151
|
Shvartsman I, Dvir T, Harel-Adar T, Cohen S. Perfusion cell seeding and cultivation induce the assembly of thick and functional hepatocellular tissue-like construct. Tissue Eng Part A 2009; 15:751-60. [PMID: 18636945 DOI: 10.1089/ten.tea.2008.0024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Developing advanced technologies for encouraging the ex vivo assembly of functional hepatic tissue for implantation into the human body or for in vitro drug testing is one of the challenging tasks facing tissue engineers. In the present study, we utilized a perfusion bioreactor system equipped with a novel flow-distributing mesh for online cell seeding into macroporous alginate scaffolds and cultivation of multiple constructs of the C3A human hepatocyte cell line. Optimization of the medium flow rate (100 mL/min) and perfusion duration (12 h) yielded cell constructs with high cell seeding efficiency (98% of the input cells) and cell distribution throughout the entire scaffold. Further, we show that interstitial medium flow enabled uniform cell delivery into 35 constructs lined across the bioreactor cross section. Perfusion-cultivated cell constructs revealed much greater rates of cell proliferation, albumin-specific secretion, and gene expression of the phase I enzyme, CYP3A4, and phase II enzyme, UGT2B7, than did static-cultivated constructs. Most impressive was the 50-fold increase in CYP3A4 expression of the perfused cell constructs as compared to the level in static-cultivated cell constructs. We thus believe that the hepatic tissue constructs developed herein may be used in drug discovery programs for elucidating drug metabolism and toxicity profiles and for treating failing livers.
Collapse
Affiliation(s)
- Irena Shvartsman
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | | | | | | |
Collapse
|
152
|
Bok M, Li H, Yeo LY, Friend JR. The dynamics of surface acoustic wave-driven scaffold cell seeding. Biotechnol Bioeng 2009; 103:387-401. [PMID: 19160380 DOI: 10.1002/bit.22243] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Flow visualization using fluorescent microparticles and cell viability investigations are carried out to examine the mechanisms by which cells are seeded into scaffolds driven by surface acoustic waves. The former consists of observing both the external flow prior to the entry of the suspension into the scaffold and the internal flow within the scaffold pores. The latter involves micro-CT (computed tomography) scans of the particle distributions within the seeded scaffolds and visual and quantitative methods to examine the morphology and proliferation ability of the irradiated cells. The results of these investigations elucidate the mechanisms by which particles are seeded, and hence provide valuable information that form the basis for optimizing this recently discovered method for rapid, efficient, and uniform scaffold cell seeding. Yeast cells are observed to maintain their size and morphology as well as their proliferation ability over 14 days after they are irradiated. The mammalian primary osteoblast cells tested also show little difference in their viability when exposed to the surface acoustic wave irradiation compared to a control set. Together, these provide initial feasibility results that demonstrate the surface acoustic wave technology as a viable seeding method without risk of denaturing the cells.
Collapse
Affiliation(s)
- Melanie Bok
- Department of Mechanical and Aerospace Engineering, Micro/Nanophysics Research Laboratory, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
153
|
Zhao L, Chang J, Zhai W. Preparation and HL-7702 cell functionality of titania/chitosan composite scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:949-957. [PMID: 19034620 DOI: 10.1007/s10856-008-3645-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 11/03/2008] [Indexed: 05/27/2023]
Abstract
Titania/chitosan composite scaffolds were prepared through a freeze-drying technique. The composite scaffolds were highly porous with the average pore size of 120-300 microm, and the titania (TiO(2)) powders were uniformly dispersed on the surface of the pore walls. The compressive strength of the composite scaffolds was significantly improved compared to that of pure chitosan scaffolds. Composite scaffold with 0.3 of TiO(2)/chitosan weight ratio showed the maximum compressive strength of 159.7 +/- 21 kPa. Hepatic immortal cell line HL-7702 was used as seeding cells on the scaffolds, and after different culture periods, cell attachment and function was analyzed. HL-7702 cells attached on the pore walls of the scaffolds with the spheroid shape after 1 day of culture, but more cell aggregations formed within the TiO(2)/chitosan composite scaffolds as compared to pure chitosan scaffolds. Liver-specific functions, albumin secretion and urea synthesis were detected using a spectrometric method. The results showed that albumin secretion and urea synthesis rate of HL-7702 cells slightly decreased with the culture time, and there was no significant difference between composite scaffolds and pure chitosan scaffolds. In conclusion, the TiO(2)/chitosan composite scaffolds possessed an improved mechanical strength compared to pure chitosan scaffolds and supported the attachment and functional expression of hepatocyte, implying their potential application in liver tissue engineering.
Collapse
Affiliation(s)
- Li Zhao
- Shanghai Tissue Engineering Research and Development Center, Shanghai, China.
| | | | | |
Collapse
|
154
|
Bazou D. Biochemical properties of encapsulated high-density 3-D HepG2 aggregates formed in an ultrasound trap for application in hepatotoxicity studies. Cell Biol Toxicol 2009; 26:127-41. [DOI: 10.1007/s10565-009-9123-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 03/11/2009] [Indexed: 12/24/2022]
|
155
|
Machida-Sano I, Matsuda Y, Namiki H. In vitro
adhesion of human dermal fibroblasts on iron cross-linked alginate films. Biomed Mater 2009; 4:025008. [DOI: 10.1088/1748-6041/4/2/025008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
156
|
Feng ZQ, Chu X, Huang NP, Wang T, Wang Y, Shi X, Ding Y, Gu ZZ. The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. Biomaterials 2009; 30:2753-63. [PMID: 19232710 DOI: 10.1016/j.biomaterials.2009.01.053] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 01/28/2009] [Indexed: 11/18/2022]
Abstract
Liver tissue engineering requires a perfect extracellular matrix (ECM) for primary hepatocytes culture to maintain high level of liver-specific functions and desirable mechanical stability. The aim of this study was to develop a novel natural nanofibrous scaffold with surface-galactose ligands to enhance the bioactivity and mechanical stability of primary hepatocytes in culture. The nanofibrous scaffold was fabricated by electrospinning a natural material, galactosylated chitosan (GC), into nanofibers with an average diameter of approximately 160 nm. The GC nanofibrous scaffolds displayed slow degradation and suitable mechanical properties as an ECM for hepatocytes according to the evaluation of disintegration and Young's modulus testing. The results of morphology characterization, double-staining fluorescence assay and function detection showed that hepatocytes cultured on GC nanofibrous scaffold formed stably immobilized 3D flat aggregates and exhibited superior cell bioactivity with higher levels of liver-specific function maintenance in terms of albumin secretion, urea synthesis and cytochrome P-450 enzyme than 3D spheroid aggregates formed on GC films. These spheroid aggregates could be detached easily during culture period from the flat GC films. We suggest such GC-based nanofibrous scaffolds could be useful for various applications such as bioartificial liver-assist devices and tissue engineering for liver regeneration as primary hepatocytes culture substrates.
Collapse
Affiliation(s)
- Zhang-Qi Feng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Kazemnejad S, Allameh A, Soleimani M, Gharehbaghian A, Mohammadi Y, Amirizadeh N, Jazayery M. Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. J Gastroenterol Hepatol 2009; 24:278-87. [PMID: 18752558 DOI: 10.1111/j.1440-1746.2008.05530.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is significant interest in using nanofibers in tissue engineering from stem cells. The transdifferentiation of mesenchymal stem cells into the hepatic lineage in a nanofibrous structure has not been reported. In this study, a three dimensional nanofibrous scaffold is introduced for differentiation of human bone marrow derived mesenchymal stem cells (hBMSCs) into hepatocytes. METHODS A scaffold composed of Poly (epsilon-caprolactone), collagen and polyethersulfone was fabricated by the electrospinning technique. After characterization of isolated hBMSCs, the performance of the cells on the scaffold was evaluated by Scanning Electron Microscopy (SEM) and MTT assay. Cytological, molecular and biochemical markers were measured to confirm differentiation potential of hBMSCs into hepatocytes. RESULTS The isolated cells possessed the basic properties of mesenchymal stem cells (MSCs). Based on scanning electron microscope (SEM) analysis and MTT assay, it was shown that the cells adhere, penetrate and proliferate on the nanofibers. Cultured cells on the nanofibers differentiated into hepatocyte-like cells and expressed hepatocyte specific markers such as albumin, alpha-fetoprotein, cytokeratin-18, cytokeratin-19 and cytochrome P450 3A4 at mRNA levels. Appearance of a considerable number of albumin-positive cells cultivated on the scaffold (47 +/- 4%) as compared to the two-dimensional culture system (28 +/- 6%) indicates the supporting role of the scaffold. The efficiency of the cells to produce albumin, urea, transferrin, serum glutamic pyruvic transaminase and serum oxaloacetate aminotransferase in hepatocytes on the scaffold further attest to the functionality of the cells. CONCLUSION The data presented in this study show that the engineered nanofibrous scaffold is a conductive matrix which supports and enhances MSC development into functional hepatocyte-like cells.
Collapse
Affiliation(s)
- Somaieh Kazemnejad
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
158
|
Lin RZ, Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 2009; 3:1172-84. [PMID: 18566957 DOI: 10.1002/biot.200700228] [Citation(s) in RCA: 835] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many types of mammalian cells can aggregate and differentiate into 3-D multicellular spheroids when cultured in suspension or a nonadhesive environment. Compared to conventional monolayer cultures, multicellular spheroids resemble real tissues better in terms of structural and functional properties. Multicellular spheroids formed by transformed cells are widely used as avascular tumor models for metastasis and invasion research and for therapeutic screening. Many primary or progenitor cells on the other hand, show significantly enhanced viability and functional performance when grown as spheroids. Multicellular spheroids in this aspect are ideal building units for tissue reconstruction. Here we review the current understanding of multicellular spheroid formation mechanisms, their biomedical applications, and recent advances in spheroid culture, manipulation, and analysis techniques.
Collapse
Affiliation(s)
- Ruei-Zeng Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | | | | |
Collapse
|
159
|
Freeman I, Cohen S. The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials 2009; 30:2122-31. [PMID: 19152972 DOI: 10.1016/j.biomaterials.2008.12.057] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Accepted: 12/26/2008] [Indexed: 11/26/2022]
Abstract
This study describes the features of tissue-engineering scaffold capable of sequentially delivering three angiogenic factors. The scaffold consists of alginate-sulfate/alginate, wherein vascular endothelial growth factor (VEGF) platelet-derived growth factor-BB (PDGF-BB) and transforming growth factor-beta1 (TGF-beta1) are bound to alginate-sulfate with an affinity similar to that realized upon their binding to heparin. Factor release rate from the scaffold was correlated with the equilibrium binding constants of the factors to the matrix, thus enabling the sequential delivery of VEGF, PDGF-BB and TGF-beta1. In alginate scaffolds lacking alginate-sulfate, release of the adsorbed proteins was instantaneous. After subcutaneous implantation for 1 and 3 months in rats, the blood vessel density and percentage of mature vessels were 3-fold greater in the triple factor-bound scaffolds than in the factor-adsorbed or untreated scaffolds. Moreover, vascularization within the triple factor-bound scaffolds was superior to that found in scaffolds delivering only basic fibroblast growth factor. Application of this novel scaffold may be extended to the combined delivery of additional heparin-binding angiogenic factors or combinations of growth factors active in different tissue regeneration processes.
Collapse
Affiliation(s)
- Inbar Freeman
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | |
Collapse
|
160
|
|
161
|
Pampaloni F, Stelzer EHK. Three-Dimensional Cell Cultures in Toxicology. Biotechnol Genet Eng Rev 2009; 26:117-38. [DOI: 10.5661/bger-26-117] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
162
|
A Mathematical Model of Liver Cell Aggregation In Vitro. Bull Math Biol 2008; 71:906-30. [DOI: 10.1007/s11538-008-9387-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 12/03/2008] [Indexed: 12/11/2022]
|
163
|
Wen F, Chang S, Toh YC, Arooz T, Zhuo L, Teoh SH, Yu H. Development of dual-compartment perfusion bioreactor for serial coculture of hepatocytes and stellate cells in poly(lactic-co-glycolic acid)-collagen scaffolds. J Biomed Mater Res B Appl Biomater 2008; 87:154-62. [DOI: 10.1002/jbm.b.31086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
164
|
Abstract
The dried fruit from Luffa cylindrica (loofa sponge, LS), which represents a new chitinous source material, was used as a 3-D scaffold for the culture of rat hepatocytes. With the macroporous structure and large pore size (ca. 800 microm) of LS, cell loading to the scaffold should be carried out by dynamic seeding with continuous shaking throughout the seeding period. Hepatocytes attach well to the surface of loofa fibers after seeding and maintain their round shapes. The initial ammonia removal and urea-N synthesis rates of hepatocytes immobilized within LS slightly decreased with increasing cell densities, but their metabolic activities were comparable to or better than those in monolayer culture on tissue culture polystyrene control surfaces. Both urea-N synthesis and albumin secretion rates could be maintained up to 7 days for cells immobilized within LS and spheroid-like cell aggregates could be found after the second day.
Collapse
Affiliation(s)
- Jyh-Ping Chen
- Graduate Institute of Biochemical and Biomedical Engineering and Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 333, Taiwan, ROC.
| | | |
Collapse
|
165
|
Sakai S, Takagi Y, Yamada Y, Yamaguchi T, Kawakami K. Reinforcement of porous alginate scaffolds by incorporating electrospun fibres. Biomed Mater 2008; 3:034102. [DOI: 10.1088/1748-6041/3/3/034102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
166
|
Powell HM, Boyce ST. Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes. J Biomed Mater Res A 2008; 84:1078-86. [PMID: 17685398 DOI: 10.1002/jbm.a.31498] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Porous, nowoven fibrous gelatin scaffolds were prepared using electrospinning. Electrospun scaffolds with varying fiber diameter, interfiber distance, and porosity were fabricated by altering the concentration of the electrospinning solution. Solution concentration was a significant predictor of fiber diameter, interfiber distance, and porosity with higher solution concentration correlated with larger fiber diameters and interfiber distances. The potential of electrospun gelatin as a scaffolding material for dermal and epidermal tissue regeneration was also evaluated. Interfiber distances >5.5 microm allowed deeper penetration of human dermal fibroblasts into the scaffold, whereas cells in scaffolds with more densely packed fibers were able to infiltrate only into the upper regions. Scaffolds with interfiber distances </=10 microm exhibited well-stratified dermal and epidermal layers including a continuous basal keratinocyte layer. These scaffolds were shown to form a keratinized layer like in normal skin, which acts as a barrier to infection and fluid loss. Interfiber distances between 5 and 10 microm appear to yield the most favorable skin substitute in vitro, demonstrating high cell viability, optimal cell organization, and excellent barrier formation. These results demonstrate the feasibility of electrospun gelatin as a scaffold for dermal-epidermal composite skin substitutes.
Collapse
Affiliation(s)
- H M Powell
- Research Department, Shriners Burns Hospital, 3229 Burnet Ave., Cincinnati, Ohio 45229, USA.
| | | |
Collapse
|
167
|
Pokrywczynska M, Drewa T, Jundzill A, Lysik J. Alginate Is Not a Good Material for Growth of Rapidly Proliferating Cells. Transplant Proc 2008; 40:1664-7. [DOI: 10.1016/j.transproceed.2008.03.135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 12/27/2007] [Accepted: 03/06/2008] [Indexed: 02/01/2023]
|
168
|
Wang S, Nagrath D, Chen PC, Berthiaume F, Yarmush ML. Three-Dimensional Primary Hepatocyte Culture in Synthetic Self-Assembling Peptide Hydrogel. Tissue Eng Part A 2008; 14:227-36. [DOI: 10.1089/tea.2007.0143] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sihong Wang
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Burn Hospital, and Harvard Medical School, Boston, Massachusetts
- Present address: Biomedical Engineering Department, The City College of New York, CUNY, New York, New York
| | - Deepak Nagrath
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Burn Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Pohun C. Chen
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Burn Hospital, and Harvard Medical School, Boston, Massachusetts
| | - François Berthiaume
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Burn Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Martin L. Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Burn Hospital, and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
169
|
Khung Y, Barritt G, Voelcker N. Using continuous porous silicon gradients to study the influence of surface topography on the behaviour of neuroblastoma cells. Exp Cell Res 2008; 314:789-800. [DOI: 10.1016/j.yexcr.2007.10.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/18/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
|
170
|
Mano J, Silva G, Azevedo H, Malafaya P, Sousa R, Silva S, Boesel L, Oliveira J, Santos T, Marques A, Neves N, Reis R. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 2008; 4:999-1030. [PMID: 17412675 PMCID: PMC2396201 DOI: 10.1098/rsif.2007.0220] [Citation(s) in RCA: 647] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The fields of tissue engineering and regenerative medicine aim at promoting the regeneration of tissues or replacing failing or malfunctioning organs, by means of combining a scaffold/support material, adequate cells and bioactive molecules. Different materials have been proposed to be used as both three-dimensional porous scaffolds and hydrogel matrices for distinct tissue engineering strategies. Among them, polymers of natural origin are one of the most attractive options, mainly due to their similarities with the extracellular matrix (ECM), chemical versatility as well as typically good biological performance. In this review, the most studied and promising and recently proposed naturally derived polymers that have been suggested for tissue engineering applications are described. Different classes of such type of polymers and their blends with synthetic polymers are analysed, with special focus on polysaccharides and proteins, the systems that are more inspired by the ECM. The adaptation of conventional methods or non-conventional processing techniques for processing scaffolds from natural origin based polymers is reviewed. The use of particles, membranes and injectable systems from such kind of materials is also overviewed, especially what concerns the present status of the research that should lead towards their final application. Finally, the biological performance of tissue engineering constructs based on natural-based polymers is discussed, using several examples for different clinically relevant applications.
Collapse
Affiliation(s)
- J.F Mano
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - G.A Silva
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - H.S Azevedo
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - P.B Malafaya
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - R.A Sousa
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - S.S Silva
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - L.F Boesel
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - J.M Oliveira
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - T.C Santos
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - A.P Marques
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - N.M Neves
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
| | - R.L Reis
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar4710-057 Braga, Portugal
- IBB—Institute for Biotechnology and Bioengineering4710-057 Braga, Portugal
- Author for correspondence ()
| |
Collapse
|
171
|
Cheng N, Wauthier E, Reid L. Mature Human Hepatocytes fromEx VivoDifferentiation of Alginate-Encapsulated Hepatoblasts. Tissue Eng Part A 2008; 14:1-7. [DOI: 10.1089/ten.a.2007.0131] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Nancy Cheng
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, Chapel Hill, North Carolina
| | - Eliane Wauthier
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, Chapel Hill, North Carolina
| | - L.M. Reid
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, Chapel Hill, North Carolina
- Department of Biomedical Engineering, Program in Molecular Biology and Biotechnology, Lineberger Cancer Center and Center for Gastrointestinal and Biliary Disease Biology, University of North Carolina School of Medicine, Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
172
|
Zhu XH, Lee LY, Jackson JSH, Tong YW, Wang CH. Characterization of porous poly(D,L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Biotechnol Bioeng 2008; 100:998-1009. [DOI: 10.1002/bit.21824] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
173
|
Cheng N, Wauthier E, Reid L. Mature Human Hepatocytes fromEx VivoDifferentiation of Alginate-Encapsulated Hepatoblasts. ACTA ACUST UNITED AC 2008. [DOI: 10.1089/ten.2007.0131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
174
|
Dvir-Ginzberg M, Elkayam T, Cohen S. Induced differentiation and maturation of newborn liver cells into functional hepatic tissue in macroporous alginate scaffolds. FASEB J 2007; 22:1440-9. [PMID: 18070820 DOI: 10.1096/fj.07-9277com] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present work explores cell cultivation in macroporous alginate scaffolds as a means to reproduce hepatocyte terminal differentiation in vitro. Newborn rat liver cell isolates, consisting of proliferating hepatocytes and progenitors, were seeded at high cell density of 125 x 10(6)/cm(3) within the scaffold and then cultivated for 6 wk in chemically defined medium. Within 3 days, the alginate-seeded cells expressed genes for mature liver enzymes, such as tryptophan oxygenase, secreted a high level of albumin, and performed phase I drug metabolism. The cells formed compacted spheroids, establishing homotypic and heterotypic cell-to-cell interactions. By 6 wk, the spheroids developed into organoids, with an external mature hepatocyte layer covered by a laminin layer encasing inner vimentin-positive cells within a laminin-rich matrix also containing collagen. The hepatocytes presented a distinct apical surface between adjacent cells and a basolateral surface with microvilli facing extracellular matrix deposits. By contrast, viable adherent cells within collagen scaffolds presenting the identical porous structure did not express adult liver enzymes or secrete albumin after 6 wk. This study thus illustrates the benefits of cell cultivation in macroporous alginate scaffolds as an effective promoter for the maturation of newborn liver cells into functional hepatic tissue, capable of maintaining prolonged hepatocellular functions.
Collapse
Affiliation(s)
- Mona Dvir-Ginzberg
- Ben-Gurion University of the Negev, Department of Biotechnology Engineering, P.O. 653, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
175
|
Zhu XH, Gan SK, Wang CH, Tong YW. Proteins combination on PHBV microsphere scaffold to regulate Hep3B cells activity and functionality: A model of liver tissue engineering system. J Biomed Mater Res A 2007; 83:606-16. [PMID: 17503536 DOI: 10.1002/jbm.a.31257] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The synergistic effects of extracellular matrix (ECM) protein combinations on Hep3B cell proliferation and functions are studied herein. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microspheres were covalently conjugated with three types of proteins, collagen (type I), laminin, and fibronectin, using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide cross linkers. Successful conjugations of protein molecules were verified by the presence of nitrogen peaks in X-ray photoelectron spectroscopy. The densities of grafted proteins were quantified using Micro-BCA kit. A human hepatoma cell line, Hep3B, was then cultured in vitro on the ECM proteins-modified microspheres for 2 weeks. Cell proliferation was estimated using MTT method, and two hepatic functions, albumin secretion and P-450 activity, were evaluated using ELISA and EROD assays, respectively. The results indicated that combination of the three ECM proteins on microsphere surfaces has a significant effect on the proliferation of Hep3B cells, thus better mimicking the in vivo environment for liver tissue engineering.
Collapse
Affiliation(s)
- Xin Hao Zhu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077
| | | | | | | |
Collapse
|
176
|
Miyazawa M, Torii T, Toshimitsu Y, Okada K, Koyama I. Hepatocyte dynamics in a three-dimensional rotating bioreactor. J Gastroenterol Hepatol 2007; 22:1959-64. [PMID: 17914977 DOI: 10.1111/j.1440-1746.2006.04755.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS The use of an artificial liver system with extracorporeal circulation or a three-dimensional bioreactor perfused with liquid culture medium inevitably exposes hepatocytes to fluid mechanical stress (MS). The expression of liver-specific hepatocyte functions seems to be modulated by the magnitude of MS. Nonetheless, few studies have focused on the direct effects of MS on hepatocytes. We subjected hepatocytes to MS using an MS loading device and investigated the effects on the cytoskeleton and hepatocyte dynamics inside three-dimensional scaffolds by monitoring the changes in actin fiber, one of the components of the cytoskeleton. We also assessed the influence of MS on specific hepatocyte functions. METHODS We subjected hepatocytes to MS by a rotating radial flow bioreactor (RRFB) and examined the effects by comparing the MS-loaded culture cells with cells cultured under stationary conditions without MS loading. The hepatocytes (1 x 10(6)/cm(3)) were seeded on gauze without collagen coating and examined to determine morphological changes after 60 h incubation. Actin filaments in samples from the MS-loaded hepatocyte culture were stained by fluorescein isothiocyanate-labeled phalloidin. RESULTS Hepatocyte aggregation was observed in the MS-loaded culture, but not in the unloaded stationary culture. Better albumin products were observed in the MS-loaded group than in the stationary culture group at all measurement points. Actin filaments extended toward the scaffold after the start of MS loading incubation and polymerized around the hepatocytes. The hepatocyte aggregation eventually advanced to the formation of spheroids. CONCLUSION These results suggest that MS-induced polymerization of actin filaments stimulate hepatocyte aggregation and thereby improve hepatocyte-specific function.
Collapse
Affiliation(s)
- Mitsuo Miyazawa
- Department of Surgery, Saitama Medical School, Saitama, Japan.
| | | | | | | | | |
Collapse
|
177
|
Khew ST, Zhu XH, Tong YW. An Integrin-Specific Collagen-Mimetic Peptide Approach for Optimizing Hep3B Liver Cell Adhesion, Proliferation, and Cellular Functions. ACTA ACUST UNITED AC 2007; 13:2451-63. [PMID: 17596119 DOI: 10.1089/ten.2007.0063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study focused on mimicking collagen structurally and biologically using various peptide sequences toward realizing an artificial collagen-like biomaterial. Collagen-mimetic peptides (CMPs) incorporating integrin-specific glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) sequence from residues 502 to 507 of collagen alpha(1)(I) were used as a bioadhesive matrix and grafted onto poly(3-hydroxybutyrate-co3-hydroxyvalerate) microspheres to optimize cell adhesion, proliferation, and functions. Cell recognition of these biomolecules appeared to be conformation dependent, with the CMP1 of higher triple helix stability being preferred. Absence of the GFOGER hexapeptide in the CMP1' and CMP2' caused an adverse effect on the level of cell adhesion (<10%). The GFOGER-containing triple-helical CMPs effectively inhibited cell adhesion to collagen in a competition assay. The cell-adhesion activity of the CMP1 was approximately 50% of that of collagen. The cell spreading on the CMP1 was comparable with that observed on collagen. The presence of the CMP1 promoted cell attachment and spreading on the microspheres and extensive cell proliferation and bridging. Slower cell proliferation was observed on the blank microspheres. Live-dead assay showed that most cells are viable after 10-day culture. The presence of CMP1 on the microspheres maintained the albumin secretion and P-450 activity levels of the liver cells for up to 14 days. Our results established the potential of CMP1 to create a collagen-like microenvironment for optimizing cellular responses for liver tissue engineering.
Collapse
Affiliation(s)
- Shih Tak Khew
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | | | | |
Collapse
|
178
|
Li H, Friend JR, Yeo LY. A scaffold cell seeding method driven by surface acoustic waves. Biomaterials 2007; 28:4098-104. [PMID: 17588654 DOI: 10.1016/j.biomaterials.2007.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
Surface acoustic waves (SAW) have been employed to drive a particle suspension into a porous scaffold as a means for cell seeding. Straight, simple interdigital electrode structures were fabricated on lithium niobate to permit the generation of Rayleigh SAW radiation. Fluorescent microscopy was used to investigate the seeding process; the SAW-driven seeding process occurred in approximately 10s, much quicker than if the scaffold were to be seeded by gravity-driven diffusional processes alone (>30min). Analysis of high-speed micrographic images demonstrated that the SAW method could also drive particles deeper into the scaffold, thereby significantly improving the uniformity of the particle distribution. The proposed SAW technique therefore offers a promising technology to dramatically improve the speed and uniformity of cell seeding in scaffolds, which might contribute to rapid and uniform tissue regeneration.
Collapse
Affiliation(s)
- Haiyan Li
- Micro/Nanophysics Research Laboratory, Monash University, Clayton, VIC 3800, Australia
| | | | | |
Collapse
|
179
|
Murugan R, Ramakrishna S. Design Strategies of Tissue Engineering Scaffolds with Controlled Fiber Orientation. ACTA ACUST UNITED AC 2007; 13:1845-66. [PMID: 17518727 DOI: 10.1089/ten.2006.0078] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tissue engineering is an emerging area of applied research with a goal of repairing or regenerating the functions of damaged tissue that fails to heal spontaneously by using cells and synthetic functional components called scaffolds. Scaffolds made of nanofibers (herein called "nano-fibrous scaffolds") play a key role in the success of tissue engineering by providing a structural support for the cells to accommodate and guiding their growth in the three-dimensional space into a specific tissue. The orientation of these fibers is considered as one of the important features of a perfect tissue scaffold, because the fiber orientation greatly influences cell growth and related functions. Therefore, engineering scaffolds with a control over fiber orientation is essential and a prerequisite for controlling cell orientation and tissue growth. Recent advances in electrospinning have made it possible to create nano-featured scaffolds with controlled fiber orientation. Electrospinning is a straightforward, cost-effective, and versatile method, which is recently applied in engineering well-defined nano-fibrous scaffolds that hold promise in serving as a synthetic extra-cellular matrix (ECM). This article reviews the current trends in electrospinning nano-fibrous scaffolds with fiber orientation. A detailed mechanism involved in the spinning process is discussed, followed by experimental examples that show how the fiber orientation influences cellular growth behavior. This review is expected to be useful for readers to gain knowledge on the state-of-the-art of scaffold engineering by electrospinning.
Collapse
Affiliation(s)
- Ramalingam Murugan
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA.
| | | |
Collapse
|
180
|
Jiankang H, Dichen L, Yaxiong L, Bo Y, Bingheng L, Qin L. Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures. POLYMER 2007. [DOI: 10.1016/j.polymer.2007.05.048] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
181
|
Zhu XH, Wang CH, Tong YW. Growing tissue-like constructs with Hep3B/HepG2 liver cells on PHBV microspheres of different sizes. J Biomed Mater Res B Appl Biomater 2007; 82:7-16. [PMID: 17034015 DOI: 10.1002/jbm.b.30698] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study, an oil-in-water emulsion solvent evaporation technique was used to fabricate poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV, 8% PHV), microspheres as scaffold, to guide liver cell growth. Human hepatoma cell lines, HepG2 and Hep3B, were cultured in vitro on both the microspheres and polymer films. SEM and optical microscope images showed that multilayer cells were formed among the microspheres to bridge them together and developed into cell-construct aggregates after 1 week of culture. MTT results showed that the cell proliferation on the microspheres was more than two times higher than that on the films after 12 days of culture. The cells seeded on microspheres secreted albumin 2-4 times more than that on the positive control after 1 week of culture, which indicated that this hepatic function was greatly improved by the aggregation of cells on microspheres. Although HepG2 failed to express P-450 activity, this hepatic function was preserved when Hep3B cultured on microspheres. All the results indicated that PHBV microspheres are appropriate scaffolds for liver tissue engineering.
Collapse
Affiliation(s)
- Xin Hao Zhu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119260
| | | | | |
Collapse
|
182
|
Kim MS, Yeon JH, Park JK. A microfluidic platform for 3-dimensional cell culture and cell-based assays. Biomed Microdevices 2007; 9:25-34. [PMID: 17103048 DOI: 10.1007/s10544-006-9016-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper reports a novel microfluidic platform introducing peptide hydrogel to make biocompatible microenvironment as well as realizing in situ cell-based assays. Collagen composite, OPLA and Puramatrix scaffolds are compared to select good environment for human hepatocellular carcinoma cells (HepG2) by albumin measurement. The selected biocompatible self-assembling peptide hydrogel, Puramatrix, is hydrodynamically focused in the middle of main channel of a microfluidic device, and at the same time the cells are 3-dimensionally immobilized and encapsulated without any additional surface treatment. HepG2 cells have been 3-dimensionally cultured in a poly(dimethylsiloxane) (PDMS) microfluidic device for 4 days. The cells cultured in micro peptide scaffold are compared with those cultured by conventional petri dish in morphology and the rate of albumin secretion. By injection of different reagents into either side of the peptide scaffold, the microfluidic device also forms a linear concentration gradient profile across the peptide scaffold due to molecular diffusion. Based on this characteristic, toxicity tests are performed by Triton X-100. As the higher toxicant concentration gradient forms, the wider dead zone of cells in the peptide scaffold represents. This microfluidic platform facilitates in vivo-like 3-dimensional microenvironment, and have a potential for the applications of reliable cell-based screening and assays including cytotoxicity test, real-time cell viability monitoring, and continuous dose-response assay.
Collapse
Affiliation(s)
- Minseok S Kim
- Department of BioSystems, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | |
Collapse
|
183
|
Navarro-Alvarez N, Soto-Gutierrez A, Rivas-Carrillo JD, Chen Y, Yamamoto T, Yuasa T, Misawa H, Takei J, Tanaka N, Kobayashi N. Self-assembling peptide nanofiber as a novel culture system for isolated porcine hepatocytes. Cell Transplant 2007; 15:921-7. [PMID: 17299997 DOI: 10.3727/000000006783981387] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Freshly isolated porcine hepatocytes are a very attractive cell source in the cell-based therapies to treat liver failure because of unlimited availability. However, due to the loss of hepatocyte functions in vitro, there is a need to develop a functional culture system to keep the cells metabolically active. Here we compared the effect of a self-assembling peptide nanofiber (SAPNF) as an extracellular matrix (ECM) with collagen type I on hepatocyte metabolic and secretion activities following hepatocyte isolation. Isolated porcine hepatocytes were cultured in SAPNF and collagen type I. Morphological assessment at different time points was performed by using SEM and phase contrast microscope. Metabolic and secretion activities were comparatively performed in the groups, by means of ammonia, lidocaine, and diazepam as well as albumin. Hepatocytes cultured on SAPNF revealed a three-dimensional spheroidal formation, thus maintaining cell differentiation status during 2 weeks of culture. On the other hand, hepatocytes in collagen revealed a spread shape, and by day 14 no hepatocyte-like cells were observed, but cells with long shape were present, thus revealing a degree of dedifferentiation in collagen culture. Hepatocytes in SAPNF were capable of drug-metabolizing activities and albumin secretion in higher ratio than those cultured on collagen. The present work clearly demonstrates the usefulness of SAPNF for maintaining differentiated functions of porcine hepatocytes in culture.
Collapse
Affiliation(s)
- Nalu Navarro-Alvarez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Ko HF, Sfeir C, Kumta PN. In situ synthesis and characterization of porous polymer-ceramic composites as scaffolds for gene delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2007. [DOI: 10.1016/j.msec.2006.05.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
185
|
Abstract
Drug metabolism information is a necessary component of drug discovery and development. The key issues in drug metabolism include identifying: the enzyme(s) involved, the site(s) of metabolism, the resulting metabolite(s), and the rate of metabolism. Methods for predicting human drug metabolism from in vitro and computational methodologies and determining relationships between the structure and metabolic activity of molecules are also critically important for understanding potential drug interactions and toxicity. There are numerous experimental and computational approaches that have been developed in order to predict human metabolism which have their own limitations. It is apparent that few of the computational tools for metabolism prediction alone provide the major integrated functions needed to assist in drug discovery. Similarly the different in vitro methods for human drug metabolism themselves have implicit limitations. The utilization of these methods for pharmaceutical and other applications as well as their integration is discussed as it is likely that hybrid methods will provide the most success.
Collapse
Affiliation(s)
- Larry J Jolivette
- Preclinical Drug Discovery, Cardiovascular and Urogenital Centre of Excellence in Drug Discovery, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | | |
Collapse
|
186
|
Maguire T, Davidovich AE, Wallenstein EJ, Novik E, Sharma N, Pedersen H, Androulakis IP, Schloss R, Yarmush M. Control of hepatic differentiation via cellular aggregation in an alginate microenvironment. Biotechnol Bioeng 2007; 98:631-44. [PMID: 17390383 DOI: 10.1002/bit.21435] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Integral to the development of embryonic stem cell therapeutic strategies for hepatic disorders is the identification and establishment of a controllable hepatic differentiation strategy. In order to address this issue we have established an alginate microencapsulation approach which provides a means to modulate the differentiation process through changes in key encapsulation parameters. We report that a wide array of hepatocyte specific markers is expressed by cells differentiated during a 23-day period within an alginate bead microenvironment. These include urea and albumin secretion, glycogen storage, and cytochrome P450 transcription factor activity. In addition, we demonstrate that cellular aggregation is integral to the control of differentiation within the bead environment and this process is mediated by the E-cadherin protein. The temporal expression of surface E-cadherin and hepatocyte functional expression occur concomitantly and both cellular aggregation and albumin synthesis are blocked in the presence of anti E-cadherin immunoglobulin. Furthermore, by establishing a compartmental model of differentiation, which incorporates this aggregation phenomenon, we can optimize key encapsulation parameters.
Collapse
Affiliation(s)
- Tim Maguire
- Department of Biomedical Engineering, Rutgers University, 617 Bowser Road, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Malpique R, Katsen-Globa A, Carrondo MJT, Zimmermann H, Alves PM. Cryopreservation in micro-volumes: Impact upon caco-2 colon adenocarcinoma cell proliferation and differentiation. Biotechnol Bioeng 2007; 98:155-66. [PMID: 17304564 DOI: 10.1002/bit.21382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent advances in cell-based therapies require new approaches for cell cryopreservation, capable of dealing with large number of samples and providing specific conditions for each cell type. Reduction of sample volume from the commonly used 1 mL to 25 microL in 30-well micro-cryosubstrates improves cryopreservation by allowing automation, data handling and access to individual wells without thawing the whole cryosubstrate. This system was evaluated for the storage of Caco-2 colon adenocarcinoma cells, which differentiate spontaneously after long-term culture. The impact of the cryosample small volume upon post-thawing membrane integrity of the cells and their capacity to proliferate and differentiate was studied. Two different cryoprotectants commonly employed, dimethyl sulfoxide (Me(2)SO) and glycerol, were evaluated as well as the possibility of decreasing their concentration from the 10% concentration, usually used, down to 3% (v/v). The process automation by pipette robotic addition of the cryoprotectant to the micro-cryosubstrates was also evaluated. The micro-cryosubstrates have proven to be at least as efficient as typical 1 mL cryovials for cryopreservation of Caco-2 cells using either Me(2)SO or glycerol. Compared to the manual process, the automatic addition of glycerol to the micro-cryosubstrates allowed higher cell viabilities after thawing while with Me(2)SO no significant changes were observed. Me(2)SO has shown to be more effective than glycerol in maintaining high post-thaw cell membrane integrity, either in micro-cryosubstrates or cryovials, for any of the concentrations tested. The ability of Me(2)SO in maintaining high cell membrane integrity post-thawing was confirmed by long-term (up to 22 days) proliferation and differentiation studies performed with cells cultured immediately after thawing.
Collapse
|
188
|
Hamel F, Grondin M, Denizeau F, Averill-Bates DA, Sarhan F. Wheat extracts as an efficient cryoprotective agent for primary cultures of rat hepatocytes. Biotechnol Bioeng 2006; 95:661-70. [PMID: 16927246 DOI: 10.1002/bit.20953] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hepatocytes are an important physiological model for evaluation of metabolic and biological effects of xenobiotics. They do not proliferate in culture and are extremely sensitive to damage during freezing and thawing, even after the addition of classical cryoprotectants. Thus improved cryopreservation techniques are needed to reduce cell injury and functional impairment. Here, we describe a new and efficient cryopreservation method, which permits long-term storage and recovery of large quantities of healthy cells that maintain high hepatospecific functions. In culture, the morphology of hepatocytes cryopreserved with wheat protein extracts (WPE) was similar to that of fresh cells. Furthermore, hepatospecific functions such as albumin secretion and biotransformation of ammonium to urea were well maintained during 4 days in culture. Inductions of CYP1A1 and CYP2B in hepatocytes cryopreserved with WPEs were similar to those in fresh hepatocytes. These findings clearly show that WPEs are an excellent cryopreservant for primary hepatocytes. The extract was also found to cryopreserve other human and animal cell types such as lung carcinoma, colorectal adenocarcinoma, Chinese hamster ovary transfected with TGF-b1 cDNA, cervical cancer taken from Henrietta Lacks, intestinal epithelium, and T cell leukemia. WPEs have potential as a universal cryopreservant agent of mammalian cells. It is an economic, efficient and non-toxic agent.
Collapse
Affiliation(s)
- Francine Hamel
- Département des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | | | | | | | | |
Collapse
|
189
|
Barbetta A, Massimi M, Conti Devirgiliis L, Dentini M. Enzymatic Cross-Linking versus Radical Polymerization in the Preparation of Gelatin PolyHIPEs and Their Performance as Scaffolds in the Culture of Hepatocytes. Biomacromolecules 2006; 7:3059-68. [PMID: 17096532 DOI: 10.1021/bm060533l] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly open porous biodegradable scaffolds, based on gelatin A3, were fabricated with the aim of using them for tissue-engineering applications. The fabrication process is based on an emulsion-templating technique. In the preparation of gelatin scaffolds two different cross-linking procedures were adopted: (I) radical polymerization of the methacrylate functionalities, previously introduced onto the gelatin chains and (II) formation of isopeptide bridges among the gelatin chains promoted by the enzyme microbial transglutaminase. The method of cross-linking exerts a pronounced effect on the morphology of the porous biomaterials: radical polymerization of methacrylated gelatin allowed the production of scaffolds with a better defined porous structure, while the enzymatically cross-linked scaffolds were characterized by a thinner skeletal framework. A suitable sample of each kind of the differently cross-linked porous biomaterials was tested for the culture of hepatocytes. The scaffold obtained by radical polymerization possessed a morphology characterized by relatively large voids and interconnects, and as a consequence, it was more suitable for hepatocytes colonization. On the other hand, the enzymatically cross-linked scaffold resulted in less cytotoxicity and the cultured hepatocytes expressed a better differentiated phenotype, as evidenced by a greater expression and more correct localization of key adhesion proteins.
Collapse
Affiliation(s)
- Andrea Barbetta
- Department of Chemistry, University of Rome La Sapienza, P.le A. Moro 5, 00185 Rome, Italy.
| | | | | | | |
Collapse
|
190
|
Chen JP, Lin CT. Dynamic seeding and perfusion culture of hepatocytes with galactosylated vegetable sponge in packed-bed bioreactor. J Biosci Bioeng 2006; 102:41-5. [PMID: 16952835 DOI: 10.1263/jbb.102.41] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 04/06/2006] [Indexed: 01/19/2023]
Abstract
A galactose moiety was introduced into the fiber surface of a vegetable sponge by the covalent binding of lactobionic acid. The galactosylated sponge was used as scaffold for the culture of rat hepatocytes in a packed-bed bioreactor. Hepatocytes could be dynamically seeded into and uniformly distributed throughout the scaffold, and the immobilized cells maintained high albumin and urea production rates during long-term perfusion culture. The hepatocytes showed an increasing albumin production rate from 49 to 109 microg/10(6) cells/d over the 7-d culture.
Collapse
Affiliation(s)
- Jyh-Ping Chen
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Kwei-San, Taoyuan 333, Taiwan, ROC.
| | | |
Collapse
|
191
|
Török E, Vogel C, Lütgehetmann M, Ma PX, Dandri M, Petersen J, Burda MR, Siebert K, Düllmann J, Rogiers X, Pollok JM. Morphological and functional analysis of rat hepatocyte spheroids generated on poly(L-lactic acid) polymer in a pulsatile flow bioreactor. ACTA ACUST UNITED AC 2006; 12:1881-90. [PMID: 16889518 DOI: 10.1089/ten.2006.12.1881] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Liver neo-tissue suitable for transplantation has not been established. Primary rat hepatocytes were cultured on three-dimensional biodegradable polymer matrices in a pulsatile flow bioreactor with the intention of inducing tissue formation and improving cell survival. Functional and structural analysis of the hepatocytes forming liver neo-tissue was performed. Biodegradable poly(L-lactic acid) (PLLA) polymer discs were seeded with 4 x 10(6) primary rat hepatocytes each, were exposed to a pulsatile medium flow of 24 mL/min for 1, 2, 4, or 6 days and were investigated for monoethylglycinexylidine (MEGX) formation, ammonia detoxification, Cytokeratin 18 (CK18) expression, and preserved glycogen storage. Fine structural details were obtained using scanning and transmission electron microscopy. Spheroids of viable hepatocytes were formed. MEGX-specific production was maintained and ammonia removal capacity remained high during the entire flow-culture period of 6 days. CK18 distribution was normal. Periodic-acid- Schiff reaction demonstrated homogenous glycogen storage. The hepatocytes reassembled to form intercellular junctions and bile canaliculi. Functional and morphological analysis of rat hepatocytes forming spheroids in a pulsatile flow bioreactor indicated preserved and intact hepatocyte morphology and specific function. Pulsatile flow culture on PLLA scaffolds is a promising new method of hepatic tissue engineering leading to liver neo-tissue formation.
Collapse
Affiliation(s)
- Eva Török
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Chandrasekaran P, Seagle C, Rice L, Macdonald J, Gerber DA. Functional analysis of encapsulated hepatic progenitor cells. ACTA ACUST UNITED AC 2006; 12:2001-8. [PMID: 16889528 DOI: 10.1089/ten.2006.12.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A major challenge in developing therapies based on progenitor or stem cell populations (from sources other than bone marrow) involves developing a mode to deliver these cells in a manner that optimizes their viability, engraftment, proliferation, and differentiation. We have previously isolated a hepatic progenitor cell (HPC) population from adult liver tissue that differentiates into hepatic and biliary cell subtypes. We postulated that, using electrostatic encapsulation, we could reproducibly generate an ex vivo environment for the HPCs. We also theorized that this approach would foster cellular viability and function of the progenitor cell population. Using this encapsulation process, we consistently produced beads with uniform diameters between 200 and 700 microm. In vitro analysis of the encapsulated beads demonstrated extended periods of viability and function based on albumin production, urea metabolism, and glycogen storage. In conclusion, HPC encapsulation fosters the subsequent differentiation of HPCs into functional cells while maintaining their viability in long-term culture. These results demonstrate the efficacy of this method using somatic-derived progenitor cell populations and pave the way for clinical therapies.
Collapse
Affiliation(s)
- Prakash Chandrasekaran
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
193
|
Elkayam T, Amitay-Shaprut S, Dvir-Ginzberg M, Harel T, Cohen S. Enhancing the drug metabolism activities of C3A--a human hepatocyte cell line--by tissue engineering within alginate scaffolds. ACTA ACUST UNITED AC 2006; 12:1357-68. [PMID: 16771648 DOI: 10.1089/ten.2006.12.1357] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, we investigated the applicability of C3A--a human hepatocyte cell line--as a predicting tool for drug metabolism by applying tissue-engineering methods. Cultivation of C3A cells within alginate scaffolds induced the formation of spheroids with enhanced drug metabolism activities compared to that of two-dimensional (2-D) monolayer cultures. The spheroid formation process was demonstrated via histology, immunohistochemistry, and transmission electron microscope (TEM) analyses. The C3A spheroids displayed multilayer cell morphology, characterized by a large number of tight junctions, polar cells, and bile canaliculi, similar to spheroids of primary hepatocytes. Spheroid formation was accompanied by a reduction in P-glycoprotein (Pgp) gene expression and C3A cell proliferation was limited mainly to cells on the spheroid outskirt. The 3-D constructs maintained a nearly constant cell number according to MTT assay. Drug metabolism by the two most important cytochrome p-450 (CYP) enzymes in human liver, CYP1A2 and CYP3A4, was tested using preferred drugs. With CYP1A2, 3-fold enhancement in activity per cell was seen for converting ethoxyresorufin to resorufin compared to C3A cell monolayers. The spheroids responded to the inducer beta-naphthoflavone and to the inhibitor furafylline of CYP1A2. Enhanced metabolizing activity of CYP3A4, measured by the amount 6beta-testosterone formed from testosterone, and that of the phase II enzyme glucuronosyltransferases (UGT) further indicated that the tissue-engineered C3A spheroids may provide an efficient experimental tool for predicting drug activities by these CYPs. Moreover, the maintenance of constant cell number, as well as the elevated hepatocellular functions and drug metabolism activities, suggest that the tissue-engineered C3A may be applicable in replacement therapies.
Collapse
Affiliation(s)
- Tsiona Elkayam
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
194
|
Ong SY, Dai H, Leong KW. Inducing hepatic differentiation of human mesenchymal stem cells in pellet culture. Biomaterials 2006; 27:4087-97. [PMID: 16616366 DOI: 10.1016/j.biomaterials.2006.03.022] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 03/15/2006] [Indexed: 11/25/2022]
Abstract
Extensive cell-cell or cell-matrix interaction in three-dimensional (3D) culture is important for the maintenance of adult hepatocyte function and the maturation of hepatic progenitors. However, although there is significant interest in inducing the transdifferentiation of adult stem cells into the hepatic lineage, very few studies have been conducted in a 3D culture configuration. The aim of this study is to investigate the differentiation of mesenchymal stem cells (MSC) into hepatocytes in a pellet configuration, with or without the presence of small intestinal submucosa (SIS). After 4 weeks of differentiation with growth factors bFGF, HGF, and OsM, we obtained hepatocyte-like cells that expressed a subset of hepatic genes, secreted albumin and urea, stored glycogen, and showed inducible CYP3A4 mRNA levels. When these cells were implanted into livers of hepatectomized rats, they secreted human albumin into the bloodstream. The hepatic differentiation of MSC was faster in cell pellets without SIS. The plausible explanations for this finding may be related to the mass transport issues of the two different pellets and the role of cell-cell contact over cell-matrix interactions. The findings of this study should help in the design of optimal culture configurations for efficient hepatic differentiation of adult stem cells.
Collapse
Affiliation(s)
- Shin-Yeu Ong
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
195
|
Liu H, Yan Y, Wang X, Cheng J, Lin F, Xiong Z, Wu R. Construct hepatic analog by cell-matrix controlled assembly technology. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-006-2045-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
196
|
Semler EJ, Ranucci CS, Moghe PV. Tissue assembly guided via substrate biophysics: applications to hepatocellular engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 102:1-46. [PMID: 17089785 DOI: 10.1007/10_012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biophysical nature of the cellular microenvironment, in combination with its biochemical properties, can critically modulate the outcome of three-dimensional (3-D) multicellular morphogenesis. This phenomenon is particularly relevant for the design of materials suitable for supporting hepatocellular cultures, where cellular morphology is known to be intimately linked to the functional output of the cells. This review summarizes recent work describing biophysical regulation of hepatocellular morphogenesis and function and focuses on the manner by which biochemical cues can concomitantly augment this responsiveness. In particular, two distinct design parameters of the substrate biophysics are examined--microtopography and mechanical compliance. Substrate microtopography, introduced in the form of increasing pore size on collagen sponges and poly(glycolic acid) (PGLA) foams, was demonstrated to restrict the evolution of cellular morphogenesis to two dimensions (subcellular and cellular void sizes) or induce 3-D cellular assembly (supercellular void size). These patterns of morphogenesis were additionally governed by the biochemical nature of the substrate and were highly correlated to resultant levels of cell function. Substrate mechanical compliance, introduced via increased chemical crosslinking of the basement membrane, Matrigel, and polyacrylamide gel substrates, also was shown to be able to induce active two-dimensional (2-D, rigid substrates) or 3-D (malleable substrates) cellular reorganization. The extent of morphogenesis and the ensuing levels of cell function were highly dependent on the biochemical nature of the cellular microenvironment, including the presence of increasing extracellular matrix (ECM) ligand and growth-factor concentrations. Collectively, these studies highlight not only the ability of substrate biophysics to control hepatocellular morphogenesis but also the ability of biochemical cues to further enhance these effects. In particular, results of these studies reveal novel means by which hepatocellular morphogenesis and assembly can be rationally manipulated leading to the strategic control of the expression of liver-specific functions for hepatic tissue-engineering applications.
Collapse
Affiliation(s)
- Eric J Semler
- Department of Biomedical Engineering, C230 Engineering, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
197
|
High-density culture of hepatocytes in a packed-bed bioreactor using a fibrous scaffold from plant. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
198
|
Kedem A, Perets A, Gamlieli-Bonshtein I, Dvir-Ginzberg M, Mizrahi S, Cohen S. Vascular endothelial growth factor-releasing scaffolds enhance vascularization and engraftment of hepatocytes transplanted on liver lobes. ACTA ACUST UNITED AC 2006; 11:715-22. [PMID: 15998213 DOI: 10.1089/ten.2005.11.715] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hepatocyte transplantation within porous scaffolds (HT) is being explored as a treatment strategy for end-stage liver diseases and enzyme deficiencies. One of the main issues in this approach is the limited viability of transplanted cells because vascularization of the scaffold site is either too slow or insufficient. We now address this by enhancing scaffold vascularization before cell transplantation via sustained delivery of vascular endothelial growth factor (VEGF), and by examining the liver lobes as a platform for transplanting donor hepatocytes in close proximity to the host liver. The vascularization kinetics of unseeded VEGF-releasing scaffolds on rat liver lobes were evaluated by analyzing the microvascular density and tissue ingrowth in implants harvested on days 3, 7, and 14 postimplantation. Capillary density was greater at all times in VEGF-releasing scaffolds than in the control scaffold without VEGF supplementation; on day 14, it was 220 +/- 33 versus 139 +/- 23 capillaries/mm2 (p < 0.05). Furthermore, 35% of the newly formed capillaries in VEGF-releasing scaffolds were larger than 16 microm in diameter, whereas in control scaffolds only 10% exceeded this size. VEGF had no effect on tissue ingrowth into the scaffolds. HT onto the implanted VEGF-releasing or control scaffolds was performed after 1 week of prevascularization on the liver lobe in Lewis rats. Fifty implants were harvested on days 1, 3, 7, and 12 and the area of viable hepatocytes was evaluated. The enhanced vascularization improved hepatocyte engraftment; 12 days after HT, the intact hepatocyte area (136,910 microm2/cross-section) in VEGF-releasing scaffolds was 4.6 higher than in the control group. This study shows that sustained local delivery of VEGF induced vascularization of porous scaffolds implanted on liver lobes and improved hepatocyte engraftment.
Collapse
Affiliation(s)
- Alon Kedem
- Department of Medical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | |
Collapse
|
199
|
Seo SJ, Choi YJ, Akaike T, Higuchi A, Cho CS. Alginate/galactosylated chitosan/heparin scaffold as a new synthetic extracellular matrix for hepatocytes. ACTA ACUST UNITED AC 2006; 12:33-44. [PMID: 16499440 DOI: 10.1089/ten.2006.12.33] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Formation of multicellular hepatocyte spheroids in the three-dimensional culture is a potential approach for enhancing liver-specific functions in bioartificial liver (BAL) devices. In this study, as a synthetic extracellular matrix (ECM) for hepatocytes, a highly porous hydrogel (sponge-like) scaffold, 150-200 microm pore size in diameter, was fabricated with alginate (AL), galactosylated chitosan (GC), and heparin through electrostatic interaction. We attempt to select the best condition of AL/GC/heparin sponges for coculture with NIH3T3, as well as compare the liver-specific functions with monoculture. Cell adhesion to GC based on AL film was significantly increased with increasing GC concentration, but not to chitosan regardless of its concentration. The optimal concentration of GC and heparin in AL/GC/heparin sponges to perform the best liver-specific function was 1 and 6 wt% to AL contents, respectively, where albumin secretion were maintained with maximal rates. The mechanical properties in tensile strength of three types of sponges were very slightly different from one another. Cell viabilities performed on AL, AL/GC, and AL/GC/heparin sponges were 68.5, 83.3, and 90.4 % of control, respectively, after 15 days of incubation. Hepatocyte spheroids were more rapidly formed in the AL/GC and AL/GC/heparin sponges, with diameter enlarged to about 100 microm, than in AL sponges. Connexin32 and E-cadherin genes correlated with cell-to-cell adhesion were expressed in hepatocytes within AL/GC and AL/GC/heparin sponges at 36 h after incubation, but not in AL sponges. Treatment of a gap junctional intercellular communication (GJIC) inhibitor, 18beta-glycyrrhetinic acid, indicates that cell aggregation without GJIC does not perform the liver-specific functions for long periods. In the presence of HGF, the level of albumin secretion in AL/GC/heparin sponges was markedly elevated compared to that in AL/GC sponges. Coculture of hepatocytes in AL/GC/heparin sponges with NIH3T3 in a transwell insert resulted in significant increase of liver-specific functions, such as improved albumin secretion rates, ammonia elimination rates, and ethoxyresorufin-O-deethylase activity by cytochrome P4501A1 compared to those in hepatocyte monoculture. The results suggest that hepatocytes as stable spheroids enhance liver-specific functions in AL/GC/heparin sponges, providing a new synthetic ECM to design BAL devices.
Collapse
Affiliation(s)
- Seog-Jin Seo
- School of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
200
|
Chen S, Nandi S, Winter HH, Gido SP. Oriented Lamellar Structure and Pore Formation Mechanism in CSX-Processed Porous High-Density Polyethylene. Macromolecules 2006. [DOI: 10.1021/ma051093d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shujun Chen
- Department of Polymer Science and Engineering and Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Souvik Nandi
- Department of Polymer Science and Engineering and Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - H. Henning Winter
- Department of Polymer Science and Engineering and Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Samuel P. Gido
- Department of Polymer Science and Engineering and Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|