the use of this novel model to molecularly stratify patients for optimal treatment selection.
Collapse
Affiliation(s)
- Kobe C. Yuen
- Department of Oncology Biomarker DevelopmentGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Ben Tran
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Angelyn Anton
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Eastern HealthMelbourneVictoriaAustralia
| | - Habib Hamidi
- Department of Oncology Biomarker DevelopmentGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Anthony J. Costello
- Royal Melbourne HospitalMelbourneVictoriaAustralia
- Department of SurgeryThe University of MelbourneMelbourneVictoriaAustralia
- Australian Prostate CentreNorth MelbourneVictoriaAustralia
| | - Niall M. Corcoran
- Royal Melbourne HospitalMelbourneVictoriaAustralia
- Department of SurgeryThe University of MelbourneMelbourneVictoriaAustralia
| | - Nathan Lawrentschuk
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Royal Melbourne HospitalMelbourneVictoriaAustralia
- Department of SurgeryThe University of MelbourneMelbourneVictoriaAustralia
| | - Natalie Rainey
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Marie C. G. Semira
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Peter Gibbs
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
| | - Sanjeev Mariathasan
- Department of Oncology Biomarker DevelopmentGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Shahneen Sandhu
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Edward E. Kadel
- Department of Oncology Biomarker DevelopmentGenentech, Inc.South San FranciscoCaliforniaUSA
| |
Collapse
|
175
|
Mulvey A, Muggeo-Bertin E, Berthold DR, Herrera FG. Overcoming Immune Resistance With Radiation Therapy in Prostate Cancer. Front Immunol 2022; 13:859785. [PMID: 35603186 PMCID: PMC9115849 DOI: 10.3389/fimmu.2022.859785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/31/2022] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer is the second most common cancer in men and represents a significant healthcare burden worldwide. Therapeutic options in the metastatic castration-resistant setting remain limited, despite advances in androgen deprivation therapy, precision medicine and targeted therapies. In this review, we summarize the role of immunotherapy in prostate cancer and offer perspectives on opportunities for future development, based on current knowledge of the immunosuppressive tumor microenvironment. Furthermore, we discuss the potential for synergistic therapeutic strategies with modern radiotherapy, through modulation of the tumor microenvironment. Emerging clinical and pre-clinical data suggest that radiation can convert immune desert tumors into an inflamed immunological hub, potentially sensitive to immunotherapy.
Collapse
Affiliation(s)
- Arthur Mulvey
- Department of Oncology, Medical Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Department of Oncology, Immuno-Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Emilien Muggeo-Bertin
- Department of Oncology, Radiation Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Dominik R Berthold
- Department of Oncology, Medical Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Fernanda G Herrera
- Department of Oncology, Immuno-Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Department of Oncology, Radiation Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Ludwig Institute for Cancer Research - Lausanne Branch, Lausanne, Switzerland
| |
Collapse
|
176
|
Sankar K, Ye JC, Li Z, Zheng L, Song W, Hu-Lieskovan S. The role of biomarkers in personalized immunotherapy. Biomark Res 2022; 10:32. [PMID: 35585623 PMCID: PMC9118650 DOI: 10.1186/s40364-022-00378-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors have revolutionized cancer therapeutic paradigm and substantially improved the survival of patients with advanced malignancies. However, a significant limitation is the wide variability in clinical response. MAIN TEXT Several biomarkers have been evaluated in prior and ongoing clinical trials to investigate their prognostic and predictive role of patient response, nonetheless, most have not been comprehensively incorporated into clinical practice. We reviewed published data regarding biomarkers that have been approved by the United States Food and Drug Administration as well as experimental tissue and peripheral blood biomarkers currently under investigation. We further discuss the role of current biomarkers to predict response and response to immune checkpoint inhibitors and the promise of combination biomarker strategies. Finally, we discuss ideal biomarker characteristics, and novel platforms for clinical trial design including enrichment and stratification strategies, all of which are exciting and dynamic to advance the field of precision immuno-oncology. CONCLUSION Incorporation and standardization of strategies to guide selection of combination biomarker approaches will facilitate expansion of the clinical benefit of immune checkpoint inhibitor therapy to appropriate subsets of cancer patients.
Collapse
Affiliation(s)
- Kamya Sankar
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Jing Christine Ye
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA
| | - Lei Zheng
- Johns Hopkins University, Baltimore, MD, USA
| | - Wenru Song
- Kira Pharmaceuticals, Cambridge, MA, USA
| | - Siwen Hu-Lieskovan
- Division of Medical Oncology, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, Salt Lake City, UT, USA.
| |
Collapse
|
177
|
Chen H, Lin R, Lin W, Chen Q, Ye D, Li J, Feng J, Cheng W, Zhang M, Qi Y. An immune gene signature to predict prognosis and immunotherapeutic response in lung adenocarcinoma. Sci Rep 2022; 12:8230. [PMID: 35581376 PMCID: PMC9114138 DOI: 10.1038/s41598-022-12301-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
Lung adenocarcinoma is one of the most common malignant tumors worldwide. The purpose of this study was to construct a stable immune gene signature for prediction of prognosis (IGSPP) and response to immune checkpoint inhibitors (ICIs) therapy in LUAD patients. Five genes were screened by weighted gene coexpression network analysis, Cox regression and LASSO regression analyses and were used to construct the IGSPP. The survival rate of the IGSPP low-risk group was higher than that of the IGSPP high-risk group. Multivariate Cox regression analysis showed that IGSPP could be used as an independent prognostic factor for the overall survival of LUAD patients. IGSPP genes were enriched in cell cycle pathways. IGSPP gene mutation rates were higher in the high-risk group. CD4 memory-activated T cells, M0 and M1 macrophages had higher infiltration abundance in the high-risk group, which was associated with poor overall survival. In contrast, the abundance of resting CD4 memory T cells, monocytes, resting dendritic cells and resting mast cells associated with a better prognosis was higher in the low-risk group. TIDE scores and the expressions of different immune checkpoints showed that patients in the high-risk IGSPP group benefited more from ICIs treatment. In short, an IGSPP of LUAD was constructed and characterized. It could be used to predict the prognosis and benefits of ICIs treatment in LUAD patients.
Collapse
Affiliation(s)
- Hongquan Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Renxi Lin
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Weibin Lin
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Qing Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Dongjie Ye
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Jing Li
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.,Department of Pathology, Fujian Provincial Maternity Hospital, Fuzhou, 350012, Fujian, China
| | - Jinan Feng
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.,Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471099, Henan, China
| | - Wenxiu Cheng
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Mingfang Zhang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| | - Yuanlin Qi
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
178
|
Gao Y, Wang G, Chen Y, Zhang M, Gao W, Shang Z, Niu Y. Identification of Neoantigens and Construction of Immune Subtypes in Prostate Adenocarcinoma. Front Genet 2022; 13:886983. [PMID: 35547260 PMCID: PMC9081437 DOI: 10.3389/fgene.2022.886983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Messenger ribonucleic acid (mRNA) vaccine has been considered as a potential therapeutic strategy and the next research hotspot, but their efficacy against prostate adenocarcinoma (PRAD) remains undefined. This study aimed to find potential antigens of PRAD for mRNA vaccine development and identify suitable patients for vaccination through immunophenotyping. Methods: Gene expression profiles and clinical information were obtained from TCGA and ICGC. GEPIA2 was used to calculate the prognostic index of the selected antigens. The genetic alterations were compared on cBioPortal and the correlation between potential antigen and immune infiltrating cells was explored by TIMER. ConsensusClusterPlus was used to construct a consistency matrix, and identify the immune subtypes. Graph learning-based dimensional reduction was performed to depict immune landscape. Boruta algorithm and LASSO logistic analysis were used to screen PRAD patients who may benefit from mRNA vaccine. Results: Seven potential tumor antigens selected were significantly positively associated with poor prognosis and the antigen-presenting immune cells (APCs) in PRAD, including ADA, FYN, HDC, NFKBIZ, RASSF4, SLC6A3, and UPP1. Five immune subtypes of PRAD were identified by differential molecular, cellular, and clinical characteristics in both cohorts. C3 and C5 had immune “hot” and immunosuppressive phenotype, On the contrary, C1&C2 had immune “cold” phenotype. Finally, the immune landscape characterization showed the immune heterogeneity among patients with PRAD. Conclusions: ADA, FYN, HDC, NFKBIZ, RASSF4, SLC6A3, and UPP1 are potential antigens for mRNA vaccine development against PRAD, and patients in type C1 and C2 are suitable for vaccination.
Collapse
Affiliation(s)
- Yukui Gao
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guixin Wang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yanzhuo Chen
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mingpeng Zhang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wenlong Gao
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
179
|
Ge R, Wang Z, Cheng L. Tumor microenvironment heterogeneity an important mediator of prostate cancer progression and therapeutic resistance. NPJ Precis Oncol 2022; 6:31. [PMID: 35508696 PMCID: PMC9068628 DOI: 10.1038/s41698-022-00272-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is characterized by a high degree of heterogeneity, which poses a major challenge to precision therapy and drug development. In this review, we discuss how nongenetic factors contribute to heterogeneity of prostate cancer. We also discuss tumor heterogeneity and phenotypic switching related to anticancer therapies. Lastly, we summarize the challenges targeting the tumor environments, and emphasize that continued exploration of tumor heterogeneity is needed in order to offer a personalized therapy for advanced prostate cancer patients.
Collapse
Affiliation(s)
- Rongbin Ge
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zongwei Wang
- Department of Surgery, Division of Urologic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
180
|
Lozano R, Olmos D, Castro E. Implications of DNA damage repair alterations for the management of prostate cancer. Curr Opin Urol 2022; 32:302-310. [PMID: 35266912 DOI: 10.1097/mou.0000000000000983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In this review, we summarize the prevalence of alterations in DNA damage repair (DDR) genes in prostate cancer, their clinical significance, the therapeutic strategies developed to take advantage of the impaired tumour ability to repair DNA and the diagnostic approaches available to identify patients likely to benefit from DDR-targeting agents. RECENT FINDINGS DDR alterations are more frequent in metastatic than in localized prostate cancer and some of them associate with aggressive disease whereas the significance of others remain unclear. The most appropriate management approach for DDR-defective prostate cancer patients is unknown. Clinical trials have demonstrated the efficacy of different poly-ADP ribose polymerase inhibitors (PARPi) to treat metastatic castration-resistant prostate cancer patients with BRCA1/2 alterations, although there may be other DDR alterations that sensitize patients to these drugs. Multiple strategies to target DDR defects are being investigated, including PARPi in combination, platinum-based chemotherapy and immunotherapy, both in earlier and late disease stages. Optimization of molecular testing is paramount for the implementation of precision oncology in prostate cancer. SUMMARY Certain DDR defects present in prostate cancer have prognostic and therapeutic implications whereas the significance of other DDR alterations is yet to be elucidated.
Collapse
Affiliation(s)
- Rebeca Lozano
- Department of Medical Oncology, Salamanca University Hospital, Salamanca
| | - David Olmos
- Department of Medical Oncology, 12 Octubre University Hospital, Madrid
- Research Institute Hospital 12 de Octubre, Madrid
- Genitourinary Cancers Traslational Research Group, Institute of Biomedical Research in Malaga (IBIMA), Malaga
| | - Elena Castro
- Genitourinary Cancers Traslational Research Group, Institute of Biomedical Research in Malaga (IBIMA), Malaga
- Department of Medical Oncology, Virgen de la Victoria University Hospital, Malaga, Spain
| |
Collapse
|
181
|
de la Calle CM, Bhanji Y, Pavlovich CP, Isaacs WB. The role of genetic testing in prostate cancer screening, diagnosis, and treatment. Curr Opin Oncol 2022; 34:212-218. [PMID: 35238838 DOI: 10.1097/cco.0000000000000823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review provides an overview of the current role of genetic testing in prostate cancer screening, diagnosis, and treatment. RECENT FINDINGS Recent studies have uncovered few but highly penetrant rare pathogenic mutations (RPMs), in genes, such as BRCA2, with strong prostate cancer risk and outcomes associations. Over 260 single nucleotide polymorphisms (SNPs) have also been identified, each associated with small incremental prostate cancer risk and when combined in a polygenic risk score (PRS), they provide strong prostate cancer risk prediction but do not seem to predict outcomes. Tumor tissue sequencing can also help identify actionable somatic mutations in many patients with advanced prostate cancer and inform on their risk of harboring a germline pathogenic mutation. SUMMARY RPM testing, PRS testing, and tumor sequencing all have current and/or potential future roles in personalized prostate cancer care.
Collapse
Affiliation(s)
- Claire M de la Calle
- The James Buchanan Brady Urological Institute, Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
182
|
Shimizu K, Sano T, Mizuno K, Sunada T, Makita N, Hagimoto H, Goto T, Sawada A, Fujimoto M, Ichioka K, Ogawa O, Kobayashi T, Akamatsu S. A case of microsatellite instability-high clinically advanced castration-resistant prostate cancer showing a remarkable response to pembrolizumab sustained over at least 18 months. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006194. [PMID: 35487690 PMCID: PMC9235847 DOI: 10.1101/mcs.a006194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/18/2022] [Indexed: 12/02/2022] Open
Abstract
Defective DNA mismatch repair genes can lead to microsatellite instability (MSI)-high status in prostate cancer (PC). Accumulation of replication errors in DNA leads to the production of abundant neoantigens, which could be targets for immune checkpoint inhibitors (CPIs). However, the incidence of MSI-high PC is low, and not all patients show a satisfactory therapeutic response to CPIs. Here, we present the case of a patient with MSI-high castration-resistant PC who showed a remarkable and durable response to pembrolizumab. The patient was resistant to abiraterone, docetaxel, and cabazitaxel and was suffering from multiple tumor-associated or treatment-related complications, such as urinary tract infection, infective endocarditis, and uncontrollable prostatic hemorrhage. Soon after the start of pembrolizumab therapy, the patient showed a dramatic decrease in prostate-specific antigen from 35.67 ng/mL to an undetectable level and a remarkable reduction in the size of a massive prostate mass and lymph node metastases, with an absence of treatment-related complications. Specimens from the transurethral resection of prostate cancer during cabazitaxel treatment for control of prostate bleeding and also that from the prostate biopsy at initial diagnosis revealed MSI-high status. Immunohistochemistry showed loss of MSH2 and MSH6, and whole-exome sequencing revealed an approximate tumor mutation burden of 61 mutations/Mb as well as biallelic loss of MSH2. Pembrolizumab could show a significant effect even in a heavily treated patient with MSI-high advanced PC. Accumulation of detailed clinical and genomic information of cases of MSI-high PC treated with pembrolizumab is necessary for optimal patient selection.
Collapse
Affiliation(s)
| | | | - Kei Mizuno
- Kyoto University Graduate School of Medicine
| | | | | | | | | | | | | | | | - Osamu Ogawa
- Kyoto University Graduate School of Medicine
| | | | | |
Collapse
|
183
|
Czajkowski D, Szmyd R, Gee HE. Impact of DNA damage response defects in cancer cells on response to immunotherapy and radiotherapy. J Med Imaging Radiat Oncol 2022; 66:546-559. [PMID: 35460184 PMCID: PMC9321602 DOI: 10.1111/1754-9485.13413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022]
Abstract
The DNA damage response (DDR) is a complex set of downstream pathways triggered in response to DNA damage to maintain genomic stability. Many tumours exhibit mutations which inactivate components of the DDR, making them prone to the accumulation of DNA defects. These can both facilitate the development of tumours and provide potential targets for novel therapeutic interventions. The inhibition of the DDR has been shown to induce radiosensitivity in certain cancers, rendering them susceptible to treatment with radiotherapy and improving the therapeutic window. Moreover, DDR defects are a strong predictor of patient response to immune checkpoint inhibition (ICI). The ability to target the DDR selectively has the potential to expand the tumour neoantigen repertoire, thus increasing tumour immunogenicity and facilitating a CD8+ T and NK cell response against cancer cells. Combinatorial approaches, which seek to integrate DDR inhibition with radiotherapy and immunotherapy, have shown promise in early trials. Further studies are necessary to understand these synergies and establish reliable biomarkers.
Collapse
Affiliation(s)
| | - Radosław Szmyd
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre Westmead, Sydney, New South Wales, Australia
| | - Harriet E Gee
- University of Sydney, Sydney, New South Wales, Australia.,Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Sydney West Radiation Oncology Network, Crown Princess Mary Cancer Centre Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
184
|
Keisner SV. Rucaparib and olaparib for the treatment of prostate cancer: A clinician's guide to choice of therapy. J Oncol Pharm Pract 2022; 28:1624-1633. [PMID: 35440240 DOI: 10.1177/10781552221094308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This review will provide an overview of the use rucaparib and olaparib in patients with metastatic castration resistant prostate cancer (mCRPC) with the goal to assist the clinician's decision-making process when considering these agents for an individual patient. DATA SOURCES Searches were conducted in PubMed, relevant meeting abstracts, clinicaltrials.gov, and United States Food and Drug Administration (FDA) documents to identify literature published through July 1, 2021, related to use of rucaparib and olaparib for treatment of prostate cancer. DATA SUMMARY In May 2020, the FDA approved rucaparib and olaparib for treatment of mCRPC that is homologous recombination repair (HRR)-deficient. Both agents are approved for previously-treated patients, but there are notable differences in strength of evidence, outcomes studied, required HRR alteration, and required prior therapies. In patients who qualify for therapy, additional factors that may help guide choice of PARP inhibitor include baseline organ function, drug interaction potential, toxicity profiles, and financial factors. CONCLUSIONS Rucaparib and olaparib have the potential to improve outcomes for patients with HRR-deficient mCRPC. Differences in strength of evidence and patient- and drug-specific characteristics will assist the clinician when choosing between agents.
Collapse
Affiliation(s)
- Sidney Veach Keisner
- Department of Pharmacy Practice, College of Pharmacy, 12215University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
185
|
Siddiqui BA, Subudhi SK, Sharma P. Anti-PD-L1 plus enzalutamide does not improve overall survival in prostate cancer. Cell Rep Med 2022; 3:100613. [PMID: 35492243 PMCID: PMC9044095 DOI: 10.1016/j.xcrm.2022.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The addition of atezolizumab (anti-PD-L1) to enzalutamide (androgen receptor antagonist) did not prolong survival in metastatic prostate cancer.1 Efficacy with immunotherapies in prostate cancer will require additional studies to elucidate and target mechanisms of resistance within the prostate tumor microenvironment.
Collapse
Affiliation(s)
- Bilal A. Siddiqui
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sumit K. Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Corresponding author
| |
Collapse
|
186
|
Mar N, Uchio E, Kalebasty AR. Use of immunotherapy in clinical management of genitourinary cancers - a review. Cancer Treat Res Commun 2022; 31:100564. [PMID: 35472699 DOI: 10.1016/j.ctarc.2022.100564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Checkpoint inhibitors targeting PD-1/PD-L1 and CTLA-4 have revolutionized oncologic care delivery, including clinical management of genitourinary malignancies. Despite significant associated improvement in patient outcomes, molecular heterogeneity of tumors, variable tumor engagement with the immune response, and unique patient factors likely account for different clinical responses to immunotherapy agents. A search for predictive biomarkers of treatment response to checkpoint inhibitors is underway and several candidates, although imperfect, have been identified. Multiple checkpoint inhibitors have received approval as monotherapies or in combination with other agents in genitourinary cancers and clinical trial data continues to rapidly evolve. This review summarizes key published evidence involving use of checkpoint inhibitors in management of urothelial carcinoma, renal cell carcinoma, prostate adenocarcinoma, and penile squamous cell carcinoma. This review aims to help oncology practitioners develop an up-to-date, evidence-based approach to using these agents when managing patients with genitourinary cancers in clinical practice.
Collapse
Affiliation(s)
- Nataliya Mar
- University of California Irvine, Division of Hematology/Oncology, USA.
| | - Edward Uchio
- University of California Irvine, Department of Urology, USA
| | | |
Collapse
|
187
|
Chen C, Chen Y, Jin X, Ding Y, Jiang J, Wang H, Yang Y, Lin W, Chen X, Huang Y, Teng L. Identification of Tumor Mutation Burden, Microsatellite Instability, and Somatic Copy Number Alteration Derived Nine Gene Signatures to Predict Clinical Outcomes in STAD. Front Mol Biosci 2022; 9:793403. [PMID: 35480879 PMCID: PMC9037630 DOI: 10.3389/fmolb.2022.793403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
Genomic features, including tumor mutation burden (TMB), microsatellite instability (MSI), and somatic copy number alteration (SCNA), had been demonstrated to be involved with the tumor microenvironment (TME) and outcome of gastric cancer (GC). We obtained profiles of TMB, MSI, and SCNA by processing 405 GC data from The Cancer Genome Atlas (TCGA) and then conducted a comprehensive analysis though “iClusterPlus.” A total of two subgroups were generated, with distinguished prognosis, somatic mutation burden, copy number changes, and immune landscape. We revealed that Cluster1 was marked by a better prognosis, accompanied by higher TMB, MSIsensor score, TMEscore, and lower SCNA burden. Based on these clusters, we screened 196 differentially expressed genes (DEGs), which were subsequently projected into univariate Cox survival analysis. We constructed a 9-gene immune risk score (IRS) model using LASSO-penalized logistic regression. Moreover, the prognostic prediction of IRS was verified by receiver operating characteristic (ROC) curve analysis and nomogram plot. Another independent Gene Expression Omnibus (GEO) contained specimens from 109 GC patients was designed as an external validation. Our works suggested that the 9‐gene‐signature prediction model, which was derived from TMB, MSI, and SCNA, was a promising predictive tool for clinical outcomes in GC patients. This novel methodology may help clinicians uncover the underlying mechanisms and guide future treatment strategies.
Collapse
Affiliation(s)
- Chuanzhi Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Chen
- Department of Oncology-Pathology, Karolinska Institute, Solna, Sweden
| | - Xin Jin
- Department of Breast Surgery, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Yongfeng Ding
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junjie Jiang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Yang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wu Lin
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangliu Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Lisong Teng,
| |
Collapse
|
188
|
Wyvekens N, Tsai HK, Sholl LM, Tucci J, Giannico GA, Gordetsky JB, Hirsch MS, Barletta JA, Acosta AM. Histopathologic and Genetic Features of Mismatch Repair-Deficient High-Grade Prostate Cancer. Histopathology 2022; 80:1050-1060. [PMID: 35395112 DOI: 10.1111/his.14645] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
AIMS Mismatch repair (MMR) deficiency is commonly caused by functional inactivation of MLH1, PMS2, MSH2 or MSH6. The morphologic and molecular correlates of MMR deficiency have been extensively characterized in certain tumor types such as colorectal and endometrial adenocarcinoma. In contrast, the histologic and molecular features of MMR-deficient prostate cancer remain incompletely described. In this study, we evaluated 19 MMR-deficient prostate cancers, including 11 cases without prior systemic treatment. METHODS AND RESULTS All treatment-naïve cases (11/11, 100%) were Grade Group 4-5 and had predominant cribriform and/or solid growth patterns. Solid components (any amount) and tumor infiltrating lymphocytes were seen in 7/11 (64%) of these cases each. In 68 MMR-proficient Grade Group 5 prostate cancers, predominant cribriform or solid growth patterns, solid components (any amount) and tumor infiltrating lymphocytes were seen at significantly lower frequencies (31/68, 46%; 9/68, 13% and 6/62, 9%, respectively; p<0.001 for all comparisons). Molecular evaluation of 19 cases demonstrated that MMR-deficiency was secondary to functional loss of MSH2/MSH6 and MLH1/PMS2 in 15 cases (79%) and 4 cases (21%), respectively. Definite or likely germline mutations were present in 4 cases (4/19, 21%). TMPRSS2::ERG rearrangements were identified in 2 cases (2/19, 11%). Recurrent cancer-relevant somatic mutations included (but were not limited to) ATM, TP53, FOXA1, RB1, BRCA2 and PTEN. CONCLUSIONS MMR deficiency was most commonly secondary to inactivation of MSH2/MSH6 in this study. Importantly, MMR-deficient high-grade prostatic adenocarcinomas had morphologic features that might be useful to identify selected cases for MMR IHC.
Collapse
Affiliation(s)
- Nicolas Wyvekens
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Harrison K Tsai
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan Tucci
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Giovanna A Giannico
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer B Gordetsky
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Justine A Barletta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andres M Acosta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
189
|
Thoman ME, Salari K. Key Notes on Pembrolizumab and Docetaxel Combination Therapy for Metastatic Castration-Resistant Prostate Cancer. Eur Urol 2022; 82:31-33. [PMID: 35396162 DOI: 10.1016/j.eururo.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/15/2022]
Affiliation(s)
- Maxton E Thoman
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keyan Salari
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
190
|
Kaur HB, Vidotto T, Mendes AA, Salles DC, Isaacs WB, Antonarakis ES, Lotan TL. Association between pathogenic germline mutations in BRCA2 and ATM and tumor-infiltrating lymphocytes in primary prostate cancer. Cancer Immunol Immunother 2022; 71:943-951. [PMID: 34533610 PMCID: PMC9254167 DOI: 10.1007/s00262-021-03050-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/05/2021] [Indexed: 01/15/2023]
Abstract
Pathogenic mutations in homologous recombination (HR) DNA repair genes may be associated with increased tumor mutational burden and numbers of tumor-infiltrating lymphocytes (TIL). Though HR-deficient prostate tumors have been anecdotally associated with improved responses to immunotherapy, it is unclear whether HR mutations or HR deficiency (HRD) scores predict for increased T-cell densities in this cancer. We evaluated 17 primary prostate tumors from patients with pathogenic germline BRCA2 mutations (gBRCA2) and 21 primary prostate tumors from patients with pathogenic germline ATM (gATM) mutations, which were compared to 19 control tumors lacking HR gene mutations, as well as the TCGA prostate cancer cohort. HRD score was estimated by targeted sequencing (gBRCA2 and gATM) or by SNP microarray (TCGA). Tumor-associated T-cell densities were assessed using validated automated digital image analysis of CD8 and FOXP3 immunostaining (gBRCA2 or gATM) or by methylCIBERSORT (TCGA). CD8 + and FOXP3 + T-cell densities were significantly correlated with each other in gBRCA2 and gATM cases. There was no significant difference between CD8 + or FOXP3 + TIL densities in gBRCA2 or gATM cases compared to controls. In the TCGA cohort, HRD score was associated with predicted CD8 + and FOXP3 + TILs. Associations were also seen for HRD score and TIL density among the germline-mutated cases. In contrast to mismatch repair-deficient primary prostate tumors, cancers from germline BRCA2 or ATM mutation carriers do not appear to be associated with elevated TIL density. However, measures of genomic scarring, such as HRD score, may be associated with increased tumor-infiltrating T-cells.
Collapse
Affiliation(s)
- Harsimar B Kaur
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thiago Vidotto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrianna A Mendes
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniela C Salles
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William B Isaacs
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, CRB2, Room 316, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, CRB2, Room 316, 1550 Orleans Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
191
|
Slootbeek PHJ, Kloots ISH, Smits M, van Oort IM, Gerritsen WR, Schalken JA, Ligtenberg MJL, Grünberg K, Kroeze LI, Bloemendal HJ, Mehra N. Impact of molecular tumour board discussion on targeted therapy allocation in advanced prostate cancer. Br J Cancer 2022; 126:907-916. [PMID: 34912074 PMCID: PMC8927341 DOI: 10.1038/s41416-021-01663-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Molecular tumour boards (MTB) optimally match oncological therapies to patients with genetic aberrations. Prostate cancer (PCa) is underrepresented in these MTB discussions. This study describes the impact of routine genetic profiling and MTB referral on the outcome of PCa patients in a tertiary referral centre. METHODS All PCa patients that received next-generation sequencing results and/or were discussed at an MTB between Jan 1, 2017 and Jan 1, 2020 were included. Genetically matched therapies (GMT) in clinical trials or compassionate use were linked to actionable alterations. Response to these agents was retrospectively evaluated. RESULTS Out of the 277 genetically profiled PCa patients, 215 (78%) were discussed in at least one MTB meeting. A GMT was recommended to 102 patients (47%), of which 63 patients (62%) initiated the GMT. The most recommended therapies were PARP inhibitors (n = 74), programmed death-(ligand) 1 inhibitors (n = 21) and tyrosine kinase inhibitors (n = 19). Once started, 41.3% had a PFS of ≥6 months, 43.5% a PSA decline ≥50% and 38.5% an objective radiographic response. CONCLUSION Recommendation for a GMT is achieved in almost half of the patients with advanced prostate cancer, with GMT initiation leading to durable responses in over 40% of patients. These data justify routine referral of selected PCa patients to MTB's.
Collapse
Affiliation(s)
- Peter H J Slootbeek
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Department of Medical Oncology, Nijmegen, The Netherlands
- Radboud University Medical Centre, Radboud institute for Molecular Life sciences, Department of Experimental Urology, Nijmegen, The Netherlands
| | - Iris S H Kloots
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Department of Medical Oncology, Nijmegen, The Netherlands
| | - Minke Smits
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Department of Medical Oncology, Nijmegen, The Netherlands
| | - Inge M van Oort
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Department of Urology, Nijmegen, The Netherlands
| | - Winald R Gerritsen
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Department of Medical Oncology, Nijmegen, The Netherlands
| | - Jack A Schalken
- Radboud University Medical Centre, Radboud institute for Molecular Life sciences, Department of Experimental Urology, Nijmegen, The Netherlands
| | - Marjolijn J L Ligtenberg
- Radboud University Medical Centre, Radboud Institute for Molecular Life sciences, Department of Pathology, Nijmegen, The Netherlands
- Radboud University Medical Centre, Radboud Institute for Molecular Life sciences, Department of Human Genetics, Nijmegen, The Netherlands
| | - Katrien Grünberg
- Radboud University Medical Centre, Radboud Institute for Molecular Life sciences, Department of Pathology, Nijmegen, The Netherlands
| | - Leonie I Kroeze
- Radboud University Medical Centre, Radboud Institute for Molecular Life sciences, Department of Pathology, Nijmegen, The Netherlands
| | - Haiko J Bloemendal
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Department of Medical Oncology, Nijmegen, The Netherlands
| | - Niven Mehra
- Radboud University Medical Centre, Radboud Institute for Health Sciences, Department of Medical Oncology, Nijmegen, The Netherlands.
| |
Collapse
|
192
|
Understanding of Immune Escape Mechanisms and Advances in Cancer Immunotherapy. JOURNAL OF ONCOLOGY 2022; 2022:8901326. [PMID: 35401745 PMCID: PMC8989557 DOI: 10.1155/2022/8901326] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022]
Abstract
Tumor immune escape has emerged as the most significant barrier to cancer therapy. A thorough understanding of tumor immune escape therapy mechanisms is critical for further improving clinical treatment strategies. Currently, research indicates that combining several immunotherapies can boost antitumor efficacy and encourage T cells to play a more active part in the immune assault. To generate a more substantial therapeutic impact, it can establish an ideal tumor microenvironment (TME), encourage T cells to play a role, prevent T cell immune function reversal, and minimize tumor immune tolerance. In this review, we will examine the mechanisms of tumor immune escape and the limits of tumor immune escape therapy, focusing on the current development of immunotherapy based on tumor immune escape mechanisms. Individualized tumor treatment is becoming increasingly apparent as future treatment strategies. In addition, we forecast the future research direction of cancer and the clinical approach for cancer immunotherapy. It will serve as a better reference for researchers working in cancer therapy research.
Collapse
|
193
|
Cattrini C, Caffo O, De Giorgi U, Mennitto A, Gennari A, Olmos D, Castro E. Apalutamide, Darolutamide and Enzalutamide for Nonmetastatic Castration-Resistant Prostate Cancer (nmCRPC): A Critical Review. Cancers (Basel) 2022; 14:1792. [PMID: 35406564 PMCID: PMC8997634 DOI: 10.3390/cancers14071792] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Nonmetastatic castration-resistant prostate cancer (nmCRPC) represents a condition in which patients with prostate cancer show biochemical progression during treatment with androgen-deprivation therapy (ADT) without signs of radiographic progression according to conventional imaging. The SPARTAN, ARAMIS and PROSPER trials showed that apalutamide, darolutamide and enzalutamide, respectively, prolong metastasis-free survival (MFS) and overall survival (OS) of nmCRPC patients with a short PSA doubling time, and these antiandrogens have been recently introduced in clinical practice as a new standard of care. No direct comparison of these three agents has been conducted to support treatment choice. In addition, a significant proportion of nmCRPC on conventional imaging is classified as metastatic with new imaging modalities such as the prostate-specific membrane antigen positron emission tomography (PSMA-PET). Some experts posit that these "new metastatic" patients should be treated as mCRPC, resizing the impact of nmCRPC trials, whereas other authors suggest that they should be treated as nmCRPC patients, based on the design of pivotal trials. This review discusses the most convincing evidence regarding the use of novel antiandrogens in patients with nmCRPC and the implications of novel imaging techniques for treatment selection.
Collapse
Affiliation(s)
- Carlo Cattrini
- Department of Medical Oncology, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (C.C.); (A.M.); (A.G.)
- Medical Oncology, Department of Translational Medicine (DIMET), University of Eastern Piedmont (UPO), 28100 Novara, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Orazio Caffo
- Department of Medical Oncology, Santa Chiara Hospital, 38122 Trento, Italy;
| | - Ugo De Giorgi
- Department of Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Alessia Mennitto
- Department of Medical Oncology, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (C.C.); (A.M.); (A.G.)
- Medical Oncology, Department of Translational Medicine (DIMET), University of Eastern Piedmont (UPO), 28100 Novara, Italy
| | - Alessandra Gennari
- Department of Medical Oncology, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (C.C.); (A.M.); (A.G.)
- Medical Oncology, Department of Translational Medicine (DIMET), University of Eastern Piedmont (UPO), 28100 Novara, Italy
| | - David Olmos
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain;
| | - Elena Castro
- Genitourinary Cancer Translational Research Group, Instituto de Investigación Biomédica de Málaga, 29010 Málaga, Spain
- UGCI Medical Oncology, Hospitales Universitarios Virgen de la Victoria y Regional de Málaga, 29010 Málaga, Spain
| |
Collapse
|
194
|
Ionescu F, Zhang J, Wang L. Clinical Applications of Liquid Biopsy in Prostate Cancer: From Screening to Predictive Biomarker. Cancers (Basel) 2022; 14:1728. [PMID: 35406500 PMCID: PMC8996910 DOI: 10.3390/cancers14071728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer (PC) remains the most common malignancy and the second most common cause of cancer death in men. As a result of highly variable biological behavior and development of resistance to available agents under therapeutic pressure, optimal management is often unclear. Traditional surgical biopsies, even when augmented by genomic studies, may fail to provide adequate guidance for clinical decisions as these can only provide a snapshot of a dynamic process. Additionally, surgical biopsies are cumbersome to perform repeatedly and often involve risk. Liquid biopsies (LB) are defined as the analysis of either corpuscular (circulating tumor cells, extracellular vesicles) or molecular (circulating DNA or RNA) tumor-derived material. LB could more precisely identify clinically relevant alterations that characterize the metastatic potential of tumors, predict response to specific treatments or actively monitor for the emergence of resistance. These tests can potentially be repeated as often as deemed necessary and can detect real-time response to treatment with minimal inconvenience to the patient. In the current review, we consider common clinical scenarios to describe available LB assays in PC as a platform to explore existing evidence for their use in guiding decision making and to discuss current limitations to their adoption in the clinic.
Collapse
Affiliation(s)
- Filip Ionescu
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Jingsong Zhang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
195
|
Fletcher CE, Deng L, Orafidiya F, Yuan W, Lorentzen MPGS, Cyran OW, Varela-Carver A, Constantin TA, Leach DA, Dobbs FM, Figueiredo I, Gurel B, Parkes E, Bogdan D, Pereira RR, Zhao SG, Neeb A, Issa F, Hester J, Kudo H, Liu Y, Philippou Y, Bristow R, Knudsen K, Bryant RJ, Feng FY, Reed SH, Mills IG, de Bono J, Bevan CL. A non-coding RNA balancing act: miR-346-induced DNA damage is limited by the long non-coding RNA NORAD in prostate cancer. Mol Cancer 2022; 21:82. [PMID: 35317841 PMCID: PMC8939142 DOI: 10.1186/s12943-022-01540-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND miR-346 was identified as an activator of Androgen Receptor (AR) signalling that associates with DNA damage response (DDR)-linked transcripts in prostate cancer (PC). We sought to delineate the impact of miR-346 on DNA damage, and its potential as a therapeutic agent. METHODS RNA-IP, RNA-seq, RNA-ISH, DNA fibre assays, in vivo xenograft studies and bioinformatics approaches were used alongside a novel method for amplification-free, single nucleotide-resolution genome-wide mapping of DNA breaks (INDUCE-seq). RESULTS miR-346 induces rapid and extensive DNA damage in PC cells - the first report of microRNA-induced DNA damage. Mechanistically, this is achieved through transcriptional hyperactivation, R-loop formation and replication stress, leading to checkpoint activation and cell cycle arrest. miR-346 also interacts with genome-protective lncRNA NORAD to disrupt its interaction with PUM2, leading to PUM2 stabilisation and its increased turnover of DNA damage response (DDR) transcripts. Confirming clinical relevance, NORAD expression and activity strongly correlate with poor PC clinical outcomes and increased DDR in biopsy RNA-seq studies. In contrast, miR-346 is associated with improved PC survival. INDUCE-seq reveals that miR-346-induced DSBs occur preferentially at binding sites of the most highly-transcriptionally active transcription factors in PC cells, including c-Myc, FOXA1, HOXB13, NKX3.1, and importantly, AR, resulting in target transcript downregulation. Further, RNA-seq reveals widespread miR-346 and shNORAD dysregulation of DNA damage, replication and cell cycle processes. NORAD drives target-directed miR decay (TDMD) of miR-346 as a novel genome protection mechanism: NORAD silencing increases mature miR-346 levels by several thousand-fold, and WT but not TDMD-mutant NORAD rescues miR-346-induced DNA damage. Importantly, miR-346 sensitises PC cells to DNA-damaging drugs including PARP inhibitor and chemotherapy, and induces tumour regression as a monotherapy in vivo, indicating that targeting miR-346:NORAD balance is a valid therapeutic strategy. CONCLUSIONS A balancing act between miR-346 and NORAD regulates DNA damage and repair in PC. miR-346 may be particularly effective as a therapeutic in the context of decreased NORAD observed in advanced PC, and in transcriptionally-hyperactive cancer cells.
Collapse
Affiliation(s)
- C E Fletcher
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK.
| | - L Deng
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - F Orafidiya
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - W Yuan
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - M P G S Lorentzen
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - O W Cyran
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - A Varela-Carver
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - T A Constantin
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - D A Leach
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - F M Dobbs
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
- Broken String Biosciences, Unit AB303, Level 3, BioData Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - I Figueiredo
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - B Gurel
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - E Parkes
- Institute for Radiation Oncology, Department of Oncology, University of Oxford, London, UK
| | - D Bogdan
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - R R Pereira
- Translational Oncogenomics, Manchester Cancer Research Centre and Cancer Research UK Manchester Institute, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - S G Zhao
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - A Neeb
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - F Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - H Kudo
- Section of Pathology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Y Liu
- Veracyte, Inc., San Diego, CA, USA
| | - Y Philippou
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - R Bristow
- Translational Oncogenomics, Manchester Cancer Research Centre and Cancer Research UK Manchester Institute, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Christie NHS Foundation Trust, Manchester, UK
| | - K Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- American Cancer Society and American Cancer Society Cancer Action Network, Washington DC, USA
| | - R J Bryant
- Institute for Radiation Oncology, Department of Oncology, University of Oxford, London, UK
| | - F Y Feng
- Departments of Urology and Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - S H Reed
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - I G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Patrick G Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast, UK
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - J de Bono
- Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - C L Bevan
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| |
Collapse
|
196
|
Feng D, Zhang F, Li D, Shi X, Xiong Q, Wei Q, Yang L. Developing an immune-related gene prognostic index associated with progression and providing new insights into the tumor immune microenvironment of prostate cancer. Immunology 2022; 166:197-209. [PMID: 35271752 DOI: 10.1111/imm.13466] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
We developed an immune-related gene prognostic index (IGPI) associated with progression and provided new insights into the tumor immune microenvironment (TIME) for prostate cancer (PCA) patients undergoing radical prostatectomy. All analyses were conducted with R software (version 3.6.3) and its suitable packages. Meta analysis was performed through STATA 16.0. TUBB3, WDR62, and PPARGC1A were finally identified to establish the IGPI score. IGPI score increased with the augment of Gleason score and T stage, as well as biochemical recurrence (BCR) and prostate specific antigen (PSA). Patients with higher IGPI score were at higher risk of progress (HR: 2.88; 95%CI: 95%CI: 1.80-4.61). Gene set enrichment analysis indicated that patients in high-risk group was positively associated with mismatch repair, cell cycle, DNA replication, base excision repair, nucleotide excision repair, homologous recombination, and pyrimidine metabolism. We observed that patients in the high-risk group had significantly higher tumor mutation burden score and microsatellite instability score than those in the low-risk group. For analysis of immune checkpoint, ADORA2A, CD80, TNFRSF4, TNFRSF18, and TNFRSF25 were differentially expressed between no progress and progress groups, and were significantly associated with progress free survival. We observed positive correlations between IGPI score, and lymphoid immune cells, macrophages M2 and immune score, while negative association between IGPI score, and dendritic cells, fibroblasts, stromal score, and microenvironment score. In conclusion, the IGPI score constructed in this study might serve as an independent risk factor associated with PCA progression. ADORA2A, CD80, TNFRSF4, TNFRSF18, and TNFRSF25 might be the potential targets in the treatment of PCA.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Facai Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
197
|
Feng D, Xiong Q, Zhang F, Shi X, Xu H, Wei W, Ai J, Yang L. Identification of a Novel Nomogram to Predict Progression Based on the Circadian Clock and Insights Into the Tumor Immune Microenvironment in Prostate Cancer. Front Immunol 2022; 13:777724. [PMID: 35154101 PMCID: PMC8829569 DOI: 10.3389/fimmu.2022.777724] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Background Currently, the impact of the circadian rhythm on the tumorigenesis and progression of prostate cancer (PCA) has yet to be understood. In this study, we first established a novel nomogram to predict PCA progression based on circadian clock (CIC)-related genes and provided insights into the tumor immune microenvironment. Methods The TCGA and Genecards databases were used to identify potential candidate genes. Lasso and Cox regression analyses were applied to develop a CIC-related gene signature. The tumor immune microenvironment was evaluated through appropriate statistical methods and the GSCALite database. Results Ten genes were identified to construct a gene signature to predict progression probability for patients with PCA. Patients with high-risk scores were more prone to progress than those with low-risk scores (hazard ratio (HR): 4.11, 95% CI: 2.66-6.37; risk score cut-off: 1.194). CLOCK, PER (1, 2, 3), CRY2, NPAS2, RORA, and ARNTL showed a higher correlation with anti-oncogenes, while CSNK1D and CSNK1E presented a greater relationship with oncogenes. Overall, patients with higher risk scores showed lower mRNA expression of PER1, PER2, and CRY2 and higher expression of CSNK1E. In general, tumor samples presented higher infiltration levels of macrophages, T cells and myeloid dendritic cells than normal samples. In addition, tumor samples had higher immune scores, lower stroma scores and lower microenvironment scores than normal samples. Notably, patients with higher risk scores were associated with significantly lower levels of neutrophils, NK cells, T helper type 1, and mast cells. There was a positive correlation between the risk score and the tumor mutation burden (TMB) score, and patients with higher TMB scores were more prone to progress than those with lower TMB scores. Likewise, we observed similar results regarding the correlation between the microsatellite instability (MSI) score and the risk score and the impact of the MSI score on the progression-free interval. We observed that anti-oncogenes presented a significantly positive correlation with PD-L1, PD-L2, TIGIT and SIGLEC15, especially PD-L2. Conclusion We identified ten prognosis-related genes as a promising tool for risk stratification in PCA patients from the fresh perspective of CIC.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Facai Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
198
|
Zhu S, Zhang Z, Zhang H, Liu Z, Liu M, Liu Q, Zang L, Wang L, Ji J, Wu B, Sun L, Zhang Z, Cao H, Wang Y, Wang H, Shang Z, Niu Y. DNA-repair status should be assessed in treatment-emergent neuroendocrine prostate cancer before platinum-based therapy. Prostate 2022; 82:464-474. [PMID: 35037281 DOI: 10.1002/pros.24292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVES This study sought to provide contemporary data from a multi-institution with respect to DNA-repair genes (DRGs) status and its impact on effects of platinum-based chemotherapy in treatment-emergent neuroendocrine prostate cancer (t-NEPC), for which little data exist. PATIENTS AND METHODS All patients were retrospectively collected with eligible biopsied tissues for targeted next generation sequencing (NGS). The main outcomes were radiologic progression-free survival and overall survival according to Response Evaluation Criteria in Solid Tumors, version 1.1. RESULTS Among the 43 NEPC patients, 13/43 (30%) harbored homozygous deletions, deleterious mutations, or both in DRGs. Eleven patients (11/13, 85%) with DRGs aberrations had effective response, including 7 patients with BRCA1/2 defects and 2 with mismatch repair-deficient caused by MSH2 alterations. While significantly fewer responders (30%) were detected in patients without DRGs aberrations (odds ratio = 12.83, p = 0.003). Compared with patients without genomic DRGs aberrations, the hazard ratio (HR) for radiologic progression in those with DRGs defects was 0.42 (95% confidence interval [CI]: 0.19-0.93), and the HR for death was 0.65 (95% CI: 0.24-1.72). The most common adverse event of Grade 3 or 4 was anemia, as noted in 7 patients (16%). CONCLUSION The DRGs status is therapeutically meaningful in t-NEPC. Given the potential responses to platinum-based chemotherapy, our findings support the clinical use of NGS in t-NEPC patients to identify DRGs aberrations.
Collapse
Affiliation(s)
- Shimiao Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zheng Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hui Zhang
- Department of Nephrology, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Zihao Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Min Liu
- Department of Urology, Zibo Central Hospital, Zibo, Shandong, China
| | - Qing Liu
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Li Zang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lili Wang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Junpeng Ji
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Third Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Bo Wu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Libin Sun
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhenting Zhang
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Heran Cao
- Department of Urology, Shijiazhuang People's Hospital, The No. 1 Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yong Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haitao Wang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
199
|
Kwan EM, Spain L, Anton A, Gan CL, Garrett L, Chang D, Liow E, Bennett C, Zheng T, Yu J, Dai C, Du P, Jia S, Fettke H, Abou-Seif C, Kothari G, Shaw M, Parente P, Pezaro C, Tran B, Siva S, Azad AA. Avelumab Combined with Stereotactic Ablative Body Radiotherapy in Metastatic Castration-resistant Prostate Cancer: The Phase 2 ICE-PAC Clinical Trial. Eur Urol 2022; 81:253-262. [PMID: 34493414 DOI: 10.1016/j.eururo.2021.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Immune checkpoint inhibitor monotherapy in metastatic castration-resistant prostate cancer (mCRPC) has produced modest results. High-dose radiotherapy may be synergistic with checkpoint inhibitors. OBJECTIVE To evaluate the efficacy and safety of the PD-L1 inhibitor avelumab with stereotactic ablative body radiotherapy (SABR) in mCRPC. DESIGN, SETTING, AND PARTICIPANTS From November 2017 to July 2019, this prospective phase 2 study enrolled 31 men with progressive mCRPC after at least one prior androgen receptor-directed therapy. Median follow-up was 18.0 mo. INTERVENTION Avelumab 10 mg/kg intravenously every 2 wk for 24 wk (12 cycles). A single fraction of SABR (20 Gy) was administered to one or two disease sites within 5 d before the first and second avelumab treatments. OUTCOMES MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoint was the disease control rate (DCR), defined as a confirmed complete or partial response of any duration, or stable disease/non-complete response/non-progressive disease for ≥6 mo (Prostate Cancer Clinical Trials Working Group 3-modified Response Evaluation Criteria in Solid Tumours version 1.1). Secondary endpoints were the objective response rate (ORR), radiographic progression-free survival (rPFS), overall survival (OS), and safety. DCR and ORR were calculated using the Clopper-Pearson exact binomial method. RESULTS AND LIMITATIONS Thirty-one evaluable men were enrolled (median age 71 yr, 71% with ≥2 prior mCRPC therapy lines, 81% with >5 total metastases). The DCR was 48% (15/31; 95% confidence interval [CI] 30-67%) and ORR was 31% (five of 16; 95% CI 11-59%). The ORR in nonirradiated lesions was 33% (four of 12; 95% CI 10-65%). Median rPFS was 8.4 mo (95% CI 4.5-not reached [NR]) and median OS was 14.1 mo (95% CI 8.9-NR). Grade 3-4 treatment-related adverse events occurred in six patients (16%), with three (10%) requiring high-dose corticosteroid therapy. Plasma androgen receptor alterations were associated with lower DCR (22% vs 71%, p = 0.13; Fisher's exact test). Limitations include the small sample size and the absence of a control arm. CONCLUSIONS Avelumab with SABR demonstrated encouraging activity and acceptable toxicity in treatment-refractory mCRPC. This combination warrants further investigation. PATIENT SUMMARY In this study of men with advanced and heavily pretreated prostate cancer, combining stereotactic radiotherapy with avelumab immunotherapy was safe and resulted in nearly half of patients experiencing cancer control for 6 months or longer. Stereotactic radiotherapy may potentially improve the effectiveness of immunotherapy in prostate cancer.
Collapse
Affiliation(s)
- Edmond M Kwan
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia; Department of Medical Oncology, Monash Health, Melbourne, Australia
| | - Lavinia Spain
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Department of Medical Oncology, Eastern Health, Melbourne, Australia; Eastern Health Clinical School, Monash University, Melbourne, Australia
| | - Angelyn Anton
- Department of Medical Oncology, Eastern Health, Melbourne, Australia; Eastern Health Clinical School, Monash University, Melbourne, Australia; Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Chun L Gan
- Department of Medical Oncology, Monash Health, Melbourne, Australia
| | - Linda Garrett
- Department of Medical Oncology, Monash Health, Melbourne, Australia
| | - Deborah Chang
- Department of Medical Oncology, Monash Health, Melbourne, Australia
| | - Elizabeth Liow
- Department of Medical Oncology, Monash Health, Melbourne, Australia
| | - Caitlin Bennett
- Eastern Health Clinical School, Monash University, Melbourne, Australia
| | | | | | - Chao Dai
- Predicine Inc., Hayward, CA, USA
| | - Pan Du
- Predicine Inc., Hayward, CA, USA
| | | | - Heidi Fettke
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Claire Abou-Seif
- Department of Anatomical Pathology, Monash Health, Melbourne, Australia
| | - Gargi Kothari
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Mark Shaw
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip Parente
- Department of Medical Oncology, Eastern Health, Melbourne, Australia; Eastern Health Clinical School, Monash University, Melbourne, Australia
| | - Carmel Pezaro
- Department of Medical Oncology, Eastern Health, Melbourne, Australia; Eastern Health Clinical School, Monash University, Melbourne, Australia
| | - Ben Tran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Arun A Azad
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
200
|
Prostate cancer treatment costs increase more rapidly than for any other cancer—how to reverse the trend? EPMA J 2022; 13:1-7. [PMID: 35251382 PMCID: PMC8886338 DOI: 10.1007/s13167-022-00276-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 02/08/2023]
Abstract
According to GLOBOCAN, about 1.41 million new prostate cancer (PCa) cases were registered in the year 2020 globally. The corresponding socio-economic burden is enormous. Anti-cancer mRNA-based therapy is a promising approach, the principle of which is currently applied for anti-COVID-19 vaccination, undergoing a detailed investigation in populations considering its short- and long-term effectiveness and potential side effects. Pragmatically considered, it will take years or even decades to make mRNA therapy working for any type of cancers, and if possible, for individual malignancy sub-types which are many specifically for the PCa. Actually, the costs of treating PCa are increasing more rapidly than those of any other cancer. The trend has to be reversed now, not in a couple of years. In general, two main components are making currently applied reactive (management of clinically manifested disease) PCa treatment particularly expensive. On one hand, it is rapidly increasing incidence of the disease and metastatic PCa as its subtype. To this end, rapidly increasing PCa incidence rates in young and middle-aged male sub-populations should be taken into account as a long-term contributor to the metastatic disease potentially developed later on in life. On the other hand, patient stratification to differentiate between non-metastatic PCa (no need for an extensive and costly treatment) and particularly aggressive cancer subtypes requiring personalised treatment algorithms is challenging. Considering current statistics, it becomes obvious that reactive medicine got at its limit in PCa management. Multi-professional expertise is unavoidable to create and implement anti-PCa programmes in the population. In our strategic paper, we exemplify challenging PCa management by providing detailed expert recommendations for primary (health risk assessment), secondary (prediction and prevention of metastatic disease in PCa) and tertiary (making palliative care to the management of chronic disease) care in the framework of predictive, preventive and personalised medicine.
Collapse
|