151
|
Zhang N, Xing Y, Yu Y, Liu C, Jin B, Huo L, Kong D, Yang Z, Zhang X, Zheng R, Jia Z, Kang L, Zhang W. Influence of human amylin on the membrane stability of rat primary hippocampal neurons. Aging (Albany NY) 2020; 12:8923-8938. [PMID: 32463790 PMCID: PMC7288967 DOI: 10.18632/aging.103105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/09/2020] [Indexed: 04/09/2023]
Abstract
The two most common aging-related diseases, Alzheimer's disease and type 2 diabetes mellitus, are associated with accumulation of amyloid proteins (β-amyloid and amylin, respectively). This amylin aggregation is reportedly cytotoxic to neurons. We found that aggregation of human amylin (hAmylin) induced neuronal apoptosis without obvious microglial infiltration in vivo. High concentrations of hAmylin irreversibly aggregated on the surface of the neuronal plasma membrane. Long-term incubation with hAmylin induced morphological changes in neurons. Moreover, hAmylin permeabilized the neuronal membrane within 1 min in a manner similar to Triton X-100, allowing impermeable fluorescent antibodies to enter the neurons and stain intracellular antigens. hAmylin also permeabilized the cell membrane of astrocytes, though more slowly. Under scanning electron microscopy, we observed that hAmylin destroyed the integrity of the cell membranes of both neurons and astrocytes. Additionally, it increased intracellular reactive oxygen species generation and reduced the mitochondrial membrane potential. Thus, by aggregating on the surface of neurons, hAmylin impaired the cell membrane integrity, induced reactive oxygen species production, reduced the mitochondrial membrane potential, and ultimately induced neuronal apoptosis.
Collapse
Affiliation(s)
- Nan Zhang
- Central Laboratory, First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, Hebei, China
| | - Yuan Xing
- Department of Neurology, First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Brain Aging and Cognitive Neuroscience Key Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Yongzhou Yu
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chao Liu
- Department of Laboratory Animal Science, Hebei Medical University, Hebei Key Lab of Laboratory Animal Science, Shijiazhuang, Hebei, China
| | - Baohua Jin
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lifang Huo
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dezhi Kong
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zuxiao Yang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiangjian Zhang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, Health Science Center, Neuroscience Research Institute, Key Laboratory for Neuroscience of the Ministry of Education, Key Laboratory for Neuroscience of the National Health Commission, Peking University, Beijing, China
| | - Zhanfeng Jia
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lin Kang
- Department of Endocrinology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Wei Zhang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
152
|
Strazdaite S, Navakauskas E, Kirschner J, Sneideris T, Niaura G. Structure Determination of Hen Egg-White Lysozyme Aggregates Adsorbed to Lipid/Water and Air/Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4766-4775. [PMID: 32251594 DOI: 10.1021/acs.langmuir.9b03826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We use vibrational sum-frequency generation (VSFG) spectroscopy to study the structure of hen egg-white lysozyme (HEWL) aggregates adsorbed to DOPG/D2O and air/D2O interfaces. We find that aggregates with a parallel and antiparallel β-sheet structure together with smaller unordered aggregates and a denaturated protein are adsorbed to both interfaces. We demonstrate that to retrieve this information, fitting of the VSFG spectra is essential. The number of bands contributing to the VSFG spectrum might be misinterpreted, due to interference between peaks with opposite orientation and a nonresonant background. Our study identified hydrophobicity as the main driving force for adsorption to the air/D2O interface. Adsorption to the DOPG/D2O interface is also influenced by hydrophobic interaction; however, electrostatic interaction between the charged protein's groups and the lipid's headgroups has the most significant effect on the adsorption. We find that the intensity of the VSFG spectrum at the DOPG/D2O interface is strongly enhanced by varying the pH of the solution. We show that this change is not due to a change of lysozyme's and its aggregates' charge but due to dipole reorientation at the DOPG/D2O interface. This finding suggests that extra care must be taken when interpreting the VSFG spectrum of proteins adsorbed at the lipid/water interface.
Collapse
Affiliation(s)
- S Strazdaite
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - E Navakauskas
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - J Kirschner
- Institute of Solid State Physics, Vienna Technical University, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - T Sneideris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - G Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| |
Collapse
|
153
|
Adhikari R, Yang M, Saikia N, Dutta C, Alharbi WFA, Shan Z, Pandey R, Tiwari A. Acetylation of Aβ42 at Lysine 16 Disrupts Amyloid Formation. ACS Chem Neurosci 2020; 11:1178-1191. [PMID: 32207962 PMCID: PMC7605495 DOI: 10.1021/acschemneuro.0c00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The residue lysine 28 (K28) is known to form an important salt bridge that stabilizes the Aβ amyloid structure, and acetylation of lysine 28 (K28Ac) slows the Aβ42 fibrillization rate but does not affect fibril morphology. On the other hand, acetylation of lysine 16 (K16Ac) residue greatly diminishes the fibrillization property of Aβ42 peptide and also affects its toxicity. This is due to the fact that lysine 16 acetylated amyloid beta peptide forms amorphous aggregates instead of amyloid fibrils. This is likely a result of increased hydrophobicity of the K16-A21 region due to K16 acetylation, as confirmed by molecular dynamic simulation studies. The calculated results show that the hydrophobic patches of aggregates from acetylated peptides were different when compared to wild-type (WT) peptide. K16Ac and double acetylated (KKAc) peptide aggregates show significantly higher cytotoxicity compared to the WT or K28Ac peptide aggregates alone. However, the heterogeneous mixture of WT and acetylated Aβ42 peptide aggregates exhibited higher free radical formation as well as cytotoxicity, suggesting dynamic interactions between different species could be a critical contributor to Aβ pathology.
Collapse
Affiliation(s)
- Rashmi Adhikari
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Mu Yang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Nabanita Saikia
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Colina Dutta
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Wafa F A Alharbi
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ravindra Pandey
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ashutosh Tiwari
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
154
|
Dubois V, Serrano D, Zhang X, Seeger S. Structure Analysis of Amyloid Aggregates at Lipid Bilayers by Supercritical Angle Raman Microscopy. Anal Chem 2020; 92:4963-4970. [PMID: 32181651 DOI: 10.1021/acs.analchem.9b05092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The amyloid-β peptide is correlated with Alzheimer's disease and is assumed to cause toxicity by its interaction with the neuron membrane. A custom-made microscope objective based on the supercritical angle technique was developed by our group, which allows investigation of interfacial events by performing surface-sensitive and low-invasive spectroscopy. Applied to Raman spectroscopy, this technique was used to collect information about the structure of polypeptides that interact with a supported lipid bilayer. Notably, the conformation used by amyloid-β(1-40) and amyloid-β(1-42) when interacting directly with or next to the supported lipid bilayer was characterized. We observed two distinct secondary structures, α-helix and β-sheet, which were exhibited by the peptide. These two structures were detected simultaneously. The propensity of the peptide to fold into these structures seemed dependent on both their number of amino acids and their proximity with the supported lipid bilayer. The α-helix structure was observed for amyloid-β(1-42) fragments that were closer to the lipid bilayer. Peptides that were located further away from the bilayer favored the β-sheet structure. Amyloid-β(1-40) was less prone to adopt the α-helix secondary structure.
Collapse
Affiliation(s)
- Valentin Dubois
- Department of Chemistry, University of Zürich, Wintherthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Diana Serrano
- Department of Chemistry, University of Zürich, Wintherthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Xiaotian Zhang
- Department of Chemistry, University of Zürich, Wintherthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Stefan Seeger
- Department of Chemistry, University of Zürich, Wintherthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
155
|
Wang Y, Shen Y, Qi G, Li Y, Sun XS, Qiu D, Li Y. Formation and physicochemical properties of amyloid fibrils from soy protein. Int J Biol Macromol 2020; 149:609-616. [DOI: 10.1016/j.ijbiomac.2020.01.258] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/20/2022]
|
156
|
Luo Z, Gao G, Ma Z, Liu Q, Gao X, Tang X, Gao Z, Li C, Sun T. Cichoric acid from witloof inhibit misfolding aggregation and fibrillation of hIAPP. Int J Biol Macromol 2020; 148:1272-1279. [PMID: 31759017 DOI: 10.1016/j.ijbiomac.2019.10.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
The misfolding, aggregation and fibrillation of human islet amyloid polypeptide (hIAPP) has been acknowledged as a hallmark event in type-II diabetes. Hence, inhibiting the misfolding, aggregation and fibrillation of hIAPP have been accepted as a vital factor to treat the disease. Here cichoric acid was extracted from witloof to explore its inhibition effects on misfolding, aggregation and fibrillation of hIAPP. Thioflavin-T (ThT) fluorescence assay, dynamic light scattering (DLS) and atomic force microscopy (AFM) images showed that cichoric acid inhibited the aggregation and fibrillation of hIAPP in a dosage-dependent manner. Circular dichroism (CD) spectra showed that cichoric acid inhibited the misfolding of hIAPP from unfolded to β-sheet. Molecular docking and further experiments revealed interactions between hIAPP and cichoric acid. Cichoric acid could bind to K1 and R11 of hIAPP via electrostatic interaction. In addition, cichoric acid could form π-π stacking with hIAPP residues F15 and F23. These interactions inhibited the misfolding, aggregation and fibrillation of hIAPP. These results, together with cichoric acid's good cytocompatibility and significant protective effects in hIAPP lesioned cell models, not only showed that cichoric acid could be used to fight against amyloidosis, but also brought a new perspective for Chinese herbal medicine as natural compound's medical potential.
Collapse
Affiliation(s)
- Zhuoying Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhongjie Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qian Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaobing Gao
- General Hospital of Central Theater Command, Wuhan 430070, China
| | - Xintong Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhenxing Gao
- Affiliated Cancer Hospital &Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou 510000, China
| | - Chaoyang Li
- Affiliated Cancer Hospital &Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou 510000, China.
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
157
|
Dias CL, Jalali S, Yang Y, Cruz L. Role of Cholesterol on Binding of Amyloid Fibrils to Lipid Bilayers. J Phys Chem B 2020; 124:3036-3042. [DOI: 10.1021/acs.jpcb.0c00485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cristiano L. Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Sharareh Jalali
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Yanxing Yang
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Luis Cruz
- Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
158
|
Zhang D, Xu X, Long X, Cheng K, Li J. Advances in biomolecule inspired polymeric material decorated interfaces for biological applications. Biomater Sci 2020; 7:3984-3999. [PMID: 31429424 DOI: 10.1039/c9bm00746f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
With the development of surface modification technology, interface properties have great effects on the interaction between biomedical materials and cells and biomolecules, which significantly affects the biocompatibility and functionality of materials. As an orderly and perfect system, biological organisms in nature effectively integrate all kinds of bio-interfaces with physiological functions, which shed light on the importance of biomolecules in organisms. It gives birth to a bio-inspiration strategy to design and fabricate smart materials with specific functionalities, e.g. osteogenic and chondrocytic induced materials inspired by bone sialoprotein and chondroitin sulfate. Through this mimicking approach, various functional materials were utilized to decorate the interfaces and further optimize the performance of biomedical materials, which would widely expand their applications. In this review, followed by a summary and brief introduction of surface modification methods, we highlight recent advances in the fabrication of functional polymeric materials inspired by a range of biomolecules for decorating interfaces. Then, the other applications of biomolecule inspired materials including tissue engineering, diagnosis and treatment of diseases and physiological function regulation are presented and the future outlook is discussed as well.
Collapse
Affiliation(s)
- Dongyue Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | | | | | | | | |
Collapse
|
159
|
Ma L, Yang C, Zheng J, Chen Y, Xiao Y, Huang K. Non-polyphenolic natural inhibitors of amyloid aggregation. Eur J Med Chem 2020; 192:112197. [PMID: 32172082 DOI: 10.1016/j.ejmech.2020.112197] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/09/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Protein misfolding diseases (PMDs) are chronic and progressive, with no effective therapy so far. Aggregation and misfolding of amyloidogenic proteins are closely associated with the onset and progression of PMDs, such as amyloid-β (Aβ) in Alzheimer's disease, α-Synuclein (α-Syn) in Parkinson's disease and human islet amyloid polypeptide (hIAPP) in type 2 diabetes. Inhibiting toxic aggregation of amyloidogenic proteins is regarded as a promising therapeutic approach in PMDs. The past decade has witnessed the rapid progresses of this field, dozens of inhibitors have been screened and verified in vitro and in vivo, demonstrating inhibitory effects against the aggregation and misfolding of amyloidogenic proteins, together with beneficial effects. Natural products are major sources of small molecule amyloid inhibitors, a number of natural derived compounds have been identified with great bioactivities and translational prospects. Here, we review the non-polyphenolic natural inhibitors that potentially applicable for PMDs treatment, along with their working mechanisms. Future directions are proposed for the development and clinical applications of these inhibitors.
Collapse
Affiliation(s)
- Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiaojiao Zheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yushuo Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430035, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
160
|
Matsuzaki K. Aβ-ganglioside interactions in the pathogenesis of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183233. [PMID: 32142821 DOI: 10.1016/j.bbamem.2020.183233] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/20/2023]
Abstract
It is widely accepted that the abnormal self-association of amyloid β-protein (Aβ) is central to the pathogenesis of Alzheimer's disease, the most common form of dementia. Accumulating evidence, both in vivo and in vitro, suggests that the binding of Aβ to gangliosides, especially monosialoganglioside GM1, plays an important role in the aggregation of Aβ. This review summarizes the molecular details of the binding of Aβ to ganglioside-containing membranes and subsequent structural changes, as revealed by liposomal and cellular studies. Furthermore, mechanisms of cytotoxicity by aggregated Aβ are also discussed.
Collapse
Affiliation(s)
- Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
161
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
162
|
Loschwitz J, Olubiyi OO, Hub JS, Strodel B, Poojari CS. Computer simulations of protein-membrane systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:273-403. [PMID: 32145948 PMCID: PMC7109768 DOI: 10.1016/bs.pmbts.2020.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interactions between proteins and membranes play critical roles in signal transduction, cell motility, and transport, and they are involved in many types of diseases. Molecular dynamics (MD) simulations have greatly contributed to our understanding of protein-membrane interactions, promoted by a dramatic development of MD-related software, increasingly accurate force fields, and available computer power. In this chapter, we present available methods for studying protein-membrane systems with MD simulations, including an overview about the various all-atom and coarse-grained force fields for lipids, and useful software for membrane simulation setup and analysis. A large set of case studies is discussed.
Collapse
Affiliation(s)
- Jennifer Loschwitz
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Olujide O Olubiyi
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Birgit Strodel
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
163
|
Zhang J, Tan J, Pei R, Ye S. Acidic Environment Significantly Alters Aggregation Pathway of Human Islet Amyloid Polypeptide at Negative Lipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1530-1537. [PMID: 31995712 DOI: 10.1021/acs.langmuir.9b03623] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The misfolding and aggregation of human islet amyloid polypeptide (hIAPP) at cell membrane has a close relationship with the development of type 2 diabetes (T2DM). This aggregation process is susceptible to various physiologically related factors, and systematic studies on condition-mediated hIAPP aggregation are therefore essential for a thorough understanding of the pathology of T2DM. In this study, we combined surface-sensitive amide I and amide II spectral signals from the protein backbone, generated simultaneously in a highly sensitive femtosecond broad-band sum frequency generation vibrational spectroscopy system, to examine the effect of environmental pH on the dynamical structural changes of hIAPP at membrane surface in situ and in real time. Such a combination can directly discriminate the formation of β-hairpin-like monomer and oligomer/fibril at the membrane surface. It is evident that, in an acidic milieu, hIAPP slows down its conformational evolution and alters its aggregation pathway, leading to the formation of off-pathway oligomers. When matured hIAPP aggregates are exposed to basic subphase, partial conversion from β-sheet oligomers into ordered β-sheet fibrillar structures is observed. When exposed to acidic environment, however, hIAPP fibrils partially converse into more loosely patterned β-sheet oligomeric structures.
Collapse
Affiliation(s)
- Jiahui Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Ruoqi Pei
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
164
|
Adsorption layer formation in dispersions of protein aggregates. Adv Colloid Interface Sci 2020; 276:102086. [PMID: 31895989 DOI: 10.1016/j.cis.2019.102086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
Abstract
The review discusses recent results on the adsorption of amyloid fibrils and protein microgels at liquid/fluid interfaces. The application of the shear and dilational surface rheology, atomic force microscopy and passive particle probe tracking allowed for elucidating characteristic features of the protein aggregate adsorption while some proposed hypothesis still must be examined by special methods for structural characterization. Although the distinctions of the shear surface properties of dispersions of protein aggregates from the properties of native protein solutions are higher than the corresponding distinctions of the dilational surface properties, the latter ones give a possibility to obtain new information on the formation of fibril aggregates at the water/air interface. Only the adsorption of BLG microgels and fibrils was studied in some details. The kinetic dependencies of the dynamic surface tension and dilational surface elasticity for aqueous dispersions of protein globules, protein microgels and purified fibrils are similar if the system does not contain flexible macromolecules or flexible protein fragments. In the opposite case the kinetic dependencies of the dynamic surface elasticity can be non-monotonic. The solution pH influences strongly the dynamic surface properties of the dispersions of protein aggregates indicating that the adsorption kinetics is controlled by an electrostatic adsorption barrier if the pH deviates from the isoelectric point. A special section of the review considers the possibility to apply kinetic models of nanoparticle adsorption to the adsorption of protein aggregates.
Collapse
|
165
|
Kurimitsu N, Mizuguchi C, Fujita K, Taguchi S, Ohgita T, Nishitsuji K, Shimanouchi T, Saito H. Phosphatidylethanolamine accelerates aggregation of the amyloidogenic N-terminal fragment of apoA-I. FEBS Lett 2020; 594:1443-1452. [PMID: 31968125 DOI: 10.1002/1873-3468.13737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022]
Abstract
Membrane lipid composition is known to influence aggregation and fibril formation of many amyloidogenic proteins. Here, we found that phosphatidylethanolamine (PE) accelerates aggregation of the N-terminal 1-83 fragment of an amyloidogenic G26R variant of apoA-I on lipid membranes. Circular dichroism and isothermal titration calorimetry measurements demonstrated that PE does not affect the α-helical structure and lipid binding property of apoA-I 1-83/G26R. Rather, fluorescence measurements indicated that PE induces more ordered lipid packing at the interfacial and acyl chain regions, providing more hydrophobic environments especially around the highly amyloidogenic regions in apoA-I on the membrane surface. These results suggest that PE promotes aggregation of the amyloidogenic N-terminal fragment of apoA-I on lipid membranes by inducing hydrophobic membrane environments.
Collapse
Affiliation(s)
- Naoko Kurimitsu
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Chiharu Mizuguchi
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kaho Fujita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Suzuno Taguchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | - Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
166
|
Pilkington AW, Schupp J, Nyman M, Valentine SJ, Smith DM, Legleiter J. Acetylation of Aβ 40 Alters Aggregation in the Presence and Absence of Lipid Membranes. ACS Chem Neurosci 2020; 11:146-161. [PMID: 31834770 DOI: 10.1021/acschemneuro.9b00483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A hallmark of Alzheimer's disease (AD) is the formation of senile plaques comprised of the β-amyloid (Aβ) peptide. Aβ fibrillization is a complex nucleation-dependent process involving a variety of metastable intermediate aggregates and features the formation of inter- and intramolecular salt bridges involving lysine residues, K16 and K28. Cationic lysine residues also mediate protein-lipid interactions via association with anionic lipid headgroups. As several toxic mechanisms attributed to Aβ involve membrane interactions, the impact of acetylation on Aβ40 aggregation in the presence and absence of membranes was determined. Using chemical acetylation, varying mixtures of acetylated and nonacetylated Aβ40 were produced. With increasing acetylation, fibril and oligomer formation decreased, eventually completely arresting fibrillization. In the presence of total brain lipid extract (TBLE) vesicles, acetylation reduced the interaction of Aβ40 with membranes; however, fibrils still formed at near complete levels of acetylation. Additionally, the combination of TBLE and acetylated Aβ promoted annular aggregates. Finally, toxicity associated with Aβ40 was reduced with increasing acetylation in a cell culture assay. These results suggest that in the absence of membranes that the cationic character of lysine plays a major role in fibril formation. However, acetylation promotes unique aggregation pathways in the presence of lipid membranes.
Collapse
Affiliation(s)
- Albert W. Pilkington
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Jane Schupp
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Morgan Nyman
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Stephen J. Valentine
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - David M. Smith
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States
- Department of Neuroscience, West Virginia University, 1 Medical Center Drive, P.O. Box
9303, Morgantown, West Virginia 26505, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Morgantown, West Virginia 26506, United States
- Rockefeller Neurosciences Institutes, West Virginia University, 1 Medical Center Drive, P.O. Box 9303, Morgantown, West Virginia 26505, United States
- Department of Neuroscience, West Virginia University, 1 Medical Center Drive, P.O. Box
9303, Morgantown, West Virginia 26505, United States
| |
Collapse
|
167
|
Mathew M, Aravindakumar CT, Aravind UK. Unravelling the fibrillation mechanism of ovalbumin in the presence of mercury at its isoelectric pH. RSC Adv 2020; 10:16415-16421. [PMID: 35498851 PMCID: PMC9052921 DOI: 10.1039/c9ra10655c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/03/2020] [Indexed: 02/03/2023] Open
Abstract
The intriguing resemblances of amyloid fibrils and spider silk in protein aggregation diseases have instigated the exploration of identical structural features if any in their oligomeric pathways. The serpin group protein, ovalbumin, on defolding in HgCl2 shares commonness to the micellar pathway of spidroins for their aggregation in response to a pH trigger. The structural feature changes from monomer to worm like fibril with a shift in the primary protein pH to slightly acidic pH (4.5), and then proceeds through a secondary nucleation pathway to ‘hillock’ and ‘hydra’ like protofibrils rich in β-sheet and random coil conformers upon exposure to mercury. The findings are backed by atomic force microscopy, confocal Raman spectroscopy and fluorescence measurements. Unlocking such structural features can favorably assist in the design of therapeutics. Mercuric chloride triggered ovalbumin aggregation pathway and its resemblance to Nephila clavipes.![]()
Collapse
Affiliation(s)
- Manjumol Mathew
- Advanced Centre of Environmental Studies and Sustainable Development
- Mahatma Gandhi University
- Kottayam-686 560
- India
| | - Charuvila T. Aravindakumar
- School of Environmental Sciences
- Inter University Instrumentation Centre
- Mahatma Gandhi University
- Kottayam-686 560
- India
| | - Usha K. Aravind
- School of Environmental Studies
- Cochin University of Science and Technology
- Kochi-682022
- India
| |
Collapse
|
168
|
Computational studies of protein aggregation mediated by amyloid: Fibril elongation and secondary nucleation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:461-504. [DOI: 10.1016/bs.pmbts.2019.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
169
|
Wallin C, Friedemann M, Sholts SB, Noormägi A, Svantesson T, Jarvet J, Roos PM, Palumaa P, Gräslund A, Wärmländer SKTS. Mercury and Alzheimer's Disease: Hg(II) Ions Display Specific Binding to the Amyloid-β Peptide and Hinder Its Fibrillization. Biomolecules 2019; 10:E44. [PMID: 31892131 PMCID: PMC7022868 DOI: 10.3390/biom10010044] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Brains and blood of Alzheimer's disease (AD) patients have shown elevated mercury concentrations, but potential involvement of mercury exposure in AD pathogenesis has not been studied at the molecular level. The pathological hallmark of AD brains is deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils. Aβ peptide fibrillization is known to be modulated by metal ions such as Cu(II) and Zn(II). Here, we study in vitro the interactions between Aβ peptides and Hg(II) ions by multiple biophysical techniques. Fluorescence spectroscopy and atomic force microscopy (AFM) show that Hg(II) ions have a concentration-dependent inhibiting effect on Aβ fibrillization: at a 1:1 Aβ·Hg(II) ratio only non-fibrillar Aβ aggregates are formed. NMR spectroscopy shows that Hg(II) ions interact with the N-terminal region of Aβ(1-40) with a micromolar affinity, likely via a binding mode similar to that for Cu(II) and Zn(II) ions, i.e., mainly via the histidine residues His6, His13, and His14. Thus, together with Cu(II), Fe(II), Mn(II), Pb(IV), and Zn(II) ions, Hg(II) belongs to a family of metal ions that display residue-specific binding interactions with Aβ peptides and modulate their aggregation processes.
Collapse
Affiliation(s)
- Cecilia Wallin
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Merlin Friedemann
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Sabrina B. Sholts
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA;
| | - Andra Noormägi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Teodor Svantesson
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
- The National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Per M. Roos
- Institute of Environmental Medicine, Karolinska Institutet, 16765 Stockholm, Sweden;
- Department of Clinical Physiology, Capio St. Göran Hospital, 11219 Stockholm, Sweden
| | - Peep Palumaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Sebastian K. T. S. Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| |
Collapse
|
170
|
Lin YC, Komatsu H, Ma J, Axelsen PH, Fakhraai Z. Identifying Polymorphs of Amyloid-β (1-40) Fibrils Using High-Resolution Atomic Force Microscopy. J Phys Chem B 2019; 123:10376-10383. [PMID: 31714085 DOI: 10.1021/acs.jpcb.9b07854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many amyloid-β fibril preparations are highly polymorphic, and the conditions under which they are formed determine their morphology. This report describes the application of high-resolution atomic force microscopy (HR-AFM), combined with volume-per-length analysis, to define, identify, and quantify the structural components of polymorphic Aβ fibril preparations. Volume-per-length analysis confirms that they are composed of discrete cross-β filaments, and the analysis of HR-AFM images yields the number of striations in each fibril. Compared to mass-per-length analysis by electron microscopy, HR-AFM analysis yields narrower distributions, facilitating rapid and label-free quantitative morphological characterization of Aβ fibril preparations.
Collapse
Affiliation(s)
| | - Hiroaki Komatsu
- Departments of Pharmacology, Biochemistry and Biophysics, and Medicine/Infectious Diseases , University of Pennsylvania School of Medicine , Philadelphia , Pennsylvania 19104-6084 , United States
| | | | - Paul H Axelsen
- Departments of Pharmacology, Biochemistry and Biophysics, and Medicine/Infectious Diseases , University of Pennsylvania School of Medicine , Philadelphia , Pennsylvania 19104-6084 , United States
| | | |
Collapse
|
171
|
Faujan NH, Abedi Karjiban R, Kashaban I, Basri M, Basri H. Computational simulation of palm kernel oil-based esters nano-emulsions aggregation as a potential parenteral drug delivery system. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
172
|
Azouz M, Cullin C, Lecomte S, Lafleur M. Membrane domain modulation of Aβ 1-42 oligomer interactions with supported lipid bilayers: an atomic force microscopy investigation. NANOSCALE 2019; 11:20857-20867. [PMID: 31657431 DOI: 10.1039/c9nr06361g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Alzheimer's disease is a devastating pathology affecting an increasing number of individuals following the general rise in life expectancy. Amyloid peptide Aβ1-42 has been identified as one of the main culprits of the disease. The peptide has been shown to have major effects on lipid membranes, including membrane fragmentation. The membrane composition has been identified as a factor that plays a pivotal role in regulating peptide/membrane interactions and several results suggest that lipid domains, or rafts, can promote peptide-induced membrane damage. In this work, we examined the effects of lipid segregation on the membrane-perturbing ability of Aβ1-42 and an oligomeric mutant (G37C), a peptide that shares common features with the suspected toxic intermediates involved in the neurodegeneration process. Atomic force microscopy (AFM) was used to determine the impact of these peptides on the supported lipid bilayers of various compositions. In 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol (DOPC/DPPC/cholesterol) and DOPC/sphingomyelin/cholesterol ternary mixtures, two systems exhibiting liquid-liquid phase separations, it was shown that Aβ1-42 and G37C exclusively aggregated on liquid-disordered-phase domains, creating large deposits and even causing membrane fragmentation for the latter composition. Cholesterol and ganglioside GM1, the two most documented lipids in the context of Alzheimer's disease, are also considered to play a crucial role in promoting detrimental interactions with amyloid peptides. We show that, in model 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes, the presence of either cholesterol or GM1 in a proportion of 10 mol%, a content supposed to lead to domain formation, favoured the association of both Aβ1-42 and G37C, leading to a harmful membrane fragmentation. The AFM results established that the presence of domains favoured membrane perturbations induced by the amyloid peptides. It is proposed that lipid packing defects at the domain interface could act as adsorption and nucleation sites for the amyloid peptides. The more extensive bilayer perturbations induced by G37C compared to Aβ1-42 supported this hypothesis, indicating that oligomers that cannot mature to the fibril state can present considerable toxicity.
Collapse
Affiliation(s)
- Mehdi Azouz
- Chimie et Biologie des Membranes et Nanoobjets, CBMN CNRS UMR 5248, Université de Bordeaux, Allée Geoffroy de Saint-Hilaire, 33600 Pessac, France and Department of Chemistry, Université de Montréal, Montréal, Québec, Canada.
| | - Christophe Cullin
- Chimie et Biologie des Membranes et Nanoobjets, CBMN CNRS UMR 5248, Université de Bordeaux, Allée Geoffroy de Saint-Hilaire, 33600 Pessac, France
| | - Sophie Lecomte
- Chimie et Biologie des Membranes et Nanoobjets, CBMN CNRS UMR 5248, Université de Bordeaux, Allée Geoffroy de Saint-Hilaire, 33600 Pessac, France
| | - Michel Lafleur
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
173
|
Cholak E, Bucciarelli S, Bugge K, Johansen NT, Vestergaard B, Arleth L, Kragelund BB, Langkilde AE. Distinct α-Synuclein:Lipid Co-Structure Complexes Affect Amyloid Nucleation through Fibril Mimetic Behavior. Biochemistry 2019; 58:5052-5065. [DOI: 10.1021/acs.biochem.9b00925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ersoy Cholak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen N, Denmark
| | - Saskia Bucciarelli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen N, Denmark
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, and REPIN, Department of Biology, Faculty of Science, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nicolai Tidemand Johansen
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen N, Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen N, Denmark
| | - Lise Arleth
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen N, Denmark
| | - Birthe B. Kragelund
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, and REPIN, Department of Biology, Faculty of Science, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Annette E. Langkilde
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen N, Denmark
| |
Collapse
|
174
|
John T, Greene GW, Patil NA, Dealey TJA, Hossain MA, Abel B, Martin LL. Adsorption of Amyloidogenic Peptides to Functionalized Surfaces Is Biased by Charge and Hydrophilicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14522-14531. [PMID: 31537064 DOI: 10.1021/acs.langmuir.9b02063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surfaces are abundant in living systems, such as in the form of cellular membranes, and govern many biological processes. In this study, the adsorption of the amyloidogenic model peptides GNNQQNY, NNFGAIL, and VQIVYK as well as the amyloid-forming antimicrobial peptide uperin 3.5 (U3.5) were studied at low concentrations (100 μM) to different surfaces. The technique of a quartz crystal microbalance with dissipation monitoring (QCM-D) was applied as it enables the monitoring of mass binding to sensors at nanogram sensitivity. Gold-coated quartz sensors were used as unmodified gold surfaces or functionalized with self-assembled monolayers (SAMs) of alkanethiols (terminated as methyl, amino, carboxyl, and hydroxyl) resulting in different adsorption affinities of the peptides. Our objective was to evaluate the underlying role of the nature and feature of interfaces in biological systems which could concentrate peptides and impact or trigger peptide aggregation processes. In overall, the largely hydrophobic peptides adsorbed with preference to hydrophobic or countercharged surfaces. Further, the glycoprotein lubricin (LUB) was tested as an antiadhesive coating. Despite its hydrophilicity, the adsorption of peptides to LUB coated sensors was similar to the adsorption to unmodified gold surfaces, which indicates that some peptides diffused through the LUB layer to reach the underlying gold sensor surface. The LUB protein-antiadhesive is thus more effective as a biomaterial coating against larger biomolecules than small peptides under the conditions used here. This study provides directions toward a better understanding of amyloid peptide adsorption to biologically relevant interfaces, such as cellular membranes.
Collapse
Affiliation(s)
- Torsten John
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
- Leibniz Institute of Surface Engineering (IOM) , Permoserstraße 15 , 04318 Leipzig , Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry , Leipzig University , Linnéstraße 3 , 04103 Leipzig , Germany
| | - George W Greene
- Institute for Frontier Materials , Deakin University , 75 Pigdons Road , Waurn Ponds , Victoria 3216 , Australia
| | - Nitin A Patil
- Florey Institute of Neuroscience and Mental Health , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Tiara J A Dealey
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Mohammed A Hossain
- Florey Institute of Neuroscience and Mental Health , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM) , Permoserstraße 15 , 04318 Leipzig , Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry , Leipzig University , Linnéstraße 3 , 04103 Leipzig , Germany
| | - Lisandra L Martin
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| |
Collapse
|
175
|
Meng F, Lu T, Li F. Stabilization of Solvent to α-Sheet Structure and Conversion between α-Sheet and β-Sheet in the Fibrillation Process of Amyloid Peptide. J Phys Chem B 2019; 123:9576-9583. [DOI: 10.1021/acs.jpcb.9b07903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Feihong Meng
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin Avenue 2699, Changchun 130012, P. R. China
| |
Collapse
|
176
|
He Z, Li J, Chen SH, Zhou R. Surface Inhomogeneity of Graphene Oxide Influences Dissociation of Aβ 16-21 Peptide Assembly. J Phys Chem B 2019; 123:9098-9103. [PMID: 31566974 DOI: 10.1021/acs.jpcb.9b07359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abnormal peptide assembly and aggregation is associated with an array of neurodegenerative diseases including Alzheimer's disease (AD). A detailed understanding of how nanostructured materials such as oxidized graphene perturb the peptide assembly and subsequently induce fibril dissociation may open new directions for the development of potential AD treatments. Here, we investigate the impact of surface inhomogeneity of graphene oxide (GO) on the assembly of amyloid-beta Aβ16-21 peptides on GO surfaces with different degrees of oxidation using molecular dynamics simulations. Interestingly, nonuniform GO nanosheets (in terms of oxidation sites) have a much stronger perturbation effect on the structure of Aβ16-21 assembly. The Aβ peptides exhibit a remarkable tendency in binding to the scattered interfaces between unoxidized and oxidized regions, which induces the dissociation of Aβ amyloid fibril. These findings should deepen our understanding of surface-induced peptide dissociation and stimulate discovery of alternative AD treatments.
Collapse
Affiliation(s)
| | | | - Serena H Chen
- Computational Biological Center , IBM Thomas J. Watson Research Center , Yorktown Heights , New York 10598 , United States
| | - Ruhong Zhou
- Computational Biological Center , IBM Thomas J. Watson Research Center , Yorktown Heights , New York 10598 , United States
| |
Collapse
|
177
|
Mrdenovic D, Majewska M, Pieta IS, Bernatowicz P, Nowakowski R, Kutner W, Lipkowski J, Pieta P. Size-Dependent Interaction of Amyloid β Oligomers with Brain Total Lipid Extract Bilayer-Fibrillation Versus Membrane Destruction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11940-11949. [PMID: 31328526 DOI: 10.1021/acs.langmuir.9b01645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Amyloid β, Aβ(1-42), is a component of senile plaques present in the brain of Alzheimer's disease patients and one of the main suspects responsible for pathological consequences of the disease. Herein, we directly visualize the Aβ activity toward a brain-like model membrane and demonstrate that this activity strongly depends on the Aβ oligomer size. PeakForce quantitative nanomechanical mapping mode of atomic force microscopy imaging revealed that the interaction of large-size (LS) Aβ oligomers, corresponding to high-molecular-weight Aβ oligomers, with the brain total lipid extract (BTLE) membrane resulted in accelerated Aβ fibrillogenesis on the membrane surface. Importantly, the fibrillogenesis did not affect integrity of the membrane. In contrast, small-size (SS) Aβ oligomers, corresponding to low-molecular-weight Aβ oligomers, created pores and then disintegrated the BTLE membrane. Both forms of the Aβ oligomers changed nanomechanical properties of the membrane by decreasing its Young's modulus by ∼45%. Our results demonstrated that both forms of Aβ oligomers induce the neurotoxic effect on the brain cells but their action toward the membrane differs significantly.
Collapse
Affiliation(s)
- Dusan Mrdenovic
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
- Department of Chemistry , University of Guelph , 50 Stone Road East , Guelph , Ontario N1G 2W1 , Canada
| | - Marta Majewska
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Izabela S Pieta
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Piotr Bernatowicz
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Robert Nowakowski
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences , Cardinal Stefan Wyszynski University in Warsaw , Wóycickiego 1/3 , 01-815 Warsaw , Poland
| | - Jacek Lipkowski
- Department of Chemistry , University of Guelph , 50 Stone Road East , Guelph , Ontario N1G 2W1 , Canada
| | - Piotr Pieta
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| |
Collapse
|
178
|
Lv Z, Hashemi M, Banerjee S, Zagorski K, Rochet JC, Lyubchenko YL. Assembly of α-synuclein aggregates on phospholipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2019; 1867:802-812. [PMID: 31226488 PMCID: PMC6661114 DOI: 10.1016/j.bbapap.2019.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/29/2019] [Accepted: 06/14/2019] [Indexed: 01/17/2023]
Abstract
The spontaneous self-assembly of α-synuclein (α-syn) into aggregates of different morphologies is associated with the development of Parkinson's disease. However, the mechanism behind the spontaneous assembly remains elusive. The current study shows a novel effect of phospholipid bilayers on the assembly of the α-syn aggregates. Using time-lapse atomic force microscopy, it was discovered that α-syn assembles into aggregates on bilayer surfaces, even at the nanomolar concentration range. The efficiency of the aggregation process depends on the membrane composition, with the greatest efficiency observed for of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS). Importantly, assembled aggregates can dissociate from the surface, suggesting that on-surface aggregation is a mechanism by which pathological aggregates may be produced. Computational modeling revealed that dimers of α-syn assembled rapidly, through the membrane-bound monomer on POPS bilayer, due to an aggregation-prone orientation of α-syn. Interaction of α-syn with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) leads to a binding mode that does not induce a fast assembly of the dimer. Based on these findings, we propose a model in which the interaction of α-syn with membranes plays a critical role initiating the formation of α-syn aggregates and the overall aggregation process.
Collapse
Affiliation(s)
- Zhengjian Lv
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, United States of America; Bruker Nano Surfaces Division, 112 Robin Hill Road, Goleta, Santa Barbara, CA 93117, United States of America
| | - Mohtadin Hashemi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, United States of America
| | - Siddhartha Banerjee
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, United States of America
| | - Karen Zagorski
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, United States of America
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States of America; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States of America
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, United States of America.
| |
Collapse
|
179
|
Qu L, Fudo S, Matsuzaki K, Hoshino T. Computational Study on the Assembly of Amyloid β-Peptides in the Hydrophobic Environment. Chem Pharm Bull (Tokyo) 2019; 67:959-965. [DOI: 10.1248/cpb.c19-00171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Liang Qu
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Satoshi Fudo
- Graduate School of Pharmaceutical Sciences, Chiba University
| | | | - Tyuji Hoshino
- Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
180
|
Malishev R, Nandi S, Śmiłowicz D, Bakavayev S, Engel S, Bujanover N, Gazit R, Metzler-Nolte N, Jelinek R. Interactions between BIM Protein and Beta-Amyloid May Reveal a Crucial Missing Link between Alzheimer's Disease and Neuronal Cell Death. ACS Chem Neurosci 2019; 10:3555-3564. [PMID: 31141342 DOI: 10.1021/acschemneuro.9b00177] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extensive neuronal cell death is among the pathological hallmarks of Alzheimer's disease. While neuron death is coincident with formation of plaques comprising the beta-amyloid (Aβ) peptide, a direct causative link between Aβ (or other Alzheimer's-associated proteins) and cell toxicity is yet to be found. Here we show that BIM-BH3, the primary proapoptotic domain of BIM, a key protein in varied apoptotic cascades of which elevated levels have been found in brain cells of patients afflicted with Alzheimer's disease, interacts with the 42-residue amyloid isoform Aβ42. Remarkably, BIM-BH3 modulated the structure, fibrillation pathway, aggregate morphology, and membrane interactions of Aβ42. In particular, BIM-BH3 inhibited Aβ42 fibril-formation, while it simultaneously enhanced protofibril assembly. Furthermore, we discovered that BIM-BH3/Aβ42 interactions induced cell death in a human neuroblastoma cell model. Overall, our data provide a crucial mechanistic link accounting for neuronal cell death in Alzheimer's disease patients and the participation of both BIM and Aβ42 in the neurotoxicity process.
Collapse
Affiliation(s)
- Ravit Malishev
- Department of Chemistry and Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sukhendu Nandi
- Inorganic Chemistry I – Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Dariusz Śmiłowicz
- Inorganic Chemistry I – Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nir Bujanover
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Roi Gazit
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nils Metzler-Nolte
- Inorganic Chemistry I – Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Raz Jelinek
- Department of Chemistry and Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
181
|
Prislan I, Lokar M, Zirdum M, Valant J, Poklar Ulrih N. Contribution of headgroup and chain length of glycerophospholipids to thermal stability and permeability of liposomes loaded with calcein. Chem Phys Lipids 2019; 225:104807. [PMID: 31390525 DOI: 10.1016/j.chemphyslip.2019.104807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
Biological membranes are complex systems that are composed of lipids, proteins and carbohydrates. They are difficult to study, so it is established practice to use lipid vesicles that consist of closed 'shells' of phospholipid bilayers as model systems to study various functional and structural aspects of lipid organisation. To define the effects of the structural properties of lipid vesicles on their phase behaviour, we investigated their headgroup and chain length, and the chemical bonds by which their acyl chains are attached to the glycerol moiety of glycerophospholipid species, in terms of phase transition temperature, enthalpy change and calcein permeability. We used differential scanning calorimetry to measure the temperature and enthalpy changes of phase transition, and fluorescence to follow calcein release through the bilayer structure. Our data show that longer acyl chains increase the stability of the lipid bilayers, whereas higher salt concentrations decrease the thermal stability and widen the phase transitions of these lipid bilayers. We discuss the possible reasons for the observed phase transition behaviour.
Collapse
Affiliation(s)
- Iztok Prislan
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Maruša Lokar
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Martina Zirdum
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Janez Valant
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
182
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
183
|
Takase H, Tanaka M, Nakamura Y, Morita SY, Yamada T, Mukai T. Effects of lipid composition on the structural properties of human serum amyloid A in reconstituted high-density lipoprotein particles. Chem Phys Lipids 2019; 221:8-14. [DOI: 10.1016/j.chemphyslip.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
|
184
|
Lei L, Geng R, Xu Z, Dang Y, Hu X, Li L, Geng P, Tian Y, Zhang W. Glycopeptide Nanofiber Platform for Aβ-Sialic Acid Interaction Analysis and Highly Sensitive Detection of Aβ. Anal Chem 2019; 91:8129-8136. [DOI: 10.1021/acs.analchem.9b00377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Li Lei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Rui Geng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xianli Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Lingling Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ping Geng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
185
|
Ilie IM, Caflisch A. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates. Chem Rev 2019; 119:6956-6993. [DOI: 10.1021/acs.chemrev.8b00731] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ioana M. Ilie
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| |
Collapse
|
186
|
Bode DC, Freeley M, Nield J, Palma M, Viles JH. Amyloid-β oligomers have a profound detergent-like effect on lipid membrane bilayers, imaged by atomic force and electron microscopy. J Biol Chem 2019; 294:7566-7572. [PMID: 30948512 DOI: 10.1074/jbc.ac118.007195] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
The ability of amyloid-β peptide (Aβ) to disrupt membrane integrity and cellular homeostasis is believed to be central to Alzheimer's disease pathology. Aβ is reported to have various impacts on the lipid bilayer, but a clearer picture of Aβ influence on membranes is required. Here, we use atomic force and transmission electron microscopies to image the impact of different isolated Aβ assembly types on lipid bilayers. We show that only oligomeric Aβ can profoundly disrupt the bilayer, visualized as widespread lipid extraction and subsequent deposition, which can be likened to an effect expected from the action of a detergent. We further show that Aβ oligomers cause widespread curvature and discontinuities within lipid vesicle membranes. In contrast, this detergent-like effect was not observed for Aβ monomers and fibers, although Aβ fibers did laterally associate and embed into the upper leaflet of the bilayer. The marked impact of Aβ oligomers on membrane integrity identified here reveals a mechanism by which these oligomers may be cytotoxic.
Collapse
Affiliation(s)
- David C Bode
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Mark Freeley
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Jon Nield
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Matteo Palma
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | - John H Viles
- From the School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
187
|
Influence of crowding and surfaces on protein amyloidogenesis: A thermo-kinetic perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:941-953. [PMID: 30928692 DOI: 10.1016/j.bbapap.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 01/24/2023]
Abstract
The last few decades have irreversibly implicated protein self-assembly and aggregation leading to amyloid fibril formation in proteopathies that include several neurodegenerative diseases. Emerging studies recognize the importance of eliciting the pathways leading to protein aggregation in the context of the crowded intracellular environment rather than in conventional in vitro conditions. It is found that crowded environments can have acceleratory as well as inhibitory effects on protein aggregation, depending on the interplay of underlying factors on the crucial rate limiting steps. The aggregation mechanism and transient species formed along the pathway are further altered when they interface with natural and artificial surfaces in the cellular milieu. An increasing number of studies probe the autocatalytic nature of amyloid surfaces as well as membrane bilayer effects on amyloidogenesis. Moreover, exposure to modern nanosurfaces via nanomedicines and other sources potentially invokes beneficial or deleterious biological response that needs rigorous investigation. Mounting evidences indicate that nanoparticles can either promote or impede amyloid aggregation, spurring efforts to tune their interactions for developing effective anti-amyloid strategies. Mechanistic insights into nanoparticle mediated aggregation pathways are therefore crucial for engineering anti-amyloid nanoparticle strategies that are biocompatible and sustainable. This review is a compilation of studies that contribute to the current understanding of the altering effects of molecular crowding as well as natural and artificial surfaces on protein amyloidogenesis.
Collapse
|
188
|
Falke M, Victor J, Wördehoff MM, Peduzzo A, Zhang T, Schröder GF, Buell AK, Hoyer W, Etzkorn M. α-Synuclein-derived lipoparticles in the study of α-Synuclein amyloid fibril formation. Chem Phys Lipids 2019; 220:57-65. [PMID: 30826264 PMCID: PMC6451039 DOI: 10.1016/j.chemphyslip.2019.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/23/2022]
Abstract
Aggregation of the protein α-Synuclein (αSyn) is of great interest due to its involvement in the pathology of Parkinson’s disease. However, under in vitro conditions αSyn is very soluble and kinetically stable for extended time periods. As a result, most αSyn aggregation assays rely on conditions that artificially induce or enhance aggregation, often by introducing rather non-native conditions. It has been shown that αSyn interacts with membranes and conditions have been identified in which membranes can promote as well as inhibit αSyn aggregation. It has also been shown that αSyn has the intrinsic capability to assemble lipid-protein-particles, in a similar way as apolipoproteins can form lipid-bilayer nanodiscs. Here we show that these αSyn-lipid particles (αSyn-LiPs) can also effectively induce, accelerate or inhibit αSyn aggregation, depending on the applied conditions. αSyn-LiPs therefore provide a general platform and additional tool, complementary to other setups, to study various aspects of αSyn amyloid fibril formation.
Collapse
Affiliation(s)
- Marcel Falke
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Julian Victor
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Michael M Wördehoff
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Alessia Peduzzo
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Tao Zhang
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Gunnar F Schröder
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, Germany
| | - Alexander K Buell
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-University Düsseldorf, Germany; Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, Germany.
| |
Collapse
|
189
|
Rao E, Foderà V, Leone M, Vetri V. Direct observation of alpha-lactalbumin, adsorption and incorporation into lipid membrane and formation of lipid/protein hybrid structures. Biochim Biophys Acta Gen Subj 2019; 1863:784-794. [PMID: 30742952 DOI: 10.1016/j.bbagen.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 02/02/2023]
Abstract
The interaction between proteins and membranes is of great interest in biomedical and biotechnological research for its implication in many functional and dysfunctional processes. We present an experimental study on the interaction between model membranes and alpha-lactalbumin (α-La). α-La is widely studied for both its biological function and its anti-tumoral properties. We use advanced fluorescence microscopy and spectroscopy techniques to characterize α-La-membrane mechanisms of interaction and α-La-induced modifications of membranes when insertion of partially disordered regions of protein chains in the lipid bilayer is favored. Moreover, using fluorescence lifetime imaging, we are able to distinguish between protein adsorption and insertion in the membranes. Our results indicate that, upon addition of α-La to giant vesicles samples, protein is inserted into the lipid bilayer with rates that are concentration-dependent. The formation of heterogeneous hybrid protein-lipid co-aggregates, paralleled with protein conformational and structural changes, alters the membrane structure and morphology, leading to an increase in membrane fluidity.
Collapse
Affiliation(s)
- Estella Rao
- Dipartimento di Fisica e Chimica, Università di Palermo, 90128 Palermo, Italy
| | - Vito Foderà
- Department of Pharmacy, Universitetsparken 2, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Maurizio Leone
- Dipartimento di Fisica e Chimica, Università di Palermo, 90128 Palermo, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università di Palermo, 90128 Palermo, Italy.
| |
Collapse
|
190
|
Ortega G, Kurnik M, Dauphin‐Ducharme P, Li H, Arroyo‐Currás N, Caceres A, Plaxco KW. Surface Attachment Enhances the Thermodynamic Stability of Protein L. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gabriel Ortega
- Department of Chemistry and BiochemistryUniversity of California Santa Barbara Santa Barbara CA 93106 USA
- Center for BioengineeringUniversity of California Santa Barbara Santa Barbara CA 93106 USA
- Protein Stability and Inherited Disease LaboratoryCIC bioGUNE Bizkaia Science and Technology Park, building 800 48160 Derio Spain
| | - Martin Kurnik
- Department of Chemistry and BiochemistryUniversity of California Santa Barbara Santa Barbara CA 93106 USA
- Center for BioengineeringUniversity of California Santa Barbara Santa Barbara CA 93106 USA
| | - Philippe Dauphin‐Ducharme
- Department of Chemistry and BiochemistryUniversity of California Santa Barbara Santa Barbara CA 93106 USA
- Center for BioengineeringUniversity of California Santa Barbara Santa Barbara CA 93106 USA
| | - Hui Li
- Department of Chemistry and BiochemistryUniversity of California Santa Barbara Santa Barbara CA 93106 USA
- Center for BioengineeringUniversity of California Santa Barbara Santa Barbara CA 93106 USA
- Engineering Research Center of Nano-Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryUniversity of Geosciences Wuhan 430074 China
| | - Netzahualcóyotl Arroyo‐Currás
- Department of Chemistry and BiochemistryUniversity of California Santa Barbara Santa Barbara CA 93106 USA
- Center for BioengineeringUniversity of California Santa Barbara Santa Barbara CA 93106 USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins School of Medicine Baltimore MD 93106 USA
| | - Amanda Caceres
- Department of Chemistry and BiochemistryUniversity of California Santa Barbara Santa Barbara CA 93106 USA
| | - Kevin W. Plaxco
- Department of Chemistry and BiochemistryUniversity of California Santa Barbara Santa Barbara CA 93106 USA
- Center for BioengineeringUniversity of California Santa Barbara Santa Barbara CA 93106 USA
| |
Collapse
|
191
|
Tan J, Zhang J, Luo Y, Ye S. Misfolding of a Human Islet Amyloid Polypeptide at the Lipid Membrane Populates through β-Sheet Conformers without Involving α-Helical Intermediates. J Am Chem Soc 2019; 141:1941-1948. [PMID: 30621387 DOI: 10.1021/jacs.8b08537] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid formation has been implicated in many fatal diseases, but its mechanism remains to be clarified due to a lack of effective methods that can capture the transient intermediates. Here, we experimentally demonstrate that sum frequency generation vibrational spectroscopy can unambiguously discriminate the intermediates during amyloid formation at the lipid membrane in situ and in real time by combining the chiral amide I and achiral amide II and amide III spectral signals of the protein backbone. Such a combination can directly identify the formation of β-hairpin-like monomers and β-sheet oligomers and fibrils. A strong correlation between the amide II signals and the formation of β-sheet oligomers and fibrils was found. With this approach, the structural evolution of human islet amyloid polypeptides (hIAPP) at negative lipid bilayers was elucidated. It was firmly confirmed that hIAPP populates through β-sheet conformers without involving α-helical intermediates. The membrane-associated assembly of hIAPP proceeds by assembling with a β-hairpin-like monomer at the lipid bilayer surface, rather than by inserting the preassembled β-sheet oligomers in solution. This newly established protocol is ready to be utilized in revealing the mechanism of amyloid aggregation at the lipid membrane.
Collapse
Affiliation(s)
- Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics , University of Science and Technology of China , Hefei , 230026 , China
| | - Jiahui Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics , University of Science and Technology of China , Hefei , 230026 , China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics , University of Science and Technology of China , Hefei , 230026 , China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics , University of Science and Technology of China , Hefei , 230026 , China
| |
Collapse
|
192
|
Ortega G, Kurnik M, Dauphin-Ducharme P, Li H, Arroyo-Currás N, Caceres A, Plaxco KW. Surface Attachment Enhances the Thermodynamic Stability of Protein L. Angew Chem Int Ed Engl 2019; 58:1714-1718. [PMID: 30549169 DOI: 10.1002/anie.201812231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Despite the importance of protein-surface interactions in both biology and biotechnology, our understanding of their origins is limited due to a paucity of experimental studies of the thermodynamics behind such interactions. In response, we have characterized the extent to which interaction with a chemically well-defined macroscopic surface alters the stability of protein L. To do so, we site-specifically attached a redox-reporter-modified protein variant to a hydroxy-terminated monolayer on a gold surface and then used electrochemistry to monitor its guanidine denaturation and determine its folding free energy. Comparison with the free energy seen in solution indicates that interaction with this surface stabilizes the protein by 6 kJ mol-1 , a value that is in good agreement with theoretical estimates of the entropic consequences of surface-induced excluded volume effects, thus suggesting that chemically specific interactions with this surface (e.g., electrostatic interactions) are limited in magnitude.
Collapse
Affiliation(s)
- Gabriel Ortega
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Protein Stability and Inherited Disease Laboratory, CIC bioGUNE, Bizkaia Science and Technology Park, building 800, 48160, Derio, Spain
| | - Martin Kurnik
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Philippe Dauphin-Ducharme
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Hui Li
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, University of Geosciences, Wuhan, 430074, China
| | - Netzahualcóyotl Arroyo-Currás
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 93106, USA
| | - Amanda Caceres
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
193
|
Janas T, Sapoń K, Stowell MHB, Janas T. Selection of Membrane RNA Aptamers to Amyloid Beta Peptide: Implications for Exosome-Based Antioxidant Strategies. Int J Mol Sci 2019; 20:ijms20020299. [PMID: 30642129 PMCID: PMC6359565 DOI: 10.3390/ijms20020299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
The distribution of amyloid beta peptide 42 (Aβ42) between model exosomal membranes and a buffer solution was measured. The model membranes contained liquid-ordered regions or phosphatidylserine. Results demonstrated that up to ca. 20% of amyloid peptide, generated in the plasma (or intracellular) membrane as a result of proteolytic cleavage of amyloid precursor proteins by β- and γ-secretases, can stay within the membrane milieu. The selection of RNA aptamers that bind to Aβ42 incorporated into phosphatidylserine-containing liposomal membranes was performed using the selection-amplification (SELEX) method. After eight selection cycles, the pool of RNA aptamers was isolated and its binding to Aβ42-containing membranes was demonstrated using the gel filtration method. Since membranes can act as a catalytic surface for Aβ42 aggregation, these RNA aptamers may inhibit the formation of toxic amyloid aggregates that can permeabilize cellular membranes or disrupt membrane receptors. Strategies are proposed for using functional exosomes, loaded with RNA aptamers specific to membrane Aβ42, to reduce the oxidative stress in Alzheimer's disease and Down's syndrome.
Collapse
Affiliation(s)
- Teresa Janas
- Institute of Biotechnology, University of Opole, Kominka 6, 45-032 Opole, Poland.
| | - Karolina Sapoń
- Institute of Biotechnology, University of Opole, Kominka 6, 45-032 Opole, Poland.
| | - Michael H B Stowell
- Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA.
- Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA.
| | - Tadeusz Janas
- Institute of Biotechnology, University of Opole, Kominka 6, 45-032 Opole, Poland.
- Department of MCD Biology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
194
|
Lu C, Zheng X, Zhang W, Zhao H, MacRaild CA, Norton RS, Zhuang Y, Wang J, Zhang X. Interaction of merozoite surface protein 2 with lipid membranes. FEBS Lett 2019; 593:288-295. [PMID: 30588612 DOI: 10.1002/1873-3468.13320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/26/2018] [Accepted: 12/16/2018] [Indexed: 11/07/2022]
Abstract
Merozoite surface protein 2 (MSP2) is a potential vaccine candidate against malaria, although its functional role is yet to be elucidated. Previous studies showed that MSP2 can interact with membranes, which may facilitate merozoite invasion into the host cell. The N-terminal 25 residues of MSP2 (MSP21-25 ), which may be aggregated on the merozoite surface, play a key role in the interaction with membranes. Here, we investigated the effects of MSP21-25 -membrane interactions on the conformation and aggregation of MSP21-25 and on membrane integrity, using nanodiscs and small unilamellar vesicles as mimetics of cell membranes. MSP21-25 -membrane interactions induced the peptide to form β-structure and to aggregate, depending on the lipid composition of the membrane. Nonfibrillar aggregates in turn disrupted the membrane.
Collapse
Affiliation(s)
- Chenghui Lu
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Xue Zheng
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Wei Zhang
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Hongxin Zhao
- High Magnetic Field Laboratory, Key Laboratory of Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yonglong Zhuang
- Modern Experimental Technology Center, Anhui University, Hefei, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| |
Collapse
|
195
|
Qiao Q, Wei G, Yao D, Song Z. Formation of α-helical and β-sheet structures in membrane-bound human IAPP monomer and the resulting membrane deformation. Phys Chem Chem Phys 2019; 21:20239-20251. [DOI: 10.1039/c9cp03151k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Upon adsorption on membrane, human IAPP monomer takes conformational changes from coils to α-helices and β-sheets. The helices inserted and β on surface cause different types of membrane deformation, implying two distinct aggregation mechanisms.
Collapse
Affiliation(s)
- Qin Qiao
- Digital Medical Research Center
- School of Basic Medical Sciences
- Fudan University
- Shanghai 200032
- China
| | - Guanghong Wei
- Department of Physics
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Science (Ministry of Education)
- Fudan University
- Shanghai 200438
| | - Demin Yao
- Digital Medical Research Center
- School of Basic Medical Sciences
- Fudan University
- Shanghai 200032
- China
| | - Zhijian Song
- Digital Medical Research Center
- School of Basic Medical Sciences
- Fudan University
- Shanghai 200032
- China
| |
Collapse
|
196
|
Sahoo A, Matysiak S. Computational insights into lipid assisted peptide misfolding and aggregation in neurodegeneration. Phys Chem Chem Phys 2019; 21:22679-22694. [DOI: 10.1039/c9cp02765c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An overview of recent advances in computational investigation of peptide–lipid interactions in neurodegeneration – Alzheimer's, Parkinson's and Huntington's disease.
Collapse
Affiliation(s)
- Abhilash Sahoo
- Biophysics Program
- Institute of Physical Science and Technology
- University of Maryland
- College Park
- USA
| | - Silvina Matysiak
- Biophysics Program
- Institute of Physical Science and Technology
- University of Maryland
- College Park
- USA
| |
Collapse
|
197
|
Bera S, Arad E, Schnaider L, Shaham-Niv S, Castelletto V, Peretz Y, Zaguri D, Jelinek R, Gazit E, Hamley IW. Unravelling the role of amino acid sequence order in the assembly and function of the amyloid-β core. Chem Commun (Camb) 2019; 55:8595-8598. [DOI: 10.1039/c9cc03654g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Here we report the influence of amino acid sequence order on the self-assembly and biological functions of the core recognition motif of Amyloid β.
Collapse
Affiliation(s)
- Santu Bera
- Department of Molecular Microbiology and Biotechnology
- George S. Wise Faculty of Life Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Elad Arad
- Department of Chemistry & Ilse Katz Institute (IKI) for Nanoscale Science and Technology
- Ben Gurion University of the Negev
- Beer Sheva 8410501
- Israel
| | - Lee Schnaider
- Department of Molecular Microbiology and Biotechnology
- George S. Wise Faculty of Life Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Shira Shaham-Niv
- Department of Molecular Microbiology and Biotechnology
- George S. Wise Faculty of Life Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | | | - Yossef Peretz
- Department of Chemistry & Ilse Katz Institute (IKI) for Nanoscale Science and Technology
- Ben Gurion University of the Negev
- Beer Sheva 8410501
- Israel
| | - Dor Zaguri
- Department of Molecular Microbiology and Biotechnology
- George S. Wise Faculty of Life Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Raz Jelinek
- Department of Chemistry & Ilse Katz Institute (IKI) for Nanoscale Science and Technology
- Ben Gurion University of the Negev
- Beer Sheva 8410501
- Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology
- George S. Wise Faculty of Life Sciences
- Tel Aviv University
- Tel Aviv 69978
- Israel
| | - Ian W. Hamley
- Department of Chemistry
- University of Reading
- Reading RG6 6AD
- UK
| |
Collapse
|
198
|
Combet S, Cousin F, Rezaei H, Noinville S. Membrane interaction of off-pathway prion oligomers and lipid-induced on-pathway intermediates during prion conversion: A clue for neurotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:514-523. [PMID: 30529078 DOI: 10.1016/j.bbamem.2018.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/21/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022]
Abstract
Soluble oligomers of prion proteins (PrP), produced during amyloid aggregation, have emerged as the primary neurotoxic species, instead of the fibrillar end-products, in transmissible spongiform encephalopathies. However, whether the membrane is among their direct targets, that mediate the downstream adverse effects, remains a question of debate. Recently, questions arise from the formation of membrane-active oligomeric species generated during the β-aggregation pathway, either in solution, or in lipid environment. In the present study, we characterized membrane interaction of off-pathway oligomers from recombinant prion protein generated along the amyloid aggregation and compared to lipid-induced intermediates produced during lipid-accelerated fibrillation. Using calcein-leakage assay, we show that the soluble prion oligomers are the most potent in producing leakage with negatively charged vesicles. Binding affinities, conformational states, mode of action of the different PrP assemblies were determined by thioflavin T binding-static light scattering experiments on DOPC/DOPS vesicles, as well as by FTIR-ATR spectroscopy and specular neutron reflectivity onto the corresponding supported lipid bilayers. Our results indicate that the off-pathway PrP oligomers interact with lipid membrane via a distinct mechanism, compared to the inserted lipid-induced intermediates. Thus, separate neurotoxic mechanisms could exist following the puzzling intermediates generated in the different cell compartments. These results not only reveal an important regulation of lipid membrane on PrP behavior but may also provide clues for designing stage-specific and prion-targeted therapy.
Collapse
Affiliation(s)
- Sophie Combet
- Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Fabrice Cousin
- Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Human Rezaei
- Laboratoire de Virologie et Immunologie Moléculaires, UR892, Institut National de la Recherche Agronomique (INRA), F-78352 Jouy-en-Josas, France
| | - Sylvie Noinville
- Laboratoire MONARIS, UMR 8233, Sorbonne Université, CNRS, F-75005 Paris, France.
| |
Collapse
|
199
|
Predicting the location of the non-local contacts in α-synuclein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1201-1208. [DOI: 10.1016/j.bbapap.2018.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 11/18/2022]
|
200
|
Hecel A, Valensin D, Kozłowski H. How copper ions and membrane environment influence the structure of the human and chicken tandem repeats domain? J Inorg Biochem 2018; 191:143-153. [PMID: 30529722 DOI: 10.1016/j.jinorgbio.2018.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022]
Abstract
Prion proteins (PrPs) from different species have the enormous ability to anchor copper ions. The N-terminal domain of human prion protein (hPrP) contains four tandem repeats of the -PHGGGWGQ- octapeptide sequence. This octarepeat domain can bind up to four Cu2+ ions. Similarly to hPrP, chicken prion protein (chPrP) is able to interact with Cu2+ through the tandem hexapeptide -HNPGYP- region (residues 53-94). In this work, we focused on the human octapeptide repeat (human Octa4, hPrP60-91) (Ac-PHGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQ-NH2) and chicken hexapeptide repeat (chicken Hexa4, chPrP54-77) (Ac-HNPGYPHNPGYPHNPGYPHNPGYP-NH2) prion protein fragments. Due to the fact that PrP is a membrane-anchored glycoprotein and its unstructured and flexible N-terminal domain may interact with the lipid bilayer, our studies were carried out in presence of the surfactant sodium dodecyl sulfate (SDS) mimicking the membrane environment in vitro. The main objective of this work was to understand the effects of copper ion on the structural rearrangements of the human and chicken N-terminal repeat domain. The obtained results provide a fundamental first step in describing the thermodynamic (potentiometric titrations) and structural properties of Cu(II) binding (UV-Vis, NMR, CD spectroscopy) to both human Octa4 and chicken Hexa4 repeats in both a DMSO/water and SDS micelle environment. Interestingly, in SDS environment, both ligands indicate different copper coordination modes, which results of the conformational changes in micelle environment. Our results strongly support that copper binding mode strongly depends on the protein backbone structure. Moreover, we focused on previously obtained results for amyloidogenic human and chicken fragments in membrane mimicking environment.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50383 Wroclaw, Poland.
| | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Henryk Kozłowski
- Opole Medical School in Opole, Katowicka 68, 45060 Opole, Poland
| |
Collapse
|