151
|
Liu D, Wan Y, Qu N, Fu Q, Liang C, Zeng L, Yang Y. LncRNA-FAM66C Was Identified as a Key Regulator for Modulating Tumor Microenvironment and Hypoxia-Related Pathways in Glioblastoma. Front Public Health 2022; 10:898270. [PMID: 35874989 PMCID: PMC9299378 DOI: 10.3389/fpubh.2022.898270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Although the role of hypoxia has been greatly explored and unveiled in glioblastoma (GBM), the mechanism of hypoxia-related long non-coding (lnc) RNAs has not been clearly understood. This study aims to reveal the crosstalk among hypoxia-related lncRNAs, tumor microenvironment (TME), and tumorigenesis for GBM. Gene expression profiles of GBM patients were used as a basis for identifying hypoxia-related lncRNAs. Unsupervised consensus clustering was conducted for classifying samples into different molecular subtypes. Gene set enrichment analysis (GSEA) was performed to analyze the enrichment of a series of genes or gene signatures. Three molecular subtypes were constructed based on eight identified hypoxia-related lncRNAs. Oncogenic pathways, such as epithelial mesenchymal transition (EMT), tumor necrosis factor-α (TNF-α) signaling, angiogenesis, hypoxia, P53 signaling, and glycolysis pathways, were significantly enriched in C1 subtype with poor overall survival. C1 subtype showed high immune infiltration and high expression of immune checkpoints. Furthermore, we identified 10 transcription factors (TFs) that were highly correlated with lncRNA-FAM66C. Three key lncRNAs (ADAMTS9-AS2, LINC00968, and LUCAT1) were screened as prognostic biomarkers for GBM. This study shed light on the important role of hypoxia-related lncRNAs for TME modulation and tumorigenesis in GBM. The eight identified hypoxia-related lncRNAs, especially FAM66C may serve as key regulators involving in hypoxia-related pathways.
Collapse
Affiliation(s)
- Dan Liu
- Oncology Department, Jinzhou Central Hospital, Jinzhou, China
| | - Yue Wan
- Oncology Department, Jinzhou Central Hospital, Jinzhou, China
| | - Ning Qu
- Department of Pediatrics, Jinzhou Central Hospital, Jinzhou, China
| | - Qiang Fu
- Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Chao Liang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lingda Zeng
- Department of Otorhinolaryngology Surgery, Jinzhou Central Hospital, Jinzhou, China
| | - Yang Yang
- Department of Neurosurgery, Jinzhou Central Hospital, Jinzhou, China
| |
Collapse
|
152
|
miR-199a-5p Relieves Obstructive Sleep Apnea Syndrome-Related Hypertension by Targeting HIF-1α. J Immunol Res 2022; 2022:7236647. [PMID: 35935584 PMCID: PMC9348946 DOI: 10.1155/2022/7236647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction. Obstructive sleep apnea syndrome (OSAS) is related to hypertension. Vascular remodeling is both the pathogenesis and the structural change basis of OSAS-related hypertension. Exploring miRNA functioning in OSAS-related hypertension may offer novel diagnostic and therapeutic targets for controlling hypertension-associated cardiovascular diseases. However, the role of miR-199a-5p in OSAS-related hypertension has not been demonstrated yet. Methods. In this study, we investigated the role of miR-199a-5p and HIF-1α in OSAS-related hypertension by performing in vitro cell experiments and in vivo animal experiments. Rat aortic smooth muscle cells (A7r5) were cultured under hypoxia as an in vitro model. To establish the animal model of OSAS-related hypertension, the rats were under exposure to chronic intermittent hypoxia (CIH) in a hypoxic instrument. The rats were randomly grouped into normal, CIH, CIH+NC, and CIH+miR-199a-5p. Results. By establishing an animal model, we found decreased miR-199a-5p expression and increased HIF-1α expression in OSAS with hypertension. The overexpressed miR-199a-5p could reduce systolic blood pressure and relieve oxidase stress and inflammation. miR-199a-5p treatment could overturn the upregulation of HIF-1α and TGF-β1 and downregulation of α-SMA. Overexpressed miR-199a-5p might attenuate vascular remodeling through HIF-1α downregulation. miR-199a-5p/HIF-1α may inhibit proliferation of vascular smooth muscle cells under hypoxia. Conclusion. miR-199a-5p may relieve OSAS-related hypertension by targeting HIF-1α and be a novel potential therapeutic target.
Collapse
|
153
|
Sun T, Zhang X, Hou C, Yu S, Zhang Y, Yu Z, Kong L, Liu C, Feng L, Wang D, Ni G. Cold Plasma Irradiation Attenuates Atopic Dermatitis via Enhancing HIF-1α-Induced MANF Transcription Expression. Front Immunol 2022; 13:941219. [PMID: 35911675 PMCID: PMC9329666 DOI: 10.3389/fimmu.2022.941219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Cold atmospheric plasma has been widely applied in medical treatment clinically, especially skin diseases. However, the mechanism of cold atmospheric plasma on the treatment of skin diseases is still undefined. In this study, dinitrofluorobenzene-induced atopic dermatitis mice model was constructed. Cold atmospheric plasma was able to decrease skin cells apoptosis, relieve skin inflammation, ER stress and oxidative stress caused by dinitrofluorobenzene stimulation, which was mediated by cold atmospheric plasma-induced MANF expression. In terms of mechanism, hypoxia-inducible factor-1α expression was increased intracellularly after cold atmospheric plasma treatment, which further bound to the promoter region of manf gene and enhanced MANF transcriptional expression. This study reveals that cold atmospheric plasma has a positive effect on atopic dermatitis treatment, also demonstrates the regulatory mechanism of cold atmospheric plasma on MANF expression via HIF-1α, which indicates the potential medical application of cold atmospheric plasma for atopic dermatitis treatment.
Collapse
Affiliation(s)
- Tao Sun
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Xinru Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chao Hou
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shujun Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yujing Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhuo Yu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ling Kong
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Changqing Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Guohua Ni, ; Dong Wang, ; Lijie Feng,
| | - Dong Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Guohua Ni, ; Dong Wang, ; Lijie Feng,
| | - Guohua Ni
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
- *Correspondence: Guohua Ni, ; Dong Wang, ; Lijie Feng,
| |
Collapse
|
154
|
Kim MJ, Cho YA, Kim E, Choe JY, Park JW, Lee J, Lee JW, Moon SH, Kim YS, Kim SE, Choi EK. Cellular Prion Protein Is Closely Associated with Early Recurrence and Poor Survival in Patients with Hepatocellular Carcinoma. Diagnostics (Basel) 2022; 12:1635. [PMID: 35885540 PMCID: PMC9316639 DOI: 10.3390/diagnostics12071635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
The cellular prion protein (PrPC) is known to play a role in cancer proliferation and metastasis. However, the role of PrPC expression in hepatocellular carcinoma (HCC) is unknown. This study investigated whether overexpression of PrPC affects recurrence after surgical resection and survival in HCC. A total of 110 HCC patients who underwent hepatic resection were included. They were followed up for a median of 42 months (range 1-213 months) after hepatectomy. The relationships between PrPC expression and the HCC histologic features, recurrence of HCC following surgical resection, and survival of the patients were examined. Seventy-one cases (64.5%) of HCC demonstrated higher expression of PrPC. The expression of PrPC was only correlated with diabetes mellitus. There was no association between PrPC expression and age, sex, hypertension, hepatitis B virus positivity, alcohol consumption, Child-Pugh class, major portal vein invasion, serum alpha-fetoprotein, and HCC size or number. The 1-year recurrence rates in patients with higher PrPC expression were higher than those with lower PrPC expression. The cumulative survival rates of patients with higher PrPC expression were significantly shorter than those of patients with lower PrPC expression. In conclusion, PrPC expression is closely associated with early recurrence and poor survival of HCC patients following surgical resection.
Collapse
Affiliation(s)
- Mo-Jong Kim
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
- Department of Biomedical Gerontology, Graduate School, Hallym University, Chunchoen 24252, Korea
| | - Yoon-Ah Cho
- Department of Pathology, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Korea
| | - Eunhye Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Korea
| | - Ji-Young Choe
- Anatomic Pathology Reference Lab, Seegene Medical Foundation, Suwon 16580, Korea
| | - Ji-Won Park
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Junyong Lee
- Department of Anesthesiology and Pain Medicine, Seoul Medical Center, Seoul 02053, Korea
| | - Jung-Woo Lee
- Department of Surgery, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Korea
| | - Sung-Hoon Moon
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Sung-Eun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
- Department of Biomedical Gerontology, Graduate School, Hallym University, Chunchoen 24252, Korea
| |
Collapse
|
155
|
Chen MM, Meng LH. The double faced role of xanthine oxidoreductase in cancer. Acta Pharmacol Sin 2022; 43:1623-1632. [PMID: 34811515 PMCID: PMC9253144 DOI: 10.1038/s41401-021-00800-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
Xanthine oxidoreductase (XOR) is a critical, rate-limiting enzyme that controls the last two steps of purine catabolism by converting hypoxanthine to xanthine and xanthine to uric acid. It also produces reactive oxygen species (ROS) during the catalytic process. The enzyme is generally recognized as a drug target for the therapy of gout and hyperuricemia. The catalytic products uric acid and ROS act as antioxidants or oxidants, respectively, and are involved in pro/anti-inflammatory actions, which are associated with various disease manifestations, including metabolic syndrome, ischemia reperfusion injury, cardiovascular disorders, and cancer. Recently, extensive efforts have been devoted to understanding the paradoxical roles of XOR in tumor promotion. Here, we summarize the expression of XOR in different types of cancer and decipher the dual roles of XOR in cancer by its enzymatic or nonenzymatic activity to provide an updated understanding of the mechanistic function of XOR in cancer. We also discuss the potential to modulate XOR in cancer therapy.
Collapse
Affiliation(s)
- Man-man Chen
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ling-hua Meng
- grid.9227.e0000000119573309Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
156
|
DFO treatment protects against depression-like behaviors and cognitive impairment in CUMS mice. Brain Res Bull 2022; 187:75-84. [PMID: 35779818 DOI: 10.1016/j.brainresbull.2022.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/18/2022] [Accepted: 06/26/2022] [Indexed: 11/24/2022]
Abstract
Depression has several negative effects on emotion as well as learning and memory abilities. Previous studies showed that depression could exacerbate inflammation, which in turn further aggravated depression. Deferoxamine (DFO) is a chelating agent binding iron and aluminium, and is clinically applied to treat acute ion poisoning and hemochromatosis. Researches showed that it could reduce inflammation via increasing the expression of hypoxia-inducible factor-1alpha (HIF-1α). Here, we established a chronic unpredictable mild stress (CUMS) model to investigate whether DFO exerted a neuroprotective function in depression. The results demonstrated that CUMS (4 weeks) effectively induced depression-like behaviors in mice based on sucrose preference test (SPT), forced swim test (FST), tail suspension test (TST), open field test (OFT), and elevated plus-maze test (EPT). It also brought cognitive deficits based on Morris water maze (MWM) test and the impairment of synaptic plasticity based on in vivo electrophysiological recordings. Additionally, CUMS exposure significantly decreased the expression of hippocampal synapse related proteins and the spine density of neurons in the DG region, accompanied by increasing the expression of hippocampal inflammatory cytokines, and promoted the activation of microglia in the hippocampus. The expression of HIF-1α was down-regulated as expected. However, DFO distinctly reversed the CUMS-induced impairments. The mechanism is associated with the DFO inhibition of inflammation by upregulating HIF-1 expression, thereby alleviating a series of pathology changes. Together, these findings suggest that DFO likely plays a protective role in cognitive impairments and synaptic plasticity deficits resulting from depression.
Collapse
|
157
|
Luo P, Zhang YD, He F, Tong CJ, Liu K, Liu H, Zhu SZ, Luo JZ, Yuan B. HIF-1α-mediated augmentation of miRNA-18b-5p facilitates proliferation and metastasis in osteosarcoma through attenuation PHF2. Sci Rep 2022; 12:10398. [PMID: 35729160 PMCID: PMC9213540 DOI: 10.1038/s41598-022-13660-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
Extensive evidence has explored the involvement of microRNAs (miRNAs) in osteosarcoma (OS). Limitedly, the concrete function of microRNA-18b-5p (miR-18b-5p) in OS remains unexplored and largely elusive. Here, we validated that miR-18b-5p significantly elevated in OS via analyzing the data from GEO database. The results showed that miR-18b-5p was overexpressed in human OS tissues and cell lines. The clinical evidence suggested that high level of miR-18b-5p was negatively correlated with the poor prognosis of OS. Meanwhile, miR-18b-5p upregulation facilitated the proliferation and metastasis of OS cells in vitro and in vivo. The mechanism exploration demonstrated that miR-18b-5p acted as a potential inhibitor of PHF2, a tumor suppressor gene, at post-transcriptional level. Moreover, hypoxia induced gene expression of miR-18b-5p was clarified to be transcriptionally mediated by HIF-1α. The clinicopathological analysis in samples of OS patients further supported that miR-18b-5p had a positive correlation with HIF-1α expression, and negative correlation with PHF2. Collectively, the present study uncovered a new molecular mechanism of OS tumorigenesis and development and miR-18b-5p might be a prognostic biomarker and potential therapeutic target for OS treatment.
Collapse
Affiliation(s)
- Peng Luo
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | | | - Feng He
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Chang-Jun Tong
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Kai Liu
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - He Liu
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Shi-Zhuang Zhu
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Jian-Zhou Luo
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Bing Yuan
- Department of Orthopedics, The Fifth Hospital of Wuhan/The Second Affiliated Hospital of Jianghan University, Wuhan, 430050, China.
| |
Collapse
|
158
|
Di Fusco SA, Cianfrocca C, Bisceglia I, Spinelli A, Alonzo A, Mocini E, Gulizia MM, Gabrielli D, Oliva F, Imperoli G, Colivicchi F. Potential pathophysiologic mechanisms underlying the inherent risk of cancer in patients with atherosclerotic cardiovascular disease. Int J Cardiol 2022; 363:190-195. [PMID: 35724799 DOI: 10.1016/j.ijcard.2022.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
Emerging evidence demonstrates an intimate interplay between cardiovascular disease and cancer pathophysiology. The aim of this review is to shed light on the common biological pathways underlying cardiovascular disease and cancer. These common pathways form the basis of "reverse cardio-oncology". We focus on the role of inflammation, stress response, cell proliferation, angiogenesis and tissue remodeling, neurohormonal system activation, and genomic instability as pathogenic pathways shared by cardiovascular disease and cancer. We also discuss shared mediators that may have a potential role as biomarkers for risk prediction in both diseases. Furthermore, we highlight current knowledge on biological pathways and mediators that are upregulated in diabetes and myocardial infarction and may be involved in tumorigenesis. On the basis of the shared pathophysiologic mechanisms, we also suggest an integrated approach to reduce the global burden of both cardiovascular disease and cancer.
Collapse
Affiliation(s)
| | - Cinzia Cianfrocca
- Clinical and Rehabilitation Cardiology Unit, P.O. San Filippo Neri, ASL Roma 1, Rome, Italy
| | - Irma Bisceglia
- Integrated Cardiology Services, Cardio-Thoracic-Vascular Department, San Camillo Hospital, Rome, Italy
| | - Antonella Spinelli
- Clinical and Rehabilitation Cardiology Unit, P.O. San Filippo Neri, ASL Roma 1, Rome, Italy
| | - Alessandro Alonzo
- Clinical and Rehabilitation Cardiology Unit, P.O. San Filippo Neri, ASL Roma 1, Rome, Italy
| | - Edoardo Mocini
- Department of Experimental Medicine, Sapienza University, Rome
| | - Michele Massimo Gulizia
- Cardiology Division, Ospedale Garibaldi-Nesima, Azienda di Rilievo Nazionale e Alta Specializzazione "Garibaldi" Catania, Italy; Fondazione per il Tuo Cuore, Heart Care Foundation, Florence, Italy
| | | | - Fabrizio Oliva
- De Gasperis Cardio Center, Niguarda Hospital, Milano, Italy
| | - Giuseppe Imperoli
- Medicine Unit, Emergency Department, P.O San Filippo Neri, ASL Roma 1, Rome, Italy
| | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Unit, P.O. San Filippo Neri, ASL Roma 1, Rome, Italy
| |
Collapse
|
159
|
Verma A, Kaur B, Venugopal S, Wadhwa P, Sahu S, Kaur P, Kumar D, Sharma A. Tetrazole: A privileged scaffold for the discovery of anti-cancer agents. Chem Biol Drug Des 2022; 100:419-442. [PMID: 35713482 DOI: 10.1111/cbdd.14103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 11/28/2022]
Abstract
Carcinoma, characterized by abnormal growth of cells and tissue, is a ubiquitously leading cause of mortality across the globe due to some carcinogenic factors. Currently, several anticancer agents are commercially available in the global market. However, due to their resistance and cost, researchers are gaining more interest in developing newer novel potential anticancer agents. In the search for new drugs for clinical use, the tetrazole ring system has emerged as an exciting prospect in the optimization studies of promising lead molecules. Among the various heterocyclic agents, tetrazole-containing compounds have shown significant promise in the treatment of a wide range of diseases, particularly cancer. Here, in this review, we focused on several synthetic approaches for the synthesis of tetrazole analogues, their targets for treating cancer along with the biological activity of some of the recently reported tetrazole-containing anticancer agents.
Collapse
Affiliation(s)
- Anil Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Balwinder Kaur
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sneha Venugopal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Pankaj Wadhwa
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sanjeev Sahu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Paranjeet Kaur
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Deepak Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| | - Ajit Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
160
|
Liu W, Liu X, Liu Y, Ling T, Chen D, Otkur W, Zhao H, Ma M, Ma K, Dong B, Yang Z, Piao HL, Liang R, Dong C. PLIN2 promotes HCC cells proliferation by inhibiting the degradation of HIF1α. Exp Cell Res 2022; 418:113244. [PMID: 35697078 DOI: 10.1016/j.yexcr.2022.113244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/22/2022] [Accepted: 06/04/2022] [Indexed: 11/04/2022]
Abstract
PLIN2 has been found to be dysregulated in several human malignancies, which influences cancer progression. However, the roles of PLIN2 in regulating hepatocellular carcinoma (HCC) progression are still unclear. Here, we revealed that PLIN2 was frequently upregulated in HCC cells and tissues, and increased PLIN2 expression was associated with poor prognosis outcomes in HCC. In HCC cells, overexpressing PLIN2 promoted cell proliferation, PLIN2-deficiency inhibited cell vitality. Mechanistically, silencing of PLIN2 expression downregulated hypoxia inducible factor 1-α (HIF1α) expression and this downregulation in turn inhibited the targeting genes of HIF1α. Furthermore, we found that PLIN2 stabilized and retarded the degradation of the HIF1α through autophagy-lysosomal pathway by inhibiting AMPK/ULK1. Collectively, we clarified the carcinogenic role of PLIN2 in HCC and suggested a prognostic biomarker for diagnosis and clinical therapy in the future.
Collapse
Affiliation(s)
- Wuguang Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, 116027, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ying Liu
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116027, China
| | - Ting Ling
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hailong Zhao
- Department of General Surgery, People's Hospital of Huangyuan County, Huangyuan County, Xining, 812100, China
| | - Ming Ma
- Department of General Surgery, People's Hospital of Huangyuan County, Huangyuan County, Xining, 812100, China
| | - Kexin Ma
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Bing Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Zexuan Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Rui Liang
- Department of General Surgery, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, Shenzhen, 518055, China; Carson International Cancer Research Centre, Shenzhen University School of Medicine, Shenzhen, 518055, China.
| | - Chengyong Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, 116027, China.
| |
Collapse
|
161
|
Yamada Y, Sato Y, Nakamura T, Harashima H. Innovative cancer nanomedicine based on immunology, gene editing, intracellular trafficking control. J Control Release 2022; 348:357-369. [PMID: 35623492 DOI: 10.1016/j.jconrel.2022.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
The recent rapid progress in the area of drug delivery systems (DDS) has opened a new era in medicine with a strong linkage to understanding the molecular mechanisms associated with cancer survival. In this review, we summarize new cancer strategies that have recently been developed based on our DDS technology. Cancer immunotherapy will be improved based on the concept of the cancer immunity cycle, which focuses on dynamic interactions between various types of cancer and immune cells in our body. The new technology of genome editing will also be discussed with reference to how these new DDS technologies can be used to introduce therapeutic cargoes into our body. Lastly, a new organelle, mitochondria will be the focus of creating a new cancer treatment strategy by a MITO-Porter which can deliver macromolecules directly to mitochondria of cancer cells via a membrane fusion approach and the impact of controlled intracellular trafficking will be discussed.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Japan Science and Technology Agency (JST) Fusion Oriented REsearch for disruptive Science and Technology (FOREST) Program, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
162
|
Wu Q, You L, Nepovimova E, Heger Z, Wu W, Kuca K, Adam V. Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape. J Hematol Oncol 2022; 15:77. [PMID: 35659268 PMCID: PMC9166526 DOI: 10.1186/s13045-022-01292-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia, a common feature of the tumor microenvironment in various types of cancers, weakens cytotoxic T cell function and causes recruitment of regulatory T cells, thereby reducing tumoral immunogenicity. Studies have demonstrated that hypoxia and hypoxia-inducible factors (HIFs) 1 and 2 alpha (HIF1A and HIF2A) are involved in tumor immune escape. Under hypoxia, activation of HIF1A induces a series of signaling events, including through programmed death receptor-1/programmed death ligand-1. Moreover, hypoxia triggers shedding of complex class I chain-associated molecules through nitric oxide signaling impairment to disrupt immune surveillance by natural killer cells. The HIF-1-galactose-3-O-sulfotransferase 1-sulfatide axis enhances tumor immune escape via increased tumor cell-platelet binding. HIF2A upregulates stem cell factor expression to recruit tumor-infiltrating mast cells and increase levels of cytokines interleukin-10 and transforming growth factor-β, resulting in an immunosuppressive tumor microenvironment. Additionally, HIF1A upregulates expression of tumor-associated long noncoding RNAs and suppresses immune cell function, enabling tumor immune escape. Overall, elucidating the underlying mechanisms by which HIFs promote evasion of tumor immune surveillance will allow for targeting HIF in tumor treatment. This review discusses the current knowledge of how hypoxia and HIFs facilitate tumor immune escape, with evidence to date implicating HIF1A as a molecular target in such immune escape. This review provides further insight into the mechanism of tumor immune escape, and strategies for tumor immunotherapy are suggested.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Li You
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic. .,Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic.
| |
Collapse
|
163
|
Fei J, Qin X, Ma H, Zhang X, Wang H, Han J, Yu C, Jiang J. Resveratrol Ameliorates Deep Vein Thrombosis-Induced Inflammatory Response Through Inhibiting HIF-1α/NLRP3 Pathway. Inflammation 2022; 45:2268-2279. [PMID: 35655037 DOI: 10.1007/s10753-022-01689-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022]
Abstract
Deep vein thrombosis (DVT) has become a prevalent and increasingly serious problem globally and resveratrol (Res) is a natural antitoxin that inhibits arterial thrombosis. To investigate the effect of Res on DVT and further explore its mechanism, thrombosis was monitored at different time points and the pathological changes occurring in the inferior vena cava (IVC) and lung tissue were observed in Sprague-Dawley rats. The protein expression of HIF-1α and NLRP3 in the IVC and lung tissue and the concentrations of D-dimer (D2D), prothrombin fragment 1 + 2 (F1 + 2), interleukin-1β (IL-1β), caspase-1, and tissue factor (TF) in the plasma were determined. After setting different doses of Res groups and using low-molecular-weight heparin (LMWH) as a positive control to determine the effective experimental dose of Res, rats were further divided into sham, DVT, HIF-1α inhibitor, Res, and HIF-1α inhibitor + Res groups. The above indicators were tested repeatedly. The DVT was formed on the 1st day of modeling. With the extension of time, DVT was gradually institutionalized and finally recanalized. Lesions in the IVC and lung tissue were effectively ameliorated, and thrombosis was significantly decreased in the LMWH or 60 mg/kg Res-treated groups. The levels of D2D, F1 + 2, IL-1β, caspase-1, TF, and the expression of HIF-1α and NLRP3 were significantly reduced in the HIF-1α inhibitor, Res, and HIF-1α inhibitor + Res groups. Res can ameliorate DVT in rats by inhibiting HIF-1α/NLRP3 pathway, which provides a novel therapeutic strategy for DVT treatment.
Collapse
Affiliation(s)
- Jianwen Fei
- Pulmonary and Critical Care Medicine, Yantaishan Hospital, Yantai, 264000, China
| | - Xiao Qin
- Pulmonary and Critical Care Medicine, Yantaishan Hospital, Yantai, 264000, China
| | - Hongfu Ma
- Pulmonary and Critical Care Medicine, Yantaishan Hospital, Yantai, 264000, China
| | - Xuefeng Zhang
- Pulmonary and Critical Care Medicine, Yantaishan Hospital, Yantai, 264000, China
| | - Haixia Wang
- Pulmonary and Critical Care Medicine, Yantaishan Hospital, Yantai, 264000, China
| | - Jin Han
- Pulmonary and Critical Care Medicine, Yantaishan Hospital, Yantai, 264000, China
| | - Chaoxiao Yu
- Pulmonary and Critical Care Medicine, Yantaishan Hospital, Yantai, 264000, China
| | - Junjie Jiang
- Department of Orthopedics, Yantaishan Hospital, Laishan District, 10087 Keji Avenue, Yantai, 264000, No, China.
| |
Collapse
|
164
|
Ma X, Zhang X, Qiao Y, Zhong S, Xing Y, Chen X. Weighted gene co-expression network analysis of embryos and first instar larvae of the horseshoe crab Tachypleus tridentatus uncovers development gene networks. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100980. [PMID: 35303535 DOI: 10.1016/j.cbd.2022.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/03/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Horseshoe crabs are marine chelicerates that have existed on Earth for about 450 million years, and they are often used as an experimental model for studying marine invertebrate embryology. In this study, we performed transcriptome gene expression profiling of four continuous embryonic stages (Stages 18-21) and first instar larvae of Tachypleus tridentatus. A mean of 50,742,995 high-quality clean reads was obtained from each library. We then conducted weighted gene co-expression network analysis (WGCNA) for 13,698 genes with fragments per kilobase of exon per million mapped fragments values >5. We identified 17 modules, six of which likely play critical roles in development. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes was performed on the biologically significant modules. We found that several pathways, such as hedgehog signaling pathway, VEGF signaling pathway, dorso-ventral axis formation, may be involved in the embryonic development process of T. tridentatus. We also identified hub genes that were highly connected in the six critical modules. This is the first study to apply WGCNA to horseshoe crabs to identify hub genes that may play critical roles in development, and our results provide new insight into the mechanisms underlying early development in horseshoe crabs.
Collapse
Affiliation(s)
- Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, People's Republic of China
| | - Xingzhi Zhang
- Guangxi Institute of Fisheries, Nanning 530000, People's Republic of China
| | - Ying Qiao
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, People's Republic of China.
| | - Shengping Zhong
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, People's Republic of China.
| | - Yongze Xing
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, People's Republic of China
| | - Xuyang Chen
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, People's Republic of China
| |
Collapse
|
165
|
Peral A, Mateo J, Domínguez-Godínez CO, Carracedo G, Gómez JA, Crooke A, Pintor J. Therapeutic potential of topical administration of siRNAs against HIF-1α for corneal neovascularization. Exp Eye Res 2022; 219:109036. [DOI: 10.1016/j.exer.2022.109036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/19/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022]
|
166
|
Wang X, Zhou Y, Dong K, Zhang H, Gong J, Wang S. Exosomal lncRNA HMMR-AS1 mediates macrophage polarization through miR-147a/ARID3A axis under hypoxia and affects the progression of hepatocellular carcinoma. ENVIRONMENTAL TOXICOLOGY 2022; 37:1357-1372. [PMID: 35179300 DOI: 10.1002/tox.23489] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND At present, the role of lncRNA in different kinds of tumors has been widely reported, but its role with hypoxic environment and macrophage polarization is still unclear. Therefore, this study tried to clarify the role of exosomal lncRNA in tumor hypoxic environment and macrophage polarization in the process of hepatocellular carcinoma (HCC), and provide a basis for targeted therapy of HCC. METHODS Bioinformatics screening of differentially expressed lncRNA and mRNA was carried out through GEO database, and the expression of lncRNA HMMR-AS1 in tumor tissues was detected and verified in HCC tissues. The effects of HMMR-AS1 on proliferation, migration, apoptosis, and macrophage polarization were determined by in vitro and in vivo experiments. Perform luciferase reporter gene detection and RNA immunoprecipitation to reveal the interaction between HMMR-AS1, miR-147a, and ARID3A. At the same time, the JASPAR database and dual luciferase report were used to detect the relationship between HIF-1α and HMMR-AS1 transcription regulation. Finally, nanoparticle tracking technology, transmission electron microscopy, and western blot were used to detect the effect of hypoxic environment on exosome secretion. RESULTS LncRNA HMMR-AS1 was significantly up-regulated in HCC tissues and HCC cells and was related to the poor prognosis. Inhibiting the expression of HMMR-AS1 could significantly inhibit tumor growth in vitro and in vivo. Further study of the mechanism showed that HMMR-AS1 could competitively bind to miR-147a to prevent the degradation of ARID3A. Exosomes carrying HMMR-AS1 could promote the M2 polarization of macrophages mediated by this pathway and further accelerate the progression of HCC. In addition, in the hypoxic environment, HIF-1α promotes its transcription by binding to the HMMR-AS1 promoter and induces an increase in the number of exosomes secreted. CONCLUSION In summary, we first discovered and verified the role of lncRNA HMMR-AS1 in HCC. In terms of mechanism, the promotion of exosomal HMMR-AS1 competitive adsorption of miR-147a under hypoxic environment affects ARID3A-mediated macrophage polarization. These data provide a new direction for the research on the pathogenesis of HCC and the development of targeted therapy.
Collapse
Affiliation(s)
- Xu Wang
- The Second Ward of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Yao Zhou
- The Second Ward of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Ke Dong
- The Second Ward of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Hao Zhang
- The Second Ward of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Jun Gong
- The Second Ward of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Shan Wang
- Department of Echocardiography & Noninvasive Cardiology Laboratory, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| |
Collapse
|
167
|
Gonzalez-Avila G, Sommer B, García-Hernandez AA, Ramos C, Flores-Soto E. Nanotechnology and Matrix Metalloproteinases in Cancer Diagnosis and Treatment. Front Mol Biosci 2022; 9:918789. [PMID: 35720130 PMCID: PMC9198274 DOI: 10.3389/fmolb.2022.918789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is still one of the leading causes of death worldwide. This great mortality is due to its late diagnosis when the disease is already at advanced stages. Although the efforts made to develop more effective treatments, around 90% of cancer deaths are due to metastasis that confers a systemic character to the disease. Likewise, matrix metalloproteinases (MMPs) are endopeptidases that participate in all the events of the metastatic process. MMPs’ augmented concentrations and an increased enzymatic activity have been considered bad prognosis markers of the disease. Therefore, synthetic inhibitors have been created to block MMPs’ enzymatic activity. However, they have been ineffective in addition to causing considerable side effects. On the other hand, nanotechnology offers the opportunity to formulate therapeutic agents that can act directly on a target cell, avoiding side effects and improving the diagnosis, follow-up, and treatment of cancer. The goal of the present review is to discuss novel nanotechnological strategies in which MMPs are used with theranostic purposes and as therapeutic targets to control cancer progression.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
- *Correspondence: Georgina Gonzalez-Avila,
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - A. Armando García-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Carlos Ramos
- Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
168
|
Wrona A, Aleksandrovych V, Bereza T, Basta P, Gil A, Ulatowska-Białas M, Mazur-Laskowska M, Pityński K, Gil K. Oviductal Oxygen Homeostasis in Patients with Uterine Myoma: Correlation between Hypoxia and Telocytes. Int J Mol Sci 2022; 23:6155. [PMID: 35682833 PMCID: PMC9181375 DOI: 10.3390/ijms23116155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Oxygen balance is crucial for angiogenesis, immunity, and tissue repair. The human oviduct is essential for reproductive function, and any imbalance in homeostasis leads to fertility disturbances and might be a reason for ectopic pregnancy development. Uterine myoma is a widespread benign tumour, which is often accompanied by infertility. Telocytes have been discussed in the contexts of motility, fibrosis development, and angiogenesis. We observed the oviducts from patients with and without uterine myoma, comparing the expression of HIF-1, HO, VEGF and its receptor, NOS, oestrogen, and progesterone receptors by immunolabeling. The myometrial and oviductal telocytes were also compared in both groups. Biochemical analyses were conducted for FSH, LH, AMH, sFlt, oestrogen, and progesterone in blood samples. Patients with uterine myoma have different expressions of sex steroid receptors and an increased number of telocytes. The decreasing VEFG expression was compensated by the rise in the HIF-1 and NOS expression. Blood biochemical analyses revealed a higher progesterone level and lower AMH in patients with uterine myoma. No differences in sFlt, FSH, and LF were observed. Uterine myoma impacts oviduct oxygen homeostasis and might cause fertility disturbances (uterine and oviductal infertility factors).
Collapse
Affiliation(s)
- Anna Wrona
- Gynecology and Obstetrics Ward with Gynecologic Oncology Subdivision, J. Śniadecki’s Specialistic Hospital, 33-300 Nowy Sącz, Poland;
| | - Veronika Aleksandrovych
- Department of Pathophysiology, Jagiellonian University Medical College, 31-121 Krakow, Poland;
| | - Tomasz Bereza
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland; (T.B.); (A.G.)
| | - Paweł Basta
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (P.B.); (K.P.)
| | - Anna Gil
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland; (T.B.); (A.G.)
| | | | | | - Kazimierz Pityński
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (P.B.); (K.P.)
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, 31-121 Krakow, Poland;
| |
Collapse
|
169
|
The eIF4A Inhibitor Silvestrol Blocks the Growth of Human Glioblastoma Cells by Inhibiting AKT/mTOR and ERK1/2 Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:4396316. [PMID: 35677890 PMCID: PMC9170441 DOI: 10.1155/2022/4396316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022]
Abstract
The most frequently identified central nervous system tumor in adults is glioblastoma multiforme (GBM). GBM prognosis remains poor despite multimodal treatment, i.e., surgery and radiation therapy with concurrent temozolomide-based chemotherapy. Silvestrol, an eIF4A inhibitor, has been demonstrated to be able to kill tumor cells in previous studies. In this study, it was found that silvestrol considerably attenuated the proliferative potential of U251 and U87 glioma cells and reduced expression of cyclin D1. In addition, silvestrol reduced the level of ERK1/2 and decreased the levels of AKT phosphorylation. Unfortunately, the effect of silvestrol in inhibiting GBM cells was greatly reduced with hypoxia, and the downregulation in AKT/mTOR and ERK1/2 were also rescued with an upregulation of HIF1α, which warranted further research. Taken together, silvestrol exerted antitumor effects in GBM cells by inhibiting the AKT/mTOR and ERK1/2 signaling cascades.
Collapse
|
170
|
Yamazaki K, Hoshi M, Tezuka H, Morita N, Hirayama M, Sato F, Yoshida S, Saito K. D‑allose enhances the efficacy of hydroxychloroquine against Lewis lung carcinoma cell growth by inducing autophagy. Oncol Rep 2022; 47:117. [PMID: 35543153 PMCID: PMC9115634 DOI: 10.3892/or.2022.8328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/05/2022] [Indexed: 11/05/2022] Open
Abstract
Various cancer cells require massive amounts of glucose as an energy source for their dysregulated growth. Although D‑allose, a rare sugar, inhibits tumor cell growth via inhibition of glucose uptake, a few cells can survive after treatment. However, the mechanism by which D‑allose‑resistant cells are generated remains unclear. Here, we investigated the properties of D‑allose‑resistant cells and evaluated the efficacy of combined treatment with this rare sugar and antitumor drugs. To this end, we established a D‑allose‑resistant tumor cell line and prepared a C57BL/6J mouse tumor xenograft model using Lewis lung carcinoma (LLC) cells. Xenograft‑bearing mice were treated with D‑allose (9 g/kg) and/or hydroxychloroquine (HCQ, 60 mg/kg), an autophagy inhibitor, for two weeks. Although D‑allose inhibited LLC cell growth in a dose‑dependent manner, a few cells survived. The upregulation of LC3‑II, a classical autophagy marker, and the downregulation of mTOR and its downstream molecule Beclin1 were observed in established D‑allose‑resistant LLC cells, which were more sensitive to cell death induced by HCQ. Similarly, in the tumor xenograft model, the tumor volume in mice co‑treated with D‑allose and HCQ was considerably smaller than that in untreated or HCQ‑treated mice. Importantly, the administration of D‑allose induced autophagy selectively at the tumor site of the xenograft‑bearing mice. These results provide a new therapeutic strategy targeting autophagy which is induced in tumor cells by D‑allose administration, and may be used to improve therapies for lung cancer.
Collapse
Affiliation(s)
- Kyoka Yamazaki
- Department of Disease Control and Prevention, Fujita Health University, Aichi 470‑1192, Japan
| | - Masato Hoshi
- Department of Informative Clinical Medicine, Fujita Health University, Aichi 470‑1192, Japan
| | - Hiroyuki Tezuka
- Department of Cellular Function Analysis, Research Promotion Headquarters, Fujita Health University, Aichi 470‑1192, Japan
| | - Nanaka Morita
- Department of Disease Control and Prevention, Fujita Health University, Aichi 470‑1192, Japan
| | - Masaya Hirayama
- Department of Morphology and Diagnostic Pathology, Fujita Health University, Aichi 470‑1192, Japan
| | - Fumiaki Sato
- Department of Informative Clinical Medicine, Fujita Health University, Aichi 470‑1192, Japan
| | - Sayaka Yoshida
- Department of Informative Clinical Medicine, Fujita Health University, Aichi 470‑1192, Japan
| | - Kuniaki Saito
- Department of Disease Control and Prevention, Fujita Health University, Aichi 470‑1192, Japan
| |
Collapse
|
171
|
Ouyang C, Fu Q, Xie Y, Xie J. Forkhead box A2 transcriptionally activates hsa-let-7 g to inhibit hypoxia-induced epithelial-mesenchymal transition by targeting c14orf28 in colorectal cancer. Arab J Gastroenterol 2022; 23:188-194. [PMID: 35514011 DOI: 10.1016/j.ajg.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND STUDY AIMS This study aimed to investigate the effect of Forkhead Box A2 (FOXA2) on migration, invasion, and epithelial-mesenchymal transition (EMT) of colorectal cancer (CRC) cells in hypoxia and explore its related molecular mechanisms. PATIENTS AND METHODS A cellular hypoxia model was established, and the FOXA2 overexpression vector was transfected into SW480 and HCT116 cells. Cell apoptosis, migration, and invasion were examined by flow cytometry, scratch test, and transwell-invasion assay. Next, the hsa-let-7 g gene expression was detected by quantitative reverse transcription-polymerase chain reaction. Relative protein levels of HIF-1, FOXA2, c14orf28, E-cadherin, N-cadherin, and Vimentin were detected by western blot. RESULTS Hypoxia-exposed CRC cells showed a significantly increased cell apoptosis rate, as well as enhanced cell invasion and migration abilities compared with the cells in normoxia. FOXA2 overexpression induced apoptosis and inhibited hypoxia-exposed CRC cell migration and invasion. Additionally, FOXA2 overexpression led to the significantly increased hsa-let-7 g and E-cadherin expression, as well as the decreased c14orf28, N-cadherin, and Vimentin expression in hypoxic CRC cells. CONCLUSIONS This study demonstrated that FOXA2 could affect the apoptosis, migration, invasion, and EMT of CRC cells under hypoxia conditions. FOXA2 transcriptionally activates hsa-let-7 g to inhibit hypoxia-induced EMT by targeting c14orf28.
Collapse
Affiliation(s)
- Canhui Ouyang
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Qubo Fu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Yun Xie
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Jun Xie
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
172
|
Costa-Madeira JC, Trindade GB, Almeida PHP, Silva JS, Carregaro V. T Lymphocyte Exhaustion During Human and Experimental Visceral Leishmaniasis. Front Immunol 2022; 13:835711. [PMID: 35585983 PMCID: PMC9108272 DOI: 10.3389/fimmu.2022.835711] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
A key point of immunity against protozoan Leishmania parasites is the development of an optimal T cell response, which includes a low apoptotic rate, high proliferative activity and polyfunctionality. During acute infection, antigen-specific T cells recognize the pathogen resulting in pathogen control but not elimination, promoting the development and the maintenance of a population of circulating effector cells that mount rapid response quickly after re-exposure to the parasite. However, in the case of visceral disease, the functionality of specific T cells is lost during chronic infection, resulting in inferior effector functions, poor response to specific restimulation, and suboptimal homeostatic proliferation, a term referred to as T cell exhaustion. Multiple factors, including parasite load, infection duration and host immunity, affect T lymphocyte exhaustion. These factors contribute to antigen persistence by promoting inhibitory receptor expression and sustained production of soluble mediators, influencing suppressive cell function and the release of endogenous molecules into chronically inflamed tissue. Together, these signals encourage several changes, reprogramming cells into a quiescent state, which reflects disease progression to more severe forms, and development of acquired resistance to conventional drugs to treat the disease. These points are discussed in this review.
Collapse
Affiliation(s)
- Juliana C. Costa-Madeira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
| | - Gabrielly B. Trindade
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
| | - Paulo H. P. Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
| | - João S. Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
- Fiocruz-Bi-Institutional Translational Medicine Project, Ribeirão Preto, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University from São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
173
|
Liu Y, Yi J, Li Y, Hussain R, Zhu S, Li Y, Ouyang Z, Mehmood K, Hu L, Pan J, Tang Z, Li Y, Zhang H. Residue of thiram in food, suppresses immune system stress signals and disturbs sphingolipid metabolism in chickens. Vet Immunol Immunopathol 2022; 247:110415. [PMID: 35344810 DOI: 10.1016/j.vetimm.2022.110415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
Thiram, a well-known sulfur containing organic compound is frequently and extensively used in agriculture because of high biological activity to control different pests. In certain cases, due to long persistence in the environment pesticides and other environmental contaminants induce undesirable toxic impacts to public health and environment. To ascertain the potential mechanisms of toxicity of thiram on different immune organs of broilers, a total of 100 one-day-old chicks were obtained and randomly divided into two groups including thiram group (50 mg/kg) and untreated control group. Thymus and spleen tissues were collected at the age of 14 days from the experimental birds. At necropsy level, thymus was congested, enlarged and hyperemic while spleen had no obvious lesions. The results on mechanisms (apoptosis and autophagy) of immunotoxicity showed significantly increased expression of bax, caspase3, cytc, ATG5, beclin1 and p62 in spleen of treated mice. Results indicated significantly decreased expression of m-TOR and bcl2 to activate apoptosis and autophagy. The expressions of bax, p53 and m-TOR were up-regulated in the thymus while the expressions of ATG5 and Beclin1 were down-regulated to mediate cell apoptosis and inhibit autophagy. The results on different metabolome investigation showed that the sphingolipid metabolism in the thymus of chicks exposed to thiram was disrupted resulting in up-regulation of metabolites related to cell membrane components such as SM, galactosylceramide and lactosylceramide. The results of our experimental research suggest that thiram can interfere with the sphingolipid metabolism in thymus and angiogenesis, inhibit the proliferation of vascular endothelial cells to induce potential toxic effects in chicken.
Collapse
Affiliation(s)
- Yingwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Shanshan Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yangwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhuanxu Ouyang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Khalid Mehmood
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqing Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
174
|
Ibrahim AM, Nady S, Shafaa MW, Khalil MM. Radiation and chemotherapy variable response induced by tumor cell hypoxia: impact of radiation dose, anticancer drug, and type of cancer. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:263-277. [PMID: 35396948 PMCID: PMC9021068 DOI: 10.1007/s00411-022-00974-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Hypoxia is a condition in which proliferating tumor cells are deprived of oxygen due to limited blood supply from abnormal tumor microvasculature. This study aimed to investigate the molecular changes that occur in tumor cell hypoxia with special emphasis placed on the efficacy of chemotherapeutic and radiation-related effects. Four commercially available chemotherapeutic agents: cisplatin, cyclophosphamide, doxorubicin, and 5-fluorouracil, were tested for their cytotoxic activity on the cancer cell lines PC3 (prostate), HepG2 (liver), and MCF-7 (breast). Tumor cell lines under hypoxia were treated with both IC50 concentrations of the different chemotherapeutic agents and irradiated with 5 and 10 Gy using a 137Cs gamma source. Hypoxia-inducible factor-1α (HIF-1α) protein levels were examined using an ELISA assay. Hypoxic cells showed a significant change in cell viability to all chemotherapeutic agents in comparison to normoxic controls. HepG2 cells were more resistant to the cytotoxic drug doxorubicin compared to other cancer cell lines. The flow cytometric analysis showed that hypoxic cells have lower levels of total apoptotic cell populations (early and late apoptosis) compared to normoxic cells suggesting decreased hypoxia-induced apoptosis in cancer cells. The highest reduction in HIF-1α level was observed in the MCF-7 cell line (95.5%) in response to the doxorubicin treatment combined with 10 Gy irradiation of cells. Chemoradiotherapy could result in minimal as well as a high reduction of HIF-1α based on cell type, type of chemotherapy, and amount of ionizing radiation. This study highlights future research work to optimize a combined chemoradiotherapeutic regime in individual cancer cell hypoxia.
Collapse
Affiliation(s)
- Ayman M Ibrahim
- Medical Biophysics, Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
| | - Soad Nady
- Immunology Laboratory, Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Medhat W Shafaa
- Medical Biophysics, Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt
| | - Magdy M Khalil
- Medical Biophysics, Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
175
|
Zhang S, Liu T, Chen Q, Su M, Bai T, Zhang M, Hu Y, Li J, Chang F. Study on molecular mechanism of benzo (ɑ) pyrene on CMA by HSP90ɑ and HIF-1ɑ. Toxicol In Vitro 2022; 83:105372. [PMID: 35487446 DOI: 10.1016/j.tiv.2022.105372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The effects of benzo (α) pyrene (BaP) on chaperone mediated autophagy (CMA) through heat shock protein 90 (HSP90) and hypoxia- inducible factor-1 (HIF-1) is studied by RNA interference and subcutaneous tumor formation technique in nude mice. METHODS 40 nude mice that were inoculated with the silenced HSP90ɑ A549 cell line under the armpits of the forelimbs were divided into 4 groups, and were intragastrically administered with 1.80 mg/kg/d BaP-corn oil solutionfor for 60d (except the Control group), and the growth curves of nude mice and transplanted tumors were recorded. The size and morphological changes of tumors were observed by small animal imaging technique. qPCR, Western blot and Immunohistochemistry were used to detect the expression of HSP90ɑ, HSC70 and Lamp-2A. A549 cells were treated with 0.1 μmol/L, 1 μmol/L and 10 μmol/L BaP for 24 h, EPO and HIF-1ɑ concentration and HIF-1ɑ protein expression were detected by Elisa and Western blot; A549 cells were treated with 10 μmol/L BaP and HIF-1ɑ inhibitor for 24 h, qPCR, Western blot and Immunofluorescence method were used to detect the expression of HSP90ɑ, HSC70 and Lamp-2A. RESULTS The weight of nude mice and transplanted tumors silenced HSP90ɑ was reduced by BaP (P < 0.01); the expression of HSP90ɑ, HSC70, Lamp-2A mRNA and protein in transplanted tumor tissues silenced HSP90ɑ was reduced by BaP (P < 0.05); the total number of bioluminescence photons of transplanted tumors silenced HSP90ɑ was reduced by BaP (P < 0.01). The concentration of EPO and HIF-1ɑ and the expression of HIF-1ɑ protein in A549 cells was increased by 10 μmol/L BaP (P < 0.05); with HIF-1ɑ inhibitors treated, HSP90ɑ, HSC70, Lamp-2A mRNA and protein expression and the fluorescence intensity of HSP90ɑ was decreased of A549 cells (P < 0.05). CONCLUSIONS The growth of transplanted tumor in nude mice is promoted by BaP, and is inhibited when HSP90ɑ was silenced. BaP promotes the occurrence of CMA by promoting the expression of HSP90ɑ and HIF-1ɑ, which is vital regulatory genes of BaP activation of CMA.
Collapse
Affiliation(s)
- Shasha Zhang
- School of Pharmacy, Inner Mongolia Medical University, PR China
| | - Tingting Liu
- School of Pharmacy, Inner Mongolia Medical University, PR China
| | - Qi Chen
- School of Pharmacy, Inner Mongolia Medical University, PR China
| | - Min Su
- School of Pharmacy, Inner Mongolia Medical University, PR China
| | - Tuya Bai
- School of Pharmacy, Inner Mongolia Medical University, PR China; New Drug Safety Evaluation Research Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, PR China; New Drug Screening Engineering Research Center of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region, PR China
| | - Mengdi Zhang
- School of Pharmacy, Inner Mongolia Medical University, PR China; New Drug Safety Evaluation Research Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, PR China; New Drug Screening Engineering Research Center of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region, PR China
| | - Yuxia Hu
- School of Pharmacy, Inner Mongolia Medical University, PR China; New Drug Safety Evaluation Research Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, PR China; New Drug Screening Engineering Research Center of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region, PR China
| | - Jun Li
- School of Pharmacy, Inner Mongolia Medical University, PR China; New Drug Safety Evaluation Research Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, PR China; New Drug Screening Engineering Research Center of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region, PR China
| | - Fuhou Chang
- School of Pharmacy, Inner Mongolia Medical University, PR China; New Drug Safety Evaluation Research Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, PR China; New Drug Screening Engineering Research Center of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
176
|
Li M, Xie F, Wang L, Zhu G, Qi LW, Jiang S. Celastrol: An Update on Its Hepatoprotective Properties and the Linked Molecular Mechanisms. Front Pharmacol 2022; 13:857956. [PMID: 35444532 PMCID: PMC9013942 DOI: 10.3389/fphar.2022.857956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The liver plays an important role in glucose and lipid homeostasis, drug metabolism, and bile synthesis. Metabolic disorder and inflammation synergistically contribute to the pathogenesis of numerous liver diseases, such as metabolic-associated fatty liver disease (MAFLD), liver injury, and liver cancer. Celastrol, a triterpene derived from Tripterygium wilfordii Hook.f., has been extensively studied in metabolic and inflammatory diseases during the last several decades. Here we comprehensively review the pharmacological activities and the underlying mechanisms of celastrol in the prevention and treatment of liver diseases including MAFLD, liver injury, and liver cancer. In addition, we also discuss the importance of novel methodologies and perspectives for the drug development of celastrol. Although celastrol has been claimed as a promising agent against several metabolic diseases, both preclinical and clinical studies are highly required to accelerate the clinical transformation of celastrol in treating different liver illness. It is foreseeable that celastrol-derived therapeutics is evolving in the field of liver ailments.
Collapse
Affiliation(s)
- Mengzhen Li
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Faren Xie
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Shujun Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
177
|
TLR4 Agonist and Hypoxia Synergistically Promote the Formation of TLR4/NF-κB/HIF-1α Loop in Human Epithelial Ovarian Cancer. Anal Cell Pathol (Amst) 2022; 2022:4201262. [PMID: 35464826 PMCID: PMC9023210 DOI: 10.1155/2022/4201262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Inflammation and hypoxia are involved in numerous cancer progressions. Reportedly, the toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) pathway and hypoxia-inducible factor-1α (HIF-1α) are activated and closely related to the chemoresistance and poor prognosis of epithelial ovarian cancer (EOC). However, the potential correlation between TLR4/NF-κB and HIF-1α remains largely unknown in EOC. In our study, the possible positive correlation among TLR4, NF-κB, and HIF-1α proteins was investigated in the EOC tissues. Our in vitro results demonstrated that LPS can induce and activate HIF-1α through the TLR4/NF-κB signaling in A2780 and SKOV3 cells. Moreover, hypoxia-induced TLR4 expression and the downstream transcriptional activity of NF-κB were HIF-1α-dependent. The cross talk between the TLR4/NF-κB signaling pathway and HIF-1α was also confirmed in the nude mice xenograft model. Therefore, we first proposed the formation of a TLR4/NF-κB/HIF-1α loop in EOC. The positive feedback loop enhanced the susceptibility and responsiveness to inflammation and hypoxia, which synergistically promote the initiation and progression of EOC. The novel mechanism may act as a future therapeutic candidate for the treatment of EOC.
Collapse
|
178
|
Li Y, Wang J, Wang H, Zhang S, Wei Y, Liu S. The Interplay Between Inflammation and Stromal Components in Pancreatic Cancer. Front Immunol 2022; 13:850093. [PMID: 35493517 PMCID: PMC9046560 DOI: 10.3389/fimmu.2022.850093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Inflammation involves interactions between various immune cells, inflammatory cells, chemokines and cytokines in pancreatic cancer. Cancer cells as well as surrounding stromal and inflammatory cells establish an inflammatory tumor microenvironment (TME). Inflammation is closely associated with immunity. Meanwhile, immune cells are involved in both inflammation and immune response. Tumor-promoting inflammation and tumor-suppressive immunity are two main characteristics of the tumor microenvironment in pancreatic cancer. Yet, the mechanism of inflammation and immune response in pancreatic cancer development is still unclear due to the dual role of some cytokines and the complicated crosstalk between tumor and stromal components in TME. In this review, we outline the principal cytokines and stromal cells in the pancreatic TME that are involved in the tumor-promoting and immunosuppressive effects of inflammation, and discuss the interaction between inflammation and stromal components in pancreatic cancer progression. Moreover, the clinical approaches based on targeting TME in pancreatic cancer are also summarized. Defining the mechanisms of interplay between inflammation and stromal components will be essential for further development of anti-cancer therapies.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaoqiang Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingxin Wei
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
179
|
Factors Influencing Gallstone Formation: A Review of the Literature. Biomolecules 2022; 12:biom12040550. [PMID: 35454138 PMCID: PMC9026518 DOI: 10.3390/biom12040550] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Gallstone disease is a common pathology of the digestive system with nearly a 10–20% incidence rate among adults. The mainstay of treatment is cholecystectomy, which is commonly associated with physical pain and may also seriously affect a patient’s quality of life. Clinical research suggests that cholelithiasis is closely related to the age, gender, body mass index, and other basic physical characteristics of patients. Clinical research further suggests that the occurrence of cholelithiasis is related to obesity, diabetes, non-alcoholic fatty liver, and other diseases. For this reason, we reviewed the following: genetic factors; excessive liver cholesterol secretion (causing cholesterol supersaturation in gallbladder bile); accelerated growth of cholesterol crystals and solid cholesterol crystals; gallbladder motility impairment; and cardiovascular factors. Herein, we summarize and analyze the causes and mechanisms of cholelithiasis, discuss its correlation with the pathogenesis of related diseases, and discuss possible mechanisms.
Collapse
|
180
|
Tang X, Chen F, Xie LC, Liu SX, Mai HR. Targeting metabolism: A potential strategy for hematological cancer therapy. World J Clin Cases 2022; 10:2990-3004. [PMID: 35647127 PMCID: PMC9082716 DOI: 10.12998/wjcc.v10.i10.2990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/01/2021] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Most hematological cancer-related relapses and deaths are caused by metastasis; thus, the importance of this process as a target of therapy should be considered. Hematological cancer is a type of cancer in which metabolism plays an essential role in progression. Therefore, we are required to block fundamental metastatic processes and develop specific preclinical and clinical strategies against those biomarkers involved in the metabolic regulation of hematological cancer cells, which do not rely on primary tumor responses. To understand progress in this field, we provide a summary of recent developments in the understanding of metabolism in hematological cancer and a general understanding of biomarkers currently used and under investigation for clinical and preclinical applications involving drug development. The signaling pathways involved in cancer cell metabolism are highlighted and shed light on how we could identify novel biomarkers involved in cancer development and treatment. This review provides new insights into biomolecular carriers that could be targeted as anticancer biomarkers.
Collapse
Affiliation(s)
- Xue Tang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Fen Chen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Li-Chun Xie
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Si-Xi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Hui-Rong Mai
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| |
Collapse
|
181
|
Yu W, Wang G, Lu C, Liu C, Jiang L, Jiang Z, Liang Z, Wang X, Qin Z, Yan J. Pharmacological mechanism of Shenlingbaizhu formula against experimental colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153961. [PMID: 35121392 DOI: 10.1016/j.phymed.2022.153961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/24/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) characterized by an overactive immune response and destruction of the colorectal epithelium with intricate pathological factors. Shenlingbaizhu (SLBZ) formula, included in the Chinese Pharmacopoeia 2020, has been widely utilized to treat UC. PURPOSE The present study was designed to uncover the underlying molecular mechanisms of SLBZ formula against UC. METHODS A murine model of experimental colitis was established by orally feeding 2% dextran sodium sulfate (DSS) to mice for 7 days, followed by SLBA treatment for the next 15 days. Network pharmacology analysis was performed to predict the pharmacological mechanisms. High-throughput 16S rRNA sequencing integrated with liquid chromatography-mass spectrometry (LC-MS) was conducted on mouse stool in order to determine alterations in the composition of the intestinal microbiota and metabolites. Western blotting, immunofluorescence, and flow cytometry were performed to examine the anti-inflammatory role of SLBZ. RESULTS DSS treatment induced experimental colitis, and this induction was alleviated by SLBZ treatment, as evidenced by rescued pathological symptoms in the experimental colitis mouse groups. Network pharmacology analysis showed that SLBZ-target genes were enriched in pathogen-induced infectious and inflammatory pathways, as well as neoplastic processes. SLBZ administration also modulated the gut microbiota composition and metabolic profiles of experimental colitis mice and alleviated the progression of experimental colitis. We further showed via in-vitro experiments that SLBZ suppressed macrophage (Mφ) transition to pro-inflammatory phenotype (M1), rescued tumor necrosis factor-α (TNFα)-induced pyroptosis of intestinal organoids (IOs), and decreased the recruitment of Mφs by epithelial cells. CONCLUSION SLBZ formula is an effective treatment for murine colitis and showed a stronger therapeutic capacity than melasazine. The pharmacological mechanisms of SLBZ involve the re-establishment of an anti-inflammatory milieu and healthy microbiome, which favors mucosal healing.
Collapse
Affiliation(s)
- Wei Yu
- Department of Physiology, Jining Medical University, Jining, Shandong, China
| | - Guoliang Wang
- Department of Physiology, Jining Medical University, Jining, Shandong, China
| | - Chang Lu
- Department of Physiology, Jining Medical University, Jining, Shandong, China
| | - Chen Liu
- Department of Physiology, Jining Medical University, Jining, Shandong, China
| | - Lu Jiang
- Department of Physiology, Jining Medical University, Jining, Shandong, China
| | - Zizheng Jiang
- Department of Physiology, Jining Medical University, Jining, Shandong, China
| | - Zhenghao Liang
- Department of Physiology, Jining Medical University, Jining, Shandong, China
| | - Xiao Wang
- Department of Physiology, Jining Medical University, Jining, Shandong, China
| | - Zheng Qin
- Shandong University, Jinan, Shandong, China
| | - Jing Yan
- Department of Physiology, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
182
|
Abstract
Autophagy is an important life phenomenon in eukaryotic cells. Its main role is to remove and degrade its damaged organelles and excess biological macromolecules, and use degradation products to provide energy and rebuild the cell structure, playing an important role in maintaining cell homeostasis and cell life activities. Mitophagy is a form of macroautophagy. It has the beneficial effect of eliminating damaged mitochondria, thereby maintaining the integrity of the mitochondrial pool. Autophagy and mitophagy have a dual role in the development of cancer. On one hand, autophagy and mitophagy can maintain the normal physiological function of cells. On the other hand, excessive autophagy and mitophagy can lead to diseases. The present review introduces the mechanisms of autophagy and mitophagy, and the main related proteins, and introduce the correlation with cancers, providing a basis for the treatment of cancers through the understanding of these proteins.
Collapse
Affiliation(s)
- Hong-Ming Xu
- Department of Orthopaedic Surgery, Affiliated Cixi Hospital of Wenzhou Medical University, Cixi, Ningbo, People's Republic of China
| | - Fei Hu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
183
|
Xu Y, Lu J, Tang Y, Xie W, Zhang H, Wang B, Zhang S, Hou W, Zou C, Jiang P, Zhang W. RETRACTED: PINK1 deficiency in gastric cancer compromises mitophagy, promotes the Warburg effect, and facilitates M2 polarization of macrophages. Cancer Lett 2022; 529:19-36. [PMID: 34979165 DOI: 10.1016/j.canlet.2021.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief and authors. Following the publication of the above article, the Editor was notified by a concerned reader that the authors supplied duplicated images. Specifically, that in Fig. 5A, both FACS panels are identical and in Fig. 5E, two different proteins (HK2 and PDK1) have the same western blot. After checking the data in relation with Fig. 5A and Fig. 5E, the authors have confirmed that the two pictures indeed have the problems of duplication. The authors reported that this problem came from the authors’ unintentional behavior, which may be due to a copy and paste error in the manner of image processing. The authors sincerely apologize for the inconvenience caused to our Editors and readers. Due to this duplication error, the authors and Editor have made the decision to retract this paper.
Collapse
Affiliation(s)
- Ying Xu
- Department of Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jiawei Lu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Yinbing Tang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Wenjie Xie
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Heteng Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Beibei Wang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Shouliang Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Wenji Hou
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Zou
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Pengcheng Jiang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.
| | - Wenbo Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
184
|
Yang R, Chen H, Xing L, Wang B, Hu M, Ou X, Chen H, Deng Y, Liu D, Jiang R, Chen J. Hypoxia-induced circWSB1 promotes breast cancer progression through destabilizing p53 by interacting with USP10. Mol Cancer 2022; 21:88. [PMID: 35351136 PMCID: PMC8961958 DOI: 10.1186/s12943-022-01567-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/22/2022] [Indexed: 01/14/2023] Open
Abstract
Background Hypoxia has long been considered as a hallmark of solid tumors and is closely associated with tumor progression. Circular RNAs (circRNAs) have been identified as a critical modulator in various cancers. However, the connections between hypoxia and circRNAs are largely unknown. Methods Here, we investigated the expression profile of circRNAs in breast cancer (BC) MCF-7 cells under hypoxia and normoxia using microarray. We identified a novel hypoxia-responsive circRNA named circWSB1, whose expression pattern, potential diagnostic value and prognostic significance were assessed by qRT-PCR and in situ hybridization. Loss- and gain-of-function investigations in vivo and in vitro were performed to determine the biological functions of circWSB1. Mechanistically, chromatin immunoprecipitation and dual luciferase reporter assays were carried out to analyze the biogenesis of circWSB1. Furthermore, biotin-labeled RNA pull-down, mass spectrometry, RNA immunoprecipitation, fluorescent in situ hybridization, RNA electrophoretic mobility shift, deletion-mapping, co-immunoprecipitation assays and rescue experiments were applied to investigate the interaction between circWSB1 and Ubiquitin-specific peptidase 10 (USP10) as well as the relationship between USP10 and p53. Results We found that the expression of circWSB1 was significantly upregulated in BC tissues and correlated with poor clinical outcomes, which might serve as an independent prognostic factor for BC patients. Ectopic expression of circWSB1 promoted the proliferation of BC cell in vitro and in vivo. Mechanistically, circWSB1 was transcriptionally upregulated by HIF1α in response to hypoxia and could competitively bind to deubiquitinase USP10 to prevent the access of p53 to USP10 in BC cells, leading to degradation of p53 and tumor progression of BC. Conclusions Taken together, our findings disclose a novel mechanism that hypoxia-inducible circWSB1 could interact with USP10 to attenuate USP10 mediated p53 stabilization and promote the progression of BC, providing an alternative prognostic biomarker and therapeutic target for BC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01567-z.
Collapse
|
185
|
Chen J, Zhou C, Liu Y. Establishing a Macrophage Phenotypic Switch-Associated Signature-Based Risk Model for Predicting the Prognoses of Lung Adenocarcinoma. Front Oncol 2022; 11:771988. [PMID: 35284334 PMCID: PMC8905507 DOI: 10.3389/fonc.2021.771988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background Tumor-associated macrophages are important components of the tumor microenvironment, and the macrophage phenotypic switch has been shown to correlate with tumor development. However, the use of a macrophage phenotypic switch-related gene (MRG)-based prognosis signature for lung adenocarcinoma (LADC) has not yet been investigated. Methods In total, 1,114 LADC cases from two different databases were collected. The samples from TCGA were used as the training set (N = 490), whereas two independent datasets (GSE31210 and GSE72094) from the GEO database were used as the validation sets (N = 624). A robust MRG signature that predicted clinical outcomes of LADC patients was identified through multivariate COX and Lasso regression analysis. Gene set enrichment analysis was applied to analyze molecular pathways associated with the MRG signature. Moreover, the fractions of 22 immune cells were estimated using CIBERSORT algorithm. Results An eight MRG-based signature comprising CTSL, ECT2, HCFC2, HNRNPK, LRIG1, OSBPL5, P4HA1, and TUBA4A was used to estimate the LADC patients’ overall survival. The MRG model was capable of distinguishing high-risk patients from low-risk patients and accurately predict survival in both the training and validation cohorts. Subsequently, the eight MRG-based signature and other features were used to construct a nomogram to better predict the survival of LADC patients. Calibration plots and decision curve analysis exhibited good consistency between the nomogram predictions and actual observation. ROC curves displayed that the signature had good robustness to predict LADC patients’ prognostic outcome. Conclusions We identified a phenotypic switch-related signature for predicting the survival of patients with LADC.
Collapse
Affiliation(s)
- Jun Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Ying Liu
- Department of Emergency, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
186
|
Circular RNA hsa_circ_0004543 Aggravates Cervical Cancer Development by Sponging MicroRNA hsa-miR-217 to Upregulate Hypoxia-Inducible Factor. JOURNAL OF ONCOLOGY 2022; 2022:4031403. [PMID: 35310917 PMCID: PMC8926462 DOI: 10.1155/2022/4031403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022]
Abstract
Cervical cancer (CC) is the 4th principal source of cancer death in females with 604,000 new patients and 342,000 deaths in 2020 worldwide. It has been extensively shown that circRNAs are involved in regulating CC development. Nevertheless, the function and mechanisms of hsa_circ_0004543 in regulating CC need to be clearly elucidated. Herein, hsa_circ_0004543 expressions were compared between 40 paired paracancerous and cancerous specimens from CC patients and between 6 CC cell lines and a normal human cervical epithelial cell line based on qRT-PCR. Potential complementary binding sites between hsa-miR-217 and hsa_circ_0004543 were predicted using the interactome, while binding sites for the hypoxia-inducible factor-1a (HIF-1a) were predicted by TargetScan. The function and mechanism of hsa_circ_0004543 in the development of CC were estimated by silencing hsa_circ_0004543 with/without hsa-miR-217 or HIF-1a overexpression. The association between gene expressions was evaluated with Pearson's correlation analysis. Molecular mechanisms were explored by ribonucleic acid (RNA) pulldown, dual-luciferase activity, and rescue experimental assays. Our results revealed that the hsa_circ_0004543 expression was considerably increased in CC tissues and cells. Its silencing repressed proliferation and metastasis, while it increased apoptosis of CC cells. The investigation of the mechanism showed that hsa-miR-217 silencing or HIF-1a overexpression rescued hsa_circ_0004543, and silencing inhibited malignant phenotypes of CC cells. hsa_circ_0004543 upregulated the HIF-1α expression by sponging hsa-miR-217 in CC development. Therefore, the hsa_circ_0004543 functioned as a competing endogenous RNA (ceRNA) of hsa-miR-217 to increase CC oncogenesis and metastasis by the upregulation of the HIF-1α expression. Consequently, targeting the hsa_circ_0004543/hsa-miR-217/HIF-1α axis might be a potential treatment approach for CC.
Collapse
|
187
|
Qiao L, Chen Y, Liang N, Xie J, Deng G, Chen F, Wang X, Liu F, Li Y, Zhang J. Targeting Epithelial-to-Mesenchymal Transition in Radioresistance: Crosslinked Mechanisms and Strategies. Front Oncol 2022; 12:775238. [PMID: 35251963 PMCID: PMC8888452 DOI: 10.3389/fonc.2022.775238] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy exerts a crucial role in curing cancer, however, its treatment efficiency is mostly limited due to the presence of radioresistance. Epithelial-to-mesenchymal transition (EMT) is a biological process that endows the cancer cells with invasive and metastatic properties, as well as radioresistance. Many potential mechanisms of EMT-related radioresistance being reported have broaden our cognition, and hint us the importance of an overall understanding of the relationship between EMT and radioresistance. This review focuses on the recent progresses involved in EMT-related mechanisms in regulating radioresistance, irradiation-mediated EMT program, and the intervention strategies to increase tumor radiosensitivity, in order to improve radiotherapy efficiency and clinical outcomes of cancer patients.
Collapse
Affiliation(s)
- Lili Qiao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Yanfei Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Jian Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Guodong Deng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Fangjie Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Xiaojuan Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Fengjun Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Yupeng Li
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| |
Collapse
|
188
|
Chen C, Yan S, Geng Z, Wang Z. Fracture repair by IOX2: Regulation of the hypoxia inducible factor-1α signaling pathway and BMSCs. Eur J Pharmacol 2022; 921:174864. [PMID: 35219731 DOI: 10.1016/j.ejphar.2022.174864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
The treatment of fracture delayed union and nonunion has become a challenging problem. Hypoxia inducible factor-1α (HIF-1α) is reported to be a key factor in fracture healing, and is degraded by hydroxylation of prolyl hydroxylase (PHDs) under normal oxygen. Small molecules could inhibit the activity of PHDs, stabilize HIF-1α protein, regulate the expression of downstream target genes of HIF-1α, and make the body adapt to hypoxia. The migration and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is the most promising candidate for the treatment of fracture nonunion. Here we reported that IOX2, an HIF-1α PHD inhibitor, markedly improved the proliferation and migration of BMSCs by upregulating intracellular Ca2+ and concomitant decreasing reactive oxygen species (ROS) in vitro, and facilitated the repair of bone fracture by increasing the number of BMSCs and cartilage formation in vivo. No significant influence of IOX2 on the proliferation and migration of BMSCs after silencing of the HIF-1α. Together, our findings indicated that IOX2 promoted the proliferation and migration of BMSCs via the HIF-1α pathway and further accelerated fracture healing. These results provide a deeper understanding of the mechanism by which HIF promotes fracture healing.
Collapse
Affiliation(s)
- Chunxia Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, 475004, China
| | - Shihai Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; Department of Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
189
|
Hypoxia-Inducible Factors and Burn-Associated Acute Kidney Injury-A New Paradigm? Int J Mol Sci 2022; 23:ijms23052470. [PMID: 35269613 PMCID: PMC8910144 DOI: 10.3390/ijms23052470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
O2 deprivation induces stress in living cells linked to free-radical accumulation and oxidative stress (OS) development. Hypoxia is established when the overall oxygen pressure is less than 40 mmHg in cells or tissues. However, tissues and cells have different degrees of hypoxia. Hypoxia or low O2 tension may be present in both physiological (during embryonic development) and pathological circumstances (ischemia, wound healing, and cancer). Meanwhile, the kidneys are major energy-consuming organs, being second only to the heart, with an increased mitochondrial content and O2 consumption. Furthermore, hypoxia-inducible factors (HIFs) are the key players that orchestrate the mammalian response to hypoxia. HIFs adapt cells to low oxygen concentrations by regulating transcriptional programs involved in erythropoiesis, angiogenesis, and metabolism. On the other hand, one of the life-threatening complications of severe burns is acute kidney injury (AKI). The dreaded functional consequence of AKI is an acute decline in renal function. Taking all these aspects into consideration, the aim of this review is to describe the role and underline the importance of HIFs in the development of AKI in patients with severe burns, because kidney hypoxia is constant in the presence of severe burns, and HIFs are major players in the adaptative response of all tissues to hypoxia.
Collapse
|
190
|
Li R, Liu R, Wu S, Zheng S, Ye L, Shao Y. Prognostic value of STC1 in solid tumors: a meta-analysis. Biomark Med 2022; 16:253-263. [PMID: 35176895 DOI: 10.2217/bmm-2021-0835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: The prognostic value of STC1 has been evaluated in solid tumors. However, the results remain controversial. Materials & methods: Relevant studies published up to 27 February 2021 were identified by a comprehensive search of the PubMed, EMBASE and Web of Science databases. Hazard ratios (HRs) and odds ratios with 95% CIs were applied to explore the association between STC1 and survival outcome and clinical characteristics. Results: Sixteen articles involving 2942 participants were included in this meta-analysis. The pooled analysis showed that high STC1 expression was significantly associated with worse overall survival (HR: 1.91; 95% CI: 1.63-2.24) and disease-free survival/progression-free survival/relapse-free survival (HR: 2.01; 95% CI: 1.34-3.02). Conclusion: STC1 may be an effective prognostic marker in solid tumors.
Collapse
Affiliation(s)
- Rongqi Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Department of Hepatobiliary Surgery, Foshan hospital of Traditional Chinese Medical University, Foshan, Guangdong, 528000, China
| | - Rongqiang Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510220, China
| | - Shinan Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shiyang Zheng
- Department of breast surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lei Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
191
|
Danzeisen R, Jänig GR, Burzlaff A, Verberckmoes S, Adam J, Viegas V. The underlying mode of action for lung tumors in a tiered approach to the assessment of inhaled cobalt compounds. Regul Toxicol Pharmacol 2022; 130:105140. [PMID: 35158000 DOI: 10.1016/j.yrtph.2022.105140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
A mode of action (MOA) for cobalt substances based on the "International Programme on Chemical Safety Conceptual Framework for Evaluating a MOA for Chemical Carcinogenesis" is presented. The data recorded therein were generated in a tiered testing program described in the preceding papers of this special issue, as well as data from the public domain. The following parameters were included in the evaluation: solubility of cobalt substances in artificial lung fluids (bioelution), in vitro biomarkers for cytotoxicity, reactive oxygen species and hypoxia mimicry, inhalation toxicity following acute exposure and repeated dose inhalation effects. Two distinct groups of cobalt substances emerged: substances inducing all effects across the MOA form one group, associated with the adverse outcome of lung cancer in rodents upon chronic exposure. Another group of cobalt substances induces no or very limited effects in the in vitro and acute testing. Higher tier testing with a representative of this group, tricobalt tetraoxide, showed a response resembling rat lung overload following exposure to high concentrations of poorly soluble particles. Based on the fundamental differences in the lower tier toxicological profile, cobalt substances with an unknown hazard profile can be assigned to either group based on lower tier testing alone.
Collapse
Affiliation(s)
- Ruth Danzeisen
- Cobalt Institute, 18 Jeffries Passage, Guildford, GU1 4AP, UK.
| | - Gerd-Rüdiger Jänig
- Dr. Gerd-Rüdiger Jänig, Toxicological Consulting, 12524, Berlin, Germany
| | - Arne Burzlaff
- EBRC Consulting GmbH, Raffaelstr. 4, 30177, Hannover, Germany
| | | | - Janine Adam
- EBRC Consulting GmbH, Raffaelstr. 4, 30177, Hannover, Germany
| | - Vanessa Viegas
- Cobalt Institute, 18 Jeffries Passage, Guildford, GU1 4AP, UK
| |
Collapse
|
192
|
Liang R, Liu N, Cao J, Liu T, Sun P, Cai X, Zhang L, Liu Y, Zou J, Wang L, Ding X, Zhang B, Shen Z, Yoshida S, Dou J, Wang S. HIF-1α/FOXO1 axis regulated autophagy is protective for β cell survival under hypoxia in human islets. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166356. [PMID: 35124169 DOI: 10.1016/j.bbadis.2022.166356] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/18/2023]
Abstract
β cells suffer from hypoxia due to the rapid metabolic rate to supply insulin production. Mechanistic study of β cell survival under hypoxia may shed light on the β cell mass loss in type 2 diabetes mellitus (T2DM). Here, we found that the expressions of LC3 and p62/SQSTM1, two key autophagy regulators, were significantly higher in β cells than that in non-β endocrine cells in both non-diabetic and T2DM pancreases, and the autophagy process was accelerated upon Cobalt Chloride (CoCl2) treatment in ex vivo cultured primary human islets. Meanwhile, CoCl2 induced the upregulation of FOXO1 in human islets, where HIF-1α played a key role. CoCl2 treatment caused the increase of β cell apoptosis, yet inhibiting autophagy by Chloroquine or by FOXO1 knockdown further aggravated apoptosis, suggesting that FOXO1-regulated autophagy is protective for β cell survival under hypoxia. Immunofluorescence staining showed that LC3 and p62/SQSTM1 expressions were significantly decreased in T2DM patients and negatively correlated with HbA1c, indicating that the autophagy capacity of β cells is impaired along with the progression of the disease. Our study revealed that HIF-1α/FOXO1 regulated autophagy benefits β cell survival under hypoxia and autophagy dysregulation may account for β cell mass loss in T2DM. BRIEF SUMMARY: Our study revealed that HIF-1α/FOXO1 regulated autophagy benefits β cell survival under hypoxia and autophagy dysregulation may account for β cell mass loss in T2DM.
Collapse
Affiliation(s)
- Rui Liang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Na Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Tengli Liu
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Peng Sun
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Xiangheng Cai
- School of Medicine, Nankai University, Tianjin 300071, PR China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, PR China
| | - Yaojuan Liu
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Jiaqi Zou
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Le Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Xuejie Ding
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Boya Zhang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China
| | - Zhongyang Shen
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Sei Yoshida
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, PR China.
| | - Jian Dou
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300384, PR China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China; School of Medicine, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
193
|
Mortezaee K, Majidpoor J. (Im)maturity in Tumor Ecosystem. Front Oncol 2022; 11:813897. [PMID: 35145911 PMCID: PMC8821092 DOI: 10.3389/fonc.2021.813897] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Tumors have special features that make them distinct from their normal counterparts. Immature cells in a tumor mass and their critical contributions to the tumorigenesis will open new windows toward cancer therapy. Incomplete cellular development brings versatile and unique functionality in the cellular tumor ecosystem, such as what is seen for highly potential embryonic cells. There is evidence that maturation of certain types of cells in this ecosystem can recover the sensitivity of the tumor. Therefore, understanding more about the mechanisms that contributed to this immaturity will render new therapeutic approaches in cancer therapy. Targeting such mechanisms can be exploited as a supplementary to the current immunotherapeutic treatment schedules, such as immune checkpoint inhibitor (ICI) therapy. The key focus of this review is to discuss the impact of (im)maturity in cellular tumor ecosystems on cancer progression, focusing mainly on immaturity in the immune cell compartment of the tumor, as well as on the stemness of tumor cells.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
194
|
Cote B, Elbarbry F, Bui F, Su JW, Seo K, Nguyen A, Lee M, Rao DA. Mechanistic Basis for the Role of Phytochemicals in Inflammation-Associated Chronic Diseases. Molecules 2022; 27:molecules27030781. [PMID: 35164043 PMCID: PMC8838908 DOI: 10.3390/molecules27030781] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammatory diseases occur in a large portion of the population and are associated with a poor diet. Key natural products found in fruits and vegetables may assist in lowering inflammation associated with chronic diseases such as obesity, diabetes, cardiovascular diseases, and cancer. This review seeks to examine the roles of several natural products, resveratrol (RES), quercetin (QUE), curcumin (CUR), piperine (PIP), epigallocatechin gallate (EGCG), and gingerol (GIN), in their ability to attenuate inflammatory markers in specific diseases states. Additionally, we will discuss findings in past and ongoing clinical trials, detail possible phytochemical–drug interactions, and provide a brief resource for researchers and healthcare professionals on natural product and supplement regulation as well as names of databases with information on efficacy, indications, and natural product–drug interactions. As diet and over-the-counter supplement use are modifiable factors and patients are interested in using complementary and alternative therapies, understanding the mechanisms by which natural products have demonstrated efficacy and the types of drugs they interact with and knowing where to find information on herbs and supplements is important for practicing healthcare providers and researchers interested in this field.
Collapse
Affiliation(s)
- Brianna Cote
- College of Pharmacy, Oregon State University, Portland, OR 97201, USA;
| | - Fawzy Elbarbry
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Fiona Bui
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Joe W. Su
- School of Pharmacy, West Coast University, Los Angeles, CA 90004, USA;
| | - Karen Seo
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Arthur Nguyen
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Max Lee
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
| | - Deepa A. Rao
- School of Pharmacy, Pacific University, Hillsboro, OR 97123, USA; (F.E.); (F.B.); (K.S.); (A.N.); (M.L.)
- Correspondence:
| |
Collapse
|
195
|
Correlation between Immunohistochemical Markers in Hepatocellular Carcinoma Cells and In Vitro High-Throughput Drug Sensitivity Screening. Can J Gastroenterol Hepatol 2022; 2022:5969716. [PMID: 35127582 PMCID: PMC8808116 DOI: 10.1155/2022/5969716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
AIM This study analyzed the correlation between immunohistochemical markers in hepatocellular carcinoma cells and the results of in vitro high-throughput drug sensitivity screening, to provide a reference for individualized drug treatment in patients with liver cancer. METHODS Seventy-four patients with hepatocellular carcinoma were included in this study from December 2019 to June 2021, and their liver cancer cells were used for in vitro high-throughput drug sensitivity screening. According to the screening results, the patients were divided into relatively sensitive and insensitive groups, and the correlations between sensitivity and immunohistochemistry results were analyzed statistically. RESULTS Alpha-fetoprotein (AFP)-positive liver cancer cells were significantly more sensitive to gemcitabine than AFP-negative cells (χ 2 = 6.102, P=0.014). AFP was also positively correlated with sensitivity of liver cancer cells to three combined regimens containing oxaliplatin (L-OHP) and epirubicin (EPI) : L-OHP + EPI + irinotecan + 5-fluorouracil (5-FU), L-OHP + irinotecan + EPI, and L-OHP + EPI (χ 2 = 8.168, P=0.004, χ 2 = 5.705, P=0.017, and χ 2 = 8.275, P=0.004, respectively). CONCLUSION Gemcitabine and L-OHP + EPI + irinotecan + 5-FU, L-OHP + EPI, and L-OHP + irinotecan + EPI were more effective against AFP-positive compared with AFP-negative liver cancer cells according to in vitro high-throughput drug sensitivity screening. These results may guide the selection of personalized drug treatments for patients with advanced liver cancer in the future but still need further clinical studies to confirm.
Collapse
|
196
|
Ozel I, Duerig I, Domnich M, Lang S, Pylaeva E, Jablonska J. The Good, the Bad, and the Ugly: Neutrophils, Angiogenesis, and Cancer. Cancers (Basel) 2022; 14:cancers14030536. [PMID: 35158807 PMCID: PMC8833332 DOI: 10.3390/cancers14030536] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels from already existing vasculature, is tightly regulated by pro- and anti-angiogenic stimuli and occurs under both physiological and pathological conditions. Tumor angiogenesis is central for tumor development, and an “angiogenic switch” could be initiated by multiple immune cells, such as neutrophils. Tumor-associated neutrophils promote tumor angiogenesis by the release of both conventional and non-conventional pro-angiogenic factors. Therefore, neutrophil-mediated tumor angiogenesis should be taken into consideration in the design of novel anti-cancer therapy. This review recapitulates the complex role of neutrophils in tumor angiogenesis and summarizes neutrophil-derived pro-angiogenic factors and mechanisms regulating angiogenic activity of tumor-associated neutrophils. Moreover, it provides up-to-date information about neutrophil-targeting therapy, complementary to anti-angiogenic treatment.
Collapse
|
197
|
Deng J, Fleming JB. Inflammation and Myeloid Cells in Cancer Progression and Metastasis. Front Cell Dev Biol 2022; 9:759691. [PMID: 35127700 PMCID: PMC8814460 DOI: 10.3389/fcell.2021.759691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
To date, the most immunotherapy drugs act upon T cell surface proteins to promote tumoricidal T cell activity. However, this approach has to date been unsuccessful in certain solid tumor types including pancreatic, prostate cancer and glioblastoma. Myeloid-related innate immunity can promote tumor progression through direct and indirect effects on T cell activity; improved understanding of this field may provide another therapeutic avenue for patients with these tumors. Myeloid cells can differentiate into both pro-inflammatory and anti-inflammatory mature form depending upon the microenvironment. Most cancer type exhibit oncogenic activating point mutations (ex. P53 and KRAS) that trigger cytokines production. In addition, tumor environment (ex. Collagen, Hypoxia, and adenosine) also regulated inflammatory signaling cascade. Both the intrinsic and extrinsic factor driving the tumor immune microenvironment and regulating the differentiation and function of myeloid cells, T cells activity and tumor progression. In this review, we will discuss the relationship between cancer cells and myeloid cells-mediated tumor immune microenvironment to promote cancer progression and immunotherapeutic resistance. Furthermore, we will describe how cytokines and chemokines produced by cancer cells influence myeloid cells within immunosuppressive environment. Finally, we will comment on the development of immunotherapeutic strategies with respect to myeloid-related innate immunity.
Collapse
Affiliation(s)
- Jenying Deng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason B. Fleming
- H. Lee Moffitt Cancer Center, Department of Gastrointestinal Oncology, Tampa, FL, United States
- *Correspondence: Jason B. Fleming,
| |
Collapse
|
198
|
Amaldoss MJN, Mehmood R, Yang J, Koshy P, Kumar N, Unnikrishnan A, Sorrell CC. Anticancer Therapeutic Effects of Cerium Oxide Nanoparticles: Known and Unknown Molecular Mechanisms. Biomater Sci 2022; 10:3671-3694. [DOI: 10.1039/d2bm00334a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cerium-based nanoparticles (CeNPs), particularly cerium oxide (CeO2), have been studied extensively for their antioxidant and prooxidant properties. However, their complete redox and enzyme-mimetic mechanisms of therapeutic action at the molecular...
Collapse
|
199
|
Zhang Z, Zhou J, Verma V, Liu X, Wu M, Yu J, Chen D. Crossed Pathways for Radiation-Induced and Immunotherapy-Related Lung Injury. Front Immunol 2021; 12:774807. [PMID: 34925345 PMCID: PMC8672113 DOI: 10.3389/fimmu.2021.774807] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Radiation-induced lung injury (RILI) is a form of radiation damage to normal lung tissue caused by radiotherapy (RT) for thoracic cancers, which is most commonly comprised of radiation pneumonitis (RP) and radiation pulmonary fibrosis (RPF). Moreover, with the widespread utilization of immunotherapies such as immune checkpoint inhibitors as first- and second-line treatments for various cancers, the incidence of immunotherapy-related lung injury (IRLI), a severe immune-related adverse event (irAE), has rapidly increased. To date, we know relatively little about the underlying mechanisms and signaling pathways of these complications. A better understanding of the signaling pathways may facilitate the prevention of lung injury and exploration of potential therapeutic targets. Therefore, this review provides an overview of the signaling pathways of RILI and IRLI and focuses on their crosstalk in diverse signaling pathways as well as on possible mechanisms of adverse events resulting from combined radiotherapy and immunotherapy. Furthermore, this review proposes potential therapeutic targets and avenues of further research based on signaling pathways. Many new studies on pyroptosis have renewed appreciation for the value and importance of pyroptosis in lung injury. Therefore, the authors posit that pyroptosis may be the common downstream pathway of RILI and IRLI; discussion is also conducted regarding further perspectives on pyroptosis as a crucial signaling pathway in lung injury treatment.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jialin Zhou
- Department of Radiation Oncology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Vivek Verma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xu Liu
- Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Meng Wu
- Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dawei Chen
- Department of Radiation Oncology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
200
|
Hourani T, Holden JA, Li W, Lenzo JC, Hadjigol S, O’Brien-Simpson NM. Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting. Front Oncol 2021; 11:788365. [PMID: 34988021 PMCID: PMC8722774 DOI: 10.3389/fonc.2021.788365] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) is known to have a strong influence on tumorigenesis, with various components being involved in tumor suppression and tumor growth. A protumorigenic TME is characterized by an increased infiltration of tumor associated macrophages (TAMs), where their presence is strongly associated with tumor progression, therapy resistance, and poor survival rates. This association between the increased TAMs and poor therapeutic outcomes are stemming an increasing interest in investigating TAMs as a potential therapeutic target in cancer treatment. Prominent mechanisms in targeting TAMs include: blocking recruitment, stimulating repolarization, and depletion methods. For enhancing targeting specificity multiple nanomaterials are currently being explored for the precise delivery of chemotherapeutic cargo, including the conjugation with TAM-targeting peptides. In this paper, we provide a focused literature review of macrophage biology in relation to their role in tumorigenesis. First, we discuss the origin, recruitment mechanisms, and phenotypic diversity of TAMs based on recent investigations in the literature. Then the paper provides a detailed review on the current methods of targeting TAMs, including the use of nanomaterials as novel cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Neil M. O’Brien-Simpson
- Antimicrobial, Cancer Therapeutics and Vaccines (ACTV) Research Group, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|