151
|
Boman BM, Fields JZ. An APC:WNT Counter-Current-Like Mechanism Regulates Cell Division Along the Human Colonic Crypt Axis: A Mechanism That Explains How APC Mutations Induce Proliferative Abnormalities That Drive Colon Cancer Development. Front Oncol 2013; 3:244. [PMID: 24224156 PMCID: PMC3819610 DOI: 10.3389/fonc.2013.00244] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/03/2013] [Indexed: 12/17/2022] Open
Abstract
APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT) that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs) at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside). WNT signaling, in contrast, is high at the bottom (where SCs reside) and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g., survivin) are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric). APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly proliferating cells) during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes.
Collapse
Affiliation(s)
- Bruce M. Boman
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, University of Delaware, Newark, DE, USA
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
152
|
Abstract
The process of crypt formation and the roles of Wnt and cell-cell adhesion signaling in cryptogenesis are not well described; but are important to the understanding of both normal and cancer colon crypt biology. A quantitative 3D-microscopy and image analysis technique is used to study the frequency, morphology and molecular topography associated with crypt formation. Measurements along the colon reveal the details of crypt formation and some key underlying biochemical signals regulating normal colon biology. Our measurements revealed an asymmetrical crypt budding process, contrary to the previously reported symmetrical fission of crypts. 3D immunofluorescence analyses reveals heterogeneity in the subcellular distribution of E-cadherin and β-catenin in distinct crypt populations. This heterogeneity was also found in asymmetrical budding crypts. Singular crypt formation (i.e. no multiple new crypts forming from one parent crypt) were observed in crypts isolated from the normal colon mucosa, suggestive of a singular constraint mechanism to prevent aberrant crypt production. The technique presented improves our understanding of cryptogenesis and suggests that excess colon crypt formation occurs when Wnt signaling is perturbed (e.g. by truncation of adenomatous polyposis coli, APC protein) in most colon cancers.
Collapse
|
153
|
Fatehullah A, Appleton PL, Näthke IS. Cell and tissue polarity in the intestinal tract during tumourigenesis: cells still know the right way up, but tissue organization is lost. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130014. [PMID: 24062584 PMCID: PMC3785964 DOI: 10.1098/rstb.2013.0014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell and tissue polarity are tightly coupled and are vital for normal tissue homeostasis. Changes in cellular and tissue organization are common to even early stages of disease, particularly cancer. The digestive tract is the site of the second most common cause of cancer deaths in the developed world. Tumours in this tissue arise in an epithelium that has a number of axes of cell and tissue polarity. Changes in cell and tissue polarity in response to genetic changes that are known to underpin disease progression provide clues about the link between molecular-, cellular- and tissue-based mechanisms that accompany cancer. Mutations in adenomatous polyposis coli (APC) are common to most colorectal cancers in humans and are sufficient to cause tumours in mouse intestine. Tissue organoids mimic many features of whole tissue and permit identifying changes at different times after inactivation of APC. Using gut organoids, we show that tissue polarity is lost very early during cancer progression, whereas cell polarity, at least apical-basal polarity, is maintained and changes only at later stages. These observations reflect the situation in tumours and validate tissue organoids as a useful system to investigate the relationship between cell polarity and tissue organization.
Collapse
Affiliation(s)
- Aliya Fatehullah
- Cell and Developmental Biology, University of Dundee, , Dundee DD1 5EH, UK
| | | | | |
Collapse
|
154
|
Regulation of intestinal stem cells by Wnt and Notch signalling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:175-86. [PMID: 23696357 DOI: 10.1007/978-94-007-6621-1_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian intestine is lined by an epithelial cell layer that is constantly renewed via a population of stem cells that reside in a specialised niche within intestinal crypts. The recent development of tools that permit genetic manipulation and lineage tracing of cells in vivo combined with culture methods in vitro has made the intestine particularly amenable for the study of signals that regulate stem cell function. Both Wnt and Notch signalling are critical regulators of stem cell fate. Gene knockout and transgenic expression analysis combined with meticulous analysis of lineage tracing and molecular characterisation has contributed to the definition of the mechanisms by which these pathways act during normal homeostasis and in disease states.
Collapse
|
155
|
Przybylska-Diaz DA, Schmidt JG, Vera-Jiménez NI, Steinhagen D, Nielsen ME. β-glucan enriched bath directly stimulates the wound healing process in common carp (Cyprinus carpio L.). FISH & SHELLFISH IMMUNOLOGY 2013; 35:998-1006. [PMID: 23770625 DOI: 10.1016/j.fsi.2013.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 05/09/2013] [Accepted: 05/20/2013] [Indexed: 06/02/2023]
Abstract
Wound healing is a complex and well-organized process in which physiological factors and immune mechanisms are involved. A number of different immune modulators have been found to enhance the non-specific defence system in vertebrates, among which β-glucans are the most powerful and extensively investigated. The aim of the present study was to investigate the biological impact of two different commercially available β glucan containing products on the wound healing process in carp. Throughout a two week experiment fish were kept either untreated (control), or in water supplemented with the two different types of β-glucans. The wound healing process was monitored using a multispectral visualisation system. The correlation between wound closure and immune response was investigated by measuring the gene expression patterns of IL-1β, IL-6 family member M17, IL-8 and Muc5b, and measurement of production of radical oxygen species. PAMPs/DAMPs stimulation caused by the wounding and or β-glucans resulted in an inflammatory response by activating IL-1β, IL-6 family member M17 and IL-8 and differences in the expression pattern were seen depending on stimuli. IL-1β, IL-6 family member M17 and IL-8 were activated in all wounds regardless of treatment. Expression of all three interleukins was highly up regulated in control wounded muscle already at day 1 post-wounding and decreased at subsequent time-points. The reverse was the case with control wounded skin, where expression increased from day 1 through day 14. The results for the β-glucan treated wounds were more complex. The images showed significantly faster wound contraction in both treated groups compared to the control. The obtained results clearly demonstrated that a β glucan enriched bath promotes the closure of wounds in common carp and induce a local change in cytokine expression.
Collapse
Affiliation(s)
- D A Przybylska-Diaz
- DTU Food, National Food Institute, Biological Quality Research Group, Mørkhøj Bygade 19, DK 2860 Søborg, Denmark
| | | | | | | | | |
Collapse
|
156
|
Yamamoto S, Nakase H, Matsuura M, Honzawa Y, Matsumura K, Uza N, Yamaguchi Y, Mizoguchi E, Chiba T. Heparan sulfate on intestinal epithelial cells plays a critical role in intestinal crypt homeostasis via Wnt/β-catenin signaling. Am J Physiol Gastrointest Liver Physiol 2013; 305:G241-9. [PMID: 23744737 PMCID: PMC3742857 DOI: 10.1152/ajpgi.00480.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Heparan sulfate (HS), a constituent of HS proteoglycans (HSPGs), is a linear polysaccharide present on the cell surface. HSPGs modulate functions of several growth factors and signaling molecules. We examined whether small intestinal epithelial HS plays some roles in crypt homeostasis using intestinal epithelium cell (IEC)-specific HS-deficient C57Bl/6 mice. Survival rate after total body irradiation was significantly reduced in HS-deficient mice due to profound intestinal injury. HS-deficient IECs exhibited Wnt/β-catenin pathway disruption, decreased levels of β-catenin nuclear localization, and reduced expression of Wnt target genes, including Lgr5 during crypt regeneration. Moreover, epithelial HS increased Wnt binding affinity of IECs, promoted phosphorylation of Wnt coreceptor LRP6, and enhanced Wnt/β-catenin signaling following ex vivo stimulation with Wnt3a, whereas activation of canonical Wnt signaling following direct inhibition of glycogen synthase kinase-3β by lithium chloride was similar between HS-deficient and wild-type mice. Thus HS influences the binding affinity of IECs to Wnt, thereby promoting activation of canonical Wnt signaling and facilitating regeneration of small intestinal crypts after epithelial injury.
Collapse
Affiliation(s)
- Shuji Yamamoto
- 1Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto; ,2Japan Society for the Promotion of Science, Tokyo, Japan;
| | - Hiroshi Nakase
- 1Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto;
| | - Minoru Matsuura
- 1Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto;
| | - Yusuke Honzawa
- 1Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto;
| | - Kayoko Matsumura
- 1Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto;
| | - Norimitsu Uza
- 1Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto;
| | - Yu Yamaguchi
- 3Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California;
| | - Emiko Mizoguchi
- 4Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tsutomu Chiba
- 1Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto;
| |
Collapse
|
157
|
Blanpain C, Simons BD. Unravelling stem cell dynamics by lineage tracing. Nat Rev Mol Cell Biol 2013; 14:489-502. [PMID: 23860235 DOI: 10.1038/nrm3625] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During embryonic and postnatal development, the different cells types that form adult tissues must be generated and specified in a precise temporal manner. During adult life, most tissues undergo constant renewal to maintain homeostasis. Lineage-tracing and genetic labelling technologies are beginning to shed light on the mechanisms and dynamics of stem and progenitor cell fate determination during development, tissue maintenance and repair, as well as their dysregulation in tumour formation. Statistical approaches, based on proliferation assays and clonal fate analyses, provide quantitative insights into cell kinetics and fate behaviour. These are powerful techniques to address new questions and paradigms in transgenic mouse models and other model systems.
Collapse
Affiliation(s)
- Cédric Blanpain
- Université Libre de Bruxelles, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium.
| | | |
Collapse
|
158
|
Affiliation(s)
- Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
159
|
Gonzalez LM, Williamson I, Piedrahita JA, Blikslager AT, Magness ST. Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration. PLoS One 2013; 8:e66465. [PMID: 23840480 PMCID: PMC3696067 DOI: 10.1371/journal.pone.0066465] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 05/05/2013] [Indexed: 01/22/2023] Open
Abstract
Significant advances in intestinal stem cell biology have been made in murine models; however, anatomical and physiological differences between mice and humans limit mice as a translational model for stem cell based research. The pig has been an effective translational model, and represents a candidate species to study intestinal epithelial stem cell (IESC) driven regeneration. The lack of validated reagents and epithelial culture methods is an obstacle to investigating IESC driven regeneration in a pig model. In this study, antibodies against Epithelial Adhesion Molecule 1 (EpCAM) and Villin marked cells of epithelial origin. Antibodies against Proliferative Cell Nuclear Antigen (PCNA), Minichromosome Maintenance Complex 2 (MCM2), Bromodeoxyuridine (BrdU) and phosphorylated Histone H3 (pH3) distinguished proliferating cells at various stages of the cell cycle. SOX9, localized to the stem/progenitor cells zone, while HOPX was restricted to the +4/‘reserve’ stem cell zone. Immunostaining also identified major differentiated lineages. Goblet cells were identified by Mucin 2 (MUC2); enteroendocrine cells by Chromogranin A (CGA), Gastrin and Somatostatin; and absorptive enterocytes by carbonic anhydrase II (CAII) and sucrase isomaltase (SIM). Transmission electron microscopy demonstrated morphologic and sub-cellular characteristics of stem cell and differentiated intestinal epithelial cell types. Quantitative PCR gene expression analysis enabled identification of stem/progenitor cells, post mitotic cell lineages, and important growth and differentiation pathways. Additionally, a method for long-term culture of porcine crypts was developed. Biomarker characterization and development of IESC culture in the porcine model represents a foundation for translational studies of IESC-driven regeneration of the intestinal epithelium in physiology and disease.
Collapse
Affiliation(s)
- Liara M. Gonzalez
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ian Williamson
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC/NCSU Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jorge A. Piedrahita
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Anthony T. Blikslager
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Scott T. Magness
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- UNC/NCSU Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
160
|
Chen MC, Mi FL, Liao ZX, Hsiao CW, Sonaje K, Chung MF, Hsu LW, Sung HW. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev 2013; 65:865-79. [PMID: 23159541 DOI: 10.1016/j.addr.2012.10.010] [Citation(s) in RCA: 302] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/24/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
Abstract
Chitosan (CS), a cationic polysaccharide, is widely regarded as a safe and efficient intestinal absorption enhancer of therapeutic macromolecules, owing to its inherent mucoadhesive feature and ability to modulate the integrity of epithelial tight junctions reversibly. By using CS-based nanoparticles, many studies have attempted to protect the loaded macromolecules against acidic denaturation and enzymatic degradation, prolong their intestinal residence time, and increase their absorption by the intestinal epithelium. Derivatives of CS such as quaternized CS, thiolated CS and carboxylated CS have also been examined to further enhance its effectiveness in oral absorption of macromolecular drugs. This review article describes the synthesis of these CS derivatives and their characteristics, as well as their potential transport mechanisms of macromolecular therapeutics across the intestinal biological membrane. Recent advances in using CS and its derivatives as carriers for oral delivery of hydrophilic macromolecules and their effects on drug transport are also reviewed.
Collapse
|
161
|
Kershaw SK, Byrne HM, Gavaghan DJ, Osborne JM. Colorectal cancer through simulation and experiment. IET Syst Biol 2013; 7:57-73. [DOI: 10.1049/iet-syb.2012.0019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sophie K. Kershaw
- Department of Computer ScienceComputational Biology GroupWolfson Building, Parks RoadOxfordOX1 3QDUK
| | - Helen M. Byrne
- Department of Computer ScienceComputational Biology GroupWolfson Building, Parks RoadOxfordOX1 3QDUK
- OCCAM, Mathematical Institute24-29 St. Giles’OxfordOX1 3LBUK
| | - David J. Gavaghan
- Department of Computer ScienceComputational Biology GroupWolfson Building, Parks RoadOxfordOX1 3QDUK
- Department of BiochemistryOxford Centre for Integrative Systems BiologySouth Parks RoadOxfordOX1 3QUUK
| | - James M. Osborne
- Department of Computer ScienceComputational Biology GroupWolfson Building, Parks RoadOxfordOX1 3QDUK
- Department of BiochemistryOxford Centre for Integrative Systems BiologySouth Parks RoadOxfordOX1 3QUUK
| |
Collapse
|
162
|
Aguirre SA, Liu L, Hosea NA, Scott W, May JR, Burns-Naas LA, Randolph S, Denlinger RH, Han B. Intermittent oral coadministration of a gamma secretase inhibitor with dexamethasone mitigates intestinal goblet cell hyperplasia in rats. Toxicol Pathol 2013; 42:422-34. [PMID: 23651588 DOI: 10.1177/0192623313486315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dexamethasone was given in 2 oral dosing regimens with repeat dose oral administration of the gamma secretase inhibitor (GSI), PF-03084014, in Sprague-Dawley (SD) rats in order to evaluate the effects of coadministration of dexamethasone on GSI-induced goblet cell hyperplasia (GCH) in the intestinal tract. Safety end points were evaluated in 1 week and 1 month studies. The dosing regimens tested in the 1-month studies included a 1-week pretreatment with 1.0 mg/kg dexamethasone followed by a 3-week repeat dose treatment with 100 mg/kg GSI or concurrent intermittent treatment with 1.0 mg/kg dexamethasone on weeks 1 and 3 and repeat dose treatment with 100 mg/kg GSI for 4 weeks. Pretreatment with dexamethasone for 1 week transiently mitigated the severity of intestinal GCH for up to 1 week. Intermittent coadministration of dexamethasone on weeks 1 and 3 with GSI repeat dosing for 4 weeks mitigated intestinal GCH for up to 4 weeks post treatment. Treatment-related morbidity and mortality occurred on day 7 with 150 mg/kg GSI and 5 mg/kg dexamethasone coadministration, and on days 13, 14, and 23 with 100 mg/kg GSI and 1 mg/kg dexamethasone coadministration.
Collapse
Affiliation(s)
- Shirley A Aguirre
- 1Drug Safety Research & Development, Pfizer Global Research and Development, La Jolla Laboratories, San Diego, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Grant CN, Grikscheit TC. Tissue engineering: a promising therapeutic approach to necrotizing enterocolitis. Semin Pediatr Surg 2013; 22:112-6. [PMID: 23611615 DOI: 10.1053/j.sempedsurg.2013.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue engineering is a promising potential candidate for treating intestinal failure resulting from necrotizing enterocolitis. This requires the acquisition, preparation and implantation of autologous organoid units. This may be affected by the complexities of periods of storage of viable donor tissue and delayed implantation. This chapter addresses the development, methodology, and application of tissue-engineered intestine in the experimental and clinical setting. Tissue engineering has the potential of avoiding the inherent toxicities of intestinal transplantation and prolonged immunosuppression.
Collapse
Affiliation(s)
- Christa N Grant
- Division of Pediatric Surgery, Childrens Hospital Los Angeles, Saban Research Institute, Keck School of Medicine, University of Southern California, USA
| | | |
Collapse
|
164
|
Abstract
The generation of chimeras, which is now a standard technology for producing gene modified mutant mice, was originally developed as a tool for developmental biology. However, the application of conventional single marker chimeric mice for developmental study was initially limited. This situation has been dramatically changed by development of multicolor chimeric mice using various kinds of fluorescent proteins. Now using our technology, up to ten different clones could be distinguished by their colors, which enable us to perform more accurate statistical analyses and lineage tracing experiments than by conventional methods. This method could be applied to visualize not only cell turnover of normal stem cells but also cancer development of live tissues in vivo. In the present review, we will discuss how these methods have been developed and what questions they are now answering by mainly focusing on intestinal stem cells and intestinal tumors.
Collapse
|
165
|
Parry L, Young M, El Marjou F, Clarke AR. Evidence for a crucial role of paneth cells in mediating the intestinal response to injury. Stem Cells 2013; 31:776-85. [PMID: 23335179 PMCID: PMC3744757 DOI: 10.1002/stem.1326] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/17/2012] [Indexed: 01/29/2023]
Abstract
The identification of the intestinal stem cell (ISC) markers Lgr5 and Bmi-1 has furthered our understanding of how they accomplish homeostasis in this rapidly self-renewing tissue. Recent work indicates that these markers identify a cycling Lgr5(+) ISC which can be replaced by a quiescent Bmi-1(+) ISC. Currently, there is little data on how these cells interact to control intestinal crypt homeostasis and regeneration. This interaction likely involves other differentiated cells within the niche as it has previously been demonstrated that the "stemness" of the Lgr5 ISC is closely tied to the presence of their neighboring Paneth cells. To investigate this, we used two conditional mouse models to delete the transcription factor β-catenin within the intestinal crypt. Critically these differ in their ability to drive recombination within Paneth cells and therefore allow us to compare the effect of deleting the majority of active ISCs in the presence or absence of the Paneth cells. After gene deletion, the intestines in the model in which Paneth cells were retained showed a rapid recovery and repopulation of the crypt-villus axis presumably from either a spared ISC or the hypothetical quiescent ISCs. However, in the absence of Paneth cells the recovery ability was compromised resulting in complete loss of intestinal epithelial integrity. This data indicates that the Paneth cells play a crucial role within the in vivo ISC niche in aiding recovery following substantial insult.
Collapse
Affiliation(s)
- Lee Parry
- School of Bioscience Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
166
|
Spurrier RG, Grikscheit TC. Tissue engineering the small intestine. Clin Gastroenterol Hepatol 2013; 11:354-8. [PMID: 23380001 DOI: 10.1016/j.cgh.2013.01.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/30/2013] [Indexed: 02/07/2023]
Abstract
Short bowel syndrome (SBS) results from the loss of a highly specialized organ, the small intestine. SBS and its current treatments are associated with high morbidity and mortality. Production of tissue-engineered small intestine (TESI) from the patient's own cells could restore normal intestinal function via autologous transplantation. Improved understanding of intestinal stem cells and their niche have been coupled with advances in tissue engineering techniques. Originally described by Vacanti et al of Massachusetts General Hospital, TESI has been produced by in vivo implantation of organoid units. Organoid units are multicellular clusters of epithelium and mesenchyme that may be harvested from native intestine. These clusters are loaded onto a scaffold and implanted into the host omentum. The scaffold provides physical support that permits angiogenesis and vasculogenesis of the developing tissue. After a period of 4 weeks, histologic analyses confirm the similarity of TESI to native intestine. TESI contains a differentiated epithelium, mesenchyme, blood vessels, muscle, and nerve components. To date, similar experiments have proved successful in rat, mouse, and pig models. Additional experiments have shown clinical improvement and rescue of SBS rats after implantation of TESI. In comparison with the group that underwent massive enterectomy alone, rats that had surgical anastomosis of TESI to their shortened intestine showed improvement in postoperative weight gain and serum B12 values. Recently, organoid units have been harvested from human intestinal samples and successfully grown into TESI by using an immunodeficient mouse host. Current TESI production yields approximately 3 times the number of cells initially implanted, but improvements in the scaffold and blood supply are being developed in efforts to increase TESI size. Exciting new techniques in stem cell biology and directed cellular differentiation may generate additional sources of autologous intestinal tissue for direct translation to human therapy.
Collapse
Affiliation(s)
- Ryan G Spurrier
- Division of Pediatric Surgery, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
167
|
Shedding-induced gap formation contributes to gut barrier dysfunction in endotoxemia. J Trauma Acute Care Surg 2013; 74:203-13. [PMID: 23271096 DOI: 10.1097/ta.0b013e3182788083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The intestinal mucosa exhibits high turnover rates with a balance of shedding and the migration of epithelial cells to maintain gut barrier function. Systemic diseases such as sepsis and major thermal injury accelerate the rate of cell shedding, subsequent gap formation, and gut barrier dysfunction. However, the detailed changes of intestinal villi in barrier dysfunction have not been well described. METHODS In this study, intestinal barrier dysfunctions were induced through the injection of lipopolysaccharide (LPS) in C57BL/6 mice. Intravital images of the small intestine were observed with multiphoton microscopy for cellular dynamics analysis. The changes of epithelial cells shedding, gap formation, goblet cells, and intestinal leaks were observed, calculated, and analyzed. RESULTS Endotoxemia enhanced chromatin condensation, accelerated migration, and increased the shedding of intestinal epithelial cells compared with the control group. Furthermore, LPS-induced shedding resulted in gap formation and subsequent intestinal leaks. In total, 40% of intestinal leaks were through gaps, and 60% were through paracellular spaces. Although LPS injection significantly increased the leaks in gaps and paracellular spaces, it did not change the percentage of leaks in gaps and paracellular spaces compared with the control group. CONCLUSION We conclude that endotoxemia causes gut barrier dysfunction by increasing epithelium shedding, gaps, and intestinal leaks. However, the effect of the impairment of local barrier maintenance on the distribution of intestinal leaks in gaps and paracellular spaces is minimal.
Collapse
|
168
|
L⊘kka G, Austb⊘ L, Falk K, Bjerkås I, Koppang EO. Intestinal morphology of the wild atlantic salmon (Salmo salar). J Morphol 2013; 274:859-76. [DOI: 10.1002/jmor.20142] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 01/08/2013] [Accepted: 01/23/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Guro L⊘kka
- Department of Basic Sciences and Aquatic Medicine; Norwegian School of Veterinary Science; Oslo; Norway
| | - Lars Austb⊘
- Department of Basic Sciences and Aquatic Medicine; Norwegian School of Veterinary Science; Oslo; Norway
| | - Knut Falk
- Department of Laboratory Services; National Veterinary Institute; Oslo; Norway
| | - Inge Bjerkås
- Department of Basic Sciences and Aquatic Medicine; Norwegian School of Veterinary Science; Oslo; Norway
| | - Erling Olaf Koppang
- Department of Basic Sciences and Aquatic Medicine; Norwegian School of Veterinary Science; Oslo; Norway
| |
Collapse
|
169
|
Huynh D, Akçora D, Malaterre J, Chan CK, Dai XM, Bertoncello I, Stanley ER, Ramsay RG. CSF-1 receptor-dependent colon development, homeostasis and inflammatory stress response. PLoS One 2013; 8:e56951. [PMID: 23451116 PMCID: PMC3579891 DOI: 10.1371/journal.pone.0056951] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/16/2013] [Indexed: 01/09/2023] Open
Abstract
The colony stimulating factor-1 (CSF-1) receptor (CSF-1R) directly regulates the development of Paneth cells (PC) and influences proliferation and cell fate in the small intestine (SI). In the present study, we have examined the role of CSF-1 and the CSF-1R in the large intestine, which lacks PC, in the steady state and in response to acute inflammation induced by dextran sulfate sodium (DSS). As previously shown in mouse, immunohistochemical (IHC) analysis of CSF-1R expression showed that the receptor is baso-laterally expressed on epithelial cells of human colonic crypts, indicating that this expression pattern is shared between species. Colons from Csf1r null and Csf1(op/op) mice were isolated and sectioned for IHC identification of enterocytes, enteroendocrine cells, goblet cells and proliferating cells. Both Csf1r(-/-) and Csf1(op/op) mice were found to have colon defects in enterocytes and enteroendocrine cell fate, with excessive goblet cell staining and reduced cell proliferation. In addition, the gene expression profiles of the cell cycle genes, cyclinD1, c-myc, c-fos, and c-myb were suppressed in Csf1r(-/-) colonic crypt, compared with those of WT mice and the expression of the stem cell marker gene Lgr5 was markedly reduced. However, analysis of the proliferative responses of immortalized mouse colon epithelial cells (lines; Immorto-5 and YAMC) indicated that CSF-1R is not a major regulator of colonocyte proliferation and that its effects on proliferation are indirect. In an examination of the acute inflammatory response, Csf1r(+/-) male mice were protected from the adverse affects of DSS-induced colitis compared with WT mice, while Csf1r(+/-) female mice were significantly less protected. These data indicate that CSF-1R signaling plays an important role in colon homeostasis and stem cell gene expression but that the receptor exacerbates the response to inflammatory challenge in male mice.
Collapse
Affiliation(s)
- Duy Huynh
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Genetics, Latrobe University, Victoria, Australia
| | - Dilara Akçora
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jordane Malaterre
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Chee Kai Chan
- Department of Genetics, Latrobe University, Victoria, Australia
| | - Xu-Ming Dai
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Ivan Bertoncello
- Department of Pharmacology the University of Melbourne, Parkville, Victoria, Australia
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Robert G. Ramsay
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
170
|
Montanholi Y, Fontoura A, Swanson K, Coomber B, Yamashiro S, Miller S. Small intestine histomorphometry of beef cattle with divergent feed efficiency. Acta Vet Scand 2013; 55:9. [PMID: 23379622 PMCID: PMC3598877 DOI: 10.1186/1751-0147-55-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The provision of feed is a major cost in beef production. Therefore, the improvement of feed efficiency is warranted. The direct assessment of feed efficiency has limitations and alternatives are needed. Small intestine micro-architecture is associated with function and may be related to feed efficiency. The objective was to verify the potential histomorphological differences in the small intestine of animals with divergent feed efficiency. METHODS From a population of 45 feedlot steers, 12 were selected with low-RFI (superior feed efficiency) and 12 with high-RFI (inferior feed efficiency) at the end of the finishing period. The animals were processed at 13.79 ± 1.21 months of age. Within 1.5 h of slaughter the gastrointestinal tract was collected and segments from duodenum and ileum were harvested. Tissue fragments were processed, sectioned and stained with hematoxylin and eosin. Photomicroscopy images were taken under 1000x magnification. For each animal 100 intestinal crypts were imaged, in a cross section view, from each of the two intestinal segments. Images were analyzed using the software ImageJ(®). The measurements taken were: crypt area, crypt perimeter, crypt lumen area, nuclei number and the cell size was indirectly calculated. Data were analyzed using general linear model and correlation procedures of SAS(®). RESULTS Efficient beef steers (low-RFI) have a greater cellularity (indicated by nuclei number) in the small intestinal crypts, both in duodenum and ileum, than less efficient beef steers (high-RFI) (P < 0.05). The mean values for the nuclei number of the low-RFI and high-RFI groups were 33.16 and 30.30 in the duodenum and 37.21 and 33.65 in the ileum, respectively. The average size of the cells did not differ between feed efficiency groups in both segments (P ≥ 0.10). A trend was observed (P ≤ 0.10) for greater crypt area and crypt perimeter in the ileum for cattle with improved feed efficiency. CONCLUSION Improved feed efficiency is associated with greater cellularity and no differences on average cell size in the crypts of the small intestine in the bovine. These observations are likely to lead to an increase in the energy demand by the small intestine regardless of the more desirable feed efficiency.
Collapse
Affiliation(s)
- Yuri Montanholi
- Department of Animal and Poultry Science, University of Guelph, 70-50 Stone Road East, Guelph, N1G 2W1, ON, Canada
| | - Ananda Fontoura
- Universidade Federal do Pará, Avenida Universitária s/n, 68745-000, Castanhal, Pará, Brasil
| | - Kendall Swanson
- Department of Animal Sciences, North Dakota State University, PO box 6050, Fargo, 58108-6050, ND, USA
| | - Brenda Coomber
- Department of Biomedical Sciences, University of Guelph, 3-50 Stone Road East, Guelph, N1G 2W1, ON, Canada
| | - Shigeto Yamashiro
- Department of Biomedical Sciences, University of Guelph, 3-50 Stone Road East, Guelph, N1G 2W1, ON, Canada
| | - Stephen Miller
- Department of Animal and Poultry Science, University of Guelph, 70-50 Stone Road East, Guelph, N1G 2W1, ON, Canada
- Livestock Gentec, 1400 College Plaza 8215-112 Street, Edmonton, T6G 2C8, AB, Canada
| |
Collapse
|
171
|
Sasikala M, Rao GV, Tandan M, Reddy DN. Gastro Intestinal Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
172
|
Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 2012; 488:665-9. [PMID: 22895187 DOI: 10.1038/nature11308] [Citation(s) in RCA: 712] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/11/2012] [Indexed: 12/22/2022]
Abstract
LGR5+ stem cells reside at crypt bottoms, intermingled with Paneth cells that provide Wnt, Notch and epidermal growth factor signals. Here we find that the related RNF43 and ZNRF3 transmembrane E3 ubiquitin ligases are uniquely expressed in LGR5+ stem cells. Simultaneous deletion of the two genes encoding these proteins in the intestinal epithelium of mice induces rapidly growing adenomas containing high numbers of Paneth and LGR5+ stem cells. In vitro, growth of organoids derived from these adenomas is arrested when Wnt secretion is inhibited, indicating a dependence of the adenoma stem cells on Wnt produced by adenoma Paneth cells. In the HEK293T human cancer cell line, expression of RNF43 blocks Wnt responses and targets surface-expressed frizzled receptors to lysosomes. In the RNF43-mutant colorectal cancer cell line HCT116, reconstitution of RNF43 expression removes its response to exogenous Wnt. We conclude that RNF43 and ZNRF3 reduce Wnt signals by selectively ubiquitinating frizzled receptors, thereby targeting these Wnt receptors for degradation.
Collapse
|
173
|
Affiliation(s)
- S P Shirazi-Beechey
- Epithelial Function and Development Group, Institute of Biological Sciences, University of Wales, Aberystwyth, Dyfed, SY23 3DD, UK
| |
Collapse
|
174
|
van Es JH, Sato T, van de Wetering M, Lyubimova A, Yee Nee AN, Gregorieff A, Sasaki N, Zeinstra L, van den Born M, Korving J, Martens ACM, Barker N, van Oudenaarden A, Clevers H. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 2012; 14:1099-1104. [PMID: 23000963 DOI: 10.1038/ncb2581] [Citation(s) in RCA: 565] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/16/2012] [Indexed: 12/22/2022]
Abstract
Lgr5+ intestinal stem cells generate enterocytes and secretory cells. Secretory lineage commitment requires Notch silencing. The Notch ligand Dll1 is expressed by a subset of immediate stem cell daughters. Lineage tracing in Dll1(GFP-ires-CreERT2) knock-in mice reveals that single Dll1(high) cells generate small, short-lived clones containing all four secretory cell types. Lineage specification thus occurs in immediate stem cell daughters through Notch lateral inhibition. Cultured Dll1(high) cells form long-lived organoids (mini-guts) on brief Wnt3A exposure. When Dll1(high) cells are genetically marked before tissue damage, stem cell tracing events occur. Thus, secretory progenitors exhibit plasticity by regaining stemness on damage.
Collapse
Affiliation(s)
- Johan H van Es
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, Uppsalalaan 8, 3584CT Utrecht, Netherlands
| | - Toshiro Sato
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, Uppsalalaan 8, 3584CT Utrecht, Netherlands
| | - Marc van de Wetering
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, Uppsalalaan 8, 3584CT Utrecht, Netherlands
| | - Anna Lyubimova
- Dept. of Physics & Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | - Alex Gregorieff
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Nobuo Sasaki
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, Uppsalalaan 8, 3584CT Utrecht, Netherlands
| | - Laura Zeinstra
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, Uppsalalaan 8, 3584CT Utrecht, Netherlands
| | - Maaike van den Born
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, Uppsalalaan 8, 3584CT Utrecht, Netherlands
| | - Jeroen Korving
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, Uppsalalaan 8, 3584CT Utrecht, Netherlands
| | - Anton C M Martens
- UMC Utrecht, Dept. of Immunology and Cell Biology, PO BOX 85090, 3508AB Utrecht, Netherlands
| | - Nick Barker
- Institute of Medical Biology, 06-06 Immunos, Singapore
| | - Alexander van Oudenaarden
- Dept. of Physics & Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, Uppsalalaan 8, 3584CT Utrecht, Netherlands
| |
Collapse
|
175
|
On the role of Wnt/β-catenin signaling in stem cells. Biochim Biophys Acta Gen Subj 2012; 1830:2297-306. [PMID: 22986148 DOI: 10.1016/j.bbagen.2012.08.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/11/2012] [Accepted: 08/07/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND Stem cells are mainly characterized by two properties: self-renewal and the potency to differentiate into diverse cell types. These processes are regulated by different growth factors including members of the Wnt protein family. Wnt proteins are secreted glycoproteins that can activate different intracellular signaling pathways. SCOPE OF REVIEW Here we summarize our current knowledge on the role of Wnt/β-catenin signaling with respect to these two main features of stem cells. MAJOR CONCLUSIONS A particular focus is given on the function of Wnt signaling in embryonic stem cells. Wnt signaling can also improve reprogramming of somatic cells towards iPS cells highlighting the importance of this pathway for self-renewal and pluripotency. As an example for the role of Wnt signaling in adult stem cell behavior, we furthermore focus on intestinal stem cells located in the crypts of the small intestine. GENERAL SIGNIFICANCE A broad knowledge about stem cell properties and the influence of intrinsic and extrinsic factors on these processes is a requirement for the use of these cells in regenerative medicine in the future or to understand cancer development in the adult. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
|
176
|
Perdigoto CN, Bardin AJ. Sending the right signal: Notch and stem cells. Biochim Biophys Acta Gen Subj 2012; 1830:2307-22. [PMID: 22917651 DOI: 10.1016/j.bbagen.2012.08.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/13/2012] [Accepted: 08/07/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Notch signaling plays a critical role in multiple developmental programs and not surprisingly, the Notch pathway has also been implicated in the regulation of many adult stem cells, such as those in the intestine, skin, lungs, hematopoietic system, and muscle. SCOPE OF REVIEW In this review, we will first describe molecular mechanisms of Notch component modulation including recent advances in this field and introduce the fundamental principles of Notch signaling controlling cell fate decisions. We will then illustrate its important and varied functions in major stem cell model systems including: Drosophila and mammalian intestinal stem cells and mammalian skin, lung, hematopoietic and muscle stem cells. MAJOR CONCLUSIONS The Notch receptor and its ligands are controlled by endocytic processes that regulate activation, turnover, and recycling. Glycosylation of the Notch extracellular domain has important modulatory functions on interactions with ligands and on proper receptor activity. Notch can mediate cell fate decisions including proliferation, lineage commitment, and terminal differentiation in many adult stem cell types. Certain cell fate decisions can have precise requirements for levels of Notch signaling controlled through modulatory regulation. GENERAL SIGNIFICANCE We describe the current state of knowledge of how the Notch receptor is controlled through its interaction with ligands and how this is regulated by associated factors. The functional consequences of Notch receptor activation on cell fate decisions are discussed. We illustrate the importance of Notch's role in cell fate decisions in adult stem cells using examples from the intestine, skin, lung, blood, and muscle. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
|
177
|
Sirakov M, Skah S, Nadjar J, Plateroti M. Thyroid hormone's action on progenitor/stem cell biology: new challenge for a classic hormone? Biochim Biophys Acta Gen Subj 2012; 1830:3917-27. [PMID: 22890105 DOI: 10.1016/j.bbagen.2012.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 07/01/2012] [Accepted: 07/29/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Thyroid hormones are involved in developmental and homeostatic processes in several tissues. Their action results in different outcomes depending on the developmental stage, tissue and/or cellular context. Interestingly, their pleiotropic roles are conserved across vertebrates. It is largely documented that thyroid hormones act via nuclear receptors, the TRs, which are transcription factors and whose activity can be modulated by the local availability of the hormone T3. In the "classical view", the T3-induced physiological response depends on the expression of specific TR isoforms and the iodothyronine deiodinase selenoenzymes that control the local level of T3, thus TR activity. SCOPE OF THE REVIEW Recent data have clearly established that the functionality of TRs is coordinated and integrated with other signaling pathways, specifically at the level of stem/progenitor cell populations. Here, we summarize these data and propose a new and intriguing role for thyroid hormones in two selected examples. MAJOR CONCLUSIONS In the intestinal epithelium and the retina, TRα1 and TRβ2 are expressed at the level of the precursors where they induce cell proliferation and differentiation, respectively. Moreover, these different functions result from the integration of the hormone signal with other intrinsic pathways, which play a fundamental role in progenitor/stem cell physiology. GENERAL SIGNIFICANCE Taken together, the interaction of TRs with other signaling pathways, specifically in stem/progenitor cells, is a new concept that may have biological relevance in therapeutic approaches aimed to target stem cells such as tissue engineering and cancer. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Maria Sirakov
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Belgium
| | | | | | | |
Collapse
|
178
|
Bellis J, Duluc I, Romagnolo B, Perret C, Faux MC, Dujardin D, Formstone C, Lightowler S, Ramsay RG, Freund JN, De Mey JR. The tumor suppressor Apc controls planar cell polarities central to gut homeostasis. ACTA ACUST UNITED AC 2012; 198:331-41. [PMID: 22851318 PMCID: PMC3413367 DOI: 10.1083/jcb.201204086] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Asymmetric stem cell divisions controlled by Apc in the intestinal crypt result in regulated, anisotropic movement of daughter cells away from the niche. The stem cells (SCs) at the bottom of intestinal crypts tightly contact niche-supporting cells and fuel the extraordinary tissue renewal of intestinal epithelia. Their fate is regulated stochastically by populational asymmetry, yet whether asymmetrical fate as a mode of SC division is relevant and whether the SC niche contains committed progenitors of the specialized cell types are under debate. We demonstrate spindle alignments and planar cell polarities, which form a novel functional unit that, in SCs, can yield daughter cell anisotropic movement away from niche-supporting cells. We propose that this contributes to SC homeostasis. Importantly, we demonstrate that some SC divisions are asymmetric with respect to cell fate and provide data suggesting that, in some SCs, mNumb displays asymmetric segregation. Some of these processes were altered in apparently normal crypts and microadenomas of mice carrying germline Apc mutations, shedding new light on the first stages of progression toward colorectal cancer.
Collapse
Affiliation(s)
- Julien Bellis
- Laboratoire de Biophotonique et Pharmacologie, Unité Mixte de Recherche 7213, Centre National de la Recherche Scientifique, 67401 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Affiliation(s)
- Vivian S W Li
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | | |
Collapse
|
180
|
Dunn SJ, Appleton PL, Nelson SA, Näthke IS, Gavaghan DJ, Osborne JM. A two-dimensional model of the colonic crypt accounting for the role of the basement membrane and pericryptal fibroblast sheath. PLoS Comput Biol 2012; 8:e1002515. [PMID: 22654652 PMCID: PMC3359972 DOI: 10.1371/journal.pcbi.1002515] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 03/22/2012] [Indexed: 12/22/2022] Open
Abstract
The role of the basement membrane is vital in maintaining the integrity and structure of an epithelial layer, acting as both a mechanical support and forming the physical interface between epithelial cells and the surrounding connective tissue. The function of this membrane is explored here in the context of the epithelial monolayer that lines the colonic crypt, test-tube shaped invaginations that punctuate the lining of the intestine and coordinate a regular turnover of cells to replenish the epithelial layer every few days. To investigate the consequence of genetic mutations that perturb the system dynamics and can lead to colorectal cancer, it must be possible to track the emerging tissue level changes that arise in the crypt. To that end, a theoretical crypt model with a realistic, deformable geometry is required. A new discrete crypt model is presented, which focuses on the interaction between cell- and tissue-level behaviour, while incorporating key subcellular components. The model contains a novel description of the role of the surrounding tissue and musculature, based upon experimental observations of the tissue structure of the crypt, which are also reported. A two-dimensional (2D) cross-sectional geometry is considered, and the shape of the crypt is allowed to evolve and deform. Simulation results reveal how the shape of the crypt may contribute mechanically to the asymmetric division events typically associated with the stem cells at the base. The model predicts that epithelial cell migration may arise due to feedback between cell loss at the crypt collar and density-dependent cell division, an hypothesis which can be investigated in a wet lab. This work forms the basis for investigation of the deformation of the crypt structure that can occur due to proliferation of cells exhibiting mutant phenotypes, experiments that would not be possible in vivo or in vitro.
Collapse
Affiliation(s)
- Sara-Jane Dunn
- Department of Computer Science, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
181
|
Schuijers J, Clevers H. Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins. EMBO J 2012; 31:2685-96. [PMID: 22617424 DOI: 10.1038/emboj.2012.149] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/26/2012] [Indexed: 12/12/2022] Open
Abstract
After its discovery as oncogen and morphogen, studies on Wnt focused initially on its role in animal development. With the finding that the colorectal tumour suppressor gene APC is a negative regulator of the Wnt pathway in (colorectal) cancer, attention gradually shifted to the study of the role of Wnt signalling in the adult. The first indication that adult Wnt signalling controls stem cells came from a Tcf4 knockout experiment: mutant mice failed to build crypt stem cell compartments. This observation was followed by similar findings in multiple other tissues. Recent studies have indicated that Wnt agonists of the R-spondin family provide potent growth stimuli for crypts in vivo and in vitro. Independently, Lgr5 was found as an exquisite marker for these crypt stem cells. The story has come full circle with the finding that the stem cell marker Lgr5 constitutes the receptor for R-spondins and occurs in complex with Frizzled/Lrp.
Collapse
Affiliation(s)
- Jurian Schuijers
- Hubrecht Institute-KNAW, University Medical Centre Utrecht, The Netherlands
| | | |
Collapse
|
182
|
Tóth S, Jonecová Z, Varga J, Staško P, Kovavalčinová B, Maretta M, Veselá J. Mesenteric ischemia-reperfusion injury: specific impact on different cell populations within the jejunal wall in rats. Acta Histochem 2012; 114:276-84. [PMID: 21719076 DOI: 10.1016/j.acthis.2011.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/23/2011] [Accepted: 06/01/2011] [Indexed: 12/19/2022]
Abstract
The progress of jejunal damage and recovery in the course of mesenteric ischemia-reperfusion injury in rats at different time periods was investigated. Mesenteric ischemia lasting 1h followed by 1h of reperfusion caused a significant disintegration of the mucosa, reduction of the muscular layer and diminution of the wall thickness. The loss of epithelium included enterocytes, goblet cells and Paneth cells. Paradoxically, increasing numbers of serotonin-producing cells and the beginning of regenerative processes, expressed by significantly higher proliferation, were recorded in the epithelium during this period. Disintegration of connective tissue and massive degranulation of serotonin-positive cells were found in the lamina propria. After 24h of reperfusion, restitution of the mucosa was found, expressed by normal villous morphology and re-epithelialization. However, some parameters were still significantly affected even more than in the acute phase of reperfusion. In the epithelium, decreased numbers of Paneth cells and increased population of serotonin-producing cells were found. The greatest proliferation of connective tissue cells and intensified reduction of the muscular layer were also detected in this reperfusion period. After 30 days of reperfusion, moderate damage remained, but only the increased number of Paneth cells and decreased number of serotonin-producing cells in the lamina propria were significant.
Collapse
Affiliation(s)
- Stefan Tóth
- Department of Histology and Embryology, Pavol Jozef Śafárik University, Košice, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
183
|
Fox RG, Magness S, Kujoth GC, Prolla TA, Maeda N. Mitochondrial DNA polymerase editing mutation, PolgD257A, disturbs stem-progenitor cell cycling in the small intestine and restricts excess fat absorption. Am J Physiol Gastrointest Liver Physiol 2012; 302:G914-24. [PMID: 22345551 PMCID: PMC3362078 DOI: 10.1152/ajpgi.00402.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Changes in intestinal absorption of nutrients are important aspects of the aging process. To address this issue, we investigated the impact of accelerated mitochondrial DNA mutations on the stem/progenitor cells in the crypts of Lieberkühn in mice homozygous for a mitochondrial DNA polymerase gamma mutation, Polg(D257A), that exhibit accelerated aging phenotype. As early as 3-7 mo of age, the small intestine was significantly enlarged in the PolgD257A mice. The crypts of the PolgD257A mice contained 20% more cells than those of their wild-type littermates and exhibited a 10-fold increase in cellular apoptosis primarily in the stem/progenitor cell zones. Actively dividing cells were proportionally increased, yet a significantly smaller proportion of cells was in the S phase of the cell cycle. Stem cell-derived organoids from PolgD257A mice failed to develop fully in culture and exhibited fewer crypt units, indicating an impact of the mutation on the intestinal epithelial stem/progenitor cell maintenance. In addition, epithelial cell migration along the crypt-villus axis was slowed and less organized, and the ATP content in the villi was significantly reduced. On a high-fat, high-carbohydrate diet, PolgD257A mice showed significantly restricted absorption of excess lipids accompanied by an increase in fecal steatocrits. We conclude that the PolgD257A mutation causes cell cycle dysregulation in the crypts leading to the age-associated changes in the morphology of the small intestine and contributes to the restricted absorption of dietary lipids.
Collapse
Affiliation(s)
- Raymond G. Fox
- 1Curriculum in Genetics and Molecular Biology, ,2Department of Pathology and Laboratory Medicine,
| | - Scott Magness
- 3Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, North Carolina; and
| | - Gregory C. Kujoth
- Departments of 4Genetics and Medical Genetics and ,5Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | | | - Nobuyo Maeda
- 1Curriculum in Genetics and Molecular Biology, ,2Department of Pathology and Laboratory Medicine,
| |
Collapse
|
184
|
Heo JM, Opapeju FO, Pluske JR, Kim JC, Hampson DJ, Nyachoti CM. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J Anim Physiol Anim Nutr (Berl) 2012; 97:207-37. [PMID: 22416941 DOI: 10.1111/j.1439-0396.2012.01284.x] [Citation(s) in RCA: 484] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
For the last several decades, antimicrobial compounds have been used to promote piglet growth at weaning through the prevention of subclinical and clinical disease. There are, however, increasing concerns in relation to the development of antibiotic-resistant bacterial strains and the potential of these and associated resistance genes to impact on human health. As a consequence, European Union (EU) banned the use of antibiotics as growth promoters in swine and livestock production on 1 January 2006. Furthermore, minerals such as zinc (Zn) and copper (Cu) are not feasible alternatives/replacements to antibiotics because their excretion is a possible threat to the environment. Consequently, there is a need to develop feeding programs to serve as a means for controlling problems associated with the weaning transition without using antimicrobial compounds. This review, therefore, is focused on some of nutritional strategies that are known to improve structure and function of gastrointestinal tract and (or) promote post-weaning growth with special emphasis on probiotics, prebiotics, organic acids, trace minerals and dietary protein source and level.
Collapse
Affiliation(s)
- J M Heo
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | |
Collapse
|
185
|
Lander AD, Kimble J, Clevers H, Fuchs E, Montarras D, Buckingham M, Calof AL, Trumpp A, Oskarsson T. What does the concept of the stem cell niche really mean today? BMC Biol 2012; 10:19. [PMID: 22405133 PMCID: PMC3298504 DOI: 10.1186/1741-7007-10-19] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/09/2012] [Indexed: 12/12/2022] Open
|
186
|
A critical role for the Wnt effector Tcf4 in adult intestinal homeostatic self-renewal. Mol Cell Biol 2012; 32:1918-27. [PMID: 22393260 DOI: 10.1128/mcb.06288-11] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Throughout life, intestinal Lgr5+ stem cells give rise to proliferating transient amplifying cells in crypts, which subsequently differentiate into one of the five main cell types and migrate along the crypt-villus axis. These dynamic processes are coordinated by a relatively small number of evolutionarily conserved signaling pathways, which includes the Wnt signaling pathway. The DNA-binding proteins of the T-cell factor family, Tcf1/Tcf7, Lef, Tcf3/Tcf7l1, and Tcf4/Tcf7l2, constitute the downstream effectors of the Wnt signaling pathway. While Tcf4 is the major member active during embryogenesis, the role of these Wnt effectors in the homeostasis of the adult mouse intestinal epithelium is unresolved. Using Tcf1-/-, Tcf3(flox), and novel Tcf4(flox) mice, we demonstrate an essential role for Tcf4 during homeostasis of the adult mouse intestine.
Collapse
|
187
|
Ootani A. The tortoise and the hare?: Two distinct intestinal stem cell populations. Inflamm Regen 2012. [DOI: 10.2492/inflammregen.32.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
188
|
Abstract
Sequences of molecular events that initiate and advance the progression of human colorectal cancer (CRC) are becoming clearer. Accepting that these events, once they are in place, accumulate over time, rapid disease progression might be expected. Yet CRC usually develops slowly over decades. Emerging insights suggest that the tumor cell microenvironment encompassing fibroblasts and endothelial and immune cells dictate when, whether, and how malignancies progress. Signaling pathways that affect the microenvironment and the inflammatory response seem to play a central role in CRC. Indeed, some of these pathways directly regulate the stem/progenitor cell niche at the base of the crypt; it now appears that the survival and growth of neoplastic cells often relies upon their subverted engagement of these pathways. Spurned on by the use of gene manipulation technologies in the mouse, dissecting and recapitulating these complex molecular interactions between the tumor and its microenvironment in the gastrointestinal (GI) tract is a reality. In parallel, our ability to isolate and grow GI stem cells in vitro enables us, for the first time, to complement reductionist in vitro findings with complex in vivo observations. Surprisingly, data suggest that the large number of signaling pathways underpinning the reciprocal interaction between the neoplastic epithelium and its microenvironment converge on a small number of common transcription factors. Here, we review the separate and interactive roles of NFκB, Stat3, and Myb, transcription factors commonly overexpressed or excessively activated in CRC. They confer molecular links between inflammation, stroma, the stem cell niche, and neoplastic cell growth.
Collapse
Affiliation(s)
- Matthias Ernst
- Ludwig Institute for Cancer Research, Melbourne, Victoria, Australia
| | | |
Collapse
|
189
|
Gracz AD, Puthoff BJ, Magness ST. Identification, isolation, and culture of intestinal epithelial stem cells from murine intestine. Methods Mol Biol 2012; 879:89-107. [PMID: 22610555 DOI: 10.1007/978-1-61779-815-3_6] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The study of adult stem cell populations provides insight into the mechanisms that regulate tissue maintenance in normal physiology and many disease states. With an impressive rate of epithelial renewal driven by a pool of multipotent stem cells, the intestine is a particularly advantageous model system for the study of adult stem cells. Until recently, the isolation and in vitro study of intestinal epithelial stem cells (IESCs) was not possible due to the lack of biomarkers and culture techniques. However, advances in molecular characterization and culture of IESCs have made in vitro studies on this cell type amenable to most laboratories. The methods described in this chapter will allow the investigator to adapt newly established techniques toward downstream analysis of IESCs in vitro.
Collapse
Affiliation(s)
- A D Gracz
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | |
Collapse
|
190
|
VanDussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST, Tran IT, Maillard I, Siebel C, Kolterud Å, Grosse AS, Gumucio DL, Ernst SA, Tsai YH, Dempsey PJ, Samuelson LC. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 2011; 139:488-97. [PMID: 22190634 DOI: 10.1242/dev.070763] [Citation(s) in RCA: 421] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notch signaling is known to regulate the proliferation and differentiation of intestinal stem and progenitor cells; however, direct cellular targets and specific functions of Notch signals had not been identified. We show here in mice that Notch directly targets the crypt base columnar (CBC) cell to maintain stem cell activity. Notch inhibition induced rapid CBC cell loss, with reduced proliferation, apoptotic cell death and reduced efficiency of organoid initiation. Furthermore, expression of the CBC stem cell-specific marker Olfm4 was directly dependent on Notch signaling, with transcription activated through RBP-Jκ binding sites in the promoter. Notch inhibition also led to precocious differentiation of epithelial progenitors into secretory cell types, including large numbers of cells that expressed both Paneth and goblet cell markers. Analysis of Notch function in Atoh1-deficient intestine demonstrated that the cellular changes were dependent on Atoh1, whereas Notch regulation of Olfm4 gene expression was Atoh1 independent. Our findings suggest that Notch targets distinct progenitor cell populations to maintain adult intestinal stem cells and to regulate cell fate choice to control epithelial cell homeostasis.
Collapse
Affiliation(s)
- Kelli L VanDussen
- Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Bjerknes M, Khandanpour C, Möröy T, Fujiyama T, Hoshino M, Klisch TJ, Ding Q, Gan L, Wang J, Martín MG, Cheng H. Origin of the brush cell lineage in the mouse intestinal epithelium. Dev Biol 2011; 362:194-218. [PMID: 22185794 DOI: 10.1016/j.ydbio.2011.12.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/16/2011] [Accepted: 12/02/2011] [Indexed: 12/25/2022]
Abstract
Mix progenitors are short-lived multipotential cells formed as intestinal epithelial stem cells initiate a differentiation program. Clone dynamics indicates that various epithelial cell lineages arise from Mix via a sequence of progressively restricted progenitor states. Lateral inhibitory Notch signaling between the daughters of Mix (DOM) is thought to break their initial symmetry, thereby determining whether a DOM invokes a columnar (absorptive) or granulocytic (secretory) cell lineage program. This is supported by the absence of granulocytes following enforced Notch signaling or Atoh1 deletion. Conversely, granulocytes increase in frequency following inhibition of Notch signaling or Hes1 deletion. Thus reciprocal repression between Hes1 and Atoh1 is thought to implement a Notch signaling-driven cell-fate-determining binary switch in DOM. The brush (tuft) cells, a poorly understood chemosensory cell type, are not incorporated into this model. We report that brush cell numbers increase dramatically following conditional Atoh1-deletion, demonstrating that brush cell production, determination, differentiation and survival are Atoh1-independent. We also report that brush cells are derived from Gfi1b-expressing progenitors. These and related results suggest a model in which initially equivalent DOM progenitors have three metastable states defined by the transcription factors Hes1, Atoh1, and Gfi1b. Lateral inhibitory Notch signaling normally ensures that Hes1 dominates in one of the two DOMs, invoking a columnar lineage program, while either Atoh1 or Gfi1b dominates in the other DOM, invoking a granulocytic or brush cell lineage program, respectively, and thus implementing a cell fate-determining ternary switch.
Collapse
Affiliation(s)
- Matthew Bjerknes
- Department of Medicine, Clinical Science Division, University of Toronto, Toronto, Ontario, Canada M5S 1A8.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Chen MC, Sonaje K, Chen KJ, Sung HW. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials 2011; 32:9826-38. [DOI: 10.1016/j.biomaterials.2011.08.087] [Citation(s) in RCA: 266] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
|
193
|
Abstract
The extended longevity of many mammals imposes the need for an effective tissue renewal capacity within the vital organs to maintain optimal function. Resident adult stem cells are instrumental in delivering this renewal capacity by virtue of their characteristic ability to maintain themselves long-term as a population (self-renewal), whilst also supplying all functional cell-lineages of the respective tissue (multipotency). The homeostatic activity of these adult stem cell reservoirs is tailored to meet the specific renewal requirements of individual tissues through a combination of intrinsic genetic programming and local cues delivered from the surrounding environment (the niche). Considerable phenotypic diversity therefore exists between adult stem cell populations in different organs, making it a considerable challenge to identify broadly applicable markers that facilitate their identification and characterization. However, the 7-transmembrane receptor, Lgr5 has recently gained prominence as a marker of Wnt-regulated adult stem cell populations in the hair-follicle, intestine and stomach. A closely-related protein, Lgr6 marks adult stem cells responsible for fueling the renewal of the sebaceous gland and skin. The discovery of these markers has already greatly improved our understanding of stem cell biology in these rapidly renewing tissues and has major implications for the identification and isolation of human adult stem cell populations for exploitation of their regenerative medicine potential in the clinic.
Collapse
|
194
|
Burra P, Bizzaro D, Ciccocioppo R, Marra F, Piscaglia AC, Porretti L, Gasbarrini A, Russo FP. Therapeutic application of stem cells in gastroenterology: An up-date. World J Gastroenterol 2011; 17:3870-80. [PMID: 22025875 PMCID: PMC3198016 DOI: 10.3748/wjg.v17.i34.3870] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/07/2011] [Accepted: 03/14/2011] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells represent the self-renewing progenitors of numerous body tissues, and they are currently classified according to their origin and differentiation ability. In recent years, the research on stem cells has expanded enormously and holds therapeutic promises for many patients suffering from currently disabling diseases. This paper focuses on the possible use of stem cells in the two main clinical settings in gastroenterology, i.e., hepatic and intestinal diseases, which have a strong impact on public health worldwide. Despite encouraging results obtained in both regenerative medicine and immune-mediated conditions, further studies are needed to fully understand the biology of stem cells and carefully assess their putative oncogenic properties. Moreover, the research on stem cells arouses fervent ethical, social and political debate. The Italian Society of Gastroenterology sponsored a workshop on stem cells held in Verona during the XVI Congress of the Federation of Italian Societies of Digestive Diseases (March 6-9, 2010). Here, we report on the issues discussed, including liver and intestinal diseases that may benefit from stem cell therapy, the biology of hepatic and intestinal tissue repair, and stem cell usage in clinical trials.
Collapse
|
195
|
VOOIJS MARC, LIU ZHENYI, KOPAN RAPHAEL. Notch: architect, landscaper, and guardian of the intestine. Gastroenterology 2011; 141:448-59. [PMID: 21689653 PMCID: PMC4050496 DOI: 10.1053/j.gastro.2011.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 06/08/2011] [Accepted: 06/08/2011] [Indexed: 12/12/2022]
Abstract
In the past decade, enormous progress has been made in understanding the role of stem cells in physiologic tissue renewal and in pathologic processes such as cancer. These findings have shed light on the identity and biological properties of such cells and the intrinsic and extrinsic signals that balance stem cell self-renewal with differentiation. With its astonishing self-renewal capacity, the intestinal epithelium has provided a unique model to study stem cell biology, lineage specification, and cancer. Here we review the role of Notch signaling in physiologic cell renewal and differentiation in the intestine as well as during its malignant transformation.
Collapse
Affiliation(s)
- MARC VOOIJS
- Department of Radiotherapy, Maastricht Radiation Oncology (MAASTRO)/GROW School for Developmental Biology and Oncology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - ZHENYI LIU
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri
| | - RAPHAEL KOPAN
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
196
|
Chia LA, Kuo CJ. The intestinal stem cell. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 96:157-73. [PMID: 21075344 DOI: 10.1016/b978-0-12-381280-3.00007-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The intestinal epithelium is one of the most rapidly proliferating organs in the body. A complete turnover of the epithelium occurs every 3-5 days in the mouse, a process that is maintained by a small population of intestinal stem cells (ISCs) that reside in the crypt bases. The signals that regulate the behavior of these ISCs are still unknown. This has been due, until recently, to the singular lack of definitive ISC markers. The recent identification of genes that mark functional stem cells has yielded insights into how ISCs are regulated and maintained by their surrounding niche. Herein, we examine the body of literature regarding the precise identity and location of the ISCs, the role of the surrounding niche in ISC maintenance and regulation, as well as the hypothesis that the ISCs are the cells of origin in colorectal cancer.
Collapse
Affiliation(s)
- Luis A Chia
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
197
|
Ouellette AJ. Paneth cell α-defensins in enteric innate immunity. Cell Mol Life Sci 2011; 68:2215-29. [PMID: 21560070 PMCID: PMC4073591 DOI: 10.1007/s00018-011-0714-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 12/18/2022]
Abstract
Paneth cells at the base of small intestinal crypts of Lieberkühn secrete high levels of α-defensins in response to cholinergic and microbial stimuli. Paneth cell α-defensins are broad spectrum microbicides that function in the extracellular environment of the intestinal lumen, and they are responsible for the majority of secreted bactericidal peptide activity. Paneth cell α-defensins confer immunity to oral infection by Salmonella enterica serovar Typhimurium, and they are major determinants of the composition of the small intestinal microbiome. In addition to host defense molecules such as α-defensins, lysozyme, and Pla2g2a, Paneth cells also produce and release proinflammatory mediators as components of secretory granules. Disruption of Paneth cell homeostasis, with subsequent induction of endoplasmic reticulum stress, autophagy, or apoptosis, contributes to inflammation in diverse genetic and experimental mouse models.
Collapse
Affiliation(s)
- André Joseph Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of the University of Southern California, USC/Norris Cancer Center, Los Angeles, CA 90089-9601, USA.
| |
Collapse
|
198
|
Nossol C, Diesing AK, Walk N, Faber-Zuschratter H, Hartig R, Post A, Kluess J, Rothkötter HJ, Kahlert S. Air-liquid interface cultures enhance the oxygen supply and trigger the structural and functional differentiation of intestinal porcine epithelial cells (IPEC). Histochem Cell Biol 2011; 136:103-15. [PMID: 21681518 PMCID: PMC3132278 DOI: 10.1007/s00418-011-0826-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2011] [Indexed: 11/30/2022]
Abstract
The specific function of the epithelium as critical barrier between the intestinal lumen and the organism’s internal microenvironment is reflected by permanent maintenance of intercellular junctions and cellular polarity. The intestinal epithelial cells are responsible for absorption of nutritional components, facing mechanical stress and a changing oxygen supplementation via blood stream. Oxygen itself can regulate the barrier and the absorptive function of the epithelium. Therefore, we compared the dish cell culture, the transwell-like membrane culture and the oxygen enriched air–liquid interface (ALI) culture. We demonstrated strong influence of the different culture conditions on morphology and function of intestinal porcine epithelial cell lines in vitro. ALI culture resulted in a significant increase in cell number, epithelial cell layer thickness and expression as well as apical localisation of the microvilli-associated protein villin. Remarkable similarities regarding the morphological parameters were observed between ALI cultures and intestinal epithelial cells in vivo. Furthermore, the functional analysis of protein uptake and degradation by the epithelial cells demonstrated the necessity of sufficient oxygen supply as achieved in ALI cultures. Our study is the first report providing marked evidence that optimised oxygen supply using ALI cultures directly affects the morphological differentiation and functional properties of intestinal epithelial cells in vitro.
Collapse
Affiliation(s)
- Constanze Nossol
- Institute of Anatomy, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Shirazi-Beechey SP, Moran AW, Bravo D, Al-Rammahi M. NONRUMINANT NUTRITION SYMPOSIUM: Intestinal glucose sensing and regulation of glucose absorption: Implications for swine nutrition1. J Anim Sci 2011; 89:1854-62. [DOI: 10.2527/jas.2010-3695] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
200
|
Langeveld D, Jansen M, Brosens L, Morsink F, Offerhaus GJ, de Leng W. Diversity counts. Visualizing pretumor progression in the gastrointestinal tract. Am J Clin Pathol 2011; 135:878-88. [PMID: 21571961 DOI: 10.1309/ajcpp3i5hdywmhja] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor progression is critically dependent on the selection of genetic alterations. This clonal evolution can be traced to the stage preceding visible tumor formation called pretumor progression, in which genetic change occurs without visible change. Recently, the identification of intestinal stem cell markers in animal models has made visualization of stem cells possible in vivo. Translating this work to the clinical setting by visualizing stem cells in patient material may allow us to understand differences in patients' vulnerability to cancer development and target preventive measures to high-risk groups. In this review article, we examine some of the analytic methods currently used in research settings tracing stem cell dynamics.
Collapse
|