151
|
Feier G, Valvassori SS, Varela RB, Resende WR, Bavaresco DV, Morais MO, Scaini G, Andersen ML, Streck EL, Quevedo J. Lithium and valproate modulate energy metabolism in an animal model of mania induced by methamphetamine. Pharmacol Biochem Behav 2013; 103:589-96. [DOI: 10.1016/j.pbb.2012.09.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 12/24/2022]
|
152
|
|
153
|
Torres-Vega A, Pliego-Rivero BF, Otero-Ojeda GA, Gómez-Oliván LM, Vieyra-Reyes P. Limbic system pathologies associated with deficiencies and excesses of the trace elements iron, zinc, copper, and selenium. Nutr Rev 2012. [PMID: 23206282 DOI: 10.1111/j.1753-4887.2012.00521.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Deficiencies of nutrients such as amino acids, vitamins, lipids, and trace elements during gestation and early infanthood have strong deleterious effects on the development of the limbic system; these effects may be irreversible, even when adequate supplementation is provided at later developmental stages. Recent advances in the neurochemistry of biometals are increasingly establishing the roles of the trace elements iron, copper, zinc, and selenium in a variety of cell functions and are providing insight into the repercussions of deficiencies and excesses of these elements on the development of the central nervous system, especially the limbic system. The limbic system comprises diverse areas with high metabolic demands and differential storage of iron, copper, zinc, and selenium. This review summarizes available evidence suggesting the involvement of these trace elements in pathological disorders of the limbic system.
Collapse
Affiliation(s)
- Adriana Torres-Vega
- Neurofisiología de la Conducta, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | | | | | | | | |
Collapse
|
154
|
Tamasi G, Mangani S, Cini R. Copper(I)-alkyl sulfide and -cysteine tri-nuclear clusters as models for metallo proteins: a structural density functional analysis. J Biomol Struct Dyn 2012; 30:728-51. [DOI: 10.1080/07391102.2012.689703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
155
|
Tianeptine treatment induces antidepressive-like effects and alters BDNF and energy metabolism in the brain of rats. Behav Brain Res 2012; 233:526-35. [DOI: 10.1016/j.bbr.2012.05.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/09/2012] [Accepted: 05/23/2012] [Indexed: 11/22/2022]
|
156
|
Zatulovskiy EA, Skvortsov AN, Rusconi P, Ilyechova EY, Babich PS, Tsymbalenko NV, Broggini M, Puchkova LV. Serum depletion of holo-ceruloplasmin induced by silver ions in vivo reduces uptake of cisplatin. J Inorg Biochem 2012; 116:88-96. [PMID: 23018271 DOI: 10.1016/j.jinorgbio.2012.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/01/2012] [Accepted: 07/03/2012] [Indexed: 02/02/2023]
Abstract
There is an emerging link between extracellular copper concentration and the uptake of cisplatin mediated by copper transporter CTR1 in cell cultures and unicellular eukaryotes. To test the link between extracellular copper level and cisplatin uptake by organs in vivo we used mice with low copper status parameters induced by AgCl-containing diet (Ag-mice). In Ag-mice, serum copper status and liver copper metabolism were characterized. It was shown that the expression level of copper transporter genes and activity of ubiquitous intracellular cuproenzymes were not affected but the level of serum holo-ceruloplasmin was not detectable. Silver was selectively absorbed by liver and accumulated in the mitochondrial matrix. Silver was present in an exchangeable form and was excreted through bile. Ag-mice model is characterized by high reproducibility, reversibility, synchronicity, and definiteness of ceruloplasmin-associated copper deficiency. After cisplatin treatment Ag-mice, as compared to control mice, demonstrated the delay in platinum uptake by organs during first 30 min. This effect was not observed at later time points probably due to cisplatin induced copper release to blood, which resulted in the recovery of copper status. These data allowed us to conclude that cisplatin uptake was coupled to copper transport in vivo.
Collapse
Affiliation(s)
- Evgeny A Zatulovskiy
- Department of Biophysics, St. Petersburg State Polytechnical University, St. Petersburg, 195251, Russia
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Soto IC, Fontanesi F, Liu J, Barrientos A. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:883-97. [PMID: 21958598 PMCID: PMC3262112 DOI: 10.1016/j.bbabio.2011.09.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin which assembly is intricate and highly regulated. The COX catalytic core is formed by three mitochondrial DNA encoded subunits, Cox1, Cox2 and Cox3, conserved in the bacterial enzyme. Their biogenesis requires the action of messenger-specific and subunit-specific factors which facilitate the synthesis, membrane insertion, maturation or assembly of the core subunits. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to identify these ancillary factors. Here we review the current state of knowledge of the biogenesis and assembly of the eukaryotic COX catalytic core and discuss the degree of conservation of the players and mechanisms operating from yeast to human. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Ileana C. Soto
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Flavia Fontanesi
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| | - Jingjing Liu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Antoni Barrientos
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| |
Collapse
|
158
|
Zheng G, Chen J, Zheng W. Relative contribution of CTR1 and DMT1 in copper transport by the blood-CSF barrier: implication in manganese-induced neurotoxicity. Toxicol Appl Pharmacol 2012; 260:285-93. [PMID: 22465424 DOI: 10.1016/j.taap.2012.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/07/2012] [Accepted: 03/12/2012] [Indexed: 12/14/2022]
Abstract
The homeostasis of copper (Cu) in the cerebrospinal fluid (CSF) is partially regulated by the Cu transporter-1 (CTR1) and divalent metal transporter-1 (DMT1) at the blood-CSF barrier (BCB) in the choroid plexus. Data from human and animal studies suggest an increased Cu concentration in blood, CSF, and brains following in vivo manganese (Mn) exposure. This study was designed to investigate the relative role of CTR1 and DMT1 in Cu transport under normal or Mn-exposed conditions using an immortalized choroidal Z310 cell line. Mn exposure in vitro resulted in an increased cellular 64Cu uptake and the up-regulation of both CTR1 and DMT1. Knocking down CTR1 by siRNA counteracted the Mn-induced increase of 64Cu uptake, while knocking down DMT1 siRNA resulted in an increased cellular 64Cu uptake in Mn-exposed cells. To distinguish the roles of CTR1 and DMT1 in Cu transport, the Z310 cell-based tetracycline (Tet)-inducible CTR1 and DMT1 expression cell lines were developed, namely iZCTR1 and iZDMT1 cells, respectively. In iZCTR1 cells, Tet induction led to a robust increase (25 fold) of 64Cu uptake with the time course corresponding to the increased CTR1. Induction of DMT1 by Tet in iZDMT1 cells, however, resulted in only a slight increase of 64Cu uptake in contrast to a substantial increase in DMT1 mRNA and protein expression. These data indicate that CTR1, but not DMT1, plays an essential role in transporting Cu by the BCB in the choroid plexus. Mn-induced cellular overload of Cu at the BCB is due, primarily, to Mn-induced over-expression of CTR1.
Collapse
Affiliation(s)
- Gang Zheng
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
159
|
Lee YF, Deng TW, Chiu WJ, Wei TY, Roy P, Huang CC. Visual detection of copper(ii) ions in blood samples by controlling the leaching of protein-capped gold nanoparticles. Analyst 2012; 137:1800-6. [DOI: 10.1039/c2an16270a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
160
|
Agostinho FR, Réus GZ, Stringari RB, Ribeiro KF, Ferreira GK, Jeremias IC, Scaini G, Rezin GT, Streck EL, Quevedo J. Olanzapine plus fluoxetine treatment alters mitochondrial respiratory chain activity in the rat brain. Acta Neuropsychiatr 2011; 23:282-91. [PMID: 25380039 DOI: 10.1111/j.1601-5215.2011.00569.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Agostinho FR, Réus GZ, Stringari RB, Ribeiro KF, Ferreira GK, Jeremias IC, Scaini G, Rezin GT, Streck EL, Quevedo J. Olanzapine plus fluoxetine treatment alters mitochondrial respiratory chain activity in the rat brain.Background:Evidence is emerging for the role of dysfunctional mitochondria in pathophysiology and treatment of mood disorders. In this study, we evaluated the effects of acute and chronic administration of fluoxetine (FLX), olanzapine (OLZ) and the combination of FLX/OLZ on mitochondrial respiratory chain activity in the rat brain.Methods:For acute treatment, Wistar rats received one single injection of OLZ (3 or 6 mg/kg) and/or FLX (12 or 25 mg/kg) and for chronic treatment, rats received daily injections of OLZ (3 or 6 mg/kg) and/or FLX (12 or 25 mg/kg) for 28 days and we evaluated the activity of mitochondrial respiratory chain complexes I, II, II–III and IV in prefrontal cortex, hippocampus and striatum.Results:Our results showed that both acute and chronic treatments with FLX and OLZ alone or in combination altered respiratory chain complexes activity in the rat brain, but in combination we observed larger alterations.Conclusions:Finally, these findings further support the hypothesis that metabolism energy could be involved in the treatment with antipsychotics and antidepressants in combination to mood disorders.
Collapse
Affiliation(s)
- Fabiano R Agostinho
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gislaine Z Réus
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Roberto B Stringari
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Karine F Ribeiro
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gabriela K Ferreira
- Laboratório de Fisiopatologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Isabela C Jeremias
- Laboratório de Fisiopatologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Giselli Scaini
- Laboratório de Fisiopatologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gislaine T Rezin
- Laboratório de Fisiopatologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Emílio L Streck
- Laboratório de Fisiopatologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - João Quevedo
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
161
|
Administration of memantine and imipramine alters mitochondrial respiratory chain and creatine kinase activities in rat brain. J Neural Transm (Vienna) 2011; 119:481-91. [DOI: 10.1007/s00702-011-0718-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
|
162
|
Brain energy metabolism is activated after acute and chronic administration of fenproporex in young rats. Int J Dev Neurosci 2011; 29:937-42. [DOI: 10.1016/j.ijdevneu.2011.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/24/2011] [Accepted: 06/15/2011] [Indexed: 01/02/2023] Open
|
163
|
Dodani SC, Leary SC, Cobine PA, Winge DR, Chang CJ. A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis. J Am Chem Soc 2011; 133:8606-16. [PMID: 21563821 PMCID: PMC3106114 DOI: 10.1021/ja2004158] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present the design, synthesis, spectroscopy, and biological applications of Mitochondrial Coppersensor-1 (Mito-CS1), a new type of targetable fluorescent sensor for imaging exchangeable mitochondrial copper pools in living cells. Mito-CS1 is a bifunctional reporter that combines a Cu(+)-responsive fluorescent platform with a mitochondrial-targeting triphenylphosphonium moiety for localizing the probe to this organelle. Molecular imaging with Mito-CS1 establishes that this new chemical tool can detect changes in labile mitochondrial Cu(+) in a model HEK 293T cell line as well as in human fibroblasts. Moreover, we utilized Mito-CS1 in a combined imaging and biochemical study in fibroblasts derived from patients with mutations in the two synthesis of cytochrome c oxidase 1 and 2 proteins (SCO1 and SCO2), each of which is required for assembly and metalation of functionally active cytochrome c oxidase (COX). Interestingly, we observe that although defects in these mitochondrial metallochaperones lead to a global copper deficiency at the whole cell level, total copper and exchangeable mitochondrial Cu(+) pools in SCO1 and SCO2 patient fibroblasts are largely unaltered relative to wild-type controls. Our findings reveal that the cell maintains copper homeostasis in mitochondria even in situations of copper deficiency and mitochondrial metallochaperone malfunction, illustrating the importance of regulating copper stores in this energy-producing organelle.
Collapse
Affiliation(s)
- Sheel C. Dodani
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Scot C. Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, United States
| | - Dennis R. Winge
- Department of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
164
|
Scaini G, Maggi DD, De-Nês BT, Gonçalves CL, Ferreira GK, Teodorak BP, Bez GD, Ferreira GC, Schuck PF, Quevedo J, Streck EL. Activity of mitochondrial respiratory chain is increased by chronic administration of antidepressants. Acta Neuropsychiatr 2011; 23:112-8. [PMID: 26952897 DOI: 10.1111/j.1601-5215.2011.00548.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Depressive disorders, including major depression, are serious and disabling for affected patients. Although the neurobiological understanding of major depressive disorder focuses mainly on the monoamine hypothesis, the exact pathophysiology of depression is not fully understood. METHODS Animals received daily intra-peritoneal injections of paroxetine (10 mg/kg), nortriptyline (15 mg/kg) or venlafaxine (10 mg/kg) in 1.0 ml/kg volume for 15 days. Twelve hours after the last injection, the rats were killed by decapitation, where the brain was removed and homogenised. The activities of mitochondrial respiratory chain complexes in different brain structures were measured. RESULTS We first verified that chronic administration of paroxetine increased complex I activity in prefrontal cortex, hippocampus, striatum and cerebral cortex. In addition, complex II activity was increased by the same drug in hippocampus, striatum and cerebral cortex and complex IV activity in prefrontal cortex. Furthermore, chronic administration of nortriptyline increased complex II activity in hippocampus and striatum and complex IV activity in prefrontal cortex, striatum and cerebral cortex. Finally, chronic administration of venlafaxine increased complex II activity in hippocampus, striatum and cerebral cortex and complex IV activity in prefrontal cortex. CONCLUSION On the basis of the present findings, it is tempting to speculate that an increase in brain energy metabolism by the antidepressant paroxetine, nortriptyline and venlafaxine could play a role in the mechanism of action of these drugs. These data corroborate with other studies suggesting that some antidepressants modulate brain energy metabolism.
Collapse
Affiliation(s)
- Giselli Scaini
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Débora D Maggi
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Bruna T De-Nês
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Cinara L Gonçalves
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gabriela K Ferreira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Brena P Teodorak
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gisele D Bez
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Programa de Pós-graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Patricia F Schuck
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - João Quevedo
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina
| | - Emilio L Streck
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
165
|
Bleackley MR, Young BP, Loewen CJR, MacGillivray RTA. High density array screening to identify the genetic requirements for transition metal tolerance in Saccharomyces cerevisiae. Metallomics 2011; 3:195-205. [PMID: 21212869 DOI: 10.1039/c0mt00035c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biological systems have developed with a strong dependence on transition metals for accomplishing a number of biochemical reactions. Iron, copper, manganese and zinc are essential for virtually all forms of life with their unique chemistries contributing to a variety of physiological processes including oxygen transport, generation of cellular energy and protein structure and function. Properties of these metals (and to a lesser extent nickel and cobalt) that make them so essential to life also make them extremely cytotoxic in many cases through the formation of damaging oxygen radicals via Fenton chemistry. While life has evolved to exploit the chemistries of transition metals to drive physiological reactions, systems have concomitantly evolved to protect against the damaging effects of these same metals. Saccharomyces cerevisiae is a valuable tool for studying metal homeostasis with many of the genes identified thus far having homologs in higher eukaryotes including humans. Using high density arrays, we have screened a haploid S. cerevisiae deletion set containing 4786 non-essential gene deletions for strains sensitive to each of Fe, Cu, Mn, Ni, Zn and Co and then integrated the six screens using cluster analysis to identify pathways that are unique to individual metals and others with function shared between metals. Genes with no previous implication in metal homeostasis were found to contribute to sensitivity to each metal. Significant overlap was observed between the strains that were sensitive to Mn, Ni, Zn and Co with many of these strains lacking genes for the high affinity Fe transport pathway and genes involved in vacuolar transport and acidification. The results from six genome-wide metal tolerance screens show that there is some commonality between the cellular defenses against the toxicity of Mn, Ni, Zn and Co with Fe and Cu requiring different systems. Additionally, potential new factors been identified that function in tolerance to each of the six metals.
Collapse
Affiliation(s)
- Mark R Bleackley
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | |
Collapse
|
166
|
Abstract
In recent years increasing evidence is pointing toward white matter abnormalities in schizophrenia and other psychiatric disorders. The present paper will provide an overview over the role of myelin in cognition and brain function, and its potential involvement in brain disorders. Furthermore, we will examine one particular experimental model for the study of dysmyelination, created by the administration of the toxin cuprizone. Cuprizone, a copper chelator, causes white matter abnormalities in rodents. The administration of cuprizone during specific developmental periods allows for the targeting of specific brain areas for dysmyelination. Thus, cuprizone can be used to study the pathogenesis and pathophysiology of myelin deficiencies in the central nervous system, and its effect on behaviors relevant to psychiatric disorders.
Collapse
Affiliation(s)
- Nicole R Herring
- Department of Pharmacology, Center for Molecular Neuroscience and Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37203, USA
| | | |
Collapse
|
167
|
Rezin GT, Petronilho FC, Araújo JH, Gonçalves CL, Daufenbach JF, Cardoso MR, Roesler R, Schwartsmann G, Dal-Pizzol F, Streck EL. Gastrin-Releasing Peptide Receptor Antagonist or N-acetylcysteine combined with Omeprazol Protect against Mitochondrial Complex II Inhibition in a Rat Model of Gastritis. Basic Clin Pharmacol Toxicol 2010; 108:214-9. [DOI: 10.1111/j.1742-7843.2010.00645.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
168
|
Kang YJ. Copper and homocysteine in cardiovascular diseases. Pharmacol Ther 2010; 129:321-31. [PMID: 21130114 DOI: 10.1016/j.pharmthera.2010.11.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 11/08/2010] [Indexed: 02/05/2023]
Abstract
High blood copper (Cu) and homocysteine (Hcy) concentrations have been independently reported as risk factors for cardiovascular diseases. When they are simultaneously measured, a concomitant increase in both parameters in association with vascular dysfunction has been observed. Cu chelator penicillamine can significantly diminish the inhibitory effect of Hcy on endothelial function, which has led to the interpretation that Cu mediates the deleterious effect of Hcy. However, Cu itself has been shown to be beneficial to the cardiovascular system. In particular, Cu promotion of angiogenesis has been well documented. Cu stimulates endothelial cell proliferation and differentiation and promotes microtubule formation in cultured saphenous veins. High levels of Hcy do not affect the process of microtubule formation, but the combination of Cu and Hcy leads to a significant inhibitory effect. Under other conditions, Cu does not affect, but Hcy inhibits, the endothelium-dependent relaxation of blood vessels and the combination of both augments the inhibition. Why does Cu produce adverse effects when it co-exists with Hcy? Cu forms complexes with Hcy and the Cu-Hcy complexes possess a deleterious potential due to their redox properties. Cu chelation can remove Cu from the Cu-Hcy complexes, but leaves behind high levels of Hcy and produces Cu deficiency. An alternative approach should focus on the reduction of Hcy, but maintenance of Cu, making detrimental Cu beneficial. A comprehensive understanding of Cu speciation and a development of selective modulation of Cu coordination to Cu-binding molecules to avoid Cu-Hcy complex formation would effectively improve the condition of cardiovascular disease.
Collapse
Affiliation(s)
- Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
169
|
Leary SC. Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad. Antioxid Redox Signal 2010; 13:1403-16. [PMID: 20136502 DOI: 10.1089/ars.2010.3116] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reversible changes in the redox state of cysteine residues represent an important mechanism with which to regulate protein function. In mitochondria, such redox reactions modulate the localization or activity of a group of proteins, most of which function in poorly defined pathways with essential roles in copper delivery to cytochrome c oxidase (COX) during holoenzyme biogenesis. To date, a total of 8 soluble (COX17, COX19, COX23, PET191, CMC1-4) and 3 integral membrane (COX11, SCO1, SCO2) accessory proteins with cysteine-containing domains that reside within the mitochondrial intermembrane space (IMS) have been identified in yeast, all of which have human orthologues. Compelling evidence from studies of COX17, SCO1, and SCO2 argues that regulation of the redox state of their cysteines is integral to their metallochaperone function. Redox also appears to be crucial to the regulation of a SCO-dependent, mitochondrial signaling pathway that modulates the rate of copper efflux from the cell. Here, I review our understanding of redox-dependent modulation of copper delivery to COX and IMS-localized copper-zinc superoxide dismutase (SOD1) during the maturation of each enzyme, and discuss how this in turn may serve to functionally couple mitochondrial copper handling pathways with those localized elsewhere in the cell to regulate cellular copper homeostasis.
Collapse
Affiliation(s)
- Scot C Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
170
|
Abstract
Mitochondria contain two aqueous compartments: the matrix and the intermembrane space. Whereas many of the biologic functions of the matrix were well characterized in the past, it became clear very recently that the intermembrane space plays a pivotal role in the coordination of mitochondrial activities with other cellular processes. These activities include the exchange of proteins, lipids, or metal ions between the matrix and the cytosol, the regulated initiation of apoptotic cascades, signalling pathways that regulate respiration and metabolic functions, the prevention of reactive oxygen species produced by the respiratory chain, or the control of mitochondrial morphogenesis. We focus on the different biologic functions of the intermembrane space and discuss the relevance of this fascinating compartment for cellular physiology and human health.
Collapse
|
171
|
Zhang Y, Liu X, Zhang W, Han R. Differential gene expression of the honey bees Apis mellifera and A. cerana induced by Varroa destructor infection. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1207-1218. [PMID: 20346951 DOI: 10.1016/j.jinsphys.2010.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 05/29/2023]
Abstract
Varroa destructor mite is currently the most serious threat to the world bee industry. Differences in mite tolerance are reported between two honey bee species Apis mellifera and Apis cerana. Differential gene expression of two honey bee species induced by V. destructor infection was investigated by constructing two suppression subtractive hybridization (SSH) libraries, as first steps toward elucidating molecular mechanisms of Varroa tolerance. From the SSH libraries, we obtained 289 high quality sequences which clustered into 132 unique sequences grouped in 26 contigs and 106 singlets where 49 consisted in A. cerana subtracted library and 83 in A. mellifera. Using BLAST, we found that 85% sequences had counterpart known genes whereas 15% were undescribed. A Gene Ontology analysis classified 51 unique sequences into different functional categories. Eight of these differentially expressed genes, representative of different regulation patterns, were confirmed by qRT-PCR. Upon the mite induction, the differentially expressed genes from both bee species were different, except hex 110 gene, which was up-regulated in A. cerana but down-regulated in A. mellifera, and Npy-r gene, which was down-regulated in both species. In general, most of the differential expression genes were involved in metabolic processes and nerve signaling. The results provide information on the molecular response of these two bee species to Varroa infection.
Collapse
Affiliation(s)
- Yi Zhang
- College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | |
Collapse
|
172
|
Roede JR, Jones DP. Reactive species and mitochondrial dysfunction: mechanistic significance of 4-hydroxynonenal. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:380-90. [PMID: 20544880 PMCID: PMC5906392 DOI: 10.1002/em.20553] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mitochondrial dysfunction is a global term used in the context of "unhealthy" mitochondria. In practical terms, mitochondria are extremely complex and highly adaptive in structure, chemical and enzymatic composition, subcellular distribution and functional interaction with other components of cells. Consequently, altered mitochondrial properties that are used in experimental studies as measures of mitochondrial dysfunction often provide little or no distinction between adaptive and maladaptive changes. This is especially a problem in terms of generation of oxidant species by mitochondria, wherein increased generation of superoxide anion radical (O(2*)(-)) or hydrogen peroxide (H(2)O(2)) is often considered synonymously with mitochondrial dysfunction. However, these oxidative species are signaling molecules in normal physiology so that a change in production or abundance is not a good criterion for mitochondrial dysfunction. In this review, we consider generation of reactive electrophiles and consequent modification of mitochondrial proteins as a means to define mitochondrial dysfunction. Accumulated evidence indicates that 4-hydroxynonenal (HNE) modification of proteins reflects mitochondrial dysfunction and provides an operational criterion for experimental definition of mitochondrial dysfunction. Improved means to detect and quantify mitochondrial HNE-protein adduct formation could allow its use for environmental healthrisk assessment. Furthermore, application of improved mass spectrometry-based proteomic methods will lead to further understanding of the critical targets contributing to disease risk.
Collapse
Affiliation(s)
- James R. Roede
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
173
|
Costa CS, Ronconi JVV, Daufenbach JF, Gonçalves CL, Rezin GT, Streck EL, da Silva Paula MM. In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Mol Cell Biochem 2010; 342:51-6. [DOI: 10.1007/s11010-010-0467-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 04/12/2010] [Indexed: 02/06/2023]
|
174
|
Horn D, Zhou W, Trevisson E, Al-Ali H, Harris TK, Salviati L, Barrientos A. The conserved mitochondrial twin Cx9C protein Cmc2 Is a Cmc1 homologue essential for cytochrome c oxidase biogenesis. J Biol Chem 2010; 285:15088-15099. [PMID: 20220131 DOI: 10.1074/jbc.m110.104786] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial copper metabolism and delivery to cytochrome c oxidase and mitochondrially localized CuZn-superoxide dismutase (Sod1) requires a growing number of intermembrane space proteins containing a twin Cx(9)C motif. Among them, Cmc1 was recently identified by our group. Here we describe another conserved mitochondrial metallochaperone-like protein, Cmc2, a close homologue of Cmc1, whose function affects both cytochrome c oxidase and Sod1. In the yeast Saccharomyces cerevisiae, Cmc2 localizes to the mitochondrial inner membrane facing the intermembrane space. In the absence of Cmc2, cytochrome c oxidase activity measured spectrophotometrically and cellular respiration measured polarographically are undetectable. Additionally, mutant cmc2 cells display 2-fold increased mitochondrial Sod1 activity, whereas CMC2 overexpression results in Sod1 activity decreased to 60% of wild-type levels. CMC1 overexpression does not rescue the respiratory defect of cmc2 mutants or vice versa. However, Cmc2 physically interacts with Cmc1 and the absence of Cmc2 induces a 5-fold increase in Cmc1 accumulation in the mitochondrial membranes. Cmc2 function is conserved from yeast to humans. Human CMC2 localizes to the mitochondria and CMC2 expression knockdown produces cytochrome c oxidase deficiency in Caenorhabditis elegans. We conclude that Cmc1 and Cmc2 have cooperative but nonoverlapping functions in cytochrome c oxidase biogenesis.
Collapse
Affiliation(s)
- Darryl Horn
- Departments of Biochemistry and Molecular Biology, University of Padova, 35128 Padova, Italy
| | - Wen Zhou
- Departments of Biochemistry and Molecular Biology, University of Padova, 35128 Padova, Italy
| | - Eva Trevisson
- Laboratorio di Oncoematologia Pediatrica, Dipartimento di Pediatria, University of Padova, 35128 Padova, Italy
| | - Hassan Al-Ali
- Departments of Biochemistry and Molecular Biology, University of Padova, 35128 Padova, Italy
| | - Thomas K Harris
- Departments of Biochemistry and Molecular Biology, University of Padova, 35128 Padova, Italy
| | - Leonardo Salviati
- Laboratorio di Oncoematologia Pediatrica, Dipartimento di Pediatria, University of Padova, 35128 Padova, Italy
| | - Antoni Barrientos
- Departments of Biochemistry and Molecular Biology, University of Padova, 35128 Padova, Italy; Departments of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136.
| |
Collapse
|
175
|
Silva FD, Rezende CA, Rossi DCP, Esteves E, Dyszy FH, Schreier S, Gueiros-Filho F, Campos CB, Pires JR, Daffre S. Structure and mode of action of microplusin, a copper II-chelating antimicrobial peptide from the cattle tick Rhipicephalus (Boophilus) microplus. J Biol Chem 2009; 284:34735-46. [PMID: 19828445 DOI: 10.1074/jbc.m109.016410] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microplusin, a Rhipicephalus (Boophilus) microplus antimicrobial peptide (AMP) is the first fully characterized member of a new family of cysteine-rich AMPs with histidine-rich regions at the N and C termini. In the tick, microplusin belongs to the arsenal of innate defense molecules active against bacteria and fungi. Here we describe the NMR solution structure of microplusin and demonstrate that the protein binds copper II and iron II. Structured as a single alpha-helical globular domain, microplusin consists of five alpha-helices: alpha1 (residues Gly-9 to Arg-21), alpha2 (residues Glu-27 to Asn-40), alpha3 (residues Arg-44 to Thr-54), alpha4 (residues Leu-57 to Tyr-64), and alpha5 (residues Asn-67 to Cys-80). The N and C termini are disordered. This structure is unlike any other AMP structures described to date. We also used NMR spectroscopy to map the copper binding region on microplusin. Finally, using the Gram-positive bacteria Micrococcus luteus as a model, we studied of mode of action of microplusin. Microplusin has a bacteriostatic effect and does not permeabilize the bacterial membrane. Because microplusin binds metals, we tested whether this was related to its antimicrobial activity. We found that the bacteriostatic effect of microplusin was fully reversed by supplementation of culture media with copper II but not iron II. We also demonstrated that microplusin affects M. luteus respiration, a copper-dependent process. Thus, we conclude that the antibacterial effect of microplusin is due to its ability to bind and sequester copper II.
Collapse
Affiliation(s)
- Fernanda D Silva
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Systematic Analysis of the Twin Cx9C Protein Family. J Mol Biol 2009; 393:356-68. [DOI: 10.1016/j.jmb.2009.08.041] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 11/20/2022]
|
177
|
Diaz F. Cytochrome c oxidase deficiency: patients and animal models. Biochim Biophys Acta Mol Basis Dis 2009; 1802:100-10. [PMID: 19682572 DOI: 10.1016/j.bbadis.2009.07.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 12/17/2022]
Abstract
Cytochrome c oxidase (COX) deficiencies are one of the most common defects of the respiratory chain found in mitochondrial diseases. COX is a multimeric inner mitochondrial membrane enzyme formed by subunits encoded by both the nuclear and the mitochondrial genome. COX biosynthesis requires numerous assembly factors that do not form part of the final complex but participate in prosthetic group synthesis and metal delivery in addition to membrane insertion and maturation of COX subunits. Human diseases associated with COX deficiency including encephalomyopathies, Leigh syndrome, hypertrophic cardiomyopathies, and fatal lactic acidosis are caused by mutations in COX subunits or assembly factors. In the last decade, numerous animal models have been created to understand the pathophysiology of COX deficiencies and the function of assembly factors. These animal models, ranging from invertebrates to mammals, in most cases mimic the pathological features of the human diseases.
Collapse
Affiliation(s)
- Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida 33136, USA.
| |
Collapse
|
178
|
Rezin GT, Gonçalves CL, Daufenbach JF, Fraga DB, Santos PM, Ferreira GK, Hermani FV, Comim CM, Quevedo J, Streck EL. Acute administration of ketamine reverses the inhibition of mitochondrial respiratory chain induced by chronic mild stress. Brain Res Bull 2009; 79:418-21. [DOI: 10.1016/j.brainresbull.2009.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/18/2009] [Accepted: 03/23/2009] [Indexed: 12/21/2022]
|
179
|
Inhibition of mitochondrial respiratory chain in the brain of rats after hepatic failure induced by carbon tetrachloride is reversed by antioxidants. Brain Res Bull 2009; 80:75-8. [PMID: 19406217 DOI: 10.1016/j.brainresbull.2009.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 11/23/2022]
Abstract
Hepatic encephalopathy is an important cause of morbidity and mortality in patients with severe hepatic failure. This disease is clinically characterized by a large variety of symptoms including motor symptoms, cognitive deficits, as well as changes in the level of alertness up to hepatic coma. Carbon tetrachloride is frequently used in animals to produce an experimental model to study the mechanisms involved in the progression of hepatic disease and the impact of various drugs on this progression. The brain is highly dependent on ATP and most cell energy is obtained through oxidative phosphorylation, a process requiring the action of various respiratory enzyme complexes located in a special structure of the inner mitochondrial membrane. In this context, we evaluated the activities of mitochondrial respiratory chain complexes in the brain of rats submitted to acute administration of carbon tetrachloride and treated with NAC and DFX alone or in combination. Our results showed that complexes I, II and IV were inhibited after carbon tetrachloride administration and that NAC and DFX alone or in combination were able to prevent the inhibition of these enzymes. On the other hand, complex III was not affected. The participation of oxidative stress has been postulated in the hepatic encephalopathy and it is well known that the electron transport chain itself is vulnerable to damage by this species. Based on our findings, we suggest that oxidative stress may be involved in the inhibition of complexes from mitochondrial respiratory chain.
Collapse
|
180
|
Oswald C, Krause-Buchholz U, Rödel G. Knockdown of human COX17 affects assembly and supramolecular organization of cytochrome c oxidase. J Mol Biol 2009; 389:470-9. [PMID: 19393246 DOI: 10.1016/j.jmb.2009.04.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/09/2009] [Accepted: 04/16/2009] [Indexed: 11/17/2022]
Abstract
Assembly of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, requires a concerted activity of a number of chaperones and factors for the insertion of subunits, accessory proteins, cofactors and prosthetic groups. It is now well accepted that the multienzyme complexes of the respiratory chain are organized in vivo as supramolecular functional structures, so-called supercomplexes. Here, we investigate the role of COX17 in the biogenesis of the respiratory chain in HeLa cells. In accordance with its predicted function as a copper chaperone and its role in formation of the binuclear copper centre of cytochrome c oxidase, COX17 siRNA knockdown affects activity and assembly of cytochrome c oxidase. While the abundance of cytochrome c oxidase dimers seems to be unaffected, blue native gel electrophoresis reveals the disappearance of COX-containing supercomplexes as an early response. We observe the accumulation of a novel approximately 150 kDa complex that contains Cox1, but not Cox2. This observation may indicate that the absence of Cox17 interferes with copper delivery to Cox2, but not to Cox1. We suggest that supercomplex formation is not simply due to assembly of completely assembled complexes. An interdependent assembly scenario for the formation of supercomplexes that rather requires the coordinated synthesis and association of individual complexes, is proposed.
Collapse
Affiliation(s)
- C Oswald
- Institute of Genetics, Dresden University of Technology, 01062 Dresden, Germany
| | | | | |
Collapse
|
181
|
Stuart GR, Humble MM, Strand MK, Copeland WC. Transcriptional response to mitochondrial NADH kinase deficiency in Saccharomyces cerevisiae. Mitochondrion 2009; 9:211-21. [PMID: 19254780 DOI: 10.1016/j.mito.2009.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 02/13/2009] [Accepted: 02/19/2009] [Indexed: 02/05/2023]
Abstract
Yeast cells lacking the mitochondrial NADH kinase encoded by POS5 display increased sensitivity to hydrogen peroxide, a slow-growth phenotype, reduced mitochondrial function and increased levels of mitochondrial protein oxidation and mtDNA mutations. Here we examined gene expression in pos5Delta cells, comparing these data to those from cells containing deletions of superoxide dismutase-encoding genes SOD1 or SOD2. Surprisingly, stress-response genes were down-regulated in pos5Delta, sod1Delta and sod2Delta cells, implying that cells infer stress levels from mitochondrial activity rather than sensing reactive oxygen species directly. Additionally, pos5Delta, but not sod1 or sod2, cells displayed an anaerobic expression profile, indicating a defect in oxygen sensing that is specific to pos5, and is not a general stress-response. Finally, the pos5Delta expression profile is quite similar to the hap1Delta expression profile previously reported, which may indicate a shared mechanism.
Collapse
Affiliation(s)
- Gregory R Stuart
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
182
|
The multi-layered regulation of copper translocating P-type ATPases. Biometals 2009; 22:177-90. [PMID: 19130269 DOI: 10.1007/s10534-008-9183-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 12/07/2008] [Indexed: 12/21/2022]
Abstract
The copper-translocating Menkes (ATP7A, MNK protein) and Wilson (ATP7B, WND protein) P-type ATPases are pivotal for copper (Cu) homeostasis, functioning in the biosynthetic incorporation of Cu into copper-dependent enzymes of the secretory pathway, Cu detoxification via Cu efflux, and specialized roles such as systemic Cu absorption (MNK) and Cu excretion (WND). Essential to these functions is their Cu and hormone-responsive distribution between the trans-Golgi network (TGN) and exocytic vesicles located at or proximal to the apical (WND) or basolateral (MNK) cell surface. Intriguingly, MNK and WND Cu-ATPases expressed in the same tissues perform distinct yet complementary roles. While intramolecular differences may specify their distinct roles, cellular signaling components are predicted to be critical for both differences and synergy between these enzymes. This review focuses on these mechanisms, including the cell signaling pathways that influence trafficking and bi-functionality of Cu-ATPases. Phosphorylation events are hypothesized to play a central role in Cu homeostasis, promoting multi-layered regulation and cross-talk between cuproenzymes and Cu-independent mechanisms.
Collapse
|
183
|
Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL. Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 2008; 34:1021-9. [PMID: 18979198 DOI: 10.1007/s11064-008-9865-8] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 10/01/2008] [Indexed: 01/08/2023]
Abstract
Mitochondrial oxidative phosphorylation is the major ATP-producing pathway, which supplies more than 95% of the total energy requirement in the cells. Damage to the mitochondrial electron transport chain has been suggested to be an important factor in the pathogenesis of a range of psychiatric disorders. Tissues with high energy demands, such as the brain, contain a large number of mitochondria, being therefore more susceptible to reduction of the aerobic metabolism. Mitochondrial dysfunction results from alterations in biochemical cascade and the damage to the mitochondrial electron transport chain has been suggested to be an important factor in the pathogenesis of a range of neuropsychiatric disorders, such as bipolar disorder, depression and schizophrenia. Bipolar disorder is a prevalent psychiatric disorder characterized by alternating episodes of mania and depression. Recent studies have demonstrated that important enzymes involved in brain energy are altered in bipolar disorder patients and after amphetamine administration, an animal model of mania. Depressive disorders, including major depression, are serious and disabling. However, the exact pathophysiology of depression is not clearly understood. Several works have demonstrated that metabolism is impaired in some animal models of depression, induced by chronic stress, especially the activities of the complexes of mitochondrial respiratory chain. Schizophrenia is a devastating mental disorder characterized by disturbed thoughts and perception, alongside cognitive and emotional decline associated with a severe reduction in occupational and social functioning, and in coping abilities. Alterations of mitochondrial oxidative phosphorylation in schizophrenia have been reported in several brain regions and also in platelets. Abnormal mitochondrial morphology, size and density have all been reported in the brains of schizophrenic individuals. Considering that several studies link energy impairment to neuronal death, neurodegeneration and disease, this review article discusses energy impairment as a mechanism underlying the pathophysiology of some psychiatric disorders, like bipolar disorder, depression and schizophrenia.
Collapse
Affiliation(s)
- Gislaine T Rezin
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciuma, SC, Brazil
| | | | | | | | | |
Collapse
|