151
|
Ghobadi M, Pourmoghaddam Qhazvini P, Kazemi M. Catalytic application of zinc (II) bromide (ZnBr 2) in organic synthesis. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1811873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Massoud Ghobadi
- Central Laboratory, Ilam Petro Chemical Coomplex (ILPC), Chavar, Iran
| | | | - Mosstafa Kazemi
- Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
152
|
Magnetic microsphere with hierarchical LDH/polydopamine shell encapsulated Fe3O4 core for carrying Ag nanocatalyst. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
153
|
Ghamari Kargar P, Bagherzade G, Eshghi H. Design and synthesis of magnetic Fe 3O 4@NFC-ImSalophCu nanocatalyst based on cellulose nanofibers as a new and highly efficient, reusable, stable and green catalyst for the synthesis of 1,2,3-triazoles. RSC Adv 2020; 10:32927-32937. [PMID: 35516478 PMCID: PMC9056646 DOI: 10.1039/d0ra06251k] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 11/21/2022] Open
Abstract
The Fe3O4@NFC-ImSalophCu catalyst was used as a highly stable, reusable, active, green catalyst for the synthesis of 1,2,3-triazoles via one-pot three-component reaction of phenacyl bromides, sodium azide and alkynes. A Cu(ii)-Schiff base complex containing an imidazolium ionic phase was prepared and decorated on core shell Fe3O4@NFC magnetic nanoparticles (Fe3O4@NFC-ImSalophCu) and was used as an efficient catalyst. The heterogeneous catalyst was characterized by FT-IR spectroscopy, FE-SEM, TEM, XRD spectroscopy, EDX spectroscopy, VSM, and ICP spectroscopy. This catalyst shows the dual function of the metal sites and imidazolium moieties. The catalytic system mentioned above also showed excellent activity in the synthesis of bis 1,4-disubstituted 1,2,3-triazoles. Moreover, the catalyst could be recycled and reused for four cycles without any decrease in its catalytic activity.
Collapse
Affiliation(s)
- Pouya Ghamari Kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand Birjand 97175-615 Iran +98 56 32345192 +98 56 32345192
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand Birjand 97175-615 Iran +98 56 32345192 +98 56 32345192
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
154
|
Kargar Razi M, Javahershenas R, Adelzadeh M, Ghobadi M, Kazemi M. Synthetic routes to rhodanine scaffolds. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1812658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maryam Kargar Razi
- Faculty of Chemistry, North Branch of Tehran, Islamic Azad University, Tehran, Iran
| | - Ramin Javahershenas
- Department of Organic Chemistry, Chemistry Faculty, Urmia University, Urmia, Iran
| | | | - Massoud Ghobadi
- Central Laboratory, llam Petro Chemical Complex (ILPC), Chavar, Ilam, Iran
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
155
|
Highly Active Ruthenium Catalyst Supported on Magnetically Separable Mesoporous Organosilica Nanoparticles. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A facile and direct method for synthesizing magnetic periodic mesoporous organosilica nanoparticles from pure organosilane precursors is described. Magnetic ethylene- and phenylene-bridged periodic mesoporous organosilica nanoparticles (PMO NPs) were prepared by nanoemulsification techniques. For fabricating magnetic ethylene- or phenylene-bridged PMO NPs, hydrophobic magnetic nanoparticles in an oil-in-water (o/w) emulsion were prepared, followed by a sol–gel condensation of the incorporated bridged organosilane precursor (1,2 bis(triethoxysilyl)ethane or 1,4 bis(triethoxysilyl)benzene), respectively. The resulting materials were characterized using high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray (EDX) spectroscopy, powder X-ray diffraction (XRD), solid-state NMR analysis, and nitrogen sorption analysis (N2-BET). The magnetic ethylene-bridged PMO NPs were successfully loaded using a ruthenium oxide catalyst by means of sonication and evaporation under mild conditions. The obtained catalytic system, termed Ru@M-Ethylene-PMO NPS, was applied in a reduction reaction of aromatic compounds. It exhibited very high catalytic behavior with easy separation from the reaction medium by applying an external magnetic field.
Collapse
|
156
|
Rawat R, Verma SM. Advancements in chemical methodologies for the synthesis of 3-aroylimidazo[1,2-a]pyridines: an update of the decade. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1803915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ravi Rawat
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, India
| | - Saurabh M. Verma
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, India
| |
Collapse
|
157
|
Panchenko VN, Kirillov VL, Gerasimov EY, Martyanov ON, Timofeeva MN. Isomerization of α-pinene oxide to campholenic aldehyde in the presence of Al-SiO2 and magnetic Al-SiO2/Fe3O4 catalysts. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
158
|
Hou Z, Liu Y, Xu J, Zhu J. Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications. NANOSCALE 2020; 12:14957-14975. [PMID: 32648868 DOI: 10.1039/d0nr03346d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) have wide applications in magnetic resonance imaging (MRI), biomedicine, drug delivery, hyperthermia therapy, catalysis, magnetic separation, and others. However, these applications are usually limited by irreversible agglomeration of IONPs in aqueous media because of their dipole-dipole interactions, and their poor stability. A protecting polymeric shell provides IONPs with not only enhanced long-term stability, but also the functionality of polymer shells. Therefore, polymer-grafted IONPs have recently attracted much attention of scientists. In this tutorial review, we will present the current strategies for grafting polymers onto the surface of IONPs, basically including "grafting from" and "grafting to" methods. Available functional groups and chemical reactions, which could be employed to bind polymers onto the IONP surface, are comprehensively summarized. Moreover, the applications of polymer-grafted IONPs will be briefly discussed. Finally, future challenges and perspectives in the synthesis and application of polymer-grafted IONPs will also be discussed.
Collapse
Affiliation(s)
- Zaiyan Hou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Yijing Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
159
|
Efficient and straightforward access to diverse and densely functionalized chromenes by 3-amino-1,2,4-triazole supported on hydroxyapatite-encapsulated- γ-Fe2O3 (γ-Fe2O3@HAp@CPTMS@AT) as a new magnetic basic nanocatalyst. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01825-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
160
|
Shekarlab N, Ghorbani‐Vaghei R, Alavinia S. Preparation and characterization of copper/polysulfonamide complex immobilized on geraphene oxide as a novel catalyst for the synthesis of pyrimido[1,2‐a]benzimidazoles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Nayereh Shekarlab
- Department of Organic Chemistry Faculty of Chemistry, Bu‐Ali Sina University Hamedan 6517838683 Iran
| | - Ramin Ghorbani‐Vaghei
- Department of Organic Chemistry Faculty of Chemistry, Bu‐Ali Sina University Hamedan 6517838683 Iran
| | - Sedigheh Alavinia
- Department of Organic Chemistry Faculty of Chemistry, Bu‐Ali Sina University Hamedan 6517838683 Iran
| |
Collapse
|
161
|
Affiliation(s)
- Alessandro Ponti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) Consiglio Nazionale delle Ricerche via G. Fantoli 16/15 20138 Milan Italy
| | - Giorgio Molteni
- Dipartimento di Chimica Università degli Studi di Milano via Golgi 19 20133 Milan Italy
| |
Collapse
|
162
|
Wang J, Tian K, Cao L, Guo W, Li R, Wang H, Xu Z, Zhou Y, Wang H. Ultrathin Nitrogen‐Enriched Carbon Cover‐Enhanced Stability and Wettability of Au Nanocrystals on Core‐Shell Fe
3
O
4
@N‐Carbon Particles for Heterogeneous Catalysis. ChemistrySelect 2020. [DOI: 10.1002/slct.202000009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junyan Wang
- College of Environmental and Chemical EngineeringYanshan UniversityHebei Key Laboratory of Applied ChemistryHebei Key Laboratory of heavy metal deep-remediation in water and resource reuse Qinhuangdao 066004 P. R. China
| | - Kesong Tian
- College of Environmental and Chemical EngineeringYanshan UniversityHebei Key Laboratory of Applied ChemistryHebei Key Laboratory of heavy metal deep-remediation in water and resource reuse Qinhuangdao 066004 P. R. China
| | - Ling Cao
- College of Environmental and Chemical EngineeringYanshan UniversityHebei Key Laboratory of Applied ChemistryHebei Key Laboratory of heavy metal deep-remediation in water and resource reuse Qinhuangdao 066004 P. R. China
| | - Wanchun Guo
- College of Environmental and Chemical EngineeringYanshan UniversityHebei Key Laboratory of Applied ChemistryHebei Key Laboratory of heavy metal deep-remediation in water and resource reuse Qinhuangdao 066004 P. R. China
| | - Ruifei Li
- College of Environmental and Chemical EngineeringYanshan UniversityHebei Key Laboratory of Applied ChemistryHebei Key Laboratory of heavy metal deep-remediation in water and resource reuse Qinhuangdao 066004 P. R. China
| | - Hongchao Wang
- College of Environmental and Chemical EngineeringYanshan UniversityHebei Key Laboratory of Applied ChemistryHebei Key Laboratory of heavy metal deep-remediation in water and resource reuse Qinhuangdao 066004 P. R. China
| | - Zhaopeng Xu
- School of Information Science and EngineeringYanshan UniversityKey Laboratory for Special Fibre and Fibre Sensor of Hebei Province Qinhuangdao 066004 P. R. China
| | - Yunchun Zhou
- Changchun Institute of Applied ChemistryChinese Academy of SciencesNational Analytical Research Centre of Electrochemical and Spectroscopy Changchun 130022 P. R. China
| | - Haiyan Wang
- College of Environmental and Chemical EngineeringYanshan UniversityHebei Key Laboratory of Applied ChemistryHebei Key Laboratory of heavy metal deep-remediation in water and resource reuse Qinhuangdao 066004 P. R. China
| |
Collapse
|
163
|
Abstract
Interest in chemical hydrogen storage has increased, because the supply of fossil fuels are limited and the harmful effects of burning fossil fuels on the environment have become a focus of public concern. Hydrogen, as one of the energy carriers, is useful for the sustainable development. However, it is widely known that controlled storage and release of hydrogen are the biggest barriers in large-scale application of hydrogen energy. Ammonia borane (NH3BH3, AB) is deemed as one of the most promising hydrogen storage candidates on account of its high hydrogen to mass ratio and environmental benignity. Development of efficient catalysts to further improve the properties of chemical kinetics in the dehydrogenation of AB under appropriate conditions is of importance for the practical application of this system. In previous studies, a variety of noble metal catalysts and their supported metal catalysts (Pt, Pd, Au, Rh, etc.) have presented great properties in decomposing the chemical hydride to generate hydrogen, thus, promoting their application in dehydrogenation of AB is urgent. We analyzed the hydrolysis of AB from the mechanism of hydrogen release reaction to understand more deeply. Based on these characteristics, we aimed to summarize recent advances in the development of noble metal catalysts, which had excellent activity and stability for AB dehydrogenation, with prospect towards realization of efficient noble metal catalysts.
Collapse
|
164
|
Shabanloo A, Ghorbani-Vaghei R, Alavinia S. One-pot Synthesis of Pyranoquinoline Derivatives Using a New Nanomagnetic Catalyst Supported on Functionalized 4-Aminopyridine (AP) Silica. ORG PREP PROCED INT 2020. [DOI: 10.1080/00304948.2020.1779566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Amir Shabanloo
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
165
|
Gulati U, Rajesh UC, Rawat DS. Magnetically recoverable Ni@CuI hybrid nanocatalysts affording spiropyrroline heterocycles from ketoximes and alkenes. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Upasana Gulati
- Department of ChemistryUniversity of Delhi Delhi 110007 India
| | - U. Chinna Rajesh
- Department of ChemistryIndiana University 800 E. Kirkwood Avenue Bloomington, Indiana 47405 USA
| | - Diwan S. Rawat
- Department of ChemistryUniversity of Delhi Delhi 110007 India
| |
Collapse
|
166
|
Kannappan L, Rajmohan R. Synthesis of structurally enhanced magnetite cored poly(propyleneimine) dendrimer nanohybrid material and evaluation of its functionality in sustainable catalysis of condensation reactions. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
167
|
Deilam R, Moeinpour F, Mohseni-Shahri FS. Catalytic performance of Cu(II)-supported graphene quantum dots modified NiFe2O4 as a proficient nano-catalyst in the synthesis of 1,2,3-triazoles. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02652-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
168
|
Hasan K. Methyl Salicylate Functionalized Magnetic Chitosan Immobilized Palladium Nanoparticles: An Efficient Catalyst for the Suzuki and Heck Coupling Reactions in Water. ChemistrySelect 2020. [DOI: 10.1002/slct.202001933] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kamrul Hasan
- Kamrul HasanDepartment of ChemistryCollege of SciencesResearch Institute of Science and EngineeringUniversity of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
| |
Collapse
|
169
|
Taheri Hatkehlouei SF, Mirza B, Soleimani-Amiri S. Solvent-Free One-Pot Synthesis of Diverse Dihydropyrimidinones/Tetrahydropyrimidinones Using Biginelli Reaction Catalyzed by Fe3O4@C@OSO3H. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1781203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Behrooz Mirza
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
170
|
Kathuria L, Din Reshi NU, Samuelson AG. N-Heterocyclic Carbene (NHC)-Stabilized Ru 0 Nanoparticles: In Situ Generation of an Efficient Transfer Hydrogenation Catalyst. Chemistry 2020; 26:7622-7630. [PMID: 32048353 DOI: 10.1002/chem.202000142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Indexed: 11/06/2022]
Abstract
Tethered and untethered ruthenium half-sandwich complexes were synthesized and characterized spectroscopically. X-ray crystallographic analysis of three untethered and two tethered Ru N-heterocyclic carbene (NHC) complexes were also carried out. These RuNHC complexes catalyze transfer hydrogenation of aromatic ketones in 2-propanol under reflux, optimally in the presence of (25 mol %) KOH. Under these conditions, the formation of 2-3 nm-sized Ru0 nanoparticles was detected by TEM measurements. A solid-state NMR investigation of the nanoparticles suggested that the NHC ligands were bound to the surface of the Ru nanoparticles (NPs). This base-promoted route to NHC-stabilized ruthenium nanoparticles directly from arene-tethered ruthenium-NHC complexes and from untethered ruthenium-NHC complexes is more convenient than previously known routes to NHC-stabilized Ru nanocatalysts. Similar catalytically active RuNPs were also generated from the reaction of a mixture of [RuCl2 (p-cymene)]2 and the NHC precursor with KOH in isopropanol under reflux. The transfer hydrogenation catalyzed by these NHC-stabilized RuNPs possess a high turnover number. The catalytic efficiency was significantly reduced if nanoparticles were exposed to air or allowed to aggregate and precipitate by cooling the reaction mixtures during the reaction.
Collapse
Affiliation(s)
- Lakshay Kathuria
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Noor U Din Reshi
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Ashoka G Samuelson
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| |
Collapse
|
171
|
Yue Q, Sun J, Kang Y, Deng Y. Advances in the Interfacial Assembly of Mesoporous Silica on Magnetite Particles. Angew Chem Int Ed Engl 2020; 59:15804-15817. [DOI: 10.1002/anie.201911690] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Qin Yue
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China
| | - Jianguo Sun
- Eye Institute of Eye and ENT Hospital Fudan University NHC Key Laboratory of Myopia (Fudan University) Shanghai 200031 China
| | - Yijin Kang
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China
| | - Yonghui Deng
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
| |
Collapse
|
172
|
Yue Q, Sun J, Kang Y, Deng Y. Advances in the Interfacial Assembly of Mesoporous Silica on Magnetite Particles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qin Yue
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China
| | - Jianguo Sun
- Eye Institute of Eye and ENT Hospital Fudan University NHC Key Laboratory of Myopia (Fudan University) Shanghai 200031 China
| | - Yijin Kang
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China
| | - Yonghui Deng
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
- State Key Laboratory of Transducer Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China
| |
Collapse
|
173
|
Karimi F, Yarie M, Zolfigol MA. Synthesis and characterization of Fe3O4@SiO2@(CH2)3NH(CH2)2O2P(OH)2 and its catalytic application in the synthesis of benzo-[h]quinoline-4-carboxylic acids via a cooperative anomeric based oxidation mechanism. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
174
|
Solvent-free synthesis of 1-amidoalkyl-2-naphthol and 3-amino-1-phenyl-1H benzo[f]chromene-2-carbonitrile derivatives by Fe3O4@enamine-B(OSO3H)2 as an efficient and novel heterogeneous magnetic nanostructure catalyst. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2020. [DOI: 10.2478/pjct-2020-0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
A green procedure for the one-pot three-component synthesis of 1-amidoalkyl-2-naphthol and 3-amino-1-phenyl-1H benzo[f]chromene-2-carbonitrile derivatives from the reaction of 2-naphtol, aldehydes, and malononitrile/acetamide in the presence of a catalytic amount of Fe3O4@enamine-B(OSO3H)2 as an efficient and novel heterogeneous magnetic nanostructure catalyst is described. The catalyst was characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). These strategies possess some merits such as simple work-up method, easy preparation of the catalyst, short reaction times, good-to-high yields, and non-use of hazardous solvents during all steps of the reactions. Moreover, due to the magnetic nature of the catalyst, it was readily recovered by magnetic decantation and can be recycled at least six runs with no considerable decrease in catalytic activity.
Collapse
|
175
|
A green and efficient Pd-free protocol for the Suzuki–Miyaura cross-coupling reaction using Fe3O4@APTMS@Cp2ZrClx(x = 0, 1, 2) MNPs in PEG-400. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04145-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
176
|
Faroughi Niya H, Hazeri N, Fatahpour M, Maghsoodlou MT. Fe3O4@THAM-piperazine: a novel and highly reusable nanocatalyst for one-pot synthesis of 1,8-dioxo-octahydro-xanthenes and benzopyrans. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04166-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
177
|
Safari J, Tavakoli M, Ghasemzadeh MA. A highly effective synthesis of pyrimido[4,5-b]quinoline-tetraones using H3PW12O40/chitosan/NiCo2O4 as a novel magnetic nanocomposite. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
178
|
Ahmadi A, Sedaghat T, Motamedi H, Azadi R. Anchoring of Cu (II)‐Schiff base complex on magnetic mesoporous silica nanoparticles: catalytic efficacy in one‐pot synthesis of 5‐substituted‐1H‐tetrazoles, antibacterial activity evaluation and immobilization of α‐amylase. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5572] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ameneh Ahmadi
- Department of Chemistry, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| | - Tahereh Sedaghat
- Department of Chemistry, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| | - Hossein Motamedi
- Department of Biology, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
- Biotechnology and Biological Science Research CenterShahid Chamran University of Ahvaz Ahvaz Iran
| | - Roya Azadi
- Department of Chemistry, Faculty of ScienceShahid Chamran University of Ahvaz Ahvaz Iran
| |
Collapse
|
179
|
Amirmahani N, Rashidi M, Mahmoodi NO. Synthetic application of gold complexes on magnetic supports. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Najmeh Amirmahani
- Department of ChemistryFaculty of Science, University of Guilan, University Campus 2 Rasht Iran
- Environmental Health Engineering Research CenterKerman University of Medical Sciences Kerman Iran
| | - Mohsen Rashidi
- Department of Chemistry, Faculty of ScienceShahid Bahonar University of Kerman Kerman Iran
| | - Nosrat O. Mahmoodi
- Department of ChemistryFaculty of Science, University of Guilan, University Campus 2 Rasht Iran
| |
Collapse
|
180
|
Zuo B, Li W, Wu X, Wang S, Deng Q, Huang M. Recent Advances in the Synthesis, Surface Modifications and Applications of Core-Shell Magnetic Mesoporous Silica Nanospheres. Chem Asian J 2020; 15:1248-1265. [PMID: 32083794 DOI: 10.1002/asia.202000045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Indexed: 01/16/2025]
Abstract
The hierarchically structured core-shell magnetic mesoporous silica nanospheres (Mag-MSNs) have attracted extensive attention, particularly in studies involving reliable preparations and diverse applications of the multifunctional nanomaterials in multi-disciplinary fields. Intriguingly, Mag-MSNs have been prepared with well-designed synthesis strategies and used as adsorbent materials, biomedicines, and in proteomics and catalysis due to their excellent magnetic responsiveness, enormous specific surface area and readiness for surface modifications. Through a carefully designed surface modification of Mag-MSNs, the performance and application prospects of the material are greatly improved. Typically, the introduction of various molecular matrices into the shell of Mag-MSNs facilitates the combination of surface modifications and magnetic separation technology. So far, as sustainable chemistry is concerned, it is important to recover the functionalized core-shell Mag-MSNs after the reaction and reuse them without losing activity. In this review, the design conceptions and the construction of core-shell Mag-MSNs are discussed. Furthermore, various surface modification approaches of core-shell Mag-MSNs are summarized, and recent applications of these functionalized nanomaterials in the fields of biomedicine, catalysis, proteomics and wastewater treatment are exemplified.
Collapse
Affiliation(s)
- Bin Zuo
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P.R. China
| | - Wanfang Li
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P.R. China
| | - Xiaoqiang Wu
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P.R. China
| | - Shige Wang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P.R. China
| | - Qinyue Deng
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P.R. China
| | - Mingxian Huang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, P.R. China
| |
Collapse
|
181
|
Ao L, Hu X, Xu M, Zhang Q, Huang L. Central-radial bi-porous nanocatalysts with accessible high unit loading and robust magnetic recyclability for 4-nitrophenol reduction. Dalton Trans 2020; 49:4669-4674. [PMID: 32211724 DOI: 10.1039/d0dt00678e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Central-radial bi-porous nanocatalysts were synthesized by derivation from dendritic porous supports with hierarchical inorganic functional layers. The nanostructure exhibited a high unit loading capacity, accessible internal catalytic sites and protective mesoporous shell encapsulation. The nanocatalysts were utilized for efficient and stable heterogeneous catalytic reduction of 4-nitrophenol to 4-aminophenol with robust magnetic recyclability.
Collapse
Affiliation(s)
- Lijiao Ao
- Institute of Biomedical Engineering, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, P. R. China.
| | - Xinjia Hu
- Department of Osteoarthropathy, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518035, P. R. China
| | - Meng Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Qiqing Zhang
- Institute of Biomedical Engineering, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen 518020, P. R. China.
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
182
|
Bertran A, Sandoval S, Oró-Solé J, Sánchez À, Tobias G. Particle size determination from magnetization curves in reduced graphene oxide decorated with monodispersed superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 2020; 566:107-119. [DOI: 10.1016/j.jcis.2020.01.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 12/15/2022]
|
183
|
Aerobic oxidation of benzyl alcohol: Influence from catalysts basicity, acidity, and preparation methods. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
184
|
Sankar M, He Q, Engel RV, Sainna MA, Logsdail AJ, Roldan A, Willock DJ, Agarwal N, Kiely CJ, Hutchings GJ. Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts. Chem Rev 2020; 120:3890-3938. [PMID: 32223178 PMCID: PMC7181275 DOI: 10.1021/acs.chemrev.9b00662] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
In
this review, we discuss selected examples from recent literature
on the role of the support on directing the nanostructures of Au-based
monometallic and bimetallic nanoparticles. The role of support is
then discussed in relation to the catalytic properties of Au-based
monometallic and bimetallic nanoparticles using different gas phase
and liquid phase reactions. The reactions discussed include CO oxidation,
aerobic oxidation of monohydric and polyhydric alcohols, selective
hydrogenation of alkynes, hydrogenation of nitroaromatics, CO2 hydrogenation, C–C coupling, and methane oxidation.
Only studies where the role of support has been explicitly studied
in detail have been selected for discussion. However, the role of
support is also examined using examples of reactions involving unsupported
metal nanoparticles (i.e., colloidal nanoparticles). It is clear that
the support functionality can play a crucial role in tuning the catalytic
activity that is observed and that advanced theory and characterization
add greatly to our understanding of these fascinating catalysts.
Collapse
Affiliation(s)
| | - Qian He
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575
| | - Rebecca V Engel
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Mala A Sainna
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - David J Willock
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Nishtha Agarwal
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Christopher J Kiely
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K.,Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, Pennsylvania 18015-3195, United States
| | - Graham J Hutchings
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| |
Collapse
|
185
|
Kheilkordi Z, Mohammadi Ziarani G, Badiei A. Fe3O4@SiO2@(BuSO3H)3 synthesis as a new efficient nanocatalyst and its application in the synthesis of heterocyclic [3.3.3] propellane derivatives. Polyhedron 2020; 178:114343. [DOI: 10.1016/j.poly.2019.114343] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
186
|
Khaef S, Rostami A, Khakyzadeh V, Zolfigol MA, Taherpour AA, Yarie M. Regioselective Ortho‐C H sulfenylation of free phenols catalyzed by Co(II)-immobilized on silica-coated magnetic nanoparticles. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
187
|
Ghasemi P, Yarie M, Zolfigol MA, Taherpour AA, Torabi M. Ionically Tagged Magnetic Nanoparticles with Urea Linkers: Application for Preparation of 2-Aryl-quinoline-4-carboxylic Acids via an Anomeric-Based Oxidation Mechanism. ACS OMEGA 2020; 5:3207-3217. [PMID: 32118136 PMCID: PMC7045317 DOI: 10.1021/acsomega.9b03277] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/29/2020] [Indexed: 05/08/2023]
Abstract
In this exploration, we reported the design and synthesis of a novel ionically tagged magnetic nanoparticles bearing urea linkers, namely, Fe3O4@SiO2@(CH2)3-urea-thiazole sulfonic acid chloride. The structure of the mentioned compound was fully characterized by using several techniques including Fourier transform infrared spectroscopy, energy-dispersive X-ray analysis, elemental mapping analysis, thermogravimetric analysis/differential thermal analysis, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometer. In the presence of the novel reusable catalyst, applied starting materials including aryl aldehydes, pyruvic acid, and 1-naphthylamine condensed to afford the desired 2-aryl-quinoline-4-carboxylic acid derivatives via an anomeric-based oxidation pathway under solvent-free conditions.
Collapse
Affiliation(s)
- Parvin Ghasemi
- Department
of Organic Chemistry, Razi University, P.O. Box 67149-67346, Kermanshah 6714414971, Iran
| | - Meysam Yarie
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- E-mail: . Phone: +98 8138282807. Fax: +98 8138257407 (M.Y.)
| | - Mohammad Ali Zolfigol
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- E-mail: , (M.A.Z.)
| | - Avat Arman Taherpour
- Department
of Organic Chemistry, Razi University, P.O. Box 67149-67346, Kermanshah 6714414971, Iran
- Medical
Biology Research Center, Kermanshah University
of Medical Sciences, Kermanshah 6715847141, Iran
- E-mail: (A.A.T.)
| | - Morteza Torabi
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
| |
Collapse
|
188
|
Kazemi M. Based on MFe2O4 (M=Co, Cu, and Ni): Magnetically recoverable nanocatalysts in synthesis of heterocyclic structural scaffolds. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1723109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mosstafa Kazemi
- Chemistry Department, Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
189
|
Kazemi M. Magnetically reusable nanocatalysts in biginelli synthesis of dihydropyrimidinones (DHPMs). SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1720740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mosstafa Kazemi
- Young Researchers and Elite Club, Islamic Azad University, Ilam, Iran
| |
Collapse
|
190
|
Rathod PB, Kumar KSA, Kumar M, Debnath AK, Pandey AK, Athawale AA. Palladium Acetate and Pd Nanoparticles Loaded Hexamethylenetetramine Anchored Magnetically Retrievable Assemblies for Catalyzing Mizoroki‐Heck Type Mono and
Gem
‐Dicoupling Reactions. ChemistrySelect 2020. [DOI: 10.1002/slct.201903498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Prakash B. Rathod
- Department of Chemistry Savitribai Phule Pune University Pune 411007 India
- Radiochemistry Division Bhabha Atomic Research Centre Trombay Mumbai 400085 India
| | - K. S. Ajish Kumar
- Bio-Organic Division Bhabha Atomic Research Centre Trombay Mumbai 400085 India
| | - Mukesh Kumar
- Radiation Biology & Health Sciences Division Bhabha Atomic Research Centre, Trombay Mumbai 400085 India
| | - A. K. Debnath
- Technical Physics Division Bhabha Atomic Research Centre, Trombay Mumbai 400085 India
| | - Ashok K. Pandey
- Radiochemistry Division Bhabha Atomic Research Centre Trombay Mumbai 400085 India
- Chemical Science, Homi Bhabha National Institute TSH Complex, Anushaktinagar Mumbai 400094 India
| | - Anjali A. Athawale
- Department of Chemistry Savitribai Phule Pune University Pune 411007 India
| |
Collapse
|
191
|
Li X, Zhang L, Wang S, Wu Y. Recent Advances in Aqueous-Phase Catalytic Conversions of Biomass Platform Chemicals Over Heterogeneous Catalysts. Front Chem 2020; 7:948. [PMID: 32117861 PMCID: PMC7018683 DOI: 10.3389/fchem.2019.00948] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/31/2019] [Indexed: 11/26/2022] Open
Abstract
A series of biomass-derived platform molecules, such as glucose, furans, levulinic acid, 5-hydroxymethylfurfural, and acetic acids, can be converted into a variety of value-added chemicals through catalytic transformations that include dehydration, hydrogenation, oxidation, isomerization, reforming, ketonization, and aldol condensation over heterogeneous catalysts. Aqueous-phase processing is an important issue and a great challenge for the heterogeneous catalytic conversion of biobased chemicals due to the high water content of the biomass and the formation of water during the transformation process. In this paper, heterogeneous catalysts that are applicable to the aqueous-phase conversion process of biomass platform chemicals, including noble metal catalysts, non-noble metal catalysts, bimetallic catalysts, metal oxides, and zeolite, are introduced, and a comprehensive evaluation of the catalyst performance, including the catalytic activity, stability, and regeneration performance of different kinds of heterogeneous catalysts, are made. Besides, we highlighted the effect of water on heterogeneous catalysts and the deactivation mechanism in the aqueous phase. Beyond this, several catalytic mechanisms of aqueous-phase conversion over heterogeneous catalysts are summarized in order to help understand the reaction process on the surface of catalysts in the aqueous phase, so as to design targeted catalysts. At last, a prospect of biobased chemicals and fuels is forecasted.
Collapse
Affiliation(s)
- Xiaoxian Li
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Lilong Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Shanshan Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Yulong Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China.,Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| |
Collapse
|
192
|
Two‐Dimensional Tin Selenide (SnSe) Nanosheets Capable of Mimicking Key Dehydrogenases in Cellular Metabolism. Angew Chem Int Ed Engl 2020; 59:3618-3623. [DOI: 10.1002/anie.201913035] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/25/2019] [Indexed: 01/12/2023]
|
193
|
Abd Razak NF, Shamsuddin M. Catalytic reduction of 4-nitrophenol over biostabilized gold nanoparticles supported onto thioctic acid functionalized silica-coated magnetite nanoparticles and optimization using response surface methodology. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1720724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Nur Fadzilah Abd Razak
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Mustaffa Shamsuddin
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
194
|
Shimizu T, Ding W, Kameta N. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chem Rev 2020; 120:2347-2407. [PMID: 32013405 DOI: 10.1021/acs.chemrev.9b00509] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-assembled organic nanotubes made of single or multiple molecular components can be classified into soft-matter nanotubes (SMNTs) by contrast with hard-matter nanotubes, such as carbon and other inorganic nanotubes. To date, diverse self-assembly processes and elaborate template procedures using rationally designed organic molecules have produced suitable tubular architectures with definite dimensions, structural complexity, and hierarchy for expected functions and applications. Herein, we comprehensively discuss every functions and possible applications of a wide range of SMNTs as bulk materials or single components. This Review highlights valuable contributions mainly in the past decade. Fifteen different families of SMNTs are discussed from the viewpoints of chemical, physical, biological, and medical applications, as well as action fields (e.g., interior, wall, exterior, whole structure, and ensemble of nanotubes). Chemical applications of the SMNTs are associated with encapsulating materials and sensors. SMNTs also behave, while sometimes undergoing morphological transformation, as a catalyst, template, liquid crystal, hydro-/organogel, superhydrophobic surface, and micron size engine. Physical functions pertain to ferro-/piezoelectricity and energy migration/storage, leading to the applications to electrodes or supercapacitors, and mechanical reinforcement. Biological functions involve artificial chaperone, transmembrane transport, nanochannels, and channel reactors. Finally, medical functions range over drug delivery, nonviral gene transfer vector, and virus trap.
Collapse
Affiliation(s)
- Toshimi Shimizu
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
195
|
Kharazmi A, Ghorbani‐Vaghei R, Alavinia S. Synthesis of Pyrimidine Derivatives Catalyzed by Nanomagnetic Pyridinium‐Tribromide Ionic Liquid. ChemistrySelect 2020. [DOI: 10.1002/slct.201904697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Azin Kharazmi
- Department of Organic ChemistryFaculty of ChemistryBu-Ali Sina University Hamedan 6517838683 Iran
| | - Ramin Ghorbani‐Vaghei
- Department of Organic ChemistryFaculty of ChemistryBu-Ali Sina University Hamedan 6517838683 Iran
| | - Sedigheh Alavinia
- Department of Organic ChemistryFaculty of ChemistryBu-Ali Sina University Hamedan 6517838683 Iran
| |
Collapse
|
196
|
Mishra M, Nizam A, Jomon KJ, Tadaparthi K. A New Facile Ultrasound-Assisted Magnetic Nano-[CoFe2O4]-Catalyzed One-Pot Synthesis of Pyrano[2,3-c]pyrazoles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428019120194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
197
|
Gao M, Wang Z, Zheng H, Wang L, Xu S, Liu X, Li W, Pan Y, Wang W, Cai X, Wu R, Gao X, Li R. Two‐Dimensional Tin Selenide (SnSe) Nanosheets Capable of Mimicking Key Dehydrogenases in Cellular Metabolism. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meng Gao
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiological Medicine of, Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 Jiangsu China
| | - Zhenzhen Wang
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology No 11 ZhongGuanCun BeiYiTiao 100190 Beijing China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiological Medicine of, Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 Jiangsu China
| | - Li Wang
- Laboratory of High-Resolution Mass Spectrometry TechnologiesDalian Institute of Chemical PhysicsChinese Academy of Sciences (CAS) Dalian 116023 China
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiological Medicine of, Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 Jiangsu China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiological Medicine of, Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 Jiangsu China
| | - Wei Li
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiological Medicine of, Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 Jiangsu China
| | - Yanxia Pan
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiological Medicine of, Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 Jiangsu China
| | - Weili Wang
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiological Medicine of, Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 Jiangsu China
| | - Xiaoming Cai
- School of Public HealthJiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSoochow University Suzhou 215123 Jiangsu China
| | - Ren'an Wu
- Laboratory of High-Resolution Mass Spectrometry TechnologiesDalian Institute of Chemical PhysicsChinese Academy of Sciences (CAS) Dalian 116023 China
| | - Xingfa Gao
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and Technology No 11 ZhongGuanCun BeiYiTiao 100190 Beijing China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and ProtectionSchool for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiological Medicine of, Jiangsu Higher Education InstitutionsSoochow University Suzhou 215123 Jiangsu China
| |
Collapse
|
198
|
Fatehi A, Ghorbani‐Vaghei R, Alavinia S, Mahmoodi J. Synthesis of Quinazoline Derivatives Catalyzed by a New Efficient Reusable Nanomagnetic Catalyst Supported with Functionalized Piperidinium Benzene‐1,3‐Disulfonate Ionic Liquid. ChemistrySelect 2020. [DOI: 10.1002/slct.201904679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anvar Fatehi
- Department of Organic ChemistryFaculty of ChemistryBu-Ali Sina University Hamedan 6517838683 Iran
| | - Ramin Ghorbani‐Vaghei
- Department of Organic ChemistryFaculty of ChemistryBu-Ali Sina University Hamedan 6517838683 Iran
| | - Sedigheh Alavinia
- Department of Organic ChemistryFaculty of ChemistryBu-Ali Sina University Hamedan 6517838683 Iran
| | - Jafar Mahmoodi
- Department of Organic ChemistryFaculty of ChemistryBu-Ali Sina University Hamedan 6517838683 Iran
| |
Collapse
|
199
|
Yuan Y, Sun L, Wu G, Yuan Y, Zhan W, Wang X, Han X. Engineering Nickel/Palladium Heterojunctions for Dehydrogenation of Ammonia Borane: Improving the Catalytic Performance with 3D Mesoporous Structures and External Nitrogen-Doped Carbon Layers. Inorg Chem 2020; 59:2104-2110. [PMID: 31942798 DOI: 10.1021/acs.inorgchem.9b03607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yusheng Yuan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Liming Sun
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Guanzheng Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Yaya Yuan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Wenwen Zhan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Xiaojun Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Xiguang Han
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| |
Collapse
|
200
|
Abstract
:
Propargylamines are an important constituent of diverse, biologically active
and industrially valuable compounds. These useful, convenient and effective compounds
can be synthesized via the A3-coupling reactions between an aldehyde, amine, and alkyne
in the presence of a catalyst. In the past years, most of the catalysts containing transition
metals were applied in these reactions, but today, various heterogeneous catalysts, especially
nanocatalysts are used. The purpose of this review was to introduce some modern
catalysts for the A3-coupling reaction.
Collapse
Affiliation(s)
- Ali Ramazani
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Hamideh Ahankar
- Department of Chemistry, Abhar Branch, Islamic Azad University, P.O. Box 22, Abhar, Iran
| | - Zahra T. Nafeh
- Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Sang W. Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Korea
| |
Collapse
|