151
|
Sudhamalla B, Yadaiah M, Ramakrishna D, Bhuyan AK. Cysteine protease attribute of eukaryotic ribosomal protein S4. Biochim Biophys Acta Gen Subj 2012; 1820:1535-42. [PMID: 22579920 DOI: 10.1016/j.bbagen.2012.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/25/2012] [Accepted: 05/03/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Ribosomal proteins often carry out extraribosomal functions. The protein S4 from the smaller subunit of Escherichia coli, for instance, regulates self synthesis and acts as a transcription factor. In humans, S4 might be involved in Turner syndrome. Recent studies also associate many ribosomal proteins with malignancy, and cell death and survival. The list of extraribosomal functions of ribosomal proteins thus continues to grow. METHODS Enzymatic action of recombinant wheat S4 on fluorogenic peptide substrates Ac-XEXD↓-AFC (N-acetyl-residue-Glu-residue-Asp-7-amino-4-trifluoromethylcoumarin) and Z-FR↓-AMC (N-CBZ-Phe-Arg-aminomethylcoumarin) as well as proteins has been examined under a variety of solution conditions. RESULTS Eukaryotic ribosomal protein S4 is an endoprotease exhibiting all characteristics of cysteine proteases. The K(m) value for the cleavage of Z-FR↓-AMC by a cysteine mutant (C41F) is about 70-fold higher relative to that for the wild-type protein under identical conditions, implying that S4 is indeed a cysteine protease. Interestingly, activity responses of the S4 protein and caspases toward environmental parameters, including pH, temperature, ionic strength, and Mg(2+) and Zn(2+) concentrations, are quite similar. Respective kinetic constants for their cleavage action on Ac-LEHD↓-AFC are also similar. However, S4 cannot be a caspase, because unlike the latter it also hydrolyzes the cathepsin substrate Z-FR↓-AMC. GENERAL SIGNIFICANCE The eukaryotic S4 is a generic cysteine protease capable of hydrolyzing a broad spectrum of synthetic substrates and proteins. The enzyme attribute of eukaryotic ribosomal protein S4 is a new phenomenon. Its possible involvement in cell growth and proliferations are presented in the light of known extraribosomal roles of ribosomal proteins.
Collapse
Affiliation(s)
- Babu Sudhamalla
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | | | | | | |
Collapse
|
152
|
Schwarz A, Valdés JJ, Kotsyfakis M. The role of cystatins in tick physiology and blood feeding. Ticks Tick Borne Dis 2012; 3:117-27. [PMID: 22647711 DOI: 10.1016/j.ttbdis.2012.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/03/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022]
Abstract
Ticks, as obligate hematophagous ectoparasites, impact greatly on animal and human health because they transmit various pathogens worldwide. Over the last decade, several cystatins from different hard and soft ticks were identified and biochemically analyzed for their role in the physiology and blood feeding lifestyle of ticks. All these cystatins are potent inhibitors of papain-like cysteine proteases, but not of legumain. Tick cystatins were either detected in the salivary glands and/or the midgut, key tick organs responsible for blood digestion and the expression of pharmacologically potent salivary proteins for blood feeding. For example, the transcription of two cystatins named HlSC-1 and Sialostatin L2 was highly upregulated in these tick tissues during feeding. Vaccinating hosts against Sialostatin L2 and Om-cystatin 2 as well as silencing of a cystatin gene from Amblyomma americanum significantly inhibited the feeding ability of ticks. Additionally, Om-cystatin 2 and Sialostatin L possessed strong host immunosuppressive properties by inhibiting dendritic cell maturation due to their interaction with cathepsin S. These two cystatins, together with Sialostatin L2 are the first tick cystatins with resolved three-dimensional structure. Sialostatin L, furthermore, showed preventive properties against autoimmune diseases. In the case of the cystatin Hlcyst-2, experimental evidence showed its role in tick innate immunity, since increased Hlcyst-2 transcript levels were detected in Babesia gibsoni-infected larval ticks and the protein inhibited Babesia growth. Other cystatins, such as Hlcyst-1 or Om-cystatin 2 are assumed to be involved in regulating blood digestion. Only for Bmcystatin was a role in tick embryogenesis suggested. Finally, all the biochemically analyzed tick cystatins are powerful protease inhibitors, and some may be novel antigens for developing anti-tick vaccines and drugs of medical importance due to their stringent target specificity.
Collapse
Affiliation(s)
- Alexandra Schwarz
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, AS CR v.v.i., Ceske Budejovice, Czech Republic.
| | | | | |
Collapse
|
153
|
Caracelli I, Vega-Teijido M, Zukerman-Schpector J, Cezari MH, Lopes JG, Juliano L, Santos PS, Comasseto JV, Cunha RL, Tiekink ER. A tellurium-based cathepsin B inhibitor: Molecular structure, modelling, molecular docking and biological evaluation. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
154
|
Huang Q, Herrmann A. Calculating pH-dependent free energy of proteins by using Monte Carlo protonation probabilities of ionizable residues. Protein Cell 2012; 3:230-8. [PMID: 22467263 DOI: 10.1007/s13238-012-2035-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/09/2012] [Indexed: 11/30/2022] Open
Abstract
Protein folding, stability, and function are usually influenced by pH. And free energy plays a fundamental role in analysis of such pH-dependent properties. Electrostatics-based theoretical framework using dielectric solvent continuum model and solving Poisson-Boltzmann equation numerically has been shown to be very successful in understanding the pH-dependent properties. However, in this approach the exact computation of pH-dependent free energy becomes impractical for proteins possessing more than several tens of ionizable sites (e.g. > 30), because exact evaluation of the partition function requires a summation over a vast number of possible protonation microstates. Here we present a method which computes the free energy using the average energy and the protonation probabilities of ionizable sites obtained by the well-established Monte Carlo sampling procedure. The key feature is to calculate the entropy by using the protonation probabilities. We used this method to examine a well-studied protein (lysozyme) and produced results which agree very well with the exact calculations. Applications to the optimum pH of maximal stability of proteins and protein-DNA interactions have also resulted in good agreement with experimental data. These examples recommend our method for application to the elucidation of the pH-dependent properties of proteins.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | | |
Collapse
|
155
|
Rieux A, Gras S, Lecaille F, Niepceron A, Katrib M, Smith NC, Lalmanach G, Brossier F. Eimeripain, a cathepsin B-like cysteine protease, expressed throughout sporulation of the apicomplexan parasite Eimeria tenella. PLoS One 2012; 7:e31914. [PMID: 22457711 PMCID: PMC3310820 DOI: 10.1371/journal.pone.0031914] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/17/2012] [Indexed: 11/29/2022] Open
Abstract
The invasion and replication of Eimeria tenella in the chicken intestine is responsible for avian coccidiosis, a disease that has major economic impacts on poultry industries worldwide. E. tenella is transmitted to naïve animals via shed unsporulated oocysts that need contact with air and humidity to form the infectious sporulated oocysts, which contain the first invasive form of the parasite, the sporozoite. Cysteine proteases (CPs) are major virulence factors expressed by protozoa. In this study, we show that E. tenella expresses five transcriptionally regulated genes encoding one cathepsin L, one cathepsin B and three cathepsin Cs. Biot-LC-LVG-CHN2, a cystatin derived probe, tagged eight polypeptides in unsporulated oocysts but only one in sporulated oocysts. CP-dependant activities were found against the fluorescent substrates, Z-FR-AMC and Z-LR-AMC, throughout the sporulation process. These activities corresponded to a cathepsin B-like enzyme since they were inhibited by CA-074, a specific cathepsin B inhibitor. A 3D model of the catalytic domain of the cathepsin B-like protease, based on its sequence homology with human cathepsin B, further confirmed its classification as a papain-like protease with similar characteristics to toxopain-1 from the related apicomplexan parasite, Toxoplasma gondii; we have, therefore, named the E. tenella cathepsin B, eimeripain. Following stable transfection of E. tenella sporozoites with a plasmid allowing the expression of eimeripain fused to the fluorescent protein mCherry, we demonstrated that eimeripain is detected throughout sporulation and has a punctate distribution in the bodies of extra- and intracellular parasites. Furthermore, CA-074 Me, the membrane-permeable derivative of CA-074, impairs invasion of epithelial MDBK cells by E. tenella sporozoites. This study represents the first characterization of CPs expressed by a parasite from the Eimeria genus. Moreover, it emphasizes the role of CPs in transmission and dissemination of exogenous stages of apicomplexan parasites.
Collapse
Affiliation(s)
- Anaïs Rieux
- INRA, UMR1282, Equipe Pathogenèse des Coccidioses, Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, Tours, France
| | - Simon Gras
- INRA, UMR1282, Equipe Pathogenèse des Coccidioses, Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, Tours, France
| | - Fabien Lecaille
- INSERM U618, Protéases et Vectorisation Pulmonaires, Université François Rabelais, Tours, France
| | - Alisson Niepceron
- INRA, UMR1282, Equipe Pathogenèse des Coccidioses, Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, Tours, France
| | - Marilyn Katrib
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, Australia
| | - Nicholas C. Smith
- Queensland Tropical Health Alliance, Faculty of Medicine, Health and Molecular Sciences, James Cook University, Cairns, Australia
| | - Gilles Lalmanach
- INSERM U618, Protéases et Vectorisation Pulmonaires, Université François Rabelais, Tours, France
| | - Fabien Brossier
- INRA, UMR1282, Equipe Pathogenèse des Coccidioses, Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, Tours, France
- * E-mail:
| |
Collapse
|
156
|
Scaffa P, Vidal C, Barros N, Gesteira T, Carmona A, Breschi L, Pashley D, Tjäderhane L, Tersariol I, Nascimento F, Carrilho M. Chlorhexidine Inhibits the Activity of Dental Cysteine Cathepsins. J Dent Res 2012; 91:420-5. [DOI: 10.1177/0022034511435329] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The co-expression of MMPs and cysteine cathepsins in the human dentin-pulp complex indicates that both classes of enzymes can contribute to the endogenous proteolytic activity of dentin. Chlorhexidine (CHX) is an efficient inhibitor of MMP activity. This study investigated whether CHX could also inhibit cysteine cathepsins present in dentin. The inhibitory profile of CHX on the activity of dentin-extracted and recombinant cysteine cathepsins (B, K, and L) was monitored in fluorogenic substrates. The rate of substrate hydrolysis was spectrofluorimetrically measured, and inhibitory constants were calculated. Molecular docking was performed to predict the binding affinity between CHX and cysteine cathepsins. The results showed that CHX inhibited the proteolytic activity of dentin-extracted cysteine cathepsins in a dose-dependent manner. The proteolytic activity of human recombinant cathepsins was also inhibited by CHX. Molecular docking analysis suggested that CHX strongly interacts with the subsites S2 to S2′ of cysteine cathepsins B, K, and L in a very similar manner. Taken together, these results clearly showed that CHX is a potent inhibitor of the cysteine cathepsins-proteolytic enzymes present in the dentin-pulp complex.
Collapse
Affiliation(s)
- P.M.C. Scaffa
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - C.M.P. Vidal
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - N. Barros
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - T.F. Gesteira
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - A.K. Carmona
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - L. Breschi
- Department of Biomedicine, University of Trieste, and IGM-CNR and Unit of Bologna c/o IOR, Bologna, Italy
| | - D.H. Pashley
- Department of Oral Biology, College of Dental Medicine, Georgia Health Sciences University, Augusta, GA, USA
| | - L. Tjäderhane
- Institute of Dentistry, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - I.L.S. Tersariol
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
- Centro Interdisciplinar de Investigação Bioquímica, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - F.D. Nascimento
- Biomaterials Research Group, Bandeirante University of São Paulo, Rua Maria Cândida, 1813, 6 andar, São Paulo, 02071-013, Brazil
| | - M.R. Carrilho
- Biomaterials Research Group, Bandeirante University of São Paulo, Rua Maria Cândida, 1813, 6 andar, São Paulo, 02071-013, Brazil
| |
Collapse
|
157
|
Cathepsin B from the white shrimp Litopenaeus vannamei: cDNA sequence analysis, tissues-specific expression and biological activity. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:32-40. [DOI: 10.1016/j.cbpb.2011.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/05/2011] [Accepted: 09/09/2011] [Indexed: 11/21/2022]
|
158
|
Identification of lead compounds targeting the cathepsin B-like enzyme of Eimeria tenella. Antimicrob Agents Chemother 2011; 56:1190-201. [PMID: 22143531 DOI: 10.1128/aac.05528-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cysteine peptidases have been implicated in the development and pathogenesis of Eimeria. We have identified a single-copy cathepsin B-like cysteine peptidase gene in the genome database of Eimeria tenella (EtCatB). Molecular modeling of the predicted protein suggested that it differs significantly from host enzymes and could be a good drug target. EtCatB was expressed and secreted as a soluble, active, glycosylated mature enzyme from Pichia pastoris. Biochemical characterization of the recombinant enzyme confirmed that it is cathepsin B-like. Screening of a focused library against the enzyme identified three inhibitors (a nitrile, a thiosemicarbazone, and an oxazolone) that can be used as leads for novel drug discovery against Eimeria. The oxazolone scaffold is a novel cysteine peptidase inhibitor; it may thus find widespread use.
Collapse
|
159
|
Hansen G, Heitmann A, Witt T, Li H, Jiang H, Shen X, Heussler VT, Rennenberg A, Hilgenfeld R. Structural basis for the regulation of cysteine-protease activity by a new class of protease inhibitors in Plasmodium. Structure 2011; 19:919-29. [PMID: 21742259 DOI: 10.1016/j.str.2011.03.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 11/17/2022]
Abstract
Plasmodium cysteine proteases are essential for host-cell invasion and egress, hemoglobin degradation, and intracellular development of the parasite. The temporal, site-specific regulation of cysteine-protease activity is a prerequisite for survival and propagation of Plasmodium. Recently, a new family of inhibitors of cysteine proteases (ICPs) with homologs in at least eight Plasmodium species has been identified. Here, we report the 2.6 Å X-ray crystal structure of the C-terminal, inhibitory domain of ICP from P. berghei (PbICP-C) in a 1:1 complex with falcipain-2, an important hemoglobinase of Plasmodium. The structure establishes Plasmodium ICP as a member of the I42 class of chagasin-like protease inhibitors but with large insertions and differences in the binding mode relative to other family members. Furthermore, the PbICP-C structure explains why host-cell cathepsin B-like proteases and, most likely, also the protease-like domain of Plasmodium SERA5 (serine-repeat antigen 5) are no targets for ICP.
Collapse
Affiliation(s)
- Guido Hansen
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, 23538 Lübeck, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Biniossek ML, Nägler DK, Becker-Pauly C, Schilling O. Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. J Proteome Res 2011; 10:5363-73. [PMID: 21967108 DOI: 10.1021/pr200621z] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cysteine cathepsins mediate proteome homeostasis and have pivotal functions in diseases such as cancer. To better understand substrate recognition by cathepsins B, L, and S, we applied proteomic identification of protease cleavage sites (PICS) for simultaneous profiling of prime and non-prime specificity. PICS profiling of cathepsin B endopeptidase specificity highlights strong selectivity for glycine in P3' due to an occluding loop blocking access to the primed subsites. In P1', cathepsin B has a partial preference for phenylalanine, which is not found for cathepsins L and S. Occurrence of P1' phenylalanine often coincides with aromatic residues in P2. For cathepsin L, PICS identifies 845 cleavage sites, representing the most comprehensive PICS profile to date. Cathepsin L specificity is dominated by the canonical preference for aromatic residues in P2 with limited contribution of prime-site selectivity determinants. Profiling of cathepsins B and L with a shorter incubation time (4 h instead of 16 h) did not reveal time-dependency of individual specificity determinants. Cathepsin S specificity was profiled at pH 6.0 and 7.5. The PICS profiles at both pH values display a high degree of similarity. Cathepsin S specificity is primarily guided by aliphatic residues in P2 with limited importance of prime-site residues.
Collapse
Affiliation(s)
- Martin L Biniossek
- Institute for Molecular Medicine and Cell Research, University of Freiburg, Germany
| | | | | | | |
Collapse
|
161
|
Jílková A, Řezáčová P, Lepšík M, Horn M, Váchová J, Fanfrlík J, Brynda J, McKerrow JH, Caffrey CR, Mareš M. Structural basis for inhibition of cathepsin B drug target from the human blood fluke, Schistosoma mansoni. J Biol Chem 2011; 286:35770-35781. [PMID: 21832058 PMCID: PMC3195637 DOI: 10.1074/jbc.m111.271304] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/19/2011] [Indexed: 11/06/2022] Open
Abstract
Schistosomiasis caused by a parasitic blood fluke of the genus Schistosoma afflicts over 200 million people worldwide. Schistosoma mansoni cathepsin B1 (SmCB1) is a gut-associated peptidase that digests host blood proteins as a source of nutrients. It is under investigation as a drug target. To further this goal, we report three crystal structures of SmCB1 complexed with peptidomimetic inhibitors as follows: the epoxide CA074 at 1.3 Å resolution and the vinyl sulfones K11017 and K11777 at 1.8 and 2.5 Å resolutions, respectively. Interactions of the inhibitors with the subsites of the active-site cleft were evaluated by quantum chemical calculations. These data and inhibition profiling with a panel of vinyl sulfone derivatives identify key binding interactions and provide insight into the specificity of SmCB1 inhibition. Furthermore, hydrolysis profiling of SmCB1 using synthetic peptides and the natural substrate hemoglobin revealed that carboxydipeptidase activity predominates over endopeptidolysis, thereby demonstrating the contribution of the occluding loop that restricts access to the active-site cleft. Critically, the severity of phenotypes induced in the parasite by vinyl sulfone inhibitors correlated with enzyme inhibition, providing support that SmCB1 is a valuable drug target. The present structure and inhibitor interaction data provide a footing for the rational design of anti-schistosomal inhibitors.
Collapse
Affiliation(s)
- Adéla Jílková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic; Department of Structural Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Jana Váchová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic; Department of Structural Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - James H McKerrow
- Sandler Center for Drug Discovery, California Institute for Quantitative Biosciences and Department of Pathology, University of California San Francisco, San Francisco, California 94158
| | - Conor R Caffrey
- Sandler Center for Drug Discovery, California Institute for Quantitative Biosciences and Department of Pathology, University of California San Francisco, San Francisco, California 94158
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic.
| |
Collapse
|
162
|
Cysteine cathepsins: from structure, function and regulation to new frontiers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:68-88. [PMID: 22024571 PMCID: PMC7105208 DOI: 10.1016/j.bbapap.2011.10.002] [Citation(s) in RCA: 942] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 02/06/2023]
Abstract
It is more than 50 years since the lysosome was discovered. Since then its hydrolytic machinery, including proteases and other hydrolases, has been fairly well identified and characterized. Among these are the cysteine cathepsins, members of the family of papain-like cysteine proteases. They have unique reactive-site properties and an uneven tissue-specific expression pattern. In living organisms their activity is a delicate balance of expression, targeting, zymogen activation, inhibition by protein inhibitors and degradation. The specificity of their substrate binding sites, small-molecule inhibitor repertoire and crystal structures are providing new tools for research and development. Their unique reactive-site properties have made it possible to confine the targets simply by the use of appropriate reactive groups. The epoxysuccinyls still dominate the field, but now nitriles seem to be the most appropriate “warhead”. The view of cysteine cathepsins as lysosomal proteases is changing as there is now clear evidence of their localization in other cellular compartments. Besides being involved in protein turnover, they build an important part of the endosomal antigen presentation. Together with the growing number of non-endosomal roles of cysteine cathepsins is growing also the knowledge of their involvement in diseases such as cancer and rheumatoid arthritis, among others. Finally, cysteine cathepsins are important regulators and signaling molecules of an unimaginable number of biological processes. The current challenge is to identify their endogenous substrates, in order to gain an insight into the mechanisms of substrate degradation and processing. In this review, some of the remarkable advances that have taken place in the past decade are presented. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
|
163
|
Sosič I, Mirković B, Turk S, Štefane B, Kos J, Gobec S. Discovery and kinetic evaluation of 6-substituted 4-benzylthio-1,3,5-triazin-2(1H)-ones as inhibitors of cathepsin B. Eur J Med Chem 2011; 46:4648-56. [DOI: 10.1016/j.ejmech.2011.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/30/2011] [Accepted: 08/02/2011] [Indexed: 01/21/2023]
|
164
|
Arampatzidou M, Mayer K, Iolyeva ME, Asrat SG, Ravichandran M, Günther T, Schüle R, Reinheckel T, Brix K. Studies of intestinal morphology and cathepsin B expression in a transgenic mouse aiming at intestine-specific expression of Cath B-EGFP. Biol Chem 2011; 392:983-93. [PMID: 21871011 DOI: 10.1515/bc.2011.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cathepsin B has been shown to not only reside within endo-lysosomes of intestinal epithelial cells, but it was also secreted into the extracellular space of intestinal mucosa in physiological and pathological conditions. In an effort to further investigate the function of this protease in the intestine, we generated a transgenic mouse model that would enable us to visualize the localization of cathepsin B in vivo. Previously we showed that the A33-antigen promoter could be successfully used in vitro in order to express cathepsin B-green fluorescent protein chimeras in cells that co-expressed the intestine-specific transcription factor Cdx1. In this study an analog approach was used to express chimeric cathepsin B specifically in the intestine of transgenic animals. No overt phenotype was observed for the transgenic mice that reproduced normally. Biochemical and morphological studies confirmed that the overall intestinal phenotype including the structure and polarity of this tissue as well as cell numbers and differentiation states were not altered in the A33-CathB-EGFP mice when compared to wild type animals. However, transgenic expression of chimeric cathepsin B could not be visualized because it was not translated in situ although the transgene was maintained over several generations.
Collapse
Affiliation(s)
- Maria Arampatzidou
- School of Engineering and Science, Research Center MOLIFE - Molecular Life Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
|
166
|
Castro HC, Abreu PA, Geraldo RB, Martins RCA, dos Santos R, Loureiro NIV, Cabral LM, Rodrigues CR. Looking at the proteases from a simple perspective. J Mol Recognit 2011; 24:165-81. [PMID: 21360607 DOI: 10.1002/jmr.1091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteases have received enormous interest from the research and medical communities because of their significant roles in several human diseases. Some examples include the involvement of thrombin in thrombosis, HIV-1 protease in Acquired Immune Deficiency Syndrome, cruzain in Trypanosoma cruzi infection, and membrane-type 1 matrix metalloproteinase in tumor invasion and metastasis. Many efforts has been undertaken to design effective inhibitors featuring potent inhibitory activity, specificity, and metabolic stability to those proteases involved in such pathologies. Protease inhibitors usually target the active site, but some of them act by other inhibitory mechanisms. The understanding of the structure-function relationships of proteases and inhibitors has an impact on new inhibitor drugs designing. In this paper, the structures of four proteases (thrombin, HIV-protease, cruzain, and a matrix metalloproteinase) are briefly reviewed, and used as examples of the importance of proteases for the development of new treatment strategies, leading to a longer and healthier life.
Collapse
Affiliation(s)
- Helena C Castro
- LABioMol, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, 24001-970, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
167
|
|
168
|
Mirković B, Renko M, Turk S, Sosič I, Jevnikar Z, Obermajer N, Turk D, Gobec S, Kos J. Novel mechanism of cathepsin B inhibition by antibiotic nitroxoline and related compounds. ChemMedChem 2011; 6:1351-6. [PMID: 21598397 DOI: 10.1002/cmdc.201100098] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/04/2011] [Indexed: 12/26/2022]
Affiliation(s)
- Bojana Mirković
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Cavallo-Medved D, Moin K, Sloane B. Cathepsin B: Basis Sequence: Mouse. THE AFCS-NATURE MOLECULE PAGES 2011; 2011:A000508. [PMID: 28781583 PMCID: PMC5541861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
| | - Kamiar Moin
- Pharmacology, Wayne State University, MI 48201, US
| | | |
Collapse
|
170
|
Echinococcus multilocularis: Identification and functional characterization of cathepsin B-like peptidases from metacestode. Exp Parasitol 2011; 127:693-701. [DOI: 10.1016/j.exppara.2010.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/12/2010] [Accepted: 11/16/2010] [Indexed: 11/23/2022]
|
171
|
Kido H, Ishidoh K. Nobuhiko Katunuma: an outstanding scientist in the field of proteolysis and warm-hearted 'Kendo Fighter' biochemist. J Biochem 2011; 148:527-31. [PMID: 20980477 DOI: 10.1093/jb/mvq109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Professor Nobuhiko Katunuma is well known for his outstanding contribution to the understanding of proteolysis in general and cysteine proteinases and their inhibitors in mammals. In fact, he is a world pioneer in the field. In 1963, he started his highly successful scientific career as a Professor at the Institute for Enzyme Research, the University of Tokushima. During the initial 30 years of his career, he was interested in vitamin B6 metabolism and discovered the acceleration of turnover rates of pyridoxal enzyme in apoprotein formation. After this period, his interest expanded to lysosomal cystein proteinases and their endogenous inhibitors. After determining the crystal structure of human cathepsin B, he generated a series of chemically synthesized specific inhibitors of cathepsins. These inhibitors are currently used throughout the world and some of them have been applied therapeutically in various diseases. During his career and even at present, Professor Katunuma has been studying Biochemistry in Medicine and also practicing to become a 'Kendo sword fencing Fighter'.
Collapse
Affiliation(s)
- Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Kuramotocho 3-18-15, Tokushima 770-8503, Japan.
| | | |
Collapse
|
172
|
Mendieta L, Picó A, Tarragó T, Teixidó M, Castillo M, Rafecas L, Moyano A, Giralt E. Novel peptidyl aryl vinyl sulfones as highly potent and selective inhibitors of cathepsins L and B. ChemMedChem 2011; 5:1556-67. [PMID: 20652927 DOI: 10.1002/cmdc.201000109] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Herein we present the design, synthesis, and evaluation of a structurally novel library of 20 peptidyl 3-aryl vinyl sulfones as inhibitors of cathepsins L and B. The building blocks, described here for the first time, were synthesized in a highly efficient and enantioselective manner, starting from 3-aryl-substituted allyl alcohols. The corresponding vinyl sulfones were prepared by a new approach, based on a combination of solid-phase peptide synthesis using the Fmoc/tBu strategy, followed by solution-phase coupling to the corresponding (R)-3-amino-3-aryl vinyl sulfones as trifluoroacetate salts. The inhibitory activity of the resulting compounds against cathepsins L and B was evaluated, and the compound exhibiting the best activity was selected for enzymatic characterization. Finally, docking studies were performed in order to identify key structural features of the aryl substituent.
Collapse
Affiliation(s)
- Laura Mendieta
- Institute for Research in Biomedicine of Barcelona, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Katunuma N. Structure-based development of specific inhibitors for individual cathepsins and their medical applications. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:29-39. [PMID: 21321479 PMCID: PMC3043741 DOI: 10.2183/pjab.87.29] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 12/21/2010] [Indexed: 05/30/2023]
Abstract
Specific inhibitors for individual cathepsins have been developed based on their tertiary structures of X-ray crystallography. Cathepsin B-specific inhibitors, CA-074 and CA-030, and cathepsin L specific inhibitors, CLIK-148 and CLIK-195, were designed as the epoxysuccinate derivatives. Cathepsin S inhibitor, CLIK-060, and cathepsin K inhibitor, CLIK-166, were synthesized. These inhibitors can use in vitro and also in vivo, and show no toxicity for experimental animals by the amounts used as the cathepsin inhibitor. Various cathepsins are used in the processing of antigenic proteins. The CLIK-060 treatment to the autoimmune disease, Sjögren model mice, led to strongly suppress the expression of the pathological symptoms. Cathepsins L or K participates to the degradation of bone collagen. The CLIK-148 protects osteoporosis in animals and also protects the bone metastasis of cancer cells. Cathepsin L also enhances insulin-induced glucose uptake into 3T3-L1 adipocytes, suggesting cathepsin L plays the roles in adipogenesis and glucose tolerance in type 2 diabetes.
Collapse
Affiliation(s)
- Nobuhiko Katunuma
- Institute for Health Sciences, Tokushima Bunri University, Tokushima, Japan.
| |
Collapse
|
174
|
Cathepsins B1 and B2 of Trichobilharzia SPP., bird schistosomes causing cercarial dermatitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:136-54. [PMID: 21660663 DOI: 10.1007/978-1-4419-8414-2_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Trichobilharzia regenti and T. szidati are schistosomes that infect birds. although T. regenti/T. szidati can only complete their life cycle in specific bird hosts (waterfowl), their larvae-cercariae are able to penetrate, transform and then migrate as schistosomula in nonspecific hosts (e.g., mouse, man). Peptidases are among the key molecules produced by these schistosomes that enable parasite invasion and survival within the host and include cysteine peptidases such as cathepsins B1 and B2. These enzymes are indispensable bio-catalysts in a number of basal biological processes and host-parasite interactions, e.g., tissue invasion/migration, nutrition and immune evasion. Similar biochemical and functional characteristics were observed for cathepsins B1 and B2 in bird schistosomes (T. regenti, T. szidati) and also for their homologs in human schistosomes (Schistosoma mansoni, S. japonicum). Therefore, data obtained in the research of bird schistosomes can also be exploited for the control of human schistosomes such as the search for targets of novel chemotherapeutic drugs and vaccines.
Collapse
|
175
|
Bhabak KP, Bhuyan BJ, Mugesh G. Bioinorganic and medicinal chemistry: aspects of gold(i)-protein complexes. Dalton Trans 2011; 40:2099-111. [DOI: 10.1039/c0dt01057j] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
176
|
Costa MGS, Batista PR, Shida CS, Robert CH, Bisch PM, Pascutti PG. How does heparin prevent the pH inactivation of cathepsin B? Allosteric mechanism elucidated by docking and molecular dynamics. BMC Genomics 2010; 11 Suppl 5:S5. [PMID: 21210971 PMCID: PMC3045798 DOI: 10.1186/1471-2164-11-s5-s5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Cathepsin B (catB) is a promising target for anti-cancer drug design due to its implication in several steps of tumorigenesis. catB activity and inhibition are pH-dependent, making it difficult to identify efficient inhibitor candidates for clinical trials. In addition it is known that heparin binding stabilizes the enzyme in alkaline conditions. However, the molecular mechanism of stabilization is not well understood, indicating the need for more detailed structural and dynamic studies in order to clarify the influence of pH and heparin binding on catB stability. Results Our pKa calculations of catB titratable residues revealed distinct protonation states under different pH conditions for six key residues, of which four lie in the crucial interdomain interface. This implies changes in the overall charge distribution at the catB surface, as revealed by calculation of the electrostatic potential. We identified two basic surface regions as possible heparin binding sites, which were confirmed by docking calculations. Molecular dynamics (MD) of both apo catB and catB-heparin complexes were performed using protonation states for catB residues corresponding to the relevant acidic or alkaline conditions. The MD of apo catB at pH 5.5 was very stable, and presented the highest number and occupancy of hydrogen bonds within the inter-domain interface. In contrast, under alkaline conditions the enzyme's overall flexibility was increased: interactions between active site residues were lost, helical content decreased, and domain separation was observed as well as high-amplitude motions of the occluding loop – a main target of drug design studies. Essential dynamics analysis revealed that heparin binding modulates large amplitude motions promoting rearrangement of contacts between catB domains, thus favoring the maintenance of helical content as well as active site stability. Conclusions The results of our study contribute to unraveling the molecular events involved in catB inactivation in alkaline pH, highlighting the fact that protonation changes of few residues can alter the overall dynamics of an enzyme. Moreover, we propose an allosteric role for heparin in the regulation of catB stability in such a manner that the restriction of enzyme flexibility would allow the establishment of stronger contacts and thus the maintenance of overall structure.
Collapse
Affiliation(s)
- Mauricio G S Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21949-901, Rio de Janeiro, Brasil.
| | | | | | | | | | | |
Collapse
|
177
|
Miyaji T, Murayama S, Kouzuma Y, Kimura N, Kanost MR, Kramer KJ, Yonekura M. Molecular cloning of a multidomain cysteine protease and protease inhibitor precursor gene from the tobacco hornworm (Manduca sexta) and functional expression of the cathepsin F-like cysteine protease domain. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:835-846. [PMID: 20727410 DOI: 10.1016/j.ibmb.2010.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/10/2010] [Accepted: 08/10/2010] [Indexed: 05/29/2023]
Abstract
A Manduca sexta (tobacco hornworm) cysteine protease inhibitor, MsCPI, purified from larval hemolymph has an apparent molecular mass of 11.5 kDa, whereas the size of the mRNA is very large (∼9 kilobases). MsCPI cDNA consists of a 9,273 nucleotides that encode a polypeptide of 2,676 amino acids, which includes nine tandemly repeated MsCPI domains, four cystatin-like domains and one procathepsin F-like domain. The procathepsin F-like domain protein was expressed in Escherichia coli and processed to its active mature form by incubation with pepsin. The mature enzyme hydrolyzed Z-Leu-Arg-MCA, Z-Phe-Arg-MCA and Boc-Val-Leu-Lys-MCA rapidly, whereas hydrolysis of Suc-Leu-Tyr-MCA and Z-Arg-Arg-MCA was very slow. The protease was strongly inhibited by MsCPI, egg-white cystatin and sunflower cystatin with K(i) values in the nanomolar range. When the MsCPI tandem protein linked to two MsCPI domains was treated with proteases, it was degraded by the cathepsin F-like protease. However, tryptic digestion converted the MsCPI tandem protein to an active inhibitory form. These data support the hypothesis that the mature MsCPI protein is produced from the MsCPI precursor protein by trypsin-like proteases. The resulting mature MsCPI protein probably plays a role in the regulation of the activity of endogenous cysteine proteases.
Collapse
Affiliation(s)
- Takayuki Miyaji
- Laboratory of Food Molecular Functionality, College of Agriculture, Ibaraki University, 3-21-1, Chuo, Ami-machi, Inashiki-gun, Ibaraki 300-0393, Japan
| | | | | | | | | | | | | |
Collapse
|
178
|
Renko M, Požgan U, Majera D, Turk D. Stefin A displaces the occluding loop of cathepsin B only by as much as required to bind to the active site cleft. FEBS J 2010; 277:4338-45. [PMID: 20860624 DOI: 10.1111/j.1742-4658.2010.07824.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cathepsin B (EC 3.4.22.1) is one of the most versatile human cysteine cathepsins. It is important for intracellular protein degradation under normal conditions and is involved in a number of pathological processes. The occluding loop makes cathepsin B unique among cysteine cathepsins. This ∼ 20 residue long insertion imbedded into the papain-like protease scaffold restricts access to the active site cleft and endows cathepsin B with its carboxydipeptidase activity. Nevertheless, the enzyme also exhibits endopeptidase activity and is inhibited by stefins and cystatins. To clarify the structural properties of the occluding loop upon the binding of stefins, we determined the crystal structure of the complex between wild-type human stefin A and wild-type human cathepsin B at 2.6 Å resolution. The papain-like part of cathepsin B structure remains unmodified, whereas the occluding loop residues are displaced. The part enclosed by the disulfide bridge containing histidines 110 and 111 (i.e. the 'lasso' part) is rotated by ∼ 45° away from its original position. A comparison of the structure of the unliganded cathepsin B with the structure of the proenzyme, its complexes with chagasin and stefin A shows that the magnitude of the shift of the occluding loop is related to the size of the binding region. It is smallest in the procathepsin structures and increases in the series of complexes with stefin A and chagasin, although it has no impact on the binding constant. Hence, cathepsin B can dock inhibitors and certain substrates regardless of the size of the binding region.
Collapse
Affiliation(s)
- Miha Renko
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
179
|
Pelletier F, Comte V, Massard A, Wenzel M, Toulot S, Richard P, Picquet M, Le Gendre P, Zava O, Edafe F, Casini A, Dyson PJ. Development of Bimetallic Titanocene−Ruthenium−Arene Complexes As Anticancer Agents: Relationships between Structural and Biological Properties. J Med Chem 2010; 53:6923-33. [DOI: 10.1021/jm1004804] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frédéric Pelletier
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 5260 CNRS—Université de Bourgogne, 9 Avenue A. Savary, BP 47870, 21078 Dijon, France
| | - Virginie Comte
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 5260 CNRS—Université de Bourgogne, 9 Avenue A. Savary, BP 47870, 21078 Dijon, France
| | - Alexandre Massard
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 5260 CNRS—Université de Bourgogne, 9 Avenue A. Savary, BP 47870, 21078 Dijon, France
| | - Margot Wenzel
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 5260 CNRS—Université de Bourgogne, 9 Avenue A. Savary, BP 47870, 21078 Dijon, France
| | - Stéphanie Toulot
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 5260 CNRS—Université de Bourgogne, 9 Avenue A. Savary, BP 47870, 21078 Dijon, France
| | - Philippe Richard
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 5260 CNRS—Université de Bourgogne, 9 Avenue A. Savary, BP 47870, 21078 Dijon, France
| | - Michel Picquet
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 5260 CNRS—Université de Bourgogne, 9 Avenue A. Savary, BP 47870, 21078 Dijon, France
| | - Pierre Le Gendre
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 5260 CNRS—Université de Bourgogne, 9 Avenue A. Savary, BP 47870, 21078 Dijon, France
| | - Olivier Zava
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Fabio Edafe
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Angela Casini
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
180
|
Smooker PM, Jayaraj R, Pike RN, Spithill TW. Cathepsin B proteases of flukes: the key to facilitating parasite control? Trends Parasitol 2010; 26:506-14. [PMID: 20580610 DOI: 10.1016/j.pt.2010.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 05/31/2010] [Accepted: 06/01/2010] [Indexed: 01/22/2023]
Abstract
Cysteine proteases are important virulence factors for parasites. This review will focus on the cathepsin B proteases of trematodes (also known as flukes) which are abundant in juvenile and immature flukes. Recent research, primarily in Fasciola, using inhibitors, RNA interference (RNAi) and vaccination studies indicates that cathepsin Bs play a key role in the biology of trematodes. As these proteases are largely expressed by infective parasite stages, their inactivation by chemotherapy or vaccination will greatly reduce the damage wrought by flukes as they invade host tissues. This validates cathepsin Bs as key strategic targets for fluke control.
Collapse
|
181
|
Naudin C, Lecaille F, Chowdhury S, Krupa JC, Purisima E, Mort JS, Lalmanach G. The occluding loop of cathepsin B prevents its effective inhibition by human kininogens. J Mol Biol 2010; 400:1022-35. [PMID: 20538006 DOI: 10.1016/j.jmb.2010.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/26/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
Kininogens, the major plasma cystatin-like inhibitors of cysteine cathepsins, are degraded at sites of inflammation, and cathepsin B has been identified as a prominent mediator of this process. Cathepsin B, in contrast to cathepsins L and S, is poorly inhibited by kininogens. This led us to delineate the molecular interactions between this protease and kininogens (high molecular weight kininogen and low molecular weight kininogen) and to elucidate the dual role of the occluding loop in this weak inhibition. Cathepsin B cleaves high molecular weight kininogen within the N-terminal region of the D2 and D3 cystatin-like domains and close to the consensus QVVAG inhibitory pentapeptide of the D3 domain. The His110Ala mutant, unlike His111Ala cathepsin B, fails to hydrolyze kininogens, but rather forms a tight-binding complex as observed by gel-filtration analysis. K(i) values (picomolar range) as well as association rate constants for the His110Ala cathepsin B variant compare to those reported for cathepsin L for both kininogens. Homology modeling of isolated inhibitory (D2 and D3) domains and molecular dynamics simulations of the D2 domain complexed with wild-type cathepsin B and its mutants indicate that additional weak interactions, due to the lack of the salt bridge (Asp22-His110) and the subsequent open position of the occluding loop, increase the inhibitory potential of kininogens on His110Ala cathepsin B.
Collapse
Affiliation(s)
- C Naudin
- Inserm U618, Protéases et Vectorisation Pulmonaires, Université François Rabelais, Tours, France
| | | | | | | | | | | | | |
Collapse
|
182
|
Blais DR, Brûlotte M, Qian Y, Bélanger S, Yao SQ, Pezacki JP. Activity-based proteome profiling of hepatoma cells during hepatitis C virus replication using protease substrate probes. J Proteome Res 2010; 9:912-23. [PMID: 19954226 DOI: 10.1021/pr900788a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activity-based protein profiling (ABPP) offers direct insight into changes in catalytic activity of enzyme classes in complex proteomes, rather than protein or transcript abundance. Here, ABPP was performed in Huh7 hepatoma cell lines with a group of ABPP probes composed of an N-acetylated amino acid, that mimic the P(1) position in protease peptide substrates. Five different probes bearing distinct amino acids (Ser, Thr, Phe, Glu and His) labeled 54 differentially active proteins, including proteases, other hydrolases, oxidoreductases and isomerases. Four of the six protease families were targeted based on their P(1) substrate preferences. The broader specificity of the labeling observed could be explained by the substrate-based targeting nature and the electrophilic properties of the ABPP probes. When applied to Huh7 cells stably replicating hepatitis C virus (HCV) subgenomic replicon RNA, four proteins showed reduced activity, while three proteins had increased activity during HCV replication. These differentially active hits included carboxylesterase 1, cathepsin D, HSP105, protein disulfide isomerase 1 and A6, chaperonin containing TCP1 and isochorismatase domain containing 1, which demonstrated substrate preferences by being labeled by specific substrate probes. This illustrates the broader activity-based profiling capabilities of these substrate-based probes to reveal novel enzyme candidates and their potential roles during HCV replication.
Collapse
Affiliation(s)
- David R Blais
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | | | | | | | | | | |
Collapse
|
183
|
Rennenberg A, Lehmann C, Heitmann A, Witt T, Hansen G, Nagarajan K, Deschermeier C, Turk V, Hilgenfeld R, Heussler VT. Exoerythrocytic Plasmodium parasites secrete a cysteine protease inhibitor involved in sporozoite invasion and capable of blocking cell death of host hepatocytes. PLoS Pathog 2010; 6:e1000825. [PMID: 20361051 PMCID: PMC2845656 DOI: 10.1371/journal.ppat.1000825] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 02/18/2010] [Indexed: 11/18/2022] Open
Abstract
Plasmodium parasites must control cysteine protease activity that is critical for hepatocyte invasion by sporozoites, liver stage development, host cell survival and merozoite liberation. Here we show that exoerythrocytic P. berghei parasites express a potent cysteine protease inhibitor (PbICP, P. berghei inhibitor of cysteine proteases). We provide evidence that it has an important function in sporozoite invasion and is capable of blocking hepatocyte cell death. Pre-incubation with specific anti-PbICP antiserum significantly decreased the ability of sporozoites to infect hepatocytes and expression of PbICP in mammalian cells protects them against peroxide- and camptothecin-induced cell death. PbICP is secreted by sporozoites prior to and after hepatocyte invasion, localizes to the parasitophorous vacuole as well as to the parasite cytoplasm in the schizont stage and is released into the host cell cytoplasm at the end of the liver stage. Like its homolog falstatin/PfICP in P. falciparum, PbICP consists of a classical N-terminal signal peptide, a long N-terminal extension region and a chagasin-like C-terminal domain. In exoerythrocytic parasites, PbICP is posttranslationally processed, leading to liberation of the C-terminal chagasin-like domain. Biochemical analysis has revealed that both full-length PbICP and the truncated C-terminal domain are very potent inhibitors of cathepsin L-like host and parasite cysteine proteases. The results presented in this study suggest that the inhibitor plays an important role in sporozoite invasion of host cells and in parasite survival during liver stage development by inhibiting host cell proteases involved in programmed cell death.
Collapse
Affiliation(s)
- Annika Rennenberg
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
| | - Christine Lehmann
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
| | - Tina Witt
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
| | - Guido Hansen
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Krishna Nagarajan
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Christina Deschermeier
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
| | - Vito Turk
- Josef Stefan Institute, Department of Biochemistry, Molecular and Structural Biology, Ljubljana, Slovenia
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Volker T. Heussler
- Bernhard Nocht Institute for Tropical Medicine, Department of Molecular Parasitology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
184
|
Ahn JE, Guarino LA, Zhu-Salzman K. Coordination of hepatocyte nuclear factor 4 and seven-up controls insect counter-defense cathepsin B expression. J Biol Chem 2010; 285:6573-84. [PMID: 20048156 PMCID: PMC2825453 DOI: 10.1074/jbc.m109.095596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/04/2010] [Indexed: 12/12/2022] Open
Abstract
CmCatB, a cathepsin B-type cysteine protease, is insensitive to inhibition by the soybean cysteine protease inhibitor (scN). Cowpea bruchids dramatically induce CmCatB expression when major digestive proteases are inactivated by dietary scN, which is presumably an adaptive strategy that insects use to minimize effects of nutrient deficiency. In this study, we cloned the cowpea bruchid hepatocyte nuclear factor 4 (CmHNF-4) and demonstrated its involvement in transcriptional activation of CmCatB in the digestive tract of scN-adapted bruchids. Electrophoretic mobility shift assays demonstrated that CmHNF-4 binds to a CmCatB promoter region containing two tandem chicken ovalbumin upstream promoter (COUP) sites, which is also the cis-element for Seven-up (CmSvp), a previously identified transcriptional repressor of CmCatB. Although CmSvp is predominantly expressed in unadapted insect midgut, CmHNF-4 is more abundant in adapted bruchids. When transiently expressed in Drosophila S2 cells, CmHNF-4 substantially increased CmCatB expression through COUP binding. CmSvp inhibited CmHNF-4-mediated transcriptional activation even in the absence of its DNA-binding domain. Thus antagonism resulted, at least in part, from protein-protein interactions between CmSvp and CmHNF-4. Association of the two transcription factors was subsequently confirmed by glutathione S-transferase pulldown assays. Interestingly, anti-CmHNF-4 serum caused a supershift not only with nuclear extracts of scN-adapted insect midgut but with that of unadapted control insects as well. The presence of CmHNF-4 in unadapted insects further supported the idea that interplay between CmSvp and CmHNF-4 controls CmCatB transcription activation. Together, these results suggest that coordination between CmHNF-4 and CmSvp is important in counter-defense gene regulation in insects.
Collapse
Affiliation(s)
| | | | - Keyan Zhu-Salzman
- From the Department of Entomology and
- Vegetable & Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
185
|
Milletti F, Storchi L, Cruciani G. Predicting protein pK(a) by environment similarity. Proteins 2010; 76:484-95. [PMID: 19241472 DOI: 10.1002/prot.22363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A statistical method to predict protein pK(a) has been developed by using the 3D structure of a protein and a database of 434 experimental protein pK(a) values. Each pK(a) in the database is associated with a fingerprint that describes the chemical environment around an ionizable residue. A computational tool, MoKaBio, has been developed to identify automatically ionizable residues in a protein, generate fingerprints that describe the chemical environment around such residues, and predict pK(a) from the experimental pK(a) values in the database by using a similarity metric. The method, which retrieved the pK(a) of 429 of the 434 ionizable sites in the database correctly, was crossvalidated by leave-one-out and yielded root mean square error (RMSE) = 0.95, a result that is superior to that obtained by using the Null Model (RMSE 1.07) and other well-established protein pK(a) prediction tools. This novel approach is suitable to rationalize protein pK(a) by comparing the region around the ionizable site with similar regions whose ionizable site pK(a) is known. The pK(a) of residues that have a unique environment not represented in the training set cannot be predicted accurately, however, the method offers the advantage of being trainable to increase its predictive power.
Collapse
|
186
|
Chi YH, Koo YD, Dai SY, Ahn JE, Yun DJ, Lee SY, Zhu-Salzman K. N-glycosylation at non-canonical Asn-X-Cys sequence of an insect recombinant cathepsin B-like counter-defense protein. Comp Biochem Physiol B Biochem Mol Biol 2010; 156:40-7. [PMID: 20139027 DOI: 10.1016/j.cbpb.2010.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/29/2010] [Accepted: 01/30/2010] [Indexed: 10/19/2022]
Abstract
CmCatB, a cowpea bruchid cathepsin B-like cysteine protease, facilitates insects coping with dietary protease inhibitor challenge. Expression of recombinant CmCatB using a Pichia pastoris system yielded an enzymatically active protein that was heterogeneously glycosylated, migrating as a smear of > or =50kDa on SDS-PAGE. Treatment with peptide:N-glycosidase F indicated that N-glycosylation was predominant. CmCatB contains three N-glycosylation Asn-X-Ser/Thr consensus sequences. Simultaneously replacing all three Asn residues with Gln via site-directed mutagenesis did not result in completely unglycosylated protein, suggesting the existence of additional atypical glycosylation sites. We subsequently investigated potential N-glycosylation at the two Asn-X-Cys sites (Asn(100) and Asn(236)) in CmCatB. Asn to Gln substitution at Asn(100)-X-Cys on the background of the double mutation at the canonical sites (m1m2, Asn(97)-->Gln and Asn(207)-->Gln) resulted in a single discrete band on the gel, namely m1m2c1 (Asn(97)-->Gln, Asn(207)-->Gln and Asn(100)-->Gln). However, another triple mutant protein m1m2c2 (Asn(97)-->Gln, Asn(207)-->Gln and Asn(236)-->Gln) and quadruple mutant protein m1m2c1c2 were unable to be expressed in Pichia cells. Thus Asn(236) appears necessary for protein expression while Asn(100) is responsible for non-canonical glycosylation. Removal of carbohydrate moieties, particularly at Asn(100), substantially enhanced proteolytic activity but compromised protein stability. Thus, glycosylation could significantly impact biochemical properties of CmCatB.
Collapse
Affiliation(s)
- Yong Hun Chi
- Department of Entomology, Texas A&M University, College Station, 77843, USA
| | | | | | | | | | | | | |
Collapse
|
187
|
Kiggundu A, Muchwezi J, Van der Vyver C, Viljoen A, Vorster J, Schlüter U, Kunert K, Michaud D. Deleterious effects of plant cystatins against the banana weevil Cosmopolites sordidus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 73:87-105. [PMID: 20035549 DOI: 10.1002/arch.20342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The general potential of plant cystatins for the development of insect-resistant transgenic plants still remains to be established given the natural ability of several insects to compensate for the loss of digestive cysteine protease activities. Here we assessed the potential of cystatins for the development of banana lines resistant to the banana weevil Cosmopolites sordidus, a major pest of banana and plantain in Africa. Protease inhibitory assays were conducted with protein and methylcoumarin (MCA) peptide substrates to measure the inhibitory efficiency of different cystatins in vitro, followed by a diet assay with cystatin-infiltrated banana stem disks to monitor the impact of two plant cystatins, oryzacystatin I (OC-I, or OsCYS1) and papaya cystatin (CpCYS1), on the overall growth rate of weevil larvae. As observed earlier for other Coleoptera, banana weevils produce a variety of proteases for dietary protein digestion, including in particular Z-Phe-Arg-MCA-hydrolyzing (cathepsin L-like) and Z-Arg-Arg-MCA-hydrolyzing (cathepsin B-like) proteases active in mildly acidic conditions. Both enzyme populations were sensitive to the cysteine protease inhibitor E-64 and to different plant cystatins including OsCYS1. In line with the broad inhibitory effects of cystatins, OsCYS1 and CpCYS1 caused an important growth delay in young larvae developing for 10 days in cystatin-infiltrated banana stem disks. These promising results, which illustrate the susceptibility of C. sordidus to plant cystatins, are discussed in the light of recent hypotheses suggesting a key role for cathepsin B-like enzymes as a determinant for resistance or susceptibility to plant cystatins in Coleoptera.
Collapse
|
188
|
An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis. J Mol Biol 2010; 396:1211-26. [PMID: 20060836 DOI: 10.1016/j.jmb.2009.12.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/03/2009] [Accepted: 12/29/2009] [Indexed: 12/21/2022]
Abstract
Disulfide bond forming (Dsb) proteins ensure correct folding and disulfide bond formation of secreted proteins. Previously, we showed that Mycobacterium tuberculosis DsbE (Mtb DsbE, Rv2878c) aids in vitro oxidative folding of proteins. Here, we present structural, biochemical, and gene expression analyses of another putative Mtb secreted disulfide bond isomerase protein homologous to Mtb DsbE, Mtb DsbF (Rv1677). The X-ray crystal structure of Mtb DsbF reveals a conserved thioredoxin fold although the active-site cysteines may be modeled in both oxidized and reduced forms, in contrast to the solely reduced form in Mtb DsbE. Furthermore, the shorter loop region in Mtb DsbF results in a more solvent-exposed active site. Biochemical analyses show that, similar to Mtb DsbE, Mtb DsbF can oxidatively refold reduced, unfolded hirudin and has a comparable pK(a) for the active-site solvent-exposed cysteine. However, contrary to Mtb DsbE, the Mtb DsbF redox potential is more oxidizing and its reduced state is more stable. From computational genomics analysis of the M. tuberculosis genome, we identified a potential Mtb DsbF interaction partner, Rv1676, a predicted peroxiredoxin. Complex formation is supported by protein coexpression studies and inferred by gene expression profiles, whereby Mtb DsbF and Rv1676 are upregulated under similar environments. Additionally, comparison of Mtb DsbF and Mtb DsbE gene expression data indicates anticorrelated gene expression patterns, suggesting that these two proteins and their functionally linked partners constitute analogous pathways that may function under different conditions.
Collapse
|
189
|
Kinetoplastid papain-like cysteine peptidases. Mol Biochem Parasitol 2009; 167:12-9. [DOI: 10.1016/j.molbiopara.2009.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 11/17/2022]
|
190
|
Mirković B, Premzl A, Hodnik V, Doljak B, Jevnikar Z, Anderluh G, Kos J. Regulation of cathepsin B activity by 2A2 monoclonal antibody. FEBS J 2009; 276:4739-51. [PMID: 19656187 DOI: 10.1111/j.1742-4658.2009.07171.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cathepsin B (EC 3.4.22.1) is a lysosomal cysteine protease with both endopeptidase and exopeptidase activity. The former is associated with the degradation of the extracellular matrix proteins, which is a process required for tumour cell invasion and metastasis. In the present study, we show that 2A2 monoclonal antibody, raised by our group, is able to regulate cathepsin B activity. The EPGYSP sequence, located between amino acid residues 133-138 of cathepsin B in the proximity of the occluding loop, was determined to be the epitope for 2A2 monoclonal antibody using SPOT analysis. By surface plasmon resonance, an equilibrium dissociation constant (Kd) of 4.7 nM was determined for the interaction between the nonapeptide CIAEPGYSP, containing the epitope sequence, and 2A2 monoclonal antibody. 2A2 monoclonal antibody potentiated cathepsin B exopeptidase activity with a activation constant (Ka) of 22.3 nM, although simultaneously inhibiting its endopeptidase activity. The median inhibitory concentration values for the inhibition of hydrolysis of protein substrates, BODIPY FL casein and DQ-collagen IV were 761 and 702 nM, respectively. As observed by native gel electrophoresis and gel filtration, the binding of 2A2 monoclonal antibody to the cathepsin B/cystatin C complex caused the dissociation of cystatin C from the complex. The results obtained in the present study suggest that, upon binding, the 2A2 monoclonal antibody induces a conformational change in cathepsin B, stabilizing its exopeptidase conformation and thus disabling its harmful action associated with its endopeptidase activity.
Collapse
|
191
|
Hodder AN, Malby RL, Clarke OB, Fairlie WD, Colman PM, Crabb BS, Smith BJ. Structural insights into the protease-like antigen Plasmodium falciparum SERA5 and its noncanonical active-site serine. J Mol Biol 2009; 392:154-65. [PMID: 19591843 DOI: 10.1016/j.jmb.2009.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/30/2009] [Accepted: 07/02/2009] [Indexed: 11/16/2022]
Abstract
The sera genes of the malaria-causing parasite Plasmodium encode a family of unique proteins that are maximally expressed at the time of egress of parasites from infected red blood cells. These multi-domain proteins are unique, containing a central papain-like cysteine-protease fragment enclosed between the disulfide-linked N- and C-terminal domains. However, the central fragment of several members of this family, including serine repeat antigen 5 (SERA5), contains a serine (S596) in place of the active-site cysteine. Here we report the crystal structure of the central protease-like domain of Plasmodium falciparum SERA5, revealing a number of anomalies in addition to the putative nucleophilic serine: (1) the structure of the putative active site is not conducive to binding substrate in the canonical cysteine-protease manner; (2) the side chain of D594 restricts access of substrate to the putative active site; and (3) the S(2) specificity pocket is occupied by the side chain of Y735, reducing this site to a small depression on the protein surface. Attempts to determine the structure in complex with known inhibitors were not successful. Thus, despite having revealed its structure, the function of the catalytic domain of SERA5 remains an enigma.
Collapse
Affiliation(s)
- Anthony N Hodder
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
192
|
Beckham SA, Piedrafita D, Phillips CI, Samarawickrema N, Law RH, Smooker PM, Quinsey NS, Irving JA, Greenwood D, Verhelst SHL, Bogyo M, Turk B, Coetzer TH, Wijeyewickrema LC, Spithill TW, Pike RN. A major cathepsin B protease from the liver fluke Fasciola hepatica has atypical active site features and a potential role in the digestive tract of newly excysted juvenile parasites. Int J Biochem Cell Biol 2009; 41:1601-12. [PMID: 19401154 PMCID: PMC3514016 DOI: 10.1016/j.biocel.2009.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 02/05/2009] [Accepted: 02/08/2009] [Indexed: 10/21/2022]
Abstract
The newly excysted juvenile (NEJ) stage of the Fasciola hepatica lifecycle occurs just prior to invasion into the wall of the gut of the host, rendering it an important target for drug development. The cathepsin B enzymes from NEJ flukes have recently been demonstrated to be crucial to invasion and migration by the parasite. Here we characterize one of the cathepsin B enzymes (recombinant FhcatB1) from NEJ flukes. FhcatB1 has biochemical properties distinct from mammalian cathepsin B enzymes, with an atypical preference for Ile over Leu or Arg residues at the P(2) substrate position and an inability to act as an exopeptidase. FhcatB1 was active across a broad pH range (optimal activity at pH 5.5-7.0) and resistant to inhibition by cystatin family inhibitors from sheep and humans, suggesting that this enzyme would be able to function in extracellular environments in its mammalian hosts. It appears, however, that the FhcatB1 protease functions largely as a digestive enzyme in the gut of the parasite, due to the localization of a specific, fluorescently labeled inhibitor with an Ile at the P(2) position. Molecular modelling and dynamics were used to predict the basis for the unusual substrate specificity: a P(2) Ile residue positions the substrate optimally for interaction with catalytic residues of the enzyme, and the enzyme lacks an occluding loop His residue crucial for exopeptidase activity. The unique features of the enzyme, particularly with regard to its specificity and likely importance to a vital stage of the parasite's life cycle, make it an excellent target for therapeutic inhibitors or vaccination.
Collapse
Affiliation(s)
- Simone A. Beckham
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - David Piedrafita
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Carolyn I. Phillips
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Nirma Samarawickrema
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Ruby H.P. Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Peter M. Smooker
- School of Applied Sciences, RMIT, Bundoora, Victoria 3083, Australia
| | - Noelene S. Quinsey
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - James A. Irving
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Deanne Greenwood
- Centre for Animal Biotechnology, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Steven H. L. Verhelst
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Matthew Bogyo
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | - Boris Turk
- Department of Biochemistry and Structural and Molecular Biology, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Theresa H. Coetzer
- School of Biochemistry, Genetics, Microbiology & Plant Pathology, University of KwaZulu-Natal (Pietermaritzburg campus), Private bag X01, Scottsville 3209, South Africa
| | - Lakshmi C. Wijeyewickrema
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Terry W. Spithill
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Robert N. Pike
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
193
|
Serbielle C, Moreau S, Veillard F, Voldoire E, Bézier A, Mannucci MA, Volkoff AN, Drezen JM, Lalmanach G, Huguet E. Identification of parasite-responsive cysteine proteases inManduca sexta. Biol Chem 2009; 390:493-502. [DOI: 10.1515/bc.2009.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractParasites have evolved different virulence strategies to manipulate host physiological functions. The parasitoid waspCotesia congregatainduces developmental arrest and immune suppression of its Lepidopteran hostManduca sexta. In this interaction, a symbiotic virus (C. congregataBracovirus, CcBV) associated with the wasp is essential for parasitism success. The virus is injected into the host with wasp eggs and virus genes are expressed in host tissues. Among potential CcBV virulence genes, cystatins, which are tight binding inhibitors of C1A cysteine proteases, are suspected to play an important role in the interaction owing to their high level of expression. So far, however, potentialin vivotargets inM. sextaare unknown. Here, we characterized for the first time fourM. sextaC1A cysteine proteases corresponding to cathepsin L and cathepsin B and two different ‘26–29 kDa’ cysteine proteases (MsCath1 and MsCath2). Our analyses revealed that MsCath1 and MsCath2 are transcriptionally downregulated in the course of parasitism. Moreover, viral Cystatin1 and MsCath1 co-localize in the plasma following parasitism, strongly suggesting that they interact. We also show that parasitism induces a general increase of cysteine protease activity which is later controlled. The potential involvement of cysteine proteases in defense against parasitoids is discussed.
Collapse
Affiliation(s)
- Céline Serbielle
- Institut de Recherche sur la Biologie de l'Insecte, Université François Rabelais, UMR CNRS 6035, Faculté des Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| | - Sébastien Moreau
- Institut de Recherche sur la Biologie de l'Insecte, Université François Rabelais, UMR CNRS 6035, Faculté des Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| | - Florian Veillard
- INSERM U 618 ‘Protéases et Vectorisation Pulmonaires’ IFR 135 ‘Imagerie Fonctionnelle’, Université François Rabelais, Faculté de Médecine, 10 Boulevard Tonnellé, F-37032 Tours cedex, France
| | - Emilien Voldoire
- Institut de Recherche sur la Biologie de l'Insecte, Université François Rabelais, UMR CNRS 6035, Faculté des Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, Université François Rabelais, UMR CNRS 6035, Faculté des Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| | - Marie-Anne Mannucci
- Biologie Intégrative et Virologie des Insectes, UMR1231 INRA – Université Montpellier II, Place Eugène Bataillon, F-34095 Montpellier cedex, France
| | - Anne-Nathalie Volkoff
- Biologie Intégrative et Virologie des Insectes, UMR1231 INRA – Université Montpellier II, Place Eugène Bataillon, F-34095 Montpellier cedex, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, Université François Rabelais, UMR CNRS 6035, Faculté des Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| | - Gilles Lalmanach
- INSERM U 618 ‘Protéases et Vectorisation Pulmonaires’ IFR 135 ‘Imagerie Fonctionnelle’, Université François Rabelais, Faculté de Médecine, 10 Boulevard Tonnellé, F-37032 Tours cedex, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, Université François Rabelais, UMR CNRS 6035, Faculté des Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| |
Collapse
|
194
|
Kašný M, Mikeš L, Hampl V, Dvořák J, Caffrey CR, Dalton JP, Horák P. Chapter 4 Peptidases of Trematodes. ADVANCES IN PARASITOLOGY 2009; 69:205-97. [DOI: 10.1016/s0065-308x(09)69004-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
195
|
Tsuji A, Kikuchi Y, Ogawa K, Saika H, Yuasa K, Nagahama M. Purification and characterization of cathepsin B-like cysteine protease from cotyledons of daikon radish, Raphanus sativus. FEBS J 2008; 275:5429-43. [PMID: 18959767 DOI: 10.1111/j.1742-4658.2008.06674.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Plant cathepsin B-like cysteine protease (CBCP) plays a role in disease resistance and in protein remobilization during germination. The ability of animal cathepsin B to function as a dipeptidyl carboxypeptidase has been attributed to the presence of a dihistidine (His110-His111) motif in the occluding loop, which represents a unique structure of cathepsin B. However, a dihistidine motif is not present in the predicted sequence of the occluding loop of plant CBCP, as determined from cDNA sequence analysis, and the loop is shorter. In an effort to investigate the enzymatic properties of plant CBCP, which possesses the unusual occluding loop, we have purified CBCP from the cotyledons of daikon radish (Raphanus sativus) by chromatography through Sephacryl S-200, DEAE-cellulose, hydroxyapatite and organomercurial-Sepharose. The molecular mass of the enzyme was estimated to be 28 kDa by SDS/PAGE under reducing conditions. The best synthetic substrate for CBCP was t-butyloxycarbonyl Leu-Arg-Arg-4-methylcoumaryl 7-amide, as is the case with human cathepsin B. However, the endopeptidase activity of CBCP towards glucagon and adrenocorticotropic hormone showed broad cleavage specificity. Human cathepsin B preferentially cleaves model peptides via its dipeptidyl carboxypeptidase activity, whereas daikon CBCP displays both endopeptidase and exopeptidase activities. In addition, CBCP was found to display carboxymonopeptidase activity against the substrate o-aminobenzoyl-Phe-Arg-Phe(4-NO(2)). Daikon CBCP is less sensitive (1/7000) to CA-074 than human cathepsin B. Expression analysis of CBCP at the protein and RNA levels indicated that daikon CBCP activity in cotyledons is regulated by post-transcriptional events during germination.
Collapse
Affiliation(s)
- Akihiko Tsuji
- Department of Biological Science and Technology, University of Tokushima Graduate School, Japan.
| | | | | | | | | | | |
Collapse
|
196
|
Takeuchi Y, Fujiwara T, Shimone Y, Miyataka H, Satoh T, Kirk KL, Hori H. Possible involvement of radical intermediates in the inhibition of cysteine proteases by allenyl esters and amides. Bioorg Med Chem Lett 2008; 18:6202-5. [PMID: 18951789 PMCID: PMC2607570 DOI: 10.1016/j.bmcl.2008.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 09/08/2008] [Accepted: 10/01/2008] [Indexed: 11/30/2022]
Abstract
In order to investigate crystallographically the mechanism of inhibition of cysteine protease by alpha-methyl-gamma,gamma-diphenylallenecarboxylic acid ethyl ester 3, a cysteine protease inhibitor having in vivo stability, we synthesized N-(alpha-methyl-gamma,gamma-diphenylallenecarbonyl)-L-phenylalanine ethyl ester 4. Reaction of 4 with thiophenol, the SH group of which has similar pK(a) value to that of cysteine protease, produced oxygen-mediated radical adducts 6 and 7 in ambient air but did not proceed under oxygen-free conditions. Catalytic activities of two thiol enzymes including cathepsin B were also lowered in the absence of oxygen. These results suggest that cysteine protease can act through an oxygen-dependent radical mechanism.
Collapse
Affiliation(s)
- Yoshio Takeuchi
- Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan.
| | | | | | | | | | | | | |
Collapse
|
197
|
Zhang FT, Zhang YB, Chen YD, Zhu R, Dong CW, Li YY, Zhang QY, Gui JF. Expressional induction of Paralichthys olivaceus cathepsin B gene in response to virus, poly I:C and lipopolysaccharide. FISH & SHELLFISH IMMUNOLOGY 2008; 25:542-549. [PMID: 18755278 PMCID: PMC7111675 DOI: 10.1016/j.fsi.2008.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 07/27/2008] [Accepted: 07/30/2008] [Indexed: 05/26/2023]
Abstract
Cathepsin B is a lysosomal cysteine protease of the papain-like enzyme family with multiple biological functions. In this study, Paralichthys olivaceus cathepsin B (PoCatB) cDNA was isolated from flounder embryonic cells (FEC) treated with UV-inactivated grass carp hemorrhage virus (GCHV) and subsequently identified as a virally induced gene. The full length cDNA of PoCatB is 1801bp encoding 330-amino acids. The deduced protein has high homology to all known cathepsin B proteins, containing an N-terminal signal peptide, cysteine protease active sites, the occluding loop segment and a glycosylation site, all of which are conserved in the cathepsin B family. PoCatB transcription of FEC cells could be induced by turbot (Scophthalmus maximus) rhabdovirus (SMRV), UV-inactivated SMRV, UV-inactivated GCHV, poly I:C or lipopolysaccharide (LPS), and SMRV or poly I:C was revealed to be most effective among the five inducers. In normal flounder, PoCatB mRNA was detectable in all examined tissues. Moreover, SMRV infection could result in significant upregulation of PoCatB mRNA, predominantly in spleen, head kidney, posterior kidney, intestine, gill and muscle with 18.2, 10.9, 24.7, 12, 31.5 and 18 fold increases at 72h post-infection respectively. These results provided the first evidence for the transcriptional induction of cathepsin B in fish by virus and LPS, indicating existence of a novel function in viral defense.
Collapse
Affiliation(s)
- Fu-Tie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Pongsomboon S, Wongpanya R, Tang S, Chalorsrikul A, Tassanakajon A. Abundantly expressed transcripts in the lymphoid organ of the black tiger shrimp, Penaeus monodon, and their implication in immune function. FISH & SHELLFISH IMMUNOLOGY 2008; 25:485-493. [PMID: 18692576 DOI: 10.1016/j.fsi.2008.07.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/26/2023]
Abstract
The lymphoid organ of penaeid shrimps is proposed to play an important role in the innate immune system. To investigate the potential immune function of the lymphoid organ, we analyzed the expressed genes from the lymphoid organ of normal and Vibrio harveyi-infected Penaeus monodon using an expressed sequence tag (EST) approach. Sequence analysis of the EST clones derived from the two lymphoid organ cDNA libraries (408 clones from the normal and 625 clones from the infected libraries), revealed a high redundancy of specific transcripts. Transcripts of the lysosomal cysteine proteinases, cathepsins B and L, were abundantly expressed in the lymphoid organ of both libraries, whilst the transcripts of the related genes peritrophin and thrombospondin predominated and were found only in the V. harveyi-infected library, making them interesting candidate functional genes. Moreover, immune-related genes were found at a significant proportion (approximately 15%) in both normal and infected libraries, but different expressed genes were observed between the two libraries. The expression levels of P. monodon cathepsins B and L in the lymphoid organ following injection with either V. harveyi or white spot syndrome virus (WSSV) showed only a slight change in the transcript abundance compared to that seen in the mock-infection (control). Immunohistochemistry confirmed that cathepsin L protein was localized in the lymphoid organ with intense cathepsin L staining observed in the lymphoid organ spheroids of WSSV-infected shrimps. The results suggest that cathepsins L and B likely play a major role in the lymphoid organ function and are probably implicated in degradation of foreign material that is sequestrated in the lymphoid organ spheroids, although any additional role in control of viral or cellular mediated apoptosis remains to be evaluated.
Collapse
Affiliation(s)
- Siriporn Pongsomboon
- Shrimp Molecular Biology and Genomics Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | |
Collapse
|
199
|
Schenker P, Alfarano P, Kolb P, Caflisch A, Baici A. A double-headed cathepsin B inhibitor devoid of warhead. Protein Sci 2008; 17:2145-55. [PMID: 18796695 DOI: 10.1110/ps.037341.108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Most synthetic inhibitors of peptidases have been targeted to the active site for inhibiting catalysis through reversible competition with the substrate or by covalent modification of catalytic groups. Cathepsin B is unique among the cysteine peptidase for the presence of a flexible segment, known as the occluding loop, which can block the primed subsites of the substrate binding cleft. With the occluding loop in the open conformation cathepsin B acts as an endopeptidase, and it acts as an exopeptidase when the loop is closed. We have targeted the occluding loop of human cathepsin B at its surface, outside the catalytic center, using a high-throughput docking procedure. The aim was to identify inhibitors that would interact with the occluding loop thereby modulating enzyme activity without the help of chemical warheads against catalytic residues. From a large library of compounds, the in silico approach identified [2-[2-(2,4-dioxo-1,3-thiazolidin-3-yl)ethylamino]-2-oxoethyl] 2-(furan-2-carbonylamino) acetate, which fulfills the working hypothesis. This molecule possesses two distinct binding moieties and behaves as a reversible, double-headed competitive inhibitor of cathepsin B by excluding synthetic and protein substrates from the active center. The kinetic mechanism of inhibition suggests that the occluding loop is stabilized in its closed conformation, mainly by hydrogen bonds with the inhibitor, thus decreasing endoproteolytic activity of the enzyme. Furthermore, the dioxothiazolidine head of the compound sterically hinders binding of the C-terminal residue of substrates resulting in inhibition of the exopeptidase activity of cathepsin B in a physiopathologically relevant pH range.
Collapse
Affiliation(s)
- Patricia Schenker
- Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
200
|
Ranjit N, Zhan B, Stenzel DJ, Mulvenna J, Fujiwara R, Hotez PJ, Loukas A. A family of cathepsin B cysteine proteases expressed in the gut of the human hookworm, Necator americanus. Mol Biochem Parasitol 2008; 160:90-9. [DOI: 10.1016/j.molbiopara.2008.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 12/01/2022]
|