151
|
Luby BM, Zheng G. Specific and Direct Amplified Detection of MicroRNA with MicroRNA:Argonaute-2 Cleavage (miRACle) Beacons. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benjamin M. Luby
- Princess Margaret Cancer Centre and Techna Institute; University Health Network; 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre and Techna Institute; University Health Network; 101 College St. Toronto ON Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
152
|
Zhu L, Qing Z, Hou L, Yang S, Zou Z, Cao Z, Yang R. Direct Detection of Nucleic Acid with Minimizing Background and Improving Sensitivity Based on a Conformation-Discriminating Indicator. ACS Sens 2017; 2:1198-1204. [PMID: 28741345 DOI: 10.1021/acssensors.7b00349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As is well-known, the nucleic acid indicator-based strategy is one of the major approaches to monitor the nucleic acid hybridization-mediated recognition events in biochemical analysis, displaying obvious advantages including simplicity, low cost, convenience, and generality. However, conventional indicators either hold strong self-fluorescence or can be lighted by both ssDNA and dsDNA, lacking absolute selectivity for a certain conformation, always with high background interference and low sensitivity in sensing; and additional processing (e.g., nanomaterial-mediated background suppression, and enzyme-catalyzed signal amplification) is generally required to improve the detection performance. In this work, a carbazole derivative, EBCB, has been synthesized and screened as a dsDNA-specific fluorescent indicator. Compared with conventional indicators under the same conditions, EBCB displayed a much higher selective coefficient for dsDNA, with little self-fluorescence and negligible effect from ssDNA. Based on its superior capability in DNA conformation-discrimination, high sensitivity with minimizing background interference was demonstrated for direct detection of nucleic acid, and monitoring nucleic acid-based circuitry with good reversibity, resulting in low detection limit and high capability for discriminating base-mismatching. Thus, we expect that this highly specific DNA conformation-discriminating indicator will hold good potential for application in biochemical sensing and molecular logic switching.
Collapse
Affiliation(s)
- Lixuan Zhu
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, Hunan Provincial Engineering Research Center for
Food Processing of Aquatic Biotic Resources, School of Chemistry and
Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Zhihe Qing
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, Hunan Provincial Engineering Research Center for
Food Processing of Aquatic Biotic Resources, School of Chemistry and
Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University, Changsha 410082, P. R. China
| | - Lina Hou
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, Hunan Provincial Engineering Research Center for
Food Processing of Aquatic Biotic Resources, School of Chemistry and
Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Sheng Yang
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, Hunan Provincial Engineering Research Center for
Food Processing of Aquatic Biotic Resources, School of Chemistry and
Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Zhen Zou
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, Hunan Provincial Engineering Research Center for
Food Processing of Aquatic Biotic Resources, School of Chemistry and
Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Zhong Cao
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, Hunan Provincial Engineering Research Center for
Food Processing of Aquatic Biotic Resources, School of Chemistry and
Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Ronghua Yang
- Hunan
Provincial Key Laboratory of Materials Protection for Electric Power
and Transportation, Hunan Provincial Engineering Research Center for
Food Processing of Aquatic Biotic Resources, School of Chemistry and
Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
153
|
Ma C, Lv X, Wang K, Jin S, Liu H, Wu K, Zeng W. Simple fluorescence-based detection of protein kinase A activity using a molecular beacon probe. Bioengineered 2017; 8:716-722. [PMID: 28594266 DOI: 10.1080/21655979.2017.1338219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Protein kinase A was detected by quantifying the amount of ATP used after a protein kinase reaction. The ATP assay was performed using the T4 DNA ligase and a molecular beacon (MB). In the presence of ATP, DNA ligase catalyzed the ligation of short DNA. The ligation product then hybridized to MB, resulting in a fluorescence enhancement of the MB. This assay was capable of determining protein kinase A in the range of 12.5∼150 nM, with a detection limit of 1.25 nM. Furthermore, this assay could also be used to investigate the effect of genistein on protein kinase A. It was a universal, non-radioisotopic, and homogeneous method for assaying protein kinase A.
Collapse
Affiliation(s)
- Changbei Ma
- a State Key Laboratory of Medical Genetics & School of Life Sciences , Central South University , Changsha , China.,b State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha , China
| | - Xiaoyuan Lv
- b State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha , China
| | - Kemin Wang
- b State Key Laboratory of Chemo/Biosensing and Chemometrics , Hunan University , Changsha , China
| | - Shunxin Jin
- a State Key Laboratory of Medical Genetics & School of Life Sciences , Central South University , Changsha , China
| | - Haisheng Liu
- a State Key Laboratory of Medical Genetics & School of Life Sciences , Central South University , Changsha , China
| | - Kefeng Wu
- a State Key Laboratory of Medical Genetics & School of Life Sciences , Central South University , Changsha , China
| | - Weimin Zeng
- a State Key Laboratory of Medical Genetics & School of Life Sciences , Central South University , Changsha , China
| |
Collapse
|
154
|
Sidhu JS, Singh A, Garg N, Singh N. Carbon Dot Based, Naphthalimide Coupled FRET Pair for Highly Selective Ratiometric Detection of Thioredoxin Reductase and Cancer Screening. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25847-25856. [PMID: 28737377 DOI: 10.1021/acsami.7b07046] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The fluorescence resonance energy transfer (FRET) mechanism has been established between carbon dots (CDs) and naphthalimide to monitor the activity of thioredoxin reductase (TrxR), which is often overexpressed in many cancer cells. The naphthalimide moiety was covalently attached to the surface of CDs through a disulfide linkage. In normal cell conditions (when devoid of high concentrations of TrxR), the CDs act as an energy donor and naphthalimide acts as an acceptor, which establishes the FRET pair as interpreted from the emission at λem = 565 nm, when excited at λex = 360 nm. However, contrary to this, the elevated levels of TrxR cause the breakage of disulfide bonds and consequently abolishes the FRET pair through the release of the naphthalimide moiety from the surface of CDs. This process was studied by monitoring of fluorescence intensity at λem = 565 and 440 nm, when excited at the same wavelength (λex = 360 nm). The TrxR based ratiometric quenching and enhancement of fluorescence intensity offers an interesting opportunity to monitor the enzyme activities and has many advantages over conventional monitoring of fluorescence intensity at a single wavelength to avoid interference of external factors. Fluorescence images of cancer cells in response to the nanosensor were visualized under a confocal microscope. Cytotoxicity study of nanosensor retards the growth of HeLa and MCF-7 cell lines in the presence of visible light. Therefore, the nanosensor also acts as a theranostic agent to diagnose as well as killing of cancer cells.
Collapse
Affiliation(s)
- Jagpreet Singh Sidhu
- Department of Chemistry, Indian Institute of Technology Ropar , Rupnagar, Punjab 140001, India
| | - Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology Mandi , Kamand, Mandi, Himachal Pradesh 175005, India
| | - Neha Garg
- School of Basic Sciences, Indian Institute of Technology Mandi , Kamand, Mandi, Himachal Pradesh 175005, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar , Rupnagar, Punjab 140001, India
| |
Collapse
|
155
|
Yokoyama C, Nakamoto K, Ueno Y. Design and synthesis of novel photoinduced electron transfer-based hybridization probes. Bioorg Med Chem 2017; 25:3574-3582. [DOI: 10.1016/j.bmc.2017.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
|
156
|
Wang S, Xia M, Liu J, Zhang S, Zhang X. Simultaneous Imaging of Three Tumor-Related mRNAs in Living Cells with a DNA Tetrahedron-Based Multicolor Nanoprobe. ACS Sens 2017; 2:735-739. [PMID: 28723114 DOI: 10.1021/acssensors.7b00290] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We constructed a DNA tetrahedron based multicolor nanoprobe, which could simultaneously imaging of three tumor-related mRNAs in living cells through fluorescence restoration caused by competitive chain replacement reaction. The oligonucleotides used to construct the tetrahedron were extended by adding three 21-base recognition sequences modified with different fluorophores (FAM, Cy3, and Cy5) in the 5' end. Three 11-base complementary sequences modified with quencher (BHQ1 for FAM and BHQ2 for Cy3 and Cy5) were hybridized with the recognition sequences to quench the fluorescence. In the presence of the specific mRNA targets, the recognition sequences hybridized with the targets to form longer duplexes and the fluorescence was restored. Compared with previously reported nanoprobes based on DNA tetrahedron, the multicolor nanoprobe can effectively avoid false positive results.
Collapse
Affiliation(s)
- Song Wang
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- National Insititute of Metrology, Beijing 100029, P. R. China
| | - Mengchan Xia
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jie Liu
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Sichun Zhang
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xinrong Zhang
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
157
|
González-Lucas D, Bañuls MJ, García-Rupérez J, Maquieira Á. Covalent attachment of biotinylated molecular beacons via thiol-ene coupling. A study on conformational changes upon hybridization and streptavidin binding. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2310-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
158
|
Astakhova K, Golovin AV, Prokhorenko IA, Ustinov AV, Stepanova IA, Zatsepin TS, Korshun VA. Design of 2′-phenylethynylpyrene excimer forming DNA/RNA probes for homogeneous SNP detection: The attachment manner matters. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.04.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
159
|
Wu JC, Meng QC, Ren HM, Wang HT, Wu J, Wang Q. Recent advances in peptide nucleic acid for cancer bionanotechnology. Acta Pharmacol Sin 2017; 38:798-805. [PMID: 28414202 DOI: 10.1038/aps.2017.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
Abstract
Peptide nucleic acid (PNA) is an oligomer, in which the phosphate backbone has been replaced by a pseudopeptide backbone that is meant to mimic DNA. Peptide nucleic acids are of the utmost importance in the biomedical field because of their ability to hybridize with neutral nucleic acids and their special chemical and biological properties. In recent years, PNAs have emerged in nanobiotechnology for cancer diagnosis and therapy due to their high affinity and sequence selectivity toward corresponding DNA and RNA. In this review, we summarize the recent progresses that have been made in cancer detection and therapy with PNA biotechnology. In addition, we emphasize nanoparticle PNA-based strategies for the efficient delivery of drugs in anticancer therapies.
Collapse
|
160
|
Xia Y, Zhang R, Wang Z, Tian J, Chen X. Recent advances in high-performance fluorescent and bioluminescent RNA imaging probes. Chem Soc Rev 2017; 46:2824-2843. [PMID: 28345687 PMCID: PMC5472208 DOI: 10.1039/c6cs00675b] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA plays an important role in life processes. Imaging of messenger RNAs (mRNAs) and micro-RNAs (miRNAs) not only allows us to learn the formation and transcription of mRNAs and the biogenesis of miRNAs involved in various life processes, but also helps in detecting cancer. High-performance RNA imaging probes greatly expand our view of life processes and enhance the cancer detection accuracy. In this review, we summarize the state-of-the-art high-performance RNA imaging probes, including exogenous probes that can image RNA sequences with special modification and endogeneous probes that can directly image endogenous RNAs without special treatment. For each probe, we review its structure and imaging principle in detail. Finally, we summarize the application of mRNA and miRNA imaging probes in studying life processes as well as in detecting cancer. By correlating the structures and principles of various probes with their practical uses, we compare different RNA imaging probes and offer guidance for better utilization of the current imaging probes and the future design of higher-performance RNA imaging probes.
Collapse
Affiliation(s)
- Yuqiong Xia
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.
| | | | | | | | | |
Collapse
|
161
|
Mohammadi-Kambs M, Hölz K, Somoza MM, Ott A. Hamming Distance as a Concept in DNA Molecular Recognition. ACS OMEGA 2017; 2:1302-1308. [PMID: 28474009 PMCID: PMC5410656 DOI: 10.1021/acsomega.7b00053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
DNA microarrays constitute an in vitro example system of a highly crowded molecular recognition environment. Although they are widely applied in many biological applications, some of the basic mechanisms of the hybridization processes of DNA remain poorly understood. On a microarray, cross-hybridization arises from similarities of sequences that may introduce errors during the transmission of information. Experimentally, we determine an appropriate distance, called minimum Hamming distance, in which the sequences of a set differ. By applying an algorithm based on a graph-theoretical method, we find large orthogonal sets of sequences that are sufficiently different not to exhibit any cross-hybridization. To create such a set, we first derive an analytical solution for the number of sequences that include at least four guanines in a row for a given sequence length and eliminate them from the list of candidate sequences. We experimentally confirm the orthogonality of the largest possible set with a size of 23 for the length of 7. We anticipate our work to be a starting point toward the study of signal propagation in highly competitive environments, besides its obvious application in DNA high throughput experiments.
Collapse
Affiliation(s)
- Mina Mohammadi-Kambs
- Biological
Experimental Physics, Saarland University, Campus B2.1, 66123 Saarbrücken, Germany
| | - Kathrin Hölz
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| | - Mark M. Somoza
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| | - Albrecht Ott
- Biological
Experimental Physics, Saarland University, Campus B2.1, 66123 Saarbrücken, Germany
| |
Collapse
|
162
|
Cheng C, Oueslati R, Wu J, Chen J, Eda S. Capacitive DNA sensor for rapid and sensitive detection of whole genome human herpesvirus-1 dsDNA in serum. Electrophoresis 2017; 38:1617-1623. [DOI: 10.1002/elps.201700043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/08/2017] [Accepted: 03/16/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Cheng Cheng
- Department of Electrical Engineering and Computer Science; The University of Tennessee; Knoxville TN USA
| | - Rania Oueslati
- Department of Electrical Engineering and Computer Science; The University of Tennessee; Knoxville TN USA
| | - Jayne Wu
- Department of Electrical Engineering and Computer Science; The University of Tennessee; Knoxville TN USA
| | - Jiangang Chen
- Department of Public Health; The University of Tennessee; Knoxville TN USA
| | - Shigetoshi Eda
- Department of Forestry, Wildlife and Fisheries; The University of Tennessee Institute of Agriculture; Knoxville TN USA
| |
Collapse
|
163
|
Li C, Tao Y, Yang Y, Xiang Y, Li G. In Vitro Analysis of DNA–Protein Interactions in Gene Transcription Using DNAzyme-Based Electrochemical Assay. Anal Chem 2017; 89:5003-5007. [DOI: 10.1021/acs.analchem.7b00329] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Chao Li
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Yaqin Tao
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Yi Yang
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Yang Xiang
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Genxi Li
- State
Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation
Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, People’s Republic of China
- Center
for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| |
Collapse
|
164
|
Luo L, Xu F, Shi H, He X, Qing T, Lei Y, Tang J, He D, Wang K. Label-free and sensitive assay for deoxyribonuclease I activity based on enzymatically-polymerized superlong poly(thymine)-hosted fluorescent copper nanoparticles. Talanta 2017; 169:57-63. [PMID: 28411822 DOI: 10.1016/j.talanta.2017.03.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/02/2017] [Accepted: 03/16/2017] [Indexed: 02/01/2023]
Abstract
Deoxyribonuclease I (DNase I) is an important physiological indicator and diagnostic biomarker, but traditional methods for assessing its activity are time-consuming, laborious, and usually radioactive. Herein, by effectively combining the special functions of DNase I and terminal deoxynucleotidyl transferase (TdT), a simple, green, cost-effective, label-free and ultrasensitive assay for DNase I activity has been constructed based on superlong poly(thymine)-hosted copper nanoparticles (poly T-CuNPs). In this strategy, a 3'-phosphorylated DNA primer is designed to block TdT polymerization. After addition of DNase I, the primer could be digested to release 3'-hydroxylated fragments, which could further be tailed by TdT in dTTP pool with superlong poly T ssDNA for CuNPs formation. Fluorescence measurements and gel electrophoresis demonstrated its feasibility for DNase I analysis. The results indicated that with a size of 3-4nm, the CuNPs templated by TdT-polymerized superlong poly T (>500 mer) had several advantages such as short synthetic time (<5min), large Stokes shift (~275nm) and intense red fluorescence emission. Under the optimal conditions, quantitative detection of DNase I was realized, showing a good linear correlation between 0.02 and 2.0U/mL (R2=0.9928) and a detection limit of 0.02U/mL. By selecting six other nucleases or proteins as controls, an excellent specificity was also verified. Then, the strategy was successfully applied to detect DNase I in diluted serum with a standard addition method, thus implying its reliability and practicability for biological samples. The proposed strategy might be promising as a sensing platform for related molecular biology and disease studies.
Collapse
Affiliation(s)
- Lan Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Fengzhou Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China.
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Taiping Qing
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China.
| |
Collapse
|
165
|
Li Y, Zou X, Ma F, Tang B, Zhang CY. Development of fluorescent methods for DNA methyltransferase assay. Methods Appl Fluoresc 2017; 5:012002. [DOI: 10.1088/2050-6120/aa6127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
166
|
Zhang Y, Ai J, Gu Q, Gao Q, Qi H, Zhang C. Determination of mutated genes in the presence of wild-type DNA by using molecular beacons as probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:286-290. [PMID: 27960142 DOI: 10.1016/j.saa.2016.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
Low-abundance mutations in the presence of wild-type DNA can be determined using molecular beacon (MB) as probe. A MB is generally used as DNA probe because it can distinguish single-base mismatched target DNA from fully matched target DNA. However, the probe can not determine low-abundance mutations in the presence of wild-type DNA. In this study, this limitation is addressed by enhancing the stability of unpaired base-containing dsDNA with a hydrogen-bonding ligand, which was added after hybridization of the MB to the target DNA. The ligand formed hydrogen bonds with unpaired bases and stabilized the unpaired base-containing dsDNA if target DNA is mutated one. As a result, more MBs were opened by the mutant genes in the presence of the ligand and a further increase in the fluorescence intensity was obtained. By contrast, fluorescence intensity did not change if target DNA is wild-type one. Consequent increase in the fluorescence intensity of the MB was regarded as a signal derived from mutant genes. The proposed method was applied in synthetic template systems to determine point mutation in DNA obtained from PCR analysis. The method also allows rapid and simple discrimination of a signal if it is originated in the presence of mutant gene or alternatively by a lower concentration of wild gene.
Collapse
Affiliation(s)
- Yonghua Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China; School of Chemistry and Chemical Engineer, Luoyang Normal University, Luoyang 471022, China
| | - Junjie Ai
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Qiaorong Gu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
167
|
Hu R, Wang G, Yuan R, Xu Y, Yu T, Zhong L, Zhou Q, Ding S. An electrochemical biosensor for highly sensitive detection of microRNA-377 based on strand displacement amplification coupled with three-way junction. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.02.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
168
|
Zhou Y, Liu Q, Sun X, Kong R. Fe-nitrilotriacetic acid coordination polymer nanowires: an effective sensing platform for fluorescence-enhanced nucleic acid detection. NANOTECHNOLOGY 2017; 28:075101. [PMID: 28081003 DOI: 10.1088/1361-6528/aa537f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The determination of specific nucleic acid sequences is key in identifying disease-causing pathogens and genetic diseases. In this paper we report the utilization of Fe-nitrilotriacetic acid coordination polymer nanowires as an effective nanoquencher for fluorescence-enhanced nucleic acid detection. The detection is fast and the whole process can be completed within 15 min. This nanosensor shows a low detection limit of 0.2 nM with selectivity down to single-base mismatch. This work provides us with an attractive sensing platform for applications.
Collapse
Affiliation(s)
- Yunchun Zhou
- National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, People's Republic of China
| | | | | | | |
Collapse
|
169
|
Liu J, Lu Y, Feng L, Wang S, Zhang S, Zhu X, Sheng L, Zhang S, Zhang X. Pinpoint the Positions of Single Nucleotide Polymorphisms by a Nanocluster Dimer. Anal Chem 2017; 89:2622-2627. [DOI: 10.1021/acs.analchem.6b04981] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Yuexiang Lu
- Institute
of Nuclear and New Energy Technology, Collaborative Innovation Center
of Advanced Nuclear Energy Technology, Beijing Key Lab of Radioactive
Waste Treatment, Tsinghua University, Beijing 100084, P. R. China
| | - Lu Feng
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Song Wang
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Shixi Zhang
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Xuewei Zhu
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Linfeng Sheng
- State
Key Laboratory of Analytical Chemistry for Life Science, Collaborative
Innovation Center of Chemistry for Life Sciences, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Sichun Zhang
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Xinrong Zhang
- Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
170
|
Cui Y, Niu C, Na N, Ouyang J. Core–shell gold nanocubes for point mutation detection based on plasmon-enhanced fluorescence. J Mater Chem B 2017; 5:5329-5335. [DOI: 10.1039/c7tb01084b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A core–shell gold nanocube has been prepared for point mutation detection based on the PEF process.
Collapse
Affiliation(s)
- Yanyun Cui
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Caixia Niu
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| |
Collapse
|
171
|
Babaei M, Jalalian SH, Bakhtiari H, Ramezani M, Abnous K, Taghdisi SM. Aptamer-Based Fluorescent Switch for Sensitive Detection of Oxytetracycline. Aust J Chem 2017. [DOI: 10.1071/ch16562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxytetracycline (OTC) is one of the most used antibiotics in veterinary medicine. There is a large concern about developing antibiotic resistance in humans as a result of the consumption of products contaminated with OTC, so a fast detection technique for an on-field screening test is highly in demand. Here we introduce a novel aptasensor for fast detection of OTC, based on a triple helix molecular switch (THMS) complex formation. The limit of detection (LOD) of this sensor was 1.67 and 6.44 nM in phosphate buffer and milk samples, respectively. Moreover, the sensor showed a high selectivity towards OTC.
Collapse
|
172
|
Ravasco JMJM, Monteiro CM, Trindade AF. Cyclopropenes: a new tool for the study of biological systems. Org Chem Front 2017. [DOI: 10.1039/c7qo00054e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclopropenes have become an important mini-tag tool in chemical biology, participating in fast inverse electron demand Diels–Alder and photoclick reactions in biological settings.
Collapse
Affiliation(s)
- João M. J. M. Ravasco
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Carlos M. Monteiro
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| | - Alexandre F. Trindade
- Instituto de Investigação do Medicamento (iMed.ULisboa)
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-003 Lisboa
- Portugal
| |
Collapse
|
173
|
Zhou W, Dong S. A new AgNC fluorescence regulation mechanism caused by coiled DNA and its applications in constructing molecular beacons with low background and large signal enhancement. Chem Commun (Camb) 2017; 53:12290-12293. [DOI: 10.1039/c7cc06872g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A AgNC fluorescence interference strategy caused by a coiled DNA sequence (A) and its applications in target DNA detection (B).
Collapse
Affiliation(s)
- Weijun Zhou
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
174
|
Farzan VM, Markelov ML, Skoblov AY, Shipulin GA, Zatsepin TS. Specificity of SNP detection with molecular beacons is improved by stem and loop separation with spacers. Analyst 2017; 142:945-950. [DOI: 10.1039/c6an02441f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dissection of stem and loop regions in molecular beacons by nucleotide or non-nucleotide linkers minimizes nonspecific recognition in SNP discrimination.
Collapse
Affiliation(s)
- Valentina M. Farzan
- Skolkovo Institute of Science and Technology
- 3 Nobel Street
- Innovation Center “Skolkovo”
- 143026 Skolkovo
- Russia
| | | | | | | | - Timofei S. Zatsepin
- Skolkovo Institute of Science and Technology
- 3 Nobel Street
- Innovation Center “Skolkovo”
- 143026 Skolkovo
- Russia
| |
Collapse
|
175
|
Yuan Y, Yan XS, Li XR, Cao JL, Li Z, Jiang YB. Folded short azapeptide for conformation switching-based fluorescence sensing. Chem Commun (Camb) 2017; 53:13137-13140. [DOI: 10.1039/c7cc06915d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dipeptide-based amidothiourea (azapeptides) bearing folded β-turn structures were employed to build beacon-like fluorescent sensors signalled by pyrene exciplex or excimer dual emission to allow highly sensitive ratiometric fluorescence sensing of an anion able to bind to the structural moiety placed within the turn structure.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation and iChEM
- Xiamen University
- Xiamen 361005
| | - Xiao-Sheng Yan
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation and iChEM
- Xiamen University
- Xiamen 361005
| | - Xiao-Rui Li
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation and iChEM
- Xiamen University
- Xiamen 361005
| | - Jin-Lian Cao
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation and iChEM
- Xiamen University
- Xiamen 361005
| | - Zhao Li
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation and iChEM
- Xiamen University
- Xiamen 361005
| | - Yun-Bao Jiang
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation and iChEM
- Xiamen University
- Xiamen 361005
| |
Collapse
|
176
|
Li RS, Yuan B, Liu JH, Liu ML, Gao PF, Li YF, Li M, Huang CZ. Boron and nitrogen co-doped single-layered graphene quantum dots: a high-affinity platform for visualizing the dynamic invasion of HIV DNA into living cells through fluorescence resonance energy transfer. J Mater Chem B 2017; 5:8719-8724. [DOI: 10.1039/c7tb02356a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
B and N co-doped graphene quantum dots could act as an effective donor in the process of FRET for visualizing the dynamic invasion of HIV DNA into cells.
Collapse
Affiliation(s)
- Rong Sheng Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
| | - Binfang Yuan
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
- Department of Chemistry and Chemical Engineering
| | - Jia Hui Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
| | - Meng Li Liu
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Peng Fei Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
| | - Yuan Fang Li
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- Chongqing 400715
| |
Collapse
|
177
|
Liu G, Li J, Feng DQ, Zhu JJ, Wang W. Silver Nanoclusters Beacon as Stimuli-Responsive Versatile Platform for Multiplex DNAs Detection and Aptamer-Substrate Complexes Sensing. Anal Chem 2016; 89:1002-1008. [PMID: 28105835 DOI: 10.1021/acs.analchem.6b04362] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An activatable silver nanoclusters beacon (ASNCB) was synthesized through a facile one-pot approach and applied for multiplex DNAs, small molecule, and protein sensing. Multifunctional single-stranded DNA sequences are rationally designed and used for ASNCB in situ synthesis. Via target-responsive structure transformation of ASNCB, target recognition induced ASNCB conformational transition and lit up the fluorescent signal of silver nanoclusters. By further implementing two different color ASNCBs (520 and 600 nm), the parallel multiplexed analysis of two target genes (Influenza A virus genes H1N1 and H5N1) is achieved. Additionally, with the introduction of aptamer for the design of the molecular beacon, the detections of small molecule adenosine triphosphate (ATP) and biomacromolecule thrombin have also been realized. This is the first time that an activatable fluorescent silver nanoclusters (Ag NCs)-based probe and the target recognition have been integrated into a single process, which provides a versatile platform for different analytes in a facile way. The successful application of our proposed ASNCB in real sample analysis and ATP imaging in living cells further displayed its promising potential for fluorescence sensing.
Collapse
Affiliation(s)
- Guoliang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210093, China.,School of Chemistry and Chemical Engineering, Yancheng Institute of Technology , Yancheng, Jiangsu 224051, China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University , Xuzhou, Jiangsu, China
| | - Da-Qian Feng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology , Yancheng, Jiangsu 224051, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology , Yancheng, Jiangsu 224051, China
| |
Collapse
|
178
|
Fang GM, Seitz O. Bivalent Display of Dicysteine on Peptide Nucleic Acids for Homogenous DNA/RNA Detection through in Situ Fluorescence Labelling. Chembiochem 2016; 18:189-194. [PMID: 27883258 DOI: 10.1002/cbic.201600623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 01/06/2023]
Abstract
Fluorogenic probes that signal the presence of specific DNA or RNA sequences are key enabling tools for molecular disease diagnosis and imaging studies. Usually, at least one fluorophore is attached through covalent bonding to an oligonucleotide probe. However, the additional conjugation step increases costs. Here we introduce a method that avoids the requirement for the preparation of fluorescence-labelled oligonucleotides and provides the opportunity to alter the fluorogenic reporter dye without resynthesis. The method is based on adjacent hybridization of two dicysteine-containing peptide nucleic acid (PNA) probes to form a bipartite tetracysteine motif that binds profluorescent bisarsenical dyes such as FIAsH, ReAsH or CrAsH. Binding is accompanied by strong increases in fluorescence emission (with response factors of up to 80-fold and high brightness up to 50 mL mol-1 cm-1 ). The detection system provides sub-nanomolar limits of detection and allows discrimination of single nucleotide variations through more than 20-fold changes in fluorescence intensity. To demonstrate its usefulness, the FIAsH-based readout of the bivalent CysCys-PNA display was interfaced with a rolling-circle amplification (RCA) assay used to detect disease-associated microRNA let-7a.
Collapse
Affiliation(s)
- Ge-Min Fang
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
179
|
Yan L, Hui J, Liu Y, Guo Y, Liu L, Ding L, Ju H. A cascade amplification approach for visualization of telomerase activity in living cells. Biosens Bioelectron 2016; 86:1017-1023. [DOI: 10.1016/j.bios.2016.07.102] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022]
|
180
|
Duan R, Lou X, Xia F. The development of nanostructure assisted isothermal amplification in biosensors. Chem Soc Rev 2016; 45:1738-49. [PMID: 26812957 DOI: 10.1039/c5cs00819k] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Developing simple and inexpensive methods to ultrasensitively detect biomarkers is important for medical diagnosis, food analysis and environmental security. In recent years, isothermal amplifications with sensitivity, high speed, specificity, accuracy, and automation have been designed based on interdisciplinary approaches among chemistry, biology, and materials science. In this article, we summarize the advances in nanostructure assisted isothermal amplification in the past two decades for the detection of commercial biomarkers, or biomarkers extracted from cultured cells or patient samples. This article has been divided into three parts according to the ratio of target-to-signal probe in the detection strategy, namely, the N : N amplification ratio, the 1 : N amplification ratio, and the 1 : N(2) amplification ratio.
Collapse
Affiliation(s)
- Ruixue Duan
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Xiaoding Lou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| |
Collapse
|
181
|
Wang L, Ma R, Jiang L, Jia L, Jia W, Wang H. A novel "signal-on/off" sensing platform for selective detection of thrombin based on target-induced ratiometric electrochemical biosensing and bio-bar-coded nanoprobe amplification strategy. Biosens Bioelectron 2016; 92:390-395. [PMID: 27836592 DOI: 10.1016/j.bios.2016.10.089] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
A novel dual-signal ratiometric electrochemical aptasensor for highly sensitive and selective detection of thrombin has been designed on the basis of signal-on and signal-off strategy. Ferrocene labeled hairpin probe (Fc-HP), thrombin aptamer and methyl blue labeled bio-bar-coded AuNPs (MB-P3-AuNPs) were rationally introduced for the construction of the assay platform, which combined the advantages of the recognition of aptamer, the amplification of bio-bar-coded nanoprobe, and the ratiometric signaling readout. In the presence of thrombin, the interaction between thrombin and the aptamer leads to the departure of MB-P3-AuNPs from the sensing interface, and the conformation of the single stranded Fc-HP to a hairpin structure to take the Fc confined near the electrode surface. Such conformational changes resulted in the oxidation current of Fc increased and that of MB decreased. Therefore, the recognition event of the target can be dual-signal ratiometric electrochemical readout in both the "signal-off" of MB and the "signal-on" of Fc. The proposed strategy showed a wide linear detection range from 0.003 to 30nM with a detection limit of 1.1 pM. Moreover, it exhibits good performance of excellent selectivity, good stability, and acceptable fabrication reproducibility. By changing the recognition probe, this protocol could be easily expanded into the detection of other targets, showing promising potential applications in disease diagnostics and bioanalysis.
Collapse
Affiliation(s)
- Lanlan Wang
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, PR China
| | - Rongna Ma
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, PR China.
| | - Liushan Jiang
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, PR China
| | - Liping Jia
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, PR China
| | - Wenli Jia
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, PR China
| | - Huaisheng Wang
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, PR China.
| |
Collapse
|
182
|
Molecular beacons with JOE dye: Influence of linker and 3′ couple quencher. Mol Cell Probes 2016; 30:285-290. [DOI: 10.1016/j.mcp.2016.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 11/23/2022]
|
183
|
Li J, Zhu Z, Liu F, Zhu B, Ma Y, Yan J, Lin B, Ke G, Liu R, Zhou L, Tu S, Yang C. DNA-Mediated Morphological Control of Silver Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5449-5487. [PMID: 27551864 DOI: 10.1002/smll.201601338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/16/2016] [Indexed: 06/06/2023]
Abstract
It is demonstrated that DNA can be used to control the synthesis of silver nanoplates with different morphologies using spherical silver seeds. UV-vis spectroscopy, transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy are used to characterize the synthesized nanoparticles. Silver nanoprisms are encoded by poly C and poly G, while silver flower bouquets and silver nanodiscs are synthesized using poly A and poly T, respectively. The length of DNA is found to have little effect on the morphology of silver nanoparticles. Moreover, the synthesized silver nanoplates are found to have high surface enhanced Raman scattering enhancement ability, good antibacterial activity, and good biocompatibility. These discoveries will broaden the application of DNA in nanoscience and will provide a new platform to investigate the interaction between DNA sequences and silver nanoparticles.
Collapse
Affiliation(s)
- Jiuxing Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Fang Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bingqing Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanli Ma
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jinmao Yan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bingqian Lin
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guoliang Ke
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Rudi Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Leiji Zhou
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Song Tu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Engineering, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
184
|
Lin JH, Tseng WB, Lin KC, Lee CY, Chandirasekar S, Tseng WL, Hsieh MM. Oligonucleotide-Based Fluorescent Probe for Sensing of Cyclic Diadenylate Monophosphate in Bacteria and Diadenosine Polyphosphates in Human Tears. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jia-Hui Lin
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung City, Taiwan 804
| | - Wei-Bin Tseng
- Department
of Chemistry, National Kaohsiung Normal University, Kaohsiung City, Taiwan 802
| | - Kai-Cheng Lin
- Department
of Orthopaedics, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan 813
| | - Chih-Yi Lee
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung City, Taiwan 804
| | | | - Wei-Lung Tseng
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung City, Taiwan 804
- School
of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan 807
| | - Ming-Mu Hsieh
- Department
of Chemistry, National Kaohsiung Normal University, Kaohsiung City, Taiwan 802
| |
Collapse
|
185
|
Del Bonis-O'Donnell JT, Vong D, Pennathur S, Fygenson DK. A universal design for a DNA probe providing ratiometric fluorescence detection by generation of silver nanoclusters. NANOSCALE 2016; 8:14489-96. [PMID: 27406901 DOI: 10.1039/c6nr03827a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
DNA-stabilized silver nanoclusters (AgNCs), the fluorescence emission of which can rival that of typical organic fluorophores, have made possible a new class of label-free molecular beacons for the detection of single-stranded DNA. Like fluorophore-quencher molecular beacons (FQ-MBs) AgNC-based molecular beacons (AgNC-MBs) are based on a single-stranded DNA that undergoes a conformational change upon binding a target sequence. The new conformation exposes a stretch of single-stranded DNA capable of hosting a fluorescent AgNC upon reduction in the presence of Ag(+) ions. The utility of AgNC-MBs has been limited, however, because changing the target binding sequence unpredictably alters cluster fluorescence. Here we show that the original AgNC-MB design depends on bases in the target-binding (loop) domain to stabilize its AgNC. We then rationally alter the design to overcome this limitation. By separating and lengthening the AgNC-stabilizing domain, we create an AgNC-hairpin probe with consistent performance for arbitrary target sequence. This new design supports ratiometric fluorescence measurements of DNA target concentration, thereby providing a more sensitive, responsive and stable signal compared to turn-on AgNC probes. Using the new design, we demonstrate AgNC-MBs with nanomolar sensitivity and singe-nucleotide specificity, expanding the breadth of applicability of these cost-effective probes for biomolecular detection.
Collapse
|
186
|
Zhou W, Ding J, Liu J. 2-Aminopurine-modified DNA homopolymers for robust and sensitive detection of mercury and silver. Biosens Bioelectron 2016; 87:171-177. [PMID: 27551997 DOI: 10.1016/j.bios.2016.08.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 01/11/2023]
Abstract
Heavy metal detection is a key topic in analytical chemistry. DNA-based metal recognition has advanced significantly producing many specific metal ligands, such as thymine for Hg2+ and cytosine for Ag+. For practical applications, however, robust sensors that can work in a diverse range of salt concentrations need to be developed, while most current sensing strategies cannot meet this requirement. In this work, 2-aminopurine (2AP) is used as a fluorescence label embedded in the middle of four 10-mer DNA homopolymers. 2AP can be quenched up to 98% in these DNA without an external quencher. The interaction between 2AP and all common metal ions is studied systematically for both free 2AP base and 2AP embedded DNA homopolymers. With such low background, Hg2+ induces up to 14-fold signal enhancement for the poly-T DNA, and Ag+ enhances up to 10-fold for the poly-C DNA. A detection limit of 3nM is achieved for both metals. With these four probes, silver and mercury can be readily discriminated from the rest. A comparison with other signaling methods was made using fluorescence resonance energy transfer, graphene oxide, and SYBR Green I staining, respectively, confirming the robustness of the 2AP label. Detection of Hg2+ in Lake Huron water was also achieved with a similar sensitivity. This work has provided a comprehensive fundamental understanding of using 2AP as a label for metal detection, and has achieved the highest fluorescence enhancement for non-protein targets.
Collapse
Affiliation(s)
- Wenhu Zhou
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013 China; Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1 Canada
| | - Jinsong Ding
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013 China
| | - Juewen Liu
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013 China; Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1 Canada.
| |
Collapse
|
187
|
Fluorescent Oligonucleotides Containing a 2-Ethynylfluorene- or 2-Ethynylfluorenone-labeled 2′-Deoxyguanosine Unit: Fluorescence Changes upon Duplex Formation. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
188
|
Kikuchi N, Kolpashchikov DM. Split Spinach Aptamer for Highly Selective Recognition of DNA and RNA at Ambient Temperatures. Chembiochem 2016; 17:1589-92. [PMID: 27305425 DOI: 10.1002/cbic.201600323] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 12/25/2022]
Abstract
Split spinach aptamer (SSA) probes for fluorescent analysis of nucleic acids were designed and tested. In SSA design, two RNA or RNA/DNA strands hybridized to a specific nucleic acid analyte and formed a binding site for low-fluorescent 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) dye, which resulted in up to a 270-fold increase in fluorescence. The major advantage of the SSA over state-of-the art fluorescent probes is high selectivity: it produces only background fluorescence in the presence of a single-base-mismatched analyte, even at room temperature. SSA is therefore a promising tool for label-free analysis of nucleic acids at ambient temperatures.
Collapse
Affiliation(s)
- Nanami Kikuchi
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA.
| |
Collapse
|
189
|
Park KS, Lee CY, Kang KS, Park HG. Aptamer-mediated universal enzyme assay based on target-triggered DNA polymerase activity. Biosens Bioelectron 2016; 88:48-54. [PMID: 27499380 DOI: 10.1016/j.bios.2016.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 11/18/2022]
Abstract
We herein describe an innovative method for a universal fluorescence turn-on enzyme assay, which relies on the target enzyme-triggered DNA polymerase activity. In the first target recognition step, the target enzyme is designed to destabilize detection probe derived from an aptamer specific to DNA polymerase containing the overhang sequence and the complementary blocker DNA, which consequently leads to the recovery of DNA polymerase activity inhibited by the detection probe. This target-triggered polymerase activity is monitored in the second signal transduction step based on primer extension reaction coupled with TaqMan probe. Utilizing this design principle, we have successfully detected the activities of two model enzymes, exonuclease I and uracil DNA glycosylase with high sensitivity and selectivity. Since this strategy is composed of separated target recognition and signal transduction modules, it could be universally employed for the sensitive determination of numerous different target enzymes by simply redesigning the overhang sequence of detection probe, while keeping TaqMan probe-based signal transduction module as a universal signaling tool.
Collapse
Affiliation(s)
- Ki Soo Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea
| | - Kyoung Suk Kang
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea.
| |
Collapse
|
190
|
Xu Y, Li D, Cheng W, Hu R, Sang Y, Yin Y, Ding S, Ju H. Chemiluminescence imaging for microRNA detection based on cascade exponential isothermal amplification machinery. Anal Chim Acta 2016; 936:229-35. [PMID: 27566360 DOI: 10.1016/j.aca.2016.07.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/29/2016] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Abstract
A novel G-quadruplex DNAzyme-driven chemiluminescence (CL) imaging method was developed for ultrasensitive and specific detection of miRNA based on the cascade exponential isothermal amplification reaction (EXPAR) machinery. A structurally tailored hairpin probe switch was designed to selectively recognise miRNA and form hybridisation products to trigger polymerase and nicking enzyme machinery, resulting in the generation of product I, which was complementary to a region of the functional linear template. Then, the response of the functional linear template to the generated product I further activated the exponential isothermal amplification machinery, leading to synthesis of numerous horseradish peroxidase mimicking DNAzyme units for CL signal transduction. The amplification paradigm generated a linear response from 10 fM to 100 pM, with a low detection limit of 2.91 fM, and enabled discrimination of target miRNA from a single-base mismatched target. The developed biosensing platform demonstrated the advantages of isothermal, homogeneous, visual detection for miRNA assays, offering a promising tool for clinical diagnosis.
Collapse
Affiliation(s)
- Yongjie Xu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Dandan Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rong Hu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ye Sang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yibing Yin
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Huangxian Ju
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
191
|
Liu X, Li Y, Liang J, Zhu W, Xu J, Su R, Yuan L, Sun C. Aptamer contained triple-helix molecular switch for rapid fluorescent sensing of acetamiprid. Talanta 2016; 160:99-105. [PMID: 27591592 DOI: 10.1016/j.talanta.2016.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/26/2016] [Accepted: 07/03/2016] [Indexed: 02/02/2023]
Abstract
In this study, an aptamer-based fluorescent sensing platform using triple-helix molecular switch (THMS) was developed for the pesticide screening represented by acetamiprid. The THMS was composed of two tailored DNA probes: a label-free central target specific aptamer sequence flanked by two arm segments acting as a recognition probe; a hairpin-shaped structure oligonucleotide serving as a signal transduction probe (STP), labeled with a fluorophore and a quencher at the 3' and 5'-end, respectively. In the absence of acetamiprid, complementary bindings of two arm segments of the aptamers with the loop sequence of STP enforce the formation of THMS with the "open" configuration of STP, and the fluorescence of THMS is on. In the presence of target acetamiprid, the aptamer-target binding results in the formation of a structured aptamer/target complex, which disassembles the THMS and releases the STP. The free STP is folded to a stem loop structure, and the fluorescence is quenched. The quenched fluorescence intensity was proportional to the concentration of acetamiprid in the range from 100 to 1200nM, with the limit of detection (LOD) as low as 9.12nM. In addition, this THMS-based method has been successfully used to test and quantify acetamiprid in Chinese cabbage with satisfactory recoveries, and the results were in full agreement with those from LC-MS. The aptamer-based THMS presents distinct advantages, including high stability, remarkable sensitivity, and preservation of the affinity and specificity of the original aptamer. Most importantly, this strategy is convenient and generalizable by virtue of altering the aptamer sequence without changing the triple-helix structure. So, it is expected that this aptamer-based fluorescent assay could be extensively applied in the field of food safety inspection.
Collapse
Affiliation(s)
- Xin Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jing Liang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Wenyue Zhu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingyue Xu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Lei Yuan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
192
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
193
|
Kumar Verma R, Takei F, Nakatani K. Synthesis and Photophysical Properties of Fluorescence Molecular Probe for Turn-ON-Type Detection of Cytosine Bulge DNA. Org Lett 2016; 18:3170-3. [DOI: 10.1021/acs.orglett.6b01378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rajiv Kumar Verma
- Department
of Regulatory Bioorganic Chemistry, The Institute of Scientific and
Industrial Research, Osaka University, Mihogaoka, 8-1,
Ibaraki, Osaka 567-0047, Japan
| | - Fumie Takei
- National Defense Medical College, Namiki, 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Kazuhiko Nakatani
- Department
of Regulatory Bioorganic Chemistry, The Institute of Scientific and
Industrial Research, Osaka University, Mihogaoka, 8-1,
Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
194
|
Programmable DNA Nanosystem for Molecular Interrogation. Sci Rep 2016; 6:27413. [PMID: 27270162 PMCID: PMC4895238 DOI: 10.1038/srep27413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 05/18/2016] [Indexed: 12/17/2022] Open
Abstract
We describe a self-assembling DNA-based nanosystem for interrogating molecular interactions. The nanosystem contains a rigid supporting dumbbell-shaped frame, a cylindrical central core, and a mobile ring that is coaxial with the core. Motion of the ring is influenced by several control elements whose force-generating capability is based on the transition of single-stranded DNA to double-stranded DNA. These forces can be directed to act in opposition to adhesive forces between the ring and the frame thereby providing a mechanism for molecular detection and interrogation at the ring-frame interface. As proof of principle we use this system to evaluate base stacking adhesion and demonstrate detection of a soluble nucleic acid viral genome mimic.
Collapse
|
195
|
Zhou X, Liang Y, Xu Y, Lin X, Chen J, Ma Y, Zhang L, Chen D, Song F, Dai Z, Zou X. Triple cascade reactions: An ultrasensitive and specific single tube strategy enabling isothermal analysis of microRNA at sub-attomole level. Biosens Bioelectron 2016; 80:378-384. [DOI: 10.1016/j.bios.2016.01.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 01/04/2023]
|
196
|
Sobolewski P, Piwowarczyk M, Fray ME. Polymer-Graphene Nanocomposite Materials for Electrochemical Biosensing. Macromol Biosci 2016; 16:944-57. [PMID: 27188816 DOI: 10.1002/mabi.201600081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/19/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Peter Sobolewski
- Division of Biomaterials and Microbiological Technologies; Polymer Institute; West Pomeranian University of Technology; Szczecin, 45 Piastów Ave 70-311 Szczecin Poland
| | - Magdalena Piwowarczyk
- Division of Biomaterials and Microbiological Technologies; Polymer Institute; West Pomeranian University of Technology; Szczecin, 45 Piastów Ave 70-311 Szczecin Poland
| | - Mirosława El Fray
- Division of Biomaterials and Microbiological Technologies; Polymer Institute; West Pomeranian University of Technology; Szczecin, 45 Piastów Ave 70-311 Szczecin Poland
| |
Collapse
|
197
|
Huang J, Wu J, Li Z. Molecular beacon-based enzyme-free strategy for amplified DNA detection. Biosens Bioelectron 2016; 79:758-62. [DOI: 10.1016/j.bios.2016.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/29/2015] [Accepted: 01/05/2016] [Indexed: 12/18/2022]
|
198
|
Bohländer PR, Abba ML, Bestvater F, Allgayer H, Wagenknecht HA. Two wavelength-shifting molecular beacons for simultaneous and selective imaging of vesicular miRNA-21 and miRNA-31 in living cancer cells. Org Biomol Chem 2016; 14:5001-6. [PMID: 27114268 DOI: 10.1039/c6ob00691d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two molecular beacons were designed as complementary fluorescent imaging probes for miRNA-21 and miRNA-31. Both beacons were prepared by a combination of solid-phase protocol and Cu(i)-catalyzed cycloaddition chemistry. The four photostable and bright fluorophores were attached to 2'-positions in the stem part of the two beacons. One beacon was labeled by a green-to-red emitting and the other by a blue-to-yellow emitting energy transfer pair. This two by two combination yields the four color emission readout. In vitro experiments demonstrate rapid and highly selective opening of both molecular beacons upon addition of the complementary target RNA and excellent green : red and blue : yellow emission color contrasts. Confocal microscopy of selected cancer cell lines provides evidence that a four color imaging of versicular miRNA-21 and miRNA-31 can be achieved both selectively and simultaneously upon transfection by the beacons, and that the fluorescent readouts track well with miRNA levels determined by PCR.
Collapse
Affiliation(s)
- Peggy R Bohländer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | | | | | | | | |
Collapse
|
199
|
Increased electrocatalyzed performance through hairpin oligonucleotide aptamer-functionalized gold nanorods labels and graphene-streptavidin nanomatrix: Highly selective and sensitive electrochemical biosensor of carcinoembryonic antigen. Biosens Bioelectron 2016; 83:142-8. [PMID: 27111123 DOI: 10.1016/j.bios.2016.04.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 11/22/2022]
Abstract
We report a triplex signal amplification strategy for sensitive biosensing of cancer biomarker by taking advantage of hairpin-shaped oligonucleotide-functionalized gold nanorods (HO-GNRs), graphene and the avidin-biotin reation. The strategy expands electrochemical detection of carcinoembryonic antigen (CEA) by using an aptamer as biosensor's recognition element and HO-GNRs as signal enhancer. To construct this biosensor, the GNR was used as a carrier of horseradish peroxidase (HRP) and HO aptamer with a biotin at the 3'-end and a thiol at the 5'-end, which amplified the electrochemical response because of a large molar ratio of HRP to HO. In the presence of target CEA, the binding reactions of CEA with the loop portions of the HOs caused HOs' loop-stem structure opened and exposed the biotins, and then HRP-GNRs-HO conjugates were captured on graphene and streptavidin modified electrodes via the reaction between the exposed biotins and preimmobilized streptavidins. The accumulation of HRP effectively catalyzed the hydrogen peroxide-mediated oxidation of o-phenylenediamine to generate an electrochemical reduction current for CEA detection. Under optimal conditions, the electrochemical biosensor exhibited a wide dynamic range of 5pgmL(-1) and 50ngmL(-1) toward CEA standards with a low detection limit of 1.5pgmL(-1) (signal-to-noise ratio of 3). The proposed biosensor accurately detected CEA concentration in 8 human serum samples from patients with lung diseases, showing excellent correlations with standard chemiluminescence immunoassay. Furthermore, these results of target DNA detection made it abundantly clear that the proposed strategy can also be extended for detection of other relative biomarkers using different functional DNA structures, which shows great prospects in single-nucleotide polymorphisms analysis, biomedical sensing and application for accurate clinical diseases diagnostic.
Collapse
|
200
|
Maity D, Jiang J, Ehlers M, Wu J, Schmuck C. A FRET-enabled molecular peptide beacon with a significant red shift for the ratiometric detection of nucleic acids. Chem Commun (Camb) 2016; 52:6134-7. [PMID: 27071707 DOI: 10.1039/c6cc02138g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A cationic molecular peptide beacon NAP1 functionalized with a fluorescence resonance energy transfer-pair at its ends allows the ratiometric detection of ds-DNA with a preference for AT rich sequences. NAP1 most likely binds in a folded form into the minor groove of ds-DNA, which results in a remarkable change in its fluorescence properties. As NAP1 exhibits quite low cytotoxicity, it can also be used for imaging of nuclear DNA in cells.
Collapse
Affiliation(s)
- Debabrata Maity
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany.
| | | | | | | | | |
Collapse
|