151
|
Affiliation(s)
- Daniela Albrecht
- Research Group Systems Biology/Bioinformatics, Hans-Knölle-Institute, Jena, Germany.
| | | | | | | |
Collapse
|
152
|
Abstract
Pre-eclampsia (PE) remains the leading cause of maternal and fetal mortality in the developed world and parts of the developing world. Morbidity and mortality from PE is increased in the developing world compared to the developed world, as availability and access to antenatal care and pathology services are limited.
Collapse
|
153
|
Grzendowski M, Wolter M, Riemenschneider MJ, Knobbe CB, Schlegel U, Meyer HE, Reifenberger G, Stühler K. Differential proteome analysis of human gliomas stratified for loss of heterozygosity on chromosomal arms 1p and 19q. Neuro Oncol 2010; 12:243-56. [PMID: 20167812 DOI: 10.1093/neuonc/nop025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Combined deletion of chromosomal arms 1p and 19q is an independent prognostic marker in patients with oligodendroglial brain tumors, including oligodendrogliomas and oligoastrocytomas. However, the relevant genes in these chromosome arms and the molecular mechanisms underlying the prognostic significance of 1p/19q deletion are yet unknown. We used two-dimensional difference gel electrophoresis followed by mass spectrometry to perform a proteome-wide profiling of low-grade oligoastrocytomas stratified for the presence or absence of 1p/19q deletions. Thereby, we identified 22 different proteins showing differential expression in tumors with or without combined deletions of 1p and 19q. Four of the differentially expressed proteins, which are vimentin, villin 2 (ezrin), annexin A1, and glial fibrillary acidic protein, were selected for further analysis. Lower relative expression levels of these proteins in 1p/19q-deleted gliomas were confirmed at the protein level by Western blot analysis and immunohistochemistry. Furthermore, sequencing of sodium bisulfite-treated tumor DNA revealed more frequent methylation of 5'-CpG islands associated with the VIM and VIL2 genes in 1p/19q-deleted gliomas when compared with gliomas without these deletions. In summary, we confirm proteome-wide profiling as a powerful means to identify candidate biomarkers in gliomas. In addition, our data support the hypothesis that 1p/19q-deleted gliomas frequently show epigenetic down-regulation of multiple genes due to aberrant methylation of the 5'-CpG islands.
Collapse
Affiliation(s)
- Michael Grzendowski
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Profiling analysis of volatile compounds from fruits using comprehensive two-dimensional gas chromatography and image processing techniques. J Chromatogr A 2010; 1217:565-74. [DOI: 10.1016/j.chroma.2009.11.063] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/13/2009] [Accepted: 11/18/2009] [Indexed: 11/18/2022]
|
155
|
Skinner CD. A liquid chromatography to capillary array electrophoresis interface for two-dimensional separations. Analyst 2010; 135:358-67. [DOI: 10.1039/b915586d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
156
|
Abstract
During the last decade, analytical methods for the detection and quantification of proteins and peptides in biological samples have been considerably improved. It is therefore now possible to compare simultaneously the expression levels of hundreds or thousands of proteins in different types of tissue, for example, normal and cancerous, or in different cell lines. In this chapter, we illustrate statistical designs for such proteomics experiments as well as methods for the analysis of resulting data. In particular, we focus on the preprocessing and analysis of protein expression levels recorded by the use of either two-dimensional gel electrophoresis or mass spectrometry.
Collapse
Affiliation(s)
- Klaus Jung
- Department of Medical Statistics, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
157
|
Momynaliev KT, Kashin SV, Chelysheva VV, Selezneva OV, Demina IA, Serebryakova MV, Alexeev D, Ivanisenko VA, Aman E, Govorun VM. Functional Divergence of Helicobacter pylori Related to Early Gastric Cancer. J Proteome Res 2009; 9:254-67. [DOI: 10.1021/pr900586w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Kuvat T. Momynaliev
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Sergey V. Kashin
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Vera V. Chelysheva
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Oksana V. Selezneva
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Irina A. Demina
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Marya V. Serebryakova
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Dmitry Alexeev
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Vladimir A. Ivanisenko
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Ewgeniya Aman
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Vadim M. Govorun
- Research Institute for Physico-Chemical Medicine, Moscow, Russia, Endoscopy, Yaroslavl Regional Oncologic Hospital, Yaroslavl, Russia, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia, and Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| |
Collapse
|
158
|
A novel fractionation method prior to MS-based proteomics analysis using cascade biomimetic affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3799-805. [DOI: 10.1016/j.jchromb.2009.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/14/2009] [Accepted: 09/18/2009] [Indexed: 11/18/2022]
|
159
|
Krauß S, So J, Hambrock M, Köhler A, Kunath M, Scharff C, Wessling M, Grzeschik KH, Schneider R, Schweiger S. Point mutations in GLI3 lead to misregulation of its subcellular localization. PLoS One 2009; 4:e7471. [PMID: 19829694 PMCID: PMC2758996 DOI: 10.1371/journal.pone.0007471] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 09/22/2009] [Indexed: 11/23/2022] Open
Abstract
Background Mutations in the transcription factor GLI3, a downstream target of Sonic Hedgehog (SHH) signaling, are responsible for the development of malformation syndromes such as Greig-cephalopolysyndactyly-syndrome (GCPS), or Pallister-Hall-syndrome (PHS). Mutations that lead to loss of function of the protein and to haploinsufficiency cause GCPS, while truncating mutations that result in constitutive repressor function of GLI3 lead to PHS. As an exception, some point mutations in the C-terminal part of GLI3 observed in GCPS patients have so far not been linked to loss of function. We have shown recently that protein phosphatase 2A (PP2A) regulates the nuclear localization and transcriptional activity a of GLI3 function. Principal Findings We have shown recently that protein phosphatase 2A (PP2A) and the ubiquitin ligase MID1 regulate the nuclear localization and transcriptional activity of GLI3. Here we show mapping of the functional interaction between the MID1-α4-PP2A complex and GLI3 to a region between amino acid 568-1100 of GLI3. Furthermore we demonstrate that GCPS-associated point mutations, that are located in that region, lead to misregulation of the nuclear GLI3-localization and transcriptional activity. GLI3 phosphorylation itself however appears independent of its localization and remains untouched by either of the point mutations and by PP2A-activity, which suggests involvement of an as yet unknown GLI3 interaction partner, the phosphorylation status of which is regulated by PP2A activity, in the control of GLI3 subcellular localization and activity. Conclusions The present findings provide an explanation for the pathogenesis of GCPS in patients carrying C-terminal point mutations, and close the gap in our understanding of how GLI3-genotypes give rise to particular phenotypes. Furthermore, they provide a molecular explanation for the phenotypic overlap between Opitz syndrome patients with dysregulated PP2A-activity and syndromes caused by GLI3-mutations.
Collapse
Affiliation(s)
- Sybille Krauß
- Charité University Hospital, Department of Dermatology, Berlin, Germany
- Max-Planck Institute for Molecular Genetics, Department of Human Molecular Genetics (Ropers), Berlin, Germany
| | - Joyce So
- Max-Planck Institute for Molecular Genetics, Department of Human Molecular Genetics (Ropers), Berlin, Germany
| | - Melanie Hambrock
- Max-Planck Institute for Molecular Genetics, Department of Human Molecular Genetics (Ropers), Berlin, Germany
| | - Andrea Köhler
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Melanie Kunath
- Max-Planck Institute for Molecular Genetics, Department of Human Molecular Genetics (Ropers), Berlin, Germany
| | - Constance Scharff
- Max-Planck Institute for Molecular Genetics, Department of Human Molecular Genetics (Ropers), Berlin, Germany
| | - Martina Wessling
- Center for Human Genetics, Phillipps University, Marburg, Germany
| | | | - Rainer Schneider
- Max-Planck Institute for Molecular Genetics, Department of Human Molecular Genetics (Ropers), Berlin, Germany
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
- * E-mail:
| | - Susann Schweiger
- Max-Planck Institute for Molecular Genetics, Department of Human Molecular Genetics (Ropers), Berlin, Germany
- Ninewells Hospital, Department of Neuroscience and Pathology, Dundee, United Kingdom
| |
Collapse
|
160
|
Witzmann FA, Richardson MR. Two-dimensional gels for toxicological drug discovery applications. Expert Opin Drug Metab Toxicol 2009; 2:103-11. [PMID: 16863472 DOI: 10.1517/17425255.2.1.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Two-dimensional gel electrophoresis (2DGE) continues to be a useful approach to study protein expression. Although liquid chromatographic and mass spectrometric approaches that overcome some of the limitations and labour intensity of 2DGE are increasingly popular, this electrophoretic approach still has exceptional relevance in toxicology. Despite the technical challenges, pharmacologists/toxicologists continue to use gel-based proteomics to assess the biological and health effects of chemical treatment and exposure. This brief review addresses the use of 2DGE-based proteomics in drug development and toxicology, emphasising its unique strengths and weaknesses, and considers recent developments in this strategy that have evolved to directly confront the issues of dynamic range and reproducibility that have previously limited the overall use of 2D electrophoresis.
Collapse
Affiliation(s)
- Frank A Witzmann
- Indiana University School of Medicine, Department of Cellular & Integrative Physiology, Biotechnology & Research Training Center, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
161
|
Sitek B, Sipos B, Alkatout I, Poschmann G, Stephan C, Schulenborg T, Marcus K, Lüttges J, Dittert DD, Baretton G, Schmiegel W, Hahn SA, Klöppel G, Meyer HE, Stühler K. Analysis of the pancreatic tumor progression by a quantitative proteomic approach and immunhistochemical validation. J Proteome Res 2009; 8:1647-56. [PMID: 19714807 DOI: 10.1021/pr800890j] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To increase the knowledge about the development of pancreatic ductal adenocarcinoma, (PDAC) detailed analysis of the tumor progression is required. To identify proteins differentially expressed in the pancreatic intraepithelial neoplasia (PanIN), the precursor lesions of PDAC, we conducted a quantitative proteome study on microdissected PanIN cells. Proteins from 1000 microdissected cells were subjected to a procedure combining fluorescence dye saturation labeling with high resolution two-dimensional gel electrophoresis (2-DE). Differentially regulated protein spots were identified using protein lysates from PDAC tissues as a reference proteome followed by nanoLC-ESI-MS/MS. Thirty-seven single lesions of different PanIN grade (PanIN 1A/B, PanIN 2, PanIN 3) from nine patients were analyzed. Their protein expression was compared with each other, with PDAC cells and with normal ductal cells. The differential expression of differentially regulated protein spots was validated by means of immunohistochemistry using tissue microarrays. Of 2500 protein spots, 86 were found to be significantly regulated (p < 0.05, ratio > 1.6) during PanIN progression. Thirty-one nonredundant proteins were identified by mass spectrometry. Immunohistochemistry revealed that the differential expression of the selected candidate proteins major vault protein (MVP), anterior gradient 2 (AGR 2) and 14-3-3 sigma, annexin A4, and S100A10 could be successfully validated in PanIN lesions. The highly sensitive and robust proteome analysis revealed differentially regulated proteins involved in pancreatic tumor progression. The analysis of normal preneoplastic and neoplastic pancreatic tissue establishes a basis for identification of candidate biomarkers in PanIN progression that can be detected in pancreatic juice and in serum or are candidates for in vivo imaging approaches.
Collapse
Affiliation(s)
- Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Kabir MA, Hussain MA. Human fungal pathogen Candida albicans in the postgenomic era: an overview. Expert Rev Anti Infect Ther 2009; 7:121-34. [PMID: 19622061 DOI: 10.1586/14787210.7.1.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Candida albicans is an opportunistic human fungal pathogen and is responsible for candidiasis. Owing to the improvement in healthcare, the number of immunocompromised patients in hospitals has increased worldwide and these individuals are susceptible to infections caused by many pathogenic microbes, among which C. albicans is one of the major players. Currently, the complete genome sequence of this pathogen is available and the size of this was estimated to be of 16 Mb. Annotation of C. albicans genome revealed that there are 6114 open reading frames (ORFs), of which 774 are specific to C. albicans. This poses a challenge as well as an opportunity to the Candida community to understand the functions of the unknown genes, especially those specific to C. albicans. Efforts have been made by the Candida community to systematically delete the ORFs and assign the functions. This will, in turn, help in understanding the biology of C. albicans and its interactions with animals as well as humans, and better drugs can be developed to treat Candida infections. In this article, we review updates on the Candida biology in the context of the availability of the genome sequence, its functional analysis and anti-Candida therapy. Finally, in the light of present trends in Candida research and current challenges, various opportunities are identified and suggestions are made.
Collapse
Affiliation(s)
- M Anaul Kabir
- Department of Biotechnology, PA College of Engineering, Kairangala, Mangalore-574153, Karnataka, India.
| | | |
Collapse
|
163
|
Schlüter H, Apweiler R, Holzhütter HG, Jungblut PR. Finding one's way in proteomics: a protein species nomenclature. Chem Cent J 2009; 3:11. [PMID: 19740416 PMCID: PMC2758878 DOI: 10.1186/1752-153x-3-11] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 09/09/2009] [Indexed: 01/23/2023] Open
Abstract
Our knowledge of proteins has greatly improved in recent years, driven by new technologies in the fields of molecular biology and proteome research. It has become clear that from a single gene not only one single gene product but many different ones - termed protein species - are generated, all of which may be associated with different functions. Nonetheless, an unambiguous nomenclature for describing individual protein species is still lacking. With the present paper we therefore propose a systematic nomenclature for the comprehensive description of protein species. The protein species nomenclature is flexible and adaptable to every level of knowledge and of experimental data in accordance with the exact chemical composition of individual protein species. As a minimum description the entry name (gene name + species according to the UniProt knowledgebase) can be used, if no analytical data about the target protein species are available.
Collapse
|
164
|
Kasper G, Mao L, Geissler S, Draycheva A, Trippens J, Kühnisch J, Tschirschmann M, Kaspar K, Perka C, Duda GN, Klose J. Insights into mesenchymal stem cell aging: involvement of antioxidant defense and actin cytoskeleton. Stem Cells 2009; 27:1288-97. [PMID: 19492299 DOI: 10.1002/stem.49] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Progenitor cells such as mesenchymal stem cells (MSCs) have elicited great hopes for therapeutic augmentation of physiological regeneration processes, e.g., for bone fracture healing. However, regeneration potential decreases with age, which raises questions about the efficiency of autologous approaches in elderly patients. To elucidate the mechanisms and cellular consequences of aging, the functional and proteomic changes in MSCs derived from young and old Sprague-Dawley rats were studied concurrently. We demonstrate not only that MSC concentration in bone marrow declines with age but also that their function is altered, especially their migratory capacity and susceptibility toward senescence. High-resolution two-dimensional electrophoresis of the MSC proteome, under conditions of in vitro self-renewal as well as osteogenic stimulation, identified several age-dependent proteins, including members of the calponin protein family as well as galectin-3. Functional annotation clustering revealed that age-affected molecular functions are associated with cytoskeleton organization and antioxidant defense. These proteome screening results are supported by lower actin turnover and diminished antioxidant power in aged MSCs, respectively. Thus, we postulate two main reasons for the compromised cellular function of aged MSCs: (a) declined responsiveness to biological and mechanical signals due to a less dynamic actin cytoskeleton and (b) increased oxidative stress exposure favoring macromolecular damage and senescence. These results, along with the observed similar differentiation potentials, imply that MSC-based therapeutic approaches for the elderly should focus on attracting the cells to the site of injury and oxidative stress protection, rather than merely stimulating differentiation.
Collapse
Affiliation(s)
- Grit Kasper
- Julius Wolff Institute and Center for Musculoskeletal Surgery Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Pakalapati G, Li L, Gretz N, Koch E, Wink M. Influence of red clover (Trifolium pratense) isoflavones on gene and protein expression profiles in liver of ovariectomized rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:845-855. [PMID: 19409770 DOI: 10.1016/j.phymed.2009.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 02/03/2009] [Accepted: 03/11/2009] [Indexed: 05/27/2023]
Abstract
Isoflavones such as genistein, biochanin A, formononetin, and glycetin are fairly abundant in red clover (Trifolium pratense, Fabaceae) and show estrogenic, antioxidant and hypolipidemic activities. To explore these effects mediated by red clover extract at the gene and protein levels, female ovariectomized rats were treated with an isoflavone rich extract of T. pratense. The experimental rats were divided into 2 groups of five animals each: a) control b) experimental group (red clover extract treated with 450mg/kg/day for four days). The treatment influenced the plasma lipid levels differentially. Plasma LDL concentrations were significantly reduced (p<0.05), whereas triglycerides increased (p<0.05). Plasma HDL and total cholesterol remained unchanged. The rat livers were examined for their differential gene expression by Affymetrix Rae230 DNA microarrays. In addition, the total liver proteins were separated by 2D PAGE and proteins, which showed differences in their intensities were identified by MALDI-TOF-MS. The extract influenced the transcript levels of many novel estrogen and non-estrogen responsive genes as well as other regulatory genes. Functional annotations indicate that genes involved in metabolic pathways, information processing, membrane transport regulation, signal transduction and other cellular processes were regulated. Quantitative reverse transcription analysis with real-time PCR confirmed that red clover extract regulates genes involved in lipid metabolism and antioxidation mechanisms. Proteomic analysis support the potential of red clover extract to modulate the lipid metabolism. In summary isoflavone rich red clover extract mediates numerous genomic and non-genomic effects, which influence besides the lipid metabolism a broad range of cellular functions, including metabolic actions, cell cycle regulation and antioxidant activity.
Collapse
Affiliation(s)
- Geeta Pakalapati
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, INF 364, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
166
|
Gelpí E. From large analogical instruments to small digital black boxes: 40 years of progress in mass spectrometry and its role in proteomics. Part II 1985-2000. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:1137-1161. [PMID: 19637251 DOI: 10.1002/jms.1621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This is the continuation of a personal retrospective on the developments that since 1965 have given shape to Mass Spectrometry (MS) and taken it from a position of simply playing a role in Protein Chemistry to becoming an indispensable tool in Proteomics, all within a 40-year span. Part I covered the period from 1965 to 1984. This second part reviews the Mass Spectrometry timeline of events from 1985 to 2000, stopping at various time points where MS made significant contributions to protein chemistry or where the development of new instrumentation for MS represented a major advance for peptide and protein work. Major highlights in the field and their significance for peptide and protein characterization such as the advent and practical consequences of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) are covered, including work done with triple quads, the development of time-of-flight (TOF) instruments and new ion traps and going on to the more recent work on the full characterization of the Proteome with ion traps, TOF instruments and new ionization and tagging techniques for protein sequencing.
Collapse
Affiliation(s)
- Emilio Gelpí
- Instituto de Investigaciones Biomédicas de Barcelona, CSIC-IDIBAPS, Roselló 161, Barcelona, Spain.
| |
Collapse
|
167
|
Yates JR, Ruse CI, Nakorchevsky A. Proteomics by Mass Spectrometry: Approaches, Advances, and Applications. Annu Rev Biomed Eng 2009; 11:49-79. [DOI: 10.1146/annurev-bioeng-061008-124934] [Citation(s) in RCA: 798] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- John R. Yates
- Department of Chemical Physiology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037;
| | - Cristian I. Ruse
- Department of Chemical Physiology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037;
| | - Aleksey Nakorchevsky
- Department of Chemical Physiology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037;
| |
Collapse
|
168
|
Technique of Proteomics and its Application in theResearch of Traditional Chinese Medicine Complex System. Chin J Nat Med 2009. [DOI: 10.3724/sp.j.1009.2009.00260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
169
|
|
170
|
Stutz H. Protein attachment onto silica surfaces - a survey of molecular fundamentals, resulting effects and novel preventive strategies in CE. Electrophoresis 2009; 30:2032-61. [DOI: 10.1002/elps.200900015] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
171
|
Dincer A, Onal S, Timur S, Zeytunluoglu A, Duman E, Zihnioglu F. Differentially displayed proteins as a tool for the development of type 2 diabetes. Ann Clin Biochem 2009; 46:306-10. [DOI: 10.1258/acb.2009.009034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Type 2 diabetes is a complex disease that still requires a great deal of work to be carried out to understand the pathophysiology. Recently, researchers have focused on studying the organs and tissues known to be involved in the development of the type 2 phenotype using a proteomic approach. Little work has been reported on plasma of type 2 diabetics in whom the clinical status has been well characterized. In this study, changes in plasma proteins of type 2 diabetics were investigated by proteomic analysis in well-characterized individuals with type 2 diabetes (early and late stage) and control groups (with or without a family history of diabetes). Methods Samples were analysed by two-dimensional gel electrophoresis and significantly differentiated proteins were identified by nano-LC-ESI-MS. Results A total of 12 protein signatures that were differentially displayed with high significance compared with controls were selected. Four of the differentially displayed proteins were identified as haptoglobin alpha2, haptoglobin Hp2(fragment) and transthyretin and Chain A (formerly prealbumin), and all were up-regulated. Thiol-specific antioxidant protein, Chain A, tertiary structures of three amyloidogenic transthretin variants and haptoglobin-related protein precursor were all down-regulated in controls with a family history of diabetes, early and late diabetic patients in comparison with the control. Conclusion A proteomic-based approach was used to discover and identify the differentially expressed proteins in various states of type 2 diabetes.
Collapse
Affiliation(s)
- Ayse Dincer
- Faculty of Science, Biochemistry Department, Ege University, Bornova-Izmir
| | - Secil Onal
- Faculty of Science, Biochemistry Department, Ege University, Bornova-Izmir
| | - Suna Timur
- Faculty of Science, Biochemistry Department, Ege University, Bornova-Izmir
| | - Ali Zeytunluoglu
- Faculty of Science, Biochemistry Department, Ege University, Bornova-Izmir
| | - Erdal Duman
- Izmir Atatürk State Hospital, Endocrinology Division, Izmir, Turkey
| | - Figen Zihnioglu
- Faculty of Science, Biochemistry Department, Ege University, Bornova-Izmir
| |
Collapse
|
172
|
Hsieh HC, Chen YT, Li JM, Chou TY, Chang MF, Huang SC, Tseng TL, Liu CC, Chen SF. Protein profilings in mouse liver regeneration after partial hepatectomy using iTRAQ technology. J Proteome Res 2009; 8:1004-13. [PMID: 19099420 DOI: 10.1021/pr800696m] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Liver is unique in its capability to regenerate after an injury. Liver regeneration after a 2/3 partial hepatectomy served as a classical model and is adopted frequently to study the mechanism of liver regeneration. In the present study, semiquantitative analysis of protein expression in mouse liver regeneration following partial hepatectomy was performed using an iTRAQ technique. Proteins from pre-PHx control livers and livers regenerating for 24, 48 and 72 h were extracted and inspected using 4-plex isotope labeling, followed by liquid chromatography fractionation, mass spectrometry and statistical differential analysis. A total of 827 proteins were identified in this study. There were 270 proteins for which quantitative information was available at all the time points in both biologically duplicate experiments. Among the 270 proteins, Car3, Mif, Adh1, Lactb2, Fabp5, Es31, Acaa1b and LOC100044783 were consistently down-regulated, and Mat1a, Dnpep, Pabpc1, Apoa4, Oat, Hpx, Hp and Mt1 were up-regulated by a factor of at least 1.5 from that of the controls at one time point or more. The regulation of each differential protein was also demonstrated by monitoring its time-dependent expression changes during the regenerating process. We believe this is the first report to profile the protein changes in liver regeneration utilizing the iTRAQ proteomic technique.
Collapse
Affiliation(s)
- Hui-Chu Hsieh
- Biomedical Engineering Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Qiao X, Wang L, Ma J, Deng Q, Liang Z, Zhang L, Peng X, Zhang Y. High sensitivity analysis of water-soluble, cyanine dye labeled proteins by high-performance liquid chromatography with fluorescence detection. Anal Chim Acta 2009; 640:114-20. [DOI: 10.1016/j.aca.2009.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 02/14/2009] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
|
174
|
Nebrich G, Herrmann M, Hartl D, Diedrich M, Kreitler T, Wierling C, Klose J, Giavalisco P, Zabel C, Mao L. PROTEOMER: A workflow-optimized laboratory information management system for 2-D electrophoresis-centered proteomics. Proteomics 2009; 9:1795-808. [DOI: 10.1002/pmic.200800522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
175
|
Mölleken C, Sitek B, Henkel C, Poschmann G, Sipos B, Wiese S, Warscheid B, Broelsch C, Reiser M, Friedman SL, Tornøe I, Schlosser A, Klöppel G, Schmiegel W, Meyer HE, Holmskov U, Stühler K. Detection of novel biomarkers of liver cirrhosis by proteomic analysis. Hepatology 2009; 49:1257-66. [PMID: 19177598 PMCID: PMC2895500 DOI: 10.1002/hep.22764] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Hepatic cirrhosis is a life-threatening disease arising from different chronic liver disorders. One major cause for hepatic cirrhosis is chronic hepatitis C. Chronic hepatitis C is characterized by a highly variable clinical course, with at least 20% developing liver cirrhosis within 40 years. Only liver biopsy allows a reliable evaluation of the course of hepatitis C by grading inflammation and staging fibrosis, and thus serum biomarkers for hepatic fibrosis with high sensitivity and specificity are needed. To identify new candidate biomarkers for hepatic fibrosis, we performed a proteomic approach of microdissected cirrhotic septa and liver parenchyma cells. In cirrhotic septa, we detected an increasing expression of cell structure associated proteins, including actin, prolyl 4-hydroxylase, tropomyosin, calponin, transgelin, and human microfibril-associated protein 4 (MFAP-4). Tropomyosin, calponin, and transgelin reflect a contribution of activated stellate cells/myofibroblasts to chronic liver injury. The expression of tropomyosin, transgelin, and MFAP-4, an extracellular matrix associated protein, were further evaluated by immunohistochemistry. Tropomyosin and MFAP-4 demonstrated high serum levels in patients with hepatic cirrhosis of different causes. CONCLUSION A quantitative analysis of MFAP-4 serum levels in a large number of patients showed MFAP-4 as novel candidate biomarker with high diagnostic accuracy for prediction of nondiseased liver versus cirrhosis [area under receiver operating characteristic curve (AUC) = 0.97, P < 0.0001] as well as stage 0 versus stage 4 fibrosis (AUC = 0.84, P < 0.0001), and stages 0 to 3 versus stage 4 fibrosis (AUC = 0.76, P < 0.0001).
Collapse
Affiliation(s)
- Christian Mölleken
- Department of Internal Medicine, Bergmannsheil, Ruhr-Universität Bochum, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany
| | - Corinna Henkel
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany
| | | | - Bence Sipos
- Department of Pathology, Christian Albrechts University, Kiel, Germany
| | - Sebastian Wiese
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany
| | | | - Christoph Broelsch
- Department of General Surgery and Transplantation, University Hospital, Essen, Germany
| | - Markus Reiser
- Department of Internal Medicine, Bergmannsheil, Ruhr-Universität Bochum, Germany
| | - Scott L. Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York
| | - Ida Tornøe
- Department of Medical Biology, University of Southern Denmark, Odense, Denmark
| | - Anders Schlosser
- Department of Medical Biology, University of Southern Denmark, Odense, Denmark
| | - Günter Klöppel
- Department of Pathology, Christian Albrechts University, Kiel, Germany
| | - Wolff Schmiegel
- Department of Internal Medicine, Bergmannsheil, Ruhr-Universität Bochum, Germany, Department of Internal Medicine, Knappschaftskrankenhaus, Ruhr-Universität Bochum, Germany
| | - Helmut E. Meyer
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany
| | - Uffe Holmskov
- Department of Medical Biology, University of Southern Denmark, Odense, Denmark
| | - Kai Stühler
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany
| |
Collapse
|
176
|
Huang C, Huang X, Kong Y, Wu W. Coupled Chromatography for Assay of the Venom Proteome of the Snake Agkistrodon acutus: An Effective Strategy for Discovery of Active Components. Chromatographia 2009. [DOI: 10.1365/s10337-009-0987-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
177
|
Poschmann G, Sitek B, Sipos B, Ulrich A, Wiese S, Stephan C, Warscheid B, Klöppel G, Vander Borght A, Ramaekers FCS, Meyer HE, Stühler K. Identification of proteomic differences between squamous cell carcinoma of the lung and bronchial epithelium. Mol Cell Proteomics 2009; 8:1105-16. [PMID: 19176476 DOI: 10.1074/mcp.m800422-mcp200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins that exhibit different expression levels in normal and malignant lung cells are good candidate biomarkers to improve early diagnosis and intervention. We used a quantitative approach and compared the proteome of microdissected cells from normal human bronchial epithelium and squamous cell carcinoma tumors of histopathological grades G2 and G3. DIGE analysis and subsequent MS-based protein identification revealed that 32 non-redundant proteins were differentially regulated between the respective tissue types. These proteins are mainly involved in energy pathways, cell growth or maintenance mechanisms, protein metabolism, and the regulation of DNA and RNA metabolism. The expression of some of these proteins was analyzed by immunohistochemistry using tissue microarrays containing tissue specimen of 55 patients, including normal bronchial epithelium, squamous cell carcinomas, adenocarcinomas, and large cell carcinomas. The results of the immunohistochemical studies correlated with the proteome study data and revealed that particularly HSP47 and a group of cytokeratins (i.e. cytokeratins 6a, 16, and 17) are significantly co-regulated in squamous cell carcinoma. Furthermore cytokeratin 17 showed significantly higher abundance in G2 grade compared with G3 grade squamous cell carcinomas in both the gel-based and the immunohistochemical analysis. Therefore this protein might be used as a marker for stratification between different tumor grades.
Collapse
Affiliation(s)
- Gereon Poschmann
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Hoehenwarter W, Tang Y, Ackermann R, Pleissner KP, Schmid M, Stein R, Zimny-Arndt U, Kumar NM, Jungblut PR. Identification of proteins that modify cataract of mouse eye lens. Proteomics 2009; 8:5011-24. [PMID: 19003866 DOI: 10.1002/pmic.200800380] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The occurrence of a nuclear cataract in the eye lens due to disruption of the alpha3Cx46 connexin gene, Gja3, is dependent on strain background in a mouse model, implicating factors that modify the pathology. The differences upon cataractogenesis in the urea soluble proteins of the lens of two mouse strains, C57BL/6J and 129/SvJ, were analyzed by a comparative proteomics approach. Determination of the complete proteome of an organ offers the opportunity to characterize at a molecular level, differences in gene expression and PTMs occurring during pathology and between individuals. The abundance of 63 protein species was altered between the strains. A unique aspect of this study is the identification of chaperonin subunit 6A, mortalin, ERp29, and syntaxin-binding protein 6 in the eye lens. DNA polymorphisms resulting in nonconservative amino acid changes that led to altered physicochemical properties of the proteins were detected for mortalin, chaperonin subunit 6A, annexin A1, and possibly gamma-N crystallin. The results show HSP27/25 and/or ERp29 are the likely major modifying factors for cataractogenesis. Extension of the results suggests that small heat-shock proteins have a major role for influencing cataract formation in humans.
Collapse
Affiliation(s)
- Wolfgang Hoehenwarter
- Max Planck Institute for Infection Biology, Core Facility Protein Analysis, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Kim KH, Moon MH. Development of a Multilane Channel System for Nongel-Based Two-Dimensional Protein Separations Using Isoelectric Focusing and Asymmetrical Flow Field-Flow Fractionation. Anal Chem 2009; 81:1715-21. [DOI: 10.1021/ac802357s] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ki Hun Kim
- Department of Chemistry, Yonsei University, Seoul, 120-749, Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul, 120-749, Korea
| |
Collapse
|
180
|
Hütter G, Letsch A, Nowak D, Poland J, Sinha P, Thiel E, Hofmann WK. High correlation of the proteome patterns in bone marrow and peripheral blood blast cells in patients with acute myeloid leukemia. J Transl Med 2009; 7:7. [PMID: 19146667 PMCID: PMC2630935 DOI: 10.1186/1479-5876-7-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 01/15/2009] [Indexed: 11/13/2022] Open
Abstract
Background When comparing myelogenous blasts from bone marrow and peripheral blood, immunophenotyping usually show a strong correlation of expression of surface antigens. However, it remains to be determined, whether this correlation also exists on the level of protein expression. Method Therefore, we investigated both bone marrow and peripheral blood blast cells from six patients with newly diagnosed acute myeloid leukemia (AML) using conventional two-dimensional electrophoresis in the first dimension and linear polyacrylamide gels (12%) in the second dimension. Proteins were visualized using the silver staining method and image analysis was performed using the PDQuest system. Results For each patient over 80 proteins were evaluated in the sample from peripheral blood and bone marrow. We could demonstrate that the protein expression profile of bone marrow did not significantly differ from the expression patterns of peripheral blast cells. Conclusion The proteome-set of leukemic blast cells from marrow and blood, does not differ substantially when drawn from AML patients with over 80 percent blast cells in both compartments. This indicates that in AML, blasts from peripheral blood samples can be considered suitable for investigations of the proteome using 2D-electrophoresis.
Collapse
Affiliation(s)
- Gero Hütter
- Department of Internal Medicine III (Hematology, Onkology), Charité Berlin Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
181
|
Kaindl AM, Sifringer M, Koppelstaetter A, Genz K, Loeber R, Boerner C, Stuwe J, Klose J, Felderhoff-Mueser U. Erythropoietin protects the developing brain from hyperoxia-induced cell death and proteome changes. Ann Neurol 2009; 64:523-34. [PMID: 19067366 DOI: 10.1002/ana.21471] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Oxygen toxicity has been identified as a risk factor for adverse neurological outcome in survivors of preterm birth. In infant rodent brains, hyperoxia induces disseminated apoptotic neurodegeneration. Because a tissue-protective effect has been observed for recombinant erythropoietin (rEpo), widely used in neonatal medicine for its hematopoietic effect, we examined the effect of rEpo on hyperoxia-induced brain damage. METHODS Six-day-old C57Bl/6 mice or Wistar rats were exposed to hyperoxia (80% O(2)) or normoxia for 24 hours and received rEpo or normal saline injections intraperitoneally. The amount of degenerating cells in their brains was determined by DeOlmos cupric silver staining. Changes of their brain proteome were determined through two-dimensional electrophoresis and mass spectrometry. Western blot, enzyme activity assays and real-time polymerase chain reaction were performed for further analysis of candidate proteins. RESULTS Systemic treatment with 20,000 IE/kg rEpo significantly reduced hyperoxia-induced apoptosis and caspase-2, -3, and -8 activity in the brains of infant rodents. In parallel, rEpo inhibited most brain proteome changes observed in infant mice when hyperoxia was applied exclusively. Furthermore, brain proteome changes after a single systemic rEpo treatment point toward a number of mechanisms through which rEpo may generate its protective effect against oxygen toxicity. These include reduction of oxidative stress and restoration of hyperoxia-induced increased levels of proapoptotic factors, as well as decreased levels of neurotrophins. INTERPRETATION These findings are highly relevant from a clinical perspective because oxygen administration to neonates is often inevitable, and rEpo may serve as an adjunctive neuroprotective therapy.
Collapse
Affiliation(s)
- Angela M Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Heinemeyer J, Scheibe B, Schmitz UK, Braun HP. Blue native DIGE as a tool for comparative analyses of protein complexes. J Proteomics 2009; 72:539-44. [PMID: 19166986 DOI: 10.1016/j.jprot.2008.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/22/2008] [Accepted: 12/23/2008] [Indexed: 10/21/2022]
Abstract
Differential gel electrophoresis (DIGE) is based on pre-labeling of different protein fractions and their subsequent co-electrophoresis in a single gel. Cyanine based "CyDye DIGE Fluor minimal dyes" are used for the labeling reaction and 2D IEF/SDS PAGE is the preferential electrophoresis system for protein separation. The DIGE technology allows elimination of inconsistencies based on gel to gel variations and furthermore allows exact quantification of proteins separated by gel electrophoresis. Here we report applications of the DIGE technology in combination with another 2D gel system, Blue native/SDS PAGE. "Blue native DIGE" offers (i) systematic and quantitative comparison of protein complexes of related protein fractions, (ii) structural investigation of protein complexes, (iii) assignment of protein complexes to subcellular fractions like organelles and (iv) electrophoretic mapping of isoforms of subunits of protein complexes with respect to a larger proteome. The potential of "Blue native DIGE" is illustrated by analysis of organellar fractions from the plant Arabidopsis thaliana and the alga Polytomella. Use of the DIGE technology for topological investigations is discussed.
Collapse
Affiliation(s)
- Jesco Heinemeyer
- Institute for Plant Genetics, Faculty of Natural Sciences, Leibniz Universität Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
183
|
Abstract
In addition to standard MS-based protein identification, quantification of proteins by mass spectrometry (MS) is rapidly gaining acceptance in proteomic studies. MS-based quantification involves either the incorporation of stable isotopes or can be performed label-free. Recently, more attention has been devoted to label-free quantification; however, this approach has not been fully established among the proteomic community yet. More common is still the introduction of stable isotopes, which can be done by metabolic (e.g., SILAC) or by chemical (e.g., ICAT, iTRAQ, etc.) labeling. Here, we present an overall quantification strategy for chemical labeling of in-gel digested proteins using iTRAQ reagents. This includes (1) protein separation by gel electrophoresis, (2) excision of protein bands, (3) in-gel digestion and extraction of peptides, (4) labeling of peptides, (5) pooling the samples to be compared, (6) LC-MS/MS of labeled peptides, and (7) database search. The presented workflow is well suited for protein samples of moderate complexity (i.e., protein samples of 300-400 components), and it is exemplified by using different amounts of 25S [U4/U6.U5] tri-snRNPs.
Collapse
Affiliation(s)
- Carla Schmidt
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
184
|
Zimny-Arndt U, Schmid M, Ackermann R, Jungblut PR. Classical proteomics: two-dimensional electrophoresis/MALDI mass spectrometry. Methods Mol Biol 2009; 492:65-91. [PMID: 19241027 DOI: 10.1007/978-1-59745-493-3_4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The rapid development in proteomics over the last 10 years has led to a series of new technologies and combinations of them designed to unravel as much as possible of the proteins of an organism or otherwise specified biological material. Despite being a little tricky at certain steps, 2-DE has a very high resolution power with more than 10,000 spots per gel and is able to separate one protein into its different protein species caused by posttranslational modifications, alternative splicing or genetic variability. This high-resolution separation is combined with a highly sensitive identification method using peptide mass fingerprinting combined with sequence information by MS/MS, which results in high sequence coverage: the key to elucidate protein species structures. The off-line measurement by MALDI-TOFTOF-MS allows the repeated measurement of each sample and therefore provides more complete structure information for each protein species. The presented protocols represent the basic technology consisting of 2-DE, two staining methods, tryptic digestion and MALDI-TOFTOF-MS.
Collapse
|
185
|
Apweiler R, Aslanidis C, Deufel T, Gerstner A, Hansen J, Hochstrasser D, Kellner R, Kubicek M, Lottspeich F, Maser E, Mewes HW, Meyer HE, Müllner S, Mutter W, Neumaier M, Nollau P, Nothwang HG, Ponten F, Radbruch A, Reinert K, Rothe G, Stockinger H, Tarnok A, Taussig MJ, Thiel A, Thiery J, Ueffing M, Valet G, Vandekerckhove J, Verhuven W, Wagener C, Wagner O, Schmitz G. Approaching clinical proteomics: current state and future fields of application in fluid proteomics. Clin Chem Lab Med 2009; 47:724-44. [DOI: 10.1515/cclm.2009.167] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
186
|
Starita-Geribaldi M. Selection of pH ranges in 2DE. Methods Mol Biol 2009; 519:31-45. [PMID: 19381575 DOI: 10.1007/978-1-59745-281-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This chapter describes the technical improvements of the two-dimensional electrophoresis pattern resulting of an optimized pH range in the first dimension. Various types of pH gradients are available. Different strategies can be applied in order to select the pH ranges for the exploration of a proteome. The resulting gels are analysed for their background, resolution, sensitivity in relation with the sample complexity. As the complete dynamic range of protein expression cannot be visualized, the high loading capacity of immobilized narrow pH gradients can be used. The limitations and possible enhancements are discussed.
Collapse
Affiliation(s)
- Mireille Starita-Geribaldi
- Departement des Sciences Biologiques, UFR d'Odontologie, Pôle Universitaire Saint-Jean d'Angely, 24 avenue des Diables Bleus, 06357, Nice cedex, 4, France
| |
Collapse
|
187
|
Detection and characterization of gamete-specific molecules inMytilus edulisusing selective antibody production. Mol Reprod Dev 2009; 76:4-10. [DOI: 10.1002/mrd.20916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
188
|
Two-dimensional gel electrophoresis-based proteomics of mycobacteria. Methods Mol Biol 2009. [PMID: 20560054 DOI: 10.1007/978-1-59745-207-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Two-dimensional gel electrophoresis (2-DE) in combination with mass spectrometry (MS) is the classic proteomics approach used to monitor the dynamics of protein abundance and posttranslational modifications in biological systems. In this chapter, we provide detailed protocols for 2-DE-based proteomics of mycobacteria. Adequate standard operating procedures for mycobacterial culture, subcellular fractionation, and selective enrichment of proteins are indispensable prerequisites for targeted proteome analyses. Therefore, we also provide approved protocols for selective and efficient extraction of cytosolic, secreted, and hydrophobic plasma membrane proteins of mycobacteria, as well as for isolation of mycobacteria from infected macrophages.
Collapse
|
189
|
Sowell RA, Owen JB, Butterfield DA. Proteomics in animal models of Alzheimer's and Parkinson's diseases. Ageing Res Rev 2009; 8:1-17. [PMID: 18703168 DOI: 10.1016/j.arr.2008.07.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/04/2008] [Accepted: 07/08/2008] [Indexed: 01/06/2023]
Abstract
The risk of developing neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) increases with age. AD and PD are the two most common neurodegenerative diseases that currently affect millions of persons within the United States population. While many clues about the mechanisms of these disorders have been uncovered, to date, the molecular mechanisms associated with the cause of these diseases are not completely understood. Furthermore, there are no available cures or preventive treatments for either disorder. Animal models of AD and PD, though not perfect, offer a means to gain knowledge of the basic biochemistry associated with these disorders and with drug efficacy. The field of proteomics which focuses on identifying the dynamic nature of the protein content expressed within a particular cell, tissue, or organism, has provided many insights into these disturbing disorders. Proteomic studies have revealed many pathways that are associated with disease pathogenesis and that may lead to the development of potential therapeutic targets. This review provides a discussion of key findings from AD and PD proteomics-based studies in various animal models of disease.
Collapse
Affiliation(s)
- Renã A Sowell
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | |
Collapse
|
190
|
Abstract
About 30 years ago two-dimensional gel electrophoresis (2DE) was developed independently by Klose and O'Farrell representing the combination of two orthogonal separation techniques. In the first dimension the proteins are separated by isoelectric focusing (IEF) according to their isoelectric point. In the second dimension proteins are separated according to their electrophoretic mobility by conventional SDS-PAGE. For IEF two different techniques, immobilized pH gradient (IPG) and carrier-ampholyte-based IEF (CA-based IEF), respectively, are currently applied. With a resolution of up to 10,000 protein spots in one gel, 2DE offers a huge potential to give a comprehensive overview of the proteins present in the examined system. In combination with image analysis and mass spectrometry 2DE is still the method of choice to analyse complex protein samples.In this chapter we provide detailed protocols for both 2DE systems and give an overview about the latest developments including the two-dimensional difference gel electrophoresis (DIGE) system.
Collapse
Affiliation(s)
- Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-Universitaet Bochum, Universitaetsstr. 150, D-44780, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
191
|
Abstract
Our two-dimensional gel electrophoresis (2DE) protocol has been continuously improved in our laboratory since its inception 30 years ago. An updated version is presented here. This protocol is a result of our experience in proteome analysis of tissue extracts, cultured cells (mammalian, yeast, and bacteria), cellular organelles, and subcellular fractions. Many modifications and suggestions emerging in our lab as well as in the literature were tested and integrated into our improved protocol if helpful. Importantly we use (a) large (46 x 30 cm) gels to achieve a high resolution and (b) ready-made gel solutions produced in large batches and stored frozen, a prerequisite, among others, for our very high reproducibility. Employing the 2DE method described here we demonstrated that protein patterns separating more than 10,000 protein spots can be obtained from mouse tissue. This is the highest resolution reported in the literature for 2DE of complex protein mixtures so far. Our 2DE patterns are of high quality with regard to spot shape and intensity as well as background. The reproducibility of the protein patterns is shown to be extremely satisfactory. New staining methods such as differential in gel electrophoresis (DIGE) and the latest 2DE gel evaluation software are compatible to our 2DE protocol. Using suitable staining protocols proteins can easily be identified by mass spectrometry.
Collapse
Affiliation(s)
- Claus Zabel
- Charite - University Medicine Berlin, Institute for Human Genetics, Augustenburger Platz 1, 13353, Berlin, Germany
| | | |
Collapse
|
192
|
Abstract
Our protein extraction protocol for two-dimensional gel electrophoresis (2DE) was updated to meet current needs in the field of proteomics. This protocol summarizes our experience using this method since its introduction over 30 years ago. We provide a total as well as fractionated extraction protocol. The former is easy and fast to use, suitable for most standard 2DE applications, whereas the latter is used for special applications such as the extraction of membrane or nuclear proteins.Both extraction protocols stress the need that protease inhibitors are added early to still deep frozen tissue to preclude an activation of proteases which destroy proteins and make them inaccessible to analysis. We also emphasize that, to remain soluble, proteins need to stay in an environment resembling a living cell as closely as possible. Sample dilution is therefore kept to a minimum and the pH of the extract is close to in vivo conditions at pH 7.1. In addition there are no precipitation/resolubilization steps which could irreversibly remove proteins from the extract. Furthermore, the total extraction does not even require centrifugation. Our extraction protocol is compatible with recent advances in 2DE-staining techniques such as differential in gel electrophoresis and fluorescence staining as well as mass spectrometry.
Collapse
Affiliation(s)
- Claus Zabel
- Charite - University Medicine Berlin, Institute for Human Genetics, Augustenburger Platz 1, 13353, Berlin, Germany
| | | |
Collapse
|
193
|
Kuss P, Villavicencio-Lorini P, Witte F, Klose J, Albrecht AN, Seemann P, Hecht J, Mundlos S. Mutant Hoxd13 induces extra digits in a mouse model of synpolydactyly directly and by decreasing retinoic acid synthesis. J Clin Invest 2008; 119:146-56. [PMID: 19075394 DOI: 10.1172/jci36851] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/22/2008] [Indexed: 11/17/2022] Open
Abstract
Individuals with the birth defect synpolydactyly (SPD) have 1 or more digit duplicated and 2 or more digits fused together. One form of SPD is caused by polyalanine expansions in homeobox d13 (Hoxd13). Here we have used the naturally occurring mouse mutant that has the same mutation, the SPD homolog (Spdh) allele, and a similar phenotype, to investigate the molecular pathogenesis of SPD. A transgenic approach and crossing experiments showed that the Spdh allele is a combination of loss and gain of function. Here we identify retinaldehyde dehydrogenase 2 (Raldh2), the rate-limiting enzyme for retinoic acid (RA) synthesis in the limb, as a direct Hoxd13 target and show decreased RA production in limbs from Spdh/Spdh mice. Intrauterine treatment with RA restored pentadactyly in Spdh/Spdh mice. We further show that RA and WT Hoxd13 suppress chondrogenesis in mesenchymal progenitor cells, whereas Hoxd13 encoded by Spdh promotes cartilage formation in primary cells isolated from Spdh/Spdh limbs, and that this was associated with increased expression of Sox6/9. Increased Sox9 expression and ectopic cartilage formation in the interdigital mesenchyme of limbs from Spdh/Spdh mice suggest uncontrolled differentiation of these cells into the chondrocytic lineage. Thus, we propose that mutated Hoxd13 causes polydactyly in SPD by inducing extraneous interdigital chondrogenesis, both directly and indirectly, via a reduction in RA levels.
Collapse
Affiliation(s)
- Pia Kuss
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Zabel C, Mao L, Woodman B, Rohe M, Wacker MA, Kläre Y, Koppelstätter A, Nebrich G, Klein O, Grams S, Strand A, Luthi-Carter R, Hartl D, Klose J, Bates GP. A large number of protein expression changes occur early in life and precede phenotype onset in a mouse model for huntington disease. Mol Cell Proteomics 2008; 8:720-34. [PMID: 19043139 DOI: 10.1074/mcp.m800277-mcp200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington disease (HD) is fatal in humans within 15-20 years of symptomatic disease. Although late stage HD has been studied extensively, protein expression changes that occur at the early stages of disease and during disease progression have not been reported. In this study, we used a large two-dimensional gel/mass spectrometry-based proteomics approach to investigate HD-induced protein expression alterations and their kinetics at very early stages and during the course of disease. The murine HD model R6/2 was investigated at 2, 4, 6, 8, and 12 weeks of age, corresponding to absence of disease and early, intermediate, and late stage HD. Unexpectedly the most HD stage-specific protein changes (71-100%) as well as a drastic alteration (almost 6% of the proteome) in protein expression occurred already as early as 2 weeks of age. Early changes included mainly the up-regulation of proteins involved in glycolysis/gluconeogenesis and the down-regulation of the actin cytoskeleton. This suggests a period of highly variable protein expression that precedes the onset of HD phenotypes. Although an up-regulation of glycolysis/gluconeogenesis-related protein alterations remained dominant during HD progression, late stage alterations at 12 weeks showed an up-regulation of proteins involved in proteasomal function. The early changes in HD coincide with a peak in protein alteration during normal mouse development at 2 weeks of age that may be responsible for these massive changes. Protein and mRNA data sets showed a large overlap on the level of affected pathways but not single proteins/mRNAs. Our observations suggest that HD is characterized by a highly dynamic disease pathology not represented by linear protein concentration alterations over the course of disease.
Collapse
Affiliation(s)
- Claus Zabel
- Institute for Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Jing HC, Hebeler R, Oeljeklaus S, Sitek B, Stühler K, Meyer HE, Sturre MJG, Hille J, Warscheid B, Dijkwel PP. Early leaf senescence is associated with an altered cellular redox balance in Arabidopsis cpr5/old1 mutants. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10 Suppl 1:85-98. [PMID: 18721314 DOI: 10.1111/j.1438-8677.2008.00087.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reactive oxygen species (ROS) are the inevitable by-products of essential cellular metabolic and physiological activities. Plants have developed sophisticated gene networks of ROS generation and scavenging systems. However, ROS regulation is still poorly understood. Here, we report that mutations in the Arabidopsis CPR5/OLD1 gene may cause early senescence through deregulation of the cellular redox balance. Genetic analysis showed that blocking stress-related hormonal signalling pathways, such as ethylene, salicylic acid, jasmonic acid, abscisic acid and sugar, did not affect premature cell death and leaf senescence. We took a bioinformatics approach and analysed publicly available transcriptome data of presymptomatic cpr5/old1 mutants. The results demonstrate that many genes in the ROS gene network show at least fivefold increases in transcripts in comparison with those of wild-type plants, suggesting that presymptomatic cpr5/old1 mutants are in a state of high-cellular oxidative stress. This was further confirmed by a comparative, relative quantitative proteomics study of Arabidopsis wild-type and cpr5/old1 mutant plants, which demonstrated that several Phi family members of glutathione s-transferases significantly increased in abundance. In summary, our genetic, transcriptomic and relative quantitative proteomics analyses indicate that CPR5 plays a central role in regulating redox balance in Arabidopsis.
Collapse
Affiliation(s)
- H-C Jing
- Department of Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Hunfeld KP, Burg S, Hanssen-Hübner C, Karas M, Brade V, Kraiczy P. Changes in the expression pattern of structural proteins after exposure of Borrelia burgdorferi to penicillin G and doxycycline. Int J Med Microbiol 2008. [DOI: 10.1016/j.ijmm.2007.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
197
|
Fungal secretomes—nature’s toolbox for white biotechnology. Appl Microbiol Biotechnol 2008; 80:381-8. [DOI: 10.1007/s00253-008-1572-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/09/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
|
198
|
Metzger J, Schanstra JP, Mischak H. Capillary electrophoresis–mass spectrometry in urinary proteome analysis: current applications and future developments. Anal Bioanal Chem 2008; 393:1431-42. [DOI: 10.1007/s00216-008-2309-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/11/2008] [Accepted: 07/18/2008] [Indexed: 11/30/2022]
|
199
|
Dowell JA, Frost DC, Zhang J, Li L. Comparison of two-dimensional fractionation techniques for shotgun proteomics. Anal Chem 2008; 80:6715-23. [PMID: 18680313 DOI: 10.1021/ac8007994] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two-dimensional (2D) fractionation is a commonly used tool to increase dynamic range and proteome coverage for bottom-up, shotgun proteomics. However, there are few reports comparing the relative separation efficiencies of 2D methodologies using low-microgram sample quantities. In order to systematically evaluate 2D separation techniques, we fractionated microgram quantities of E. coli protein extract by seven different methods. The first dimension of separation was performed with either reversed-phase high-pressure liquid chromatography (RP-HPLC), gel electrophoresis (SDS-PAGE), or strong cation exchange (SCX-HPLC). The second dimension consisted of a standard reversed-phase capillary HPLC coupled to an electrospray ionization quadrupole time-of-flight mass spectrometer for tandem mass spectrometric analysis. The overall performance and relative fractionation efficiencies of each technique were assessed by comparing the total number of proteins identified by each method. The protein-level RP-HPLC and the high-pH RP-HPLC peptide-level separations performed the best, identifying 281 and 266 proteins, respectively. The online pH variance SCX and the SDS-PAGE returned modest performances with 178 and 139 proteins identified, respectively. The offline SCX had the worst performance with 81 proteins identified. We also examined various chromatographic factors that contribute to separation efficiency, including resolving power, orthogonality, and sample loss.
Collapse
Affiliation(s)
- James A Dowell
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | | | | | | |
Collapse
|
200
|
Flow field-flow fractionation: A pre-analytical method for proteomics. J Proteomics 2008; 71:265-76. [DOI: 10.1016/j.jprot.2008.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 06/02/2008] [Accepted: 06/05/2008] [Indexed: 02/05/2023]
|