151
|
Lu GD, Ang YH, Zhou J, Tamilarasi J, Yan B, Lim YC, Srivastava S, Salto-Tellez M, Hui KM, Shen HM, Nguyen LN, Tan BC, Silver DL, Hooi SC. CCAAT/enhancer binding protein α predicts poorer prognosis and prevents energy starvation-induced cell death in hepatocellular carcinoma. Hepatology 2015; 61:965-78. [PMID: 25363290 PMCID: PMC4365685 DOI: 10.1002/hep.27593] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/28/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED CCAAT enhancer binding protein α (C/EBPα) plays an essential role in cellular differentiation, growth, and energy metabolism. Here, we investigate the correlation between C/EBPα and hepatocellular carcinoma (HCC) patient outcomes and how C/EBPα protects cells against energy starvation. Expression of C/EBPα protein was increased in the majority of HCCs examined (191 pairs) compared with adjacent nontumor liver tissues in HCC tissue microarrays. Its upregulation was correlated significantly with poorer overall patient survival in both Kaplan-Meier survival (P=0.017) and multivariate Cox regression (P=0.028) analyses. Stable C/EBPα-silenced cells failed to establish xenograft tumors in nude mice due to extensive necrosis, consistent with increased necrosis in human C/EBPα-deficient HCC nodules. Expression of C/EBPα protected HCC cells in vitro from glucose and glutamine starvation-induced cell death through autophagy-involved lipid catabolism. Firstly, C/EBPα promoted lipid catabolism during starvation, while inhibition of fatty acid beta-oxidation significantly sensitized cell death. Secondly, autophagy was activated in C/EBPα-expressing cells, and the inhibition of autophagy by ATG7 knockdown or chloroquine treatment attenuated lipid catabolism and subsequently sensitized cell death. Finally, we identified TMEM166 as a key player in C/EBPα-mediated autophagy induction and protection against starvation. CONCLUSION The C/EBPα gene is important in that it links HCC carcinogenesis to autophagy-mediated lipid metabolism and resistance to energy starvation; its expression in HCC predicts poorer patient prognosis.
Collapse
Affiliation(s)
- Guo-Dong Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore
- School of Public Health, Guangxi Medical UniversityChina
| | - Yang Huey Ang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Jing Zhou
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese MedicineChina
| | - Jegadeesan Tamilarasi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Benedict Yan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Yaw Chyn Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore
| | | | - Manuel Salto-Tellez
- Centre for Cancer Research and Cell Biology, Queen's University BelfastBelfast, UK
| | - Kam M Hui
- Division of Cellular and Molecular Research, National Cancer CentreSingapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Long N Nguyen
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical SchoolSingapore
| | - Bryan C Tan
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical SchoolSingapore
| | - David L Silver
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical SchoolSingapore
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore
| |
Collapse
|
152
|
Gonzalez SA. Novel biomarkers for hepatocellular carcinoma surveillance: has the future arrived? Hepatobiliary Surg Nutr 2015; 3:410-4. [PMID: 25568864 DOI: 10.3978/j.issn.2304-3881.2014.07.06] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a major cause of mortality in patients with chronic liver disease worldwide. Early detection of HCC is critical to providing effective treatment and can have a significant impact on survival. In addition, effective surveillance following hepatic resection or locoregional ablative therapy can identify early recurrence and optimize long-term outcomes. Currently available serum tumor markers, including alpha-fetoprotein (AFP), are characterized by low sensitivity in the detection of HCC. Advances in genomic, proteomic, metabolomic, and glycomic profiling may provide a means to identify unique molecular signatures and characterization of complex processes associated with HCC incidence and recurrence. The development of highly sensitive and specific serum biomarkers for HCC may greatly enhance early detection rates, risk assessment in treatment candidates, and identification of potential new targets for anticancer therapy.
Collapse
Affiliation(s)
- Stevan A Gonzalez
- Division of Hepatology, Annette C. and Harold C. Simmons Transplant Institute, Baylor All Saints Medical Center at Fort Worth and Baylor University Medical Center at Dallas, Fort Worth, TX, USA
| |
Collapse
|
153
|
Ippolito DL, Lewis JA, Yu C, Leon LR, Stallings JD. Alteration in circulating metabolites during and after heat stress in the conscious rat: potential biomarkers of exposure and organ-specific injury. BMC PHYSIOLOGY 2014; 14:14. [PMID: 25623799 PMCID: PMC4306243 DOI: 10.1186/s12899-014-0014-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/11/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Heat illness is a debilitating and potentially life-threatening condition. Limited data are available to identify individuals with heat illness at greatest risk for organ damage. We recently described the transcriptomic and proteomic responses to heat injury and recovery in multiple organs in an in vivo model of conscious rats heated to a maximum core temperature of 41.8°C (Tc,Max). In this study, we examined changes in plasma metabolic networks at Tc,Max, 24, or 48 hours after the heat stress stimulus. RESULTS Circulating metabolites were identified by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. Bioinformatics analysis of the metabolomic data corroborated proteomics and transcriptomics data in the tissue at the pathway level, supporting modulations in metabolic networks including cell death or catabolism (pyrimidine and purine degradation, acetylation, sulfation, redox alterations and glutathione metabolism, and the urea cycle/creatinine metabolism), energetics (stasis in glycolysis and tricarboxylic acid cycle, β-oxidation), cholesterol and nitric oxide metabolism, and bile acids. Hierarchical clustering identified 15 biochemicals that differentiated animals with histopathological evidence of cardiac injury at 48 hours from uninjured animals. The metabolic networks perturbed in the plasma corroborated the tissue proteomics and transcriptomics pathway data, supporting a model of irreversible cell death and decrements in energetics as key indicators of cardiac damage in response to heat stress. CONCLUSIONS Integrating plasma metabolomics with tissue proteomics and transcriptomics supports a diagnostic approach to assessing individual susceptibility to organ injury and predicting recovery after heat stress.
Collapse
Affiliation(s)
- Danielle L Ippolito
- />The United States Army Center for Environmental Health Research, Environmental Health Program, Bldg. 568 Doughten Drive, Fort Detrick, Frederick, MD 21702-5010 USA
| | - John A Lewis
- />The United States Army Center for Environmental Health Research, Environmental Health Program, Bldg. 568 Doughten Drive, Fort Detrick, Frederick, MD 21702-5010 USA
| | - Chenggang Yu
- />Biotechnology High Performance Computing Software Applications Institute, Frederick, MD 21702-5010 USA
| | - Lisa R Leon
- />Thermal Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA 01760-5007 USA
| | - Jonathan D Stallings
- />The United States Army Center for Environmental Health Research, Environmental Health Program, Bldg. 568 Doughten Drive, Fort Detrick, Frederick, MD 21702-5010 USA
| |
Collapse
|
154
|
Patel S, Ahmed S. Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery. J Pharm Biomed Anal 2014; 107:63-74. [PMID: 25569286 DOI: 10.1016/j.jpba.2014.12.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/07/2014] [Accepted: 12/14/2014] [Indexed: 02/07/2023]
Abstract
Most cancers are lethal and metabolic alterations are considered a hallmark of this deadly disease. Genomics and proteomics have contributed vastly to understand cancer biology. Still there are missing links as downstream to them molecular divergence occurs. Metabolomics, the omic science that furnishes a dynamic portrait of metabolic profile is expected to bridge these gaps and boost cancer research. Metabolites being the end products are more stable than mRNAs or proteins. Previous studies have shown the efficacy of metabolomics in identifying biomarkers associated with diagnosis, prognosis and treatment of cancer. Metabolites are highly informative about the functional status of the biological system, owing to their proximity to organismal phenotypes. Scores of publications have reported about high-throughput data generation by cutting-edge analytic platforms (mass spectrometry and nuclear magnetic resonance). Further sophisticated statistical softwares (chemometrics) have enabled meaningful information extraction from the metabolomic data. Metabolomics studies have demonstrated the perturbation in glycolysis, tricarboxylic acid cycle, choline and fatty acid metabolism as traits of cancer cells. This review discusses the latest progress in this field, the future trends and the deficiencies to be surmounted for optimally implementation in oncology. The authors scoured through the most recent, high-impact papers archived in Pubmed, ScienceDirect, Wiley and Springer databases to compile this review to pique the interest of researchers towards cancer metabolomics.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA.
| | - Shadab Ahmed
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
155
|
Mondul AM, Moore SC, Weinstein SJ, Männistö S, Sampson JN, Albanes D. 1-stearoylglycerol is associated with risk of prostate cancer: results from serum metabolomic profiling. Metabolomics 2014; 10:1036-1041. [PMID: 25254003 PMCID: PMC4169990 DOI: 10.1007/s11306-014-0643-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although prostate cancer is the most commonly diagnosed cancer among men in developed populations, recent recommendations against routine prostate-specific antigen screening have cast doubt on its utility for early detection. We compared the metabolomic profiles of prospectively collected fasting serum from 74 prostate cancer cases and 74 controls selected from the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study cohort of male smokers. Circulating 1-stearoylglycerol (1-SG, or 1-monostearin) was statistically significantly inversely associated with risk of prostate cancer after Bonferroni correction for multiple comparisons (i.e., 420 identified metabolites) (OR=0.34, 95% CI=0.20 - 0.58, p=6.3 × 10-5). The magnitude of this association did not differ by disease aggressiveness and was observed for cases diagnosed up to 23 years after blood collection. Similar but somewhat weaker prostate cancer risk signals were also evident for glycerol and alpha-ketoglutarate. In this population, men with higher serum 1-SG were less likely to develop prostate cancer, supporting a role for dysregulation of lipid metabolism in this malignancy. Additional studies are needed to retest the association and to examine 1-SG for its potential as a prostate cancer early detection marker.
Collapse
Affiliation(s)
- Alison M. Mondul
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, Maryland
| | - Steven C. Moore
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, Maryland
| | - Stephanie J. Weinstein
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, Maryland
| | - Satu Männistö
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Joshua N. Sampson
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, Maryland
| | - Demetrius Albanes
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
156
|
Fitian AI, Nelson DR, Liu C, Xu Y, Ararat M, Cabrera R. Integrated metabolomic profiling of hepatocellular carcinoma in hepatitis C cirrhosis through GC/MS and UPLC/MS-MS. Liver Int 2014; 34:1428-44. [PMID: 24661807 PMCID: PMC4169337 DOI: 10.1111/liv.12541] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 03/13/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The metabolic pathway disturbances associated with hepatocellular carcinoma (HCC) remain unsatisfactorily characterized. Determination of the metabolic alterations associated with the presence of HCC can improve our understanding of the pathophysiology of this cancer and may provide opportunities for improved disease monitoring of patients at risk for HCC development. To characterize the global metabolic alterations associated with HCC arising from hepatitis C (HCV)-associated cirrhosis using an integrated non-targeted metabolomics methodology employing both gas chromatography/mass spectrometry (GC/MS) and ultrahigh-performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC/MS-MS). METHODS The global serum metabolomes of 30 HCC patients, 27 hepatitis C cirrhosis disease controls and 30 healthy volunteers were characterized using a metabolomics approach that combined two metabolomics platforms, GC/MS and UPLC/MS-MS. Random forest, multivariate statistics and receiver operator characteristic analysis were performed to identify the most significantly altered metabolites in HCC patients vs. HCV-cirrhosis controls and which therefore exhibited a close association with the presence of HCC. RESULTS Elevated 12-hydroxyeicosatetraenoic acid (12-HETE), 15-HETE, sphingosine, γ-glutamyl oxidative stress-associated metabolites, xanthine, amino acids serine, glycine and aspartate, and acylcarnitines were strongly associated with the presence of HCC. Elevations in bile acids and dicarboxylic acids were highly correlated with cirrhosis. CONCLUSIONS Integrated metabolomic profiling through GC/MS and UPLC/MS-MS identified global metabolic disturbances in HCC and HCV-cirrhosis. Aberrant amino acid biosynthesis, cell turnover regulation, reactive oxygen species neutralization and eicosanoid pathways may be hallmarks of HCC. Aberrant dicarboxylic acid metabolism, enhanced bile acid metabolism and elevations in fibrinogen cleavage peptides may be signatures of cirrhosis.
Collapse
Affiliation(s)
- Asem I. Fitian
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - David R. Nelson
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
,Department of Medicine, Section of Hepatobiliary Diseases, University of Florida, Gainesville, FL, USA
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Yiling Xu
- Department of Medicine, Section of Hepatobiliary Diseases, University of Florida, Gainesville, FL, USA
| | - Miguel Ararat
- Department of Medicine, Section of Hepatobiliary Diseases, University of Florida, Gainesville, FL, USA
| | - Roniel Cabrera
- Department of Medicine, Section of Hepatobiliary Diseases, University of Florida, Gainesville, FL, USA
,Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
157
|
Liu M, Jiang L, Guan XY. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. Protein Cell 2014; 5:673-91. [PMID: 24916440 PMCID: PMC4145080 DOI: 10.1007/s13238-014-0065-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/13/2014] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies worldwide with very poor prognosis. It is generally accepted that the progression of HCC is a long-term process with accumulation of multiple genetic and epigenetic alterations, which further lead to the activation of critical oncogenes or inactivation of tumor suppressor genes. HCC is characterized with multiple cancer hallmarks including their ability to proliferate, anti-apoptosis, invade, metastasis, as well as the emerging features such as stem cell properties and energy metabolic switch. The irreversible alterations at genetic level could be detected as early as in the pre-neoplastic stages and accumulate during cancer progression. Thus, they might account for the cancer initiating steps and further malignant transformation. In addition to genetic alterations, epigenetic alterations can affect the cancer transcriptome more extensively. Alterations in DNA methylation, histone modification, miRNAs, RNA editing, and lncRNAs might result in disrupted gene regulation networks and substantially contribute to HCC progression. In this review, the genetic and epigenetic alterations which significantly contribute to the malignant capabilities of HCC will be updated and summarized in detail. Further characterization of those critical molecular events might better elucidate the pathogenesis of HCC and provide novel therapeutic targets for treatment of this deadly disease.
Collapse
Affiliation(s)
- Ming Liu
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | - Lingxi Jiang
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
158
|
Nagrath D, Soto-Gutierrez A. Reply to: "Is the pathway of energy metabolism modified in advanced cirrhosis?". J Hepatol 2014; 61:453. [PMID: 24792970 PMCID: PMC4186694 DOI: 10.1016/j.jhep.2014.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 12/04/2022]
Affiliation(s)
- Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine and Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
159
|
Glutamine depletion by crisantaspase hinders the growth of human hepatocellular carcinoma xenografts. Br J Cancer 2014; 111:1159-67. [PMID: 25072259 PMCID: PMC4453854 DOI: 10.1038/bjc.2014.425] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/20/2014] [Accepted: 07/03/2014] [Indexed: 02/08/2023] Open
Abstract
Background: A subset of human hepatocellular carcinomas (HCC) exhibit mutations of β-catenin gene CTNNB1 and overexpress Glutamine synthetase (GS). The CTNNB1-mutated HCC cell line HepG2 is sensitive to glutamine starvation induced in vitro with the antileukemic drug Crisantaspase and the GS inhibitor methionine-L-sulfoximine (MSO). Methods: Immunodeficient mice with subcutaneous xenografts of the CTNNB1-mutated HCC cell lines HepG2 and HC-AFW1 were treated with Crisantaspase and/or MSO, and tumour growth was monitored. At the end of treatment, tumour weight and histology were assessed. Serum and tissue amino acids were determined by HPLC. Gene and protein expression were estimated with RT-PCR and western blot and GS activity with a colorimetric method. mTOR activity was evaluated from the phosphorylation of p70S6K1. Results: Crisantaspase and MSO depleted serum glutamine, lowered glutamine in liver and tumour tissue, and inhibited liver GS activity. HepG2 tumour growth was significantly reduced by either Crisantaspase or MSO, and completely suppressed by the combined treatment. The combined treatment was also effective against xenografts of the HC-AFW1 cell line, which is Crisantaspase resistant in vitro. Conclusions: The combination of Crisantaspase and MSO reduces glutamine supply to CTNNB1-mutated HCC xenografts and hinders their growth.
Collapse
|
160
|
Lavi O, Skinner J, Gottesman MM. Network features suggest new hepatocellular carcinoma treatment strategies. BMC SYSTEMS BIOLOGY 2014; 8:88. [PMID: 25070212 PMCID: PMC4236726 DOI: 10.1186/s12918-014-0088-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/15/2014] [Indexed: 02/07/2023]
Abstract
Background Resistance to therapy remains a major cause of the failure of cancer treatment. A major challenge in cancer therapy is to design treatment strategies that circumvent the higher-level homeostatic functions of the robust cellular network that occurs in resistant cells. There is a lack of understanding of mechanisms responsible for the development of cancer and the basis of therapy-resistance mechanisms. Cellular signaling networks have an underlying architecture guided by universal principles. A robust system, such as cancer, has the fundamental ability to survive toxic anticancer drug treatments or a stressful environment mainly due to its mechanisms of redundancy. Consequently, inhibition of a single component/pathway would probably not constitute a successful cancer therapy. Results We developed a computational method to study the mechanisms of redundancy and to predict communications among the various pathways based on network theory, using data from gene expression profiles of hepatocellular carcinoma (HCC) of patients with poor and better prognosis cancers. Our results clearly indicate that immune system pathways tightly regulate most cancer pathways, and when those pathways are targeted by drugs, the network connectivity is dramatically changed. We examined the main HCC targeted treatments that are currently being evaluated in clinical trials. One prediction of our study is that Sorafenib combined with immune system treatments will be a more effective combination strategy than Sorafenib combined with any other targeted drugs. Conclusions We developed a computational framework to analyze gene expression data from HCC tumors with varying degrees of responsiveness and non-tumor samples, based on both Gene and Pathway Co-expression Networks. Our hypothesis is that redundancy is one of the major causes of drug resistance, and can be described as a function of the network structure and its properties. From this perspective, we believe that integration of the redundant variables could lead to the development of promising new methodologies to selectively identify and target the most significant resistance mechanisms of HCC. We describe three mechanisms of redundancy based on their levels of generalization and study the possible impact of those redundancy mechanisms on HCC treatments.
Collapse
|
161
|
Liu M, Jiang L, Guan XY. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update. Protein Cell 2014. [PMID: 24916440 DOI: 10.1007/s13238- 014-0065-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies worldwide with very poor prognosis. It is generally accepted that the progression of HCC is a long-term process with accumulation of multiple genetic and epigenetic alterations, which further lead to the activation of critical oncogenes or inactivation of tumor suppressor genes. HCC is characterized with multiple cancer hallmarks including their ability to proliferate, anti-apoptosis, invade, metastasis, as well as the emerging features such as stem cell properties and energy metabolic switch. The irreversible alterations at genetic level could be detected as early as in the pre-neoplastic stages and accumulate during cancer progression. Thus, they might account for the cancer initiating steps and further malignant transformation. In addition to genetic alterations, epigenetic alterations can affect the cancer transcriptome more extensively. Alterations in DNA methylation, histone modification, miRNAs, RNA editing, and lncRNAs might result in disrupted gene regulation networks and substantially contribute to HCC progression. In this review, the genetic and epigenetic alterations which significantly contribute to the malignant capabilities of HCC will be updated and summarized in detail. Further characterization of those critical molecular events might better elucidate the pathogenesis of HCC and provide novel therapeutic targets for treatment of this deadly disease.
Collapse
Affiliation(s)
- Ming Liu
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
162
|
Wang P, Ouyang L, Zheng L, Wang Z. Identifying hepatocellular carcinoma-related genes and pathways by system biology analysis. Ir J Med Sci 2014; 184:357-64. [PMID: 24744259 DOI: 10.1007/s11845-014-1119-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/31/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Previous researches have been focused on revealing the functions of each individual gene and/or pathway in the initiation, progression and maintenance of hepatocellular carcinoma (HCC). However, the mechanistic relationships among different genes and/or pathways are largely unknown. AIMS In this study, we tended to uncover the potential molecular networks and critical genes which play important roles in HCC progression. METHODS The transcriptional profiles from normal and HCC patient samples were analyzed and compared using bioinformatic methods, including differentially expressed gene (DEG) analysis, hierarchical clustering, construction of protein-protein interaction (PPI) network and GO-Elite analysis. RESULTS Initially, the normal and HCC sample data were processed and 679 most dramatic DEGs were identified. The PPI network analysis indicates the significance of multiple biological processes as well as signaling pathways in affecting liver function and HCC progression. In addition, hierarchical clustering analysis showed the most significant modules and identified the relationship between different genes, and some important genes such as FOS, IGF1, ADH4, ITGA2 and LEF1 were found to be hubs which master each individual module. CONCLUSION Our study greatly improves the understanding of the HCC development in a systematic manner and provides the potential clue for exploiting drugs which might target the most significant genes and/or signaling pathways.
Collapse
Affiliation(s)
- P Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, Hunan, China
| | | | | | | |
Collapse
|
163
|
Lee SC, Tan HT, Chung MCM. Prognostic biomarkers for prediction of recurrence of hepatocellular carcinoma: Current status and future prospects. World J Gastroenterol 2014; 20:3112-3124. [PMID: 24696598 PMCID: PMC3964383 DOI: 10.3748/wjg.v20.i12.3112] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/03/2013] [Accepted: 01/02/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide, with region specific etiologies. Despite improvements made in the diagnosis of HCC, the prognosis of HCC patients remains poor due to the high recurrence rate of HCC. There is an urgent need for development of prognostic biomarkers to predict the risk of recurrence in HCC patients after “curative” treatment. Such stratification may aid in patient management and development of personalized medicine for HCC treatment. Omics based studies facilitate the study of global changes in biomolecules in a disease in a high throughput manner, and hence are well poised to understand the complex changes which led to HCC recurrence. The quantitative nature of data obtained from omics based studies allow for development of prognostic biomarkers based on changes in gene, protein and metabolite expression. In this review, we surveyed the application of transcriptomics, proteomics and metabolomics in the study of HCC recurrence. We summarised the data in the literature from these three fields of studies that claimed to be prognostic for HCC recurrence. We critiqued on the limitations of each area of research and the challenges faced in translating the research results for clinical application in predicting HCC recurrence.
Collapse
|
164
|
Qiu Y, Cai G, Zhou B, Li D, Zhao A, Xie G, Li H, Cai S, Xie D, Huang C, Ge W, Zhou Z, Xu LX, Jia W, Zheng S, Yen Y, Jia W. A distinct metabolic signature of human colorectal cancer with prognostic potential. Clin Cancer Res 2014; 20:2136-46. [PMID: 24526730 DOI: 10.1158/1078-0432.ccr-13-1939] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Metabolic phenotyping has provided important biomarker findings, which, unfortunately, are rarely replicated across different sample sets due to the variations from different analytical and clinical protocols used in the studies. To date, very few metabolic hallmarks in a given cancer type have been confirmed and validated by use of a metabolomic approach and other clinical modalities. Here, we report a metabolomics study to identify potential metabolite biomarkers of colorectal cancer with potential theranostic value. EXPERIMENTAL DESIGN Gas chromatography-time-of-flight mass spectrometry (GC-TOFMS)-based metabolomics was used to analyze 376 surgical specimens, which were collected from four independent cohorts of patients with colorectal cancer at three hospitals located in China and City of Hope Comprehensive Cancer Center in the United States. Differential metabolites were identified and evaluated as potential prognostic markers. A targeted transcriptomic analysis of 29 colorectal cancer and 27 adjacent nontumor tissues was applied to analyze the gene expression levels for key enzymes associated with these shared metabolites. RESULTS A panel of 15 significantly altered metabolites was identified, which demonstrates the ability to predict the rate of recurrence and survival for patients after surgery and chemotherapy. The targeted transcriptomic analysis suggests that the differential expression of these metabolites is due to robust metabolic adaptations in cancer cells to increased oxidative stress as well as demand for energy, and macromolecular substrates for cell growth and proliferation. CONCLUSIONS These patients with colorectal cancer, despite their varied genetic background, mutations, pathologic stages, and geographic locations, shared a metabolic signature that is of great prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Yunping Qiu
- Authors' Affiliations: Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Department of Colorectal Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University; Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Med-X Institutes, Shanghai Jiao Tong University, Shanghai; State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing; Cancer Institute, 2nd Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, PR China; Center for translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina; Department of Medical Oncology and Therapeutic Research, City of Hope Comprehensive Cancer Center, Duarte, California; and Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
The Complex Relationship between Liver Cancer and the Cell Cycle: A Story of Multiple Regulations. Cancers (Basel) 2014; 6:79-111. [PMID: 24419005 PMCID: PMC3980619 DOI: 10.3390/cancers6010079] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/24/2013] [Accepted: 01/03/2014] [Indexed: 12/14/2022] Open
Abstract
The liver acts as a hub for metabolic reactions to keep a homeostatic balance during development and growth. The process of liver cancer development, although poorly understood, is related to different etiologic factors like toxins, alcohol, or viral infection. At the molecular level, liver cancer is characterized by a disruption of cell cycle regulation through many molecular mechanisms. In this review, we focus on the mechanisms underlying the lack of regulation of the cell cycle during liver cancer, focusing mainly on hepatocellular carcinoma (HCC). We also provide a brief summary of novel therapies connected to cell cycle regulation.
Collapse
|
166
|
Bard-Chapeau EA, Nguyen AT, Rust AG, Sayadi A, Lee P, Chua BQ, New LS, de Jong J, Ward JM, Chin CK, Chew V, Toh HC, Abastado JP, Benoukraf T, Soong R, Bard FA, Dupuy AJ, Johnson RL, Radda GK, Chan EC, Wessels LF, Adams DJ, Jenkins NA, Copeland NG. Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model. Nat Genet 2014; 46:24-32. [PMID: 24316982 PMCID: PMC4131144 DOI: 10.1038/ng.2847] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/08/2013] [Indexed: 12/15/2022]
Abstract
The most common risk factor for developing hepatocellular carcinoma (HCC) is chronic infection with hepatitis B virus (HBV). To better understand the evolutionary forces driving HCC, we performed a near-saturating transposon mutagenesis screen in a mouse HBV model of HCC. This screen identified 21 candidate early stage drivers and a very large number (2,860) of candidate later stage drivers that were enriched for genes that are mutated, deregulated or functioning in signaling pathways important for human HCC, with a striking 1,199 genes being linked to cellular metabolic processes. Our study provides a comprehensive overview of the genetic landscape of HCC.
Collapse
Affiliation(s)
- Emilie A Bard-Chapeau
- Institute Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore
| | - Anh-Tuan Nguyen
- Institute Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore
| | - Alistair G Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Ahmed Sayadi
- Institute Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore
| | - Philip Lee
- Clinical Imaging Research Centre, National University of Singapore, Centre for Translation Medicine, 14 Medical Drive, #B1-01, 117599, Singapore
| | - Belinda Q Chua
- Institute Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore
| | - Lee-Sun New
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Johann de Jong
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam
| | - Jerrold M Ward
- Institute Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore
| | - Christopher Ky Chin
- Institute Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore
| | - Valerie Chew
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore
| | | | - Jean-Pierre Abastado
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore
| | - Touati Benoukraf
- Cancer Science Institute of Singapore, National University of Singapore, Department of Pathology, National University Health System, Singapore
| | - Richie Soong
- Cancer Science Institute of Singapore, National University of Singapore, Department of Pathology, National University Health System, Singapore
| | - Frederic A Bard
- Institute Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - George K Radda
- Clinical Imaging Research Centre, National University of Singapore, Centre for Translation Medicine, 14 Medical Drive, #B1-01, 117599, Singapore
| | - Eric Cy Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Lodewyk Fa Wessels
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Nancy A Jenkins
- Institute Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore
| | - Neal G Copeland
- Institute Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore
| |
Collapse
|
167
|
Qin XY, Wei F, Tanokura M, Ishibashi N, Shimizu M, Moriwaki H, Kojima S. The effect of acyclic retinoid on the metabolomic profiles of hepatocytes and hepatocellular carcinoma cells. PLoS One 2013; 8:e82860. [PMID: 24376596 PMCID: PMC3871542 DOI: 10.1371/journal.pone.0082860] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 11/06/2013] [Indexed: 02/07/2023] Open
Abstract
Background/Purpose Acyclic retinoid (ACR) is a promising chemopreventive agent for hepatocellular carcinoma (HCC) that selectively inhibits the growth of HCC cells (JHH7) but not normal hepatic cells (Hc). To better understand the molecular basis of the selective anti-cancer effect of ACR, we performed nuclear magnetic resonance (NMR)-based and capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS)-based metabolome analyses in JHH7 and Hc cells after treatment with ACR. Methodology/Principal Findings NMR-based metabolomics revealed a distinct metabolomic profile of JHH7 cells at 18 h after ACR treatment but not at 4 h after ACR treatment. CE-TOFMS analysis identified 88 principal metabolites in JHH7 and Hc cells after 24 h of treatment with ethanol (EtOH) or ACR. The abundance of 71 of these metabolites was significantly different between EtOH-treated control JHH7 and Hc cells, and 49 of these metabolites were significantly down-regulated in the ACR-treated JHH7 cells compared to the EtOH-treated JHH7 cells. Of particular interest, the increase in adenosine-5′-triphosphate (ATP), the main cellular energy source, that was observed in the EtOH-treated control JHH7 cells was almost completely suppressed in the ACR-treated JHH7 cells; treatment with ACR restored ATP to the basal levels observed in both EtOH-control and ACR-treated Hc cells (0.72-fold compared to the EtOH control-treated JHH7 cells). Moreover, real-time PCR analyses revealed that ACR significantly increased the expression of pyruvate dehydrogenase kinases 4 (PDK4), a key regulator of ATP production, in JHH7 cells but not in Hc cells (3.06-fold and 1.20-fold compared to the EtOH control, respectively). Conclusions/Significance The results of the present study suggest that ACR may suppress the enhanced energy metabolism of JHH7 cells but not Hc cells; this occurs at least in part via the cancer-selective enhancement of PDK4 expression. The cancer-selective metabolic pathways identified in this study will be important targets of the anti-cancer activity of ACR.
Collapse
Affiliation(s)
- Xian-Yang Qin
- Micro-signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, Wako, Saitama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Feifei Wei
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Naoto Ishibashi
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, KOWA Company, Ltd., Tokyo, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hisataka Moriwaki
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Soichi Kojima
- Micro-signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
168
|
Luo J, Guo XR, Tang XJ, Sun XY, Yang ZS, Zhang Y, Dai LJ, Warnock GL. Intravital biobank and personalized cancer therapy: the correlation with omics. Int J Cancer 2013; 135:1511-6. [PMID: 24285244 DOI: 10.1002/ijc.28632] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/03/2013] [Accepted: 11/18/2013] [Indexed: 12/12/2022]
Abstract
Biobanks have played a decisive role in all aspects of the field of cancer, including pathogenesis, diagnosis, prognosis and treatment. The significance of cancer biobanks is epitomized through the appropriate application of various "-omic" techniques (omics). The mutually motivated relationship between biobanks and omics has intensified the development of cancer research. Human cancer tissues that are maintained in intravital biobanks (or living tissue banks) retain native tumor microenvironment, tissue architecture, hormone responsiveness and cell-to-cell signalling properties. Intravital biobanks replicate the structural complexity and heterogeneity of human cancers, making them an ideal platform for preclinical studies. The application of omics with intravital biobanks renders them more active, which makes it possible for the cancer-related evaluations to be dynamically monitored on a real-time basis. Integrating intravital biobank and modern omics will provide a useful tool for the discovery and development of new drugs or novel therapeutic strategies. More importantly, intravital biobanks may play an essential role in the creation of meaningful patient-tailored therapies as for personalized medicine.
Collapse
Affiliation(s)
- Jie Luo
- Department of Surgery, Hubei Key Laboratory of Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Ament Z, Waterman CL, West JA, Waterfield C, Currie RA, Wright J, Griffin JL. A metabolomics investigation of non-genotoxic carcinogenicity in the rat. J Proteome Res 2013; 12:5775-90. [PMID: 24161236 DOI: 10.1021/pr4007766] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Non-genotoxic carcinogens (NGCs) promote tumor growth by altering gene expression, which ultimately leads to cancer without directly causing a change in DNA sequence. As a result NGCs are not detected in mutagenesis assays. While there are proposed biomarkers of carcinogenic potential, the definitive identification of non-genotoxic carcinogens still rests with the rat and mouse long-term bioassay. Such assays are expensive and time-consuming and require a large number of animals, and their relevance to human health risk assessments is debatable. Metabolomics and lipidomics in combination with pathology and clinical chemistry were used to profile perturbations produced by 10 compounds that represented a range of rat non-genotoxic hepatocarcinogens (NGC), non-genotoxic non-hepatocarcinogens (non-NGC), and a genotoxic hepatocarcinogen. Each compound was administered at its maximum tolerated dose level for 7, 28, and 91 days to male Fisher 344 rats. Changes in liver metabolite concentration differentiated the treated groups across different time points. The most significant differences were driven by pharmacological mode of action, specifically by the peroxisome proliferator activated receptor alpha (PPAR-α) agonists. Despite these dominant effects, good predictions could be made when differentiating NGCs from non-NGCs. Predictive ability measured by leave one out cross validation was 87% and 77% after 28 days of dosing for NGCs and non-NGCs, respectively. Among the discriminatory metabolites we identified free fatty acids, phospholipids, and triacylglycerols, as well as precursors of eicosanoid and the products of reactive oxygen species linked to processes of inflammation, proliferation, and oxidative stress. Thus, metabolic profiling is able to identify changes due to the pharmacological mode of action of xenobiotics and contribute to early screening for non-genotoxic potential.
Collapse
Affiliation(s)
- Zsuzsanna Ament
- Medical Research Council Human Nutrition Research (MRC HNR), Elsie Widdowson Laboratory , 120 Fulbourn Road, Cambridge CB1 9NL, U.K. , The Department of Biochemistry, University of Cambridge , 80 Tennis Court Road, Cambridge CB2 1GA, U.K. , and Cambridge Systems Biology Centre (CSBC), University of Cambridge , Cambridge CB2 1QR, U.K
| | | | | | | | | | | | | |
Collapse
|
170
|
The metabolomic window into hepatobiliary disease. J Hepatol 2013; 59:842-58. [PMID: 23714158 PMCID: PMC4095886 DOI: 10.1016/j.jhep.2013.05.030] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/14/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
The emergent discipline of metabolomics has attracted considerable research effort in hepatology. Here we review the metabolomic data for non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation, and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the changing biochemistry occurring in the transitional phases between a healthy liver and hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes, alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase 1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not either HCC or CCA (Phase 3) develops. Inflammatory signalling in the liver triggers the appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and 3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an upregulation of fatty acid β-oxidation, also beginning in Phase 1. The storage of triglycerides in fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the liver.
Collapse
|
171
|
Liver cancer: The promise of new approaches in the management of hepatocellular carcinoma--adding to the toolbox? Nat Rev Gastroenterol Hepatol 2013; 10:195. [PMID: 23528346 DOI: 10.1038/nrgastro.2013.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|