151
|
Abstract
hnRNP A1 binds to RNA in a cooperative manner. Initial hnRNP A1 binding to an exonic splicing silencer at the 3' end of human immunodeficiency virus type 1 (HIV-1) tat exon 3, which is a high-affinity site, is followed by cooperative spreading in a 3'-to-5' direction. As hnRNP A1 propagates toward the 5' end of the exon, it antagonizes binding of a serine/arginine-rich (SR) protein to an exonic splicing enhancer, thereby inhibiting splicing at that exon's alternative 3' splice site. tat exon 3 and the preceding intron of HIV-1 pre-mRNA can fold into an elaborate RNA secondary structure in solution, which could potentially influence hnRNP A1 binding. We report here that hnRNP A1 binding and splicing repression can occur on an unstructured RNA. Moreover, hnRNP A1 can effectively unwind an RNA hairpin upon binding, displacing a bound protein. We further show that hnRNP A1 can also spread in a 5'-to-3' direction, although when initial binding takes place in the middle of an RNA, spreading preferentially proceeds in a 3'-to-5' direction. Finally, when two distant high-affinity sites are present on the same RNA, they facilitate cooperative spreading of hnRNP A1 between the two sites.
Collapse
|
152
|
Luke B, Lingner J. TERRA: telomeric repeat-containing RNA. EMBO J 2009; 28:2503-10. [PMID: 19629047 PMCID: PMC2722245 DOI: 10.1038/emboj.2009.166] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 05/25/2009] [Indexed: 02/06/2023] Open
Abstract
Telomeres, the physical ends of eukaryotic chromosomes, consist of tandem arrays of short DNA repeats and a large set of specialized proteins. A recent analysis has identified telomeric repeat-containing RNA (TERRA), a large non-coding RNA in animals and fungi, which forms an integral component of telomeric heterochromatin. TERRA transcription occurs at most or all chromosome ends and it is regulated by RNA surveillance factors and in response to changes in telomere length. TERRA functions that are emerging suggest important roles in the regulation of telomerase and in orchestrating chromatin remodelling throughout development and cellular differentiation. The accumulation of TERRA at telomeres can also interfere with telomere replication, leading to a sudden loss of telomere tracts. Such a phenotype can be observed upon impairment of the RNA surveillance machinery or in cells from ICF (Immunodeficiency, Centromeric region instability, Facial anomalies) patients, in which TERRA is upregulated because of DNA methylation defects in the subtelomeric region. Thus, TERRA may mediate several crucial functions at the telomeres, a region of the genome that had been considered to be transcriptionally silent.
Collapse
Affiliation(s)
- Brian Luke
- EPFL-Ecole Polytechnique Fédérale de Lausanne, ISREC-Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | | |
Collapse
|
153
|
Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates. PLoS One 2009; 4:e5800. [PMID: 19495418 PMCID: PMC2686173 DOI: 10.1371/journal.pone.0005800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 05/12/2009] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans) factors that bind to different sequence (cis) elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex ‘splicing code’. Many cis-elements have been identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs) on exon inclusion levels in human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5′ splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the effect of SNPs on splicing in human disease.
Collapse
|
154
|
Enhanced exon-skipping induced by U7 snRNA carrying a splicing silencer sequence: Promising tool for DMD therapy. Mol Ther 2009; 17:1234-40. [PMID: 19455105 DOI: 10.1038/mt.2009.113] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. In most cases, the open-reading frame is disrupted which results in the absence of functional protein. Antisense-mediated exon skipping is one of the most promising approaches for the treatment of DMD and has recently been shown to correct the reading frame and restore dystrophin expression in vitro and in vivo. Specific exon skipping can be achieved using synthetic oligonucleotides or viral vectors encoding modified small nuclear RNAs (snRNAs), by masking important splicing sites. In this study, we demonstrate that enhanced exon skipping can be induced by a U7 snRNA carrying binding sites for the heterogeneous ribonucleoprotein A1 (hnRNPA1). In DMD patient cells, bifunctional U7 snRNAs harboring silencer motifs induce complete skipping of exon 51, and thus restore dystrophin expression to near wild-type levels. Furthermore, we show the efficacy of these constructs in vivo in transgenic mice carrying the entire human DMD locus after intramuscular injection of adeno-associated virus (AAV) vectors encoding the bifunctional U7 snRNA. These new constructs are very promising for the optimization of therapeutic exon skipping for DMD, but also offer powerful and versatile tools to modulate pre-mRNA splicing in a wide range of applications.
Collapse
|
155
|
Millevoi S, Bernat S, Telly D, Fouque F, Gladieff L, Favre G, Vagner S, Toulas C. The c.5242C>A BRCA1 missense variant induces exon skipping by increasing splicing repressors binding. Breast Cancer Res Treat 2009; 120:391-9. [PMID: 19404736 DOI: 10.1007/s10549-009-0392-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 03/28/2009] [Indexed: 02/02/2023]
Abstract
Several unclassified variants (UV) of BRCA1 can be deleterious by affecting normal pre-mRNA splicing. Here, we investigated the consequences at the mRNA level of the frequently encountered c.5242C>A UV in BRCA1 exon 18. We show that the c.5242C>A variant induces skipping of exon 18 in UV carriers and in vitro. This alteration predicted to disrupt the first BRCT domain of BRCA1. We show that two splicing repressors, hnRNP A1 and hnRNP H/F, display a significant preference toward binding with the mutated exon 18 and assemble into a protein complex. Sequence analysis of the region surrounding the c.5242C>A change reveals the presence of hnRNP A1 and hnRNP H/F binding sites, which are modified by several UVs. Mutation of these sites alters the RNA binding ability of both splicing regulators. In conclusion, our work supports the model of the pathogenicity of the c.5242C>A BRCA1 variant that induces exon skipping by creating a sequence with silencer properties. We propose that other UVs in exon 18 interfere with splicing complex assembly by perturbing the binding of hnRNP A1 and hnRNP H/F to their respective cis-elements. RNA analysis is therefore necessary for the assessment of the consequences of UVs on splicing of disease-associated genes and to enable adequate genetic counseling for breast/ovarian cancer families.
Collapse
Affiliation(s)
- Stefania Millevoi
- INSERM U563, Institut Claudius Regaud, 20-24 rue du Pont St Pierre, 31052, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Ji Y, Tulin AV. Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins modulates splicing. Nucleic Acids Res 2009; 37:3501-13. [PMID: 19346337 PMCID: PMC2699505 DOI: 10.1093/nar/gkp218] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The biological functions of poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins (hnRNPs) are not well understood. However, it is known that hnRNPs are involved in the regulation of alternative splicing for many genes, including the Ddc gene in Drosophila. Therefore, we first confirmed that poly(ADP-ribose) (pADPr) interacts with two Drosophila hnRNPs, Squid/hrp40 and Hrb98DE/hrp38, and that this function is regulated by Poly(ADP-ribose) Polymerase 1 (PARP1) and Poly(ADP-ribose) Glycohydrolase (PARG) in vivo. These findings then provided a basis for analyzing the role of pADPr binding to these two hnRNPs in terms of alternative splicing regulation. Our results showed that Parg null mutation does cause poly(ADP-ribosyl)ation of Squid and hrp38 protein, as well as their dissociation from active chromatin. Our data also indicated that pADPr binding to hnRNPs inhibits the RNA-binding ability of hnRNPs. Following that, we demonstrated that poly(ADP-ribosyl)ation of Squid and hrp38 proteins inhibits splicing of the intron in the Hsrω-RC transcript, but enhances splicing of the intron in the Ddc pre-mRNA. Taken together, these findings suggest that poly(ADP-ribosyl)ation regulates the interaction between hnRNPs and RNA and thus modulates the splicing pathways.
Collapse
Affiliation(s)
| | - Alexei V. Tulin
- *To whom correspondence should be addressed. Tel: +1 215 728 7408; Fax: +1 215 728 2412;
| |
Collapse
|
157
|
Hirschfeld M, zur Hausen A, Bettendorf H, Jäger M, Stickeler E. Alternative splicing of Cyr61 is regulated by hypoxia and significantly changed in breast cancer. Cancer Res 2009; 69:2082-90. [PMID: 19244129 DOI: 10.1158/0008-5472.can-08-1997] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia is known to induce the transcriptional activation of pathways involved in angiogenesis, growth factor signaling, and tissue invasion and is therefore a potential key regulator of tumor growth. Cyr61 (cysteine rich 61) is a secreted, matricellular protein with proangiogenic capabilities and is transcriptionally induced under hypoxic conditions. High expression levels of Cyr61 were already detected in various cancer types and linked to tumor progression and advanced stages in breast cancer. Besides hypoxia, there is some evidence that posttranscriptional pre-mRNA processing could be involved in the regulation of Cyr61 expression, but was thus far not investigated. We studied the expression pattern of Cyr61 mRNA and protein in breast cancer cell lines as well as in matched pairs of noncancerous breast tissue, preinvasive lesions, and invasive breast cancers, respectively. In addition, we analyzed the potential regulatory capability of hypoxia on Cyr61 expression by functional tissue culture experiments. Our study revealed a stage-dependent induction of Cyr61 mRNA and protein in breast cancer tumorigenesis and for the first time alternative splicing of the Cyr61 gene due to intron retention. Breast carcinogenesis was accompanied by a shift from an intron 3 retaining toward an intron 3 skipping mRNA phenotype consecutively leading to processing of the biological active Cyr61 protein. The functional analyses strongly emphasize that hypoxia serves as a specific inducer of alternative Cyr61 splicing toward the intron skipping mRNA isoform with potential biological consequences in tumor cells.
Collapse
Affiliation(s)
- Marc Hirschfeld
- Department of Obstetrics and Gynecology and Institute of Pathology, Freiburg University Medical Center, Freiburg, Germany
| | | | | | | | | |
Collapse
|
158
|
Drosophila hnRNP A1 homologs Hrp36/Hrp38 enhance U2-type versus U12-type splicing to regulate alternative splicing of the prospero twintron. Proc Natl Acad Sci U S A 2009; 106:2577-82. [PMID: 19196985 DOI: 10.1073/pnas.0812826106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During Drosophila embryogenesis, the transcription factor Prospero is critical for neuronal differentiation and axonal outgrowth. The prospero pre-mRNA undergoes alternative splicing, but is unique in that it harbors a rare twintron whereby one intron lies embedded within another. The innermost intron is excised by the major U2-type spliceosome and the outermost is excised by the minor U12-type spliceosome. Previously, an intronic purine-rich element (PRE) was identified as an enhancer of both U2- and U12-type splicing, with a greater effect on the U2-type pathway. We find that the PRE binds Drosophila homologs of heterogeneous nuclear ribonucleoprotein (hnRNP) A1, Hrp38 and Hrp36. RNAi-mediated knockdown of these proteins in S2 cells specifically decreases U2-type splicing of the twintron, which is surprising because hnRNPs usually are repressive. Conversely, tethering Hrp38 to the twintron increases U2-type splicing. Thus, developmentally regulated alternative splicing of the prospero twintron can be explained by documented changes in the abundance of these hnRNP A1-like proteins during embryogenesis.
Collapse
|
159
|
Yang HT, Peggie M, Cohen P, Rousseau S. DAZAP1 interacts via its RNA-recognition motifs with the C-termini of other RNA-binding proteins. Biochem Biophys Res Commun 2009; 380:705-9. [PMID: 19285026 DOI: 10.1016/j.bbrc.2009.01.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 12/01/2022]
Abstract
The turnover and translation of many human mRNAs is regulated by AU-rich elements present in their 3?untranslated region, which bind various trans acting factors. We previously identified a trans acting factor that interacts with these cis elements as DAZAP1 (deleted in Azoospermia (DAZ)-Associated Protein 1), whose interaction with the germ cell-specific protein DAZ was disrupted by the phosphorylation of DAZAP1. Here we have identified several other RNA-binding proteins as binding partners for DAZAP1 in non-germinal cells. Unlike DAZ, these interactions occur between the RNA recognition motifs of DAZAP1 and the C-termini of the binding partners and in a phosphorylation-independent manner. The results suggest that DAZAP1 is a component of complexes that are crucial for the degradation and silencing of mRNA.
Collapse
Affiliation(s)
- Huei-Ting Yang
- MRC Protein Phosphorylation Unit, Sir James Black Centre, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | | | | | | |
Collapse
|
160
|
Divina P, Kvitkovicova A, Buratti E, Vorechovsky I. Ab initio prediction of mutation-induced cryptic splice-site activation and exon skipping. Eur J Hum Genet 2009; 17:759-65. [PMID: 19142208 DOI: 10.1038/ejhg.2008.257] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations that affect splicing of precursor messenger RNAs play a major role in the development of hereditary diseases. Most splicing mutations have been found to eliminate GT or AG dinucleotides that define the 5' and 3' ends of introns, leading to exon skipping or cryptic splice-site activation. Although accurate description of the mis-spliced transcripts is critical for predicting phenotypic consequences of these alterations, their exact nature in affected individuals cannot often be determined experimentally. Using a comprehensive collection of exons that sustained cryptic splice-site activation or were skipped as a result of splice-site mutations, we have developed a multivariate logistic discrimination procedure that distinguishes the two aberrant splicing outcomes from DNA sequences. The new algorithm was validated using an independent sample of exons and implemented as a free online utility termed CRYP-SKIP (http://www.dbass.org.uk/cryp-skip/). The web application takes up one or more mutated alleles, each consisting of one exon and flanking intronic sequences, and provides a list of important predictor variables and their values, the overall probability of activating cryptic splice vs exon skipping, and the location and intrinsic strength of predicted cryptic splice sites in the input sequence. These results will facilitate phenotypic prediction of splicing mutations and provide further insights into splicing enhancer and silencer elements and their relative importance for splice-site selection in vivo.
Collapse
Affiliation(s)
- Petr Divina
- Division of Human Genetics, University of Southampton School of Medicine, Southampton, UK
| | | | | | | |
Collapse
|
161
|
Yu Y, Maroney PA, Denker JA, Zhang XHF, Dybkov O, Lührmann R, Jankowsky E, Chasin LA, Nilsen TW. Dynamic regulation of alternative splicing by silencers that modulate 5' splice site competition. Cell 2009; 135:1224-36. [PMID: 19109894 DOI: 10.1016/j.cell.2008.10.046] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 08/20/2008] [Accepted: 10/29/2008] [Indexed: 12/23/2022]
Abstract
Alternative splicing makes a major contribution to proteomic diversity in higher eukaryotes with approximately 70% of genes encoding two or more isoforms. In most cases, the molecular mechanisms responsible for splice site choice remain poorly understood. Here, we used a randomization-selection approach in vitro to identify sequence elements that could silence a proximal strong 5' splice site located downstream of a weakened 5' splice site. We recovered two exonic and four intronic motifs that effectively silenced the proximal 5' splice site both in vitro and in vivo. Surprisingly, silencing was only observed in the presence of the competing upstream 5' splice site. Biochemical evidence strongly suggests that the silencing motifs function by altering the U1 snRNP/5' splice site complex in a manner that impairs commitment to specific splice site pairing. The data indicate that perturbations of non-rate-limiting step(s) in splicing can lead to dramatic shifts in splice site choice.
Collapse
Affiliation(s)
- Yang Yu
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Michlewski G, Guil S, Semple CA, Cáceres JF. Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell 2008; 32:383-93. [PMID: 18995836 PMCID: PMC2631628 DOI: 10.1016/j.molcel.2008.10.013] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 08/27/2008] [Accepted: 10/16/2008] [Indexed: 01/07/2023]
Abstract
We recently found that hnRNP A1, a protein implicated in many aspects of RNA processing, acts as an auxiliary factor for the Drosha-mediated processing of a microRNA precursor, pri-miR-18a. Here, we provide the mechanism by which hnRNP A1 regulates this event. We show that hnRNP A1 binds to the loop of pri-miR-18a and induces a relaxation at the stem, creating a more favorable cleavage site for Drosha. We found that approximately 14% of all pri-miRNAs have highly conserved loops, which we predict act as landing pads for trans-acting factors influencing miRNA processing. In agreement, we show that 2′O-methyl oligonucleotides targeting conserved loops (LooptomiRs) abolish miRNA processing in vitro. Furthermore, we present evidence to support an essential role of conserved loops for pri-miRNA processing. Altogether, these data suggest the existence of auxiliary factors for the processing of specific miRNAs, revealing an additional level of complexity for the regulation of miRNA biogenesis.
Collapse
Affiliation(s)
- Gracjan Michlewski
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK
| | | | | | | |
Collapse
|
163
|
Nicholls CD, Beattie TL. Multiple factors influence the normal and UV-inducible alternative splicing of PIG3. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:838-49. [DOI: 10.1016/j.bbagrm.2008.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 08/15/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
|
164
|
Zhao TT, Graber TE, Jordan LE, Cloutier M, Lewis SM, Goulet I, Côté J, Holcik M. hnRNP A1 regulates UV-induced NF-κB signalling through destabilization of cIAP1 mRNA. Cell Death Differ 2008; 16:244-52. [DOI: 10.1038/cdd.2008.146] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
165
|
Venables JP, Koh CS, Froehlich U, Lapointe E, Couture S, Inkel L, Bramard A, Paquet ER, Watier V, Durand M, Lucier JF, Gervais-Bird J, Tremblay K, Prinos P, Klinck R, Elela SA, Chabot B. Multiple and specific mRNA processing targets for the major human hnRNP proteins. Mol Cell Biol 2008; 28:6033-43. [PMID: 18644864 PMCID: PMC2547008 DOI: 10.1128/mcb.00726-08] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 05/30/2008] [Accepted: 07/11/2008] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing is a key mechanism regulating gene expression, and it is often used to produce antagonistic activities particularly in apoptotic genes. Heterogeneous nuclear ribonucleoparticle (hnRNP) proteins form a family of RNA-binding proteins that coat nascent pre-mRNAs. Many but not all major hnRNP proteins have been shown to participate in splicing control. The range and specificity of hnRNP protein action remain poorly documented, even for those affecting splice site selection. We used RNA interference and a reverse transcription-PCR screening platform to examine the implications of 14 of the major hnRNP proteins in the splicing of 56 alternative splicing events in apoptotic genes. Out of this total of 784 alternative splicing reactions tested in three human cell lines, 31 responded similarly to a knockdown in at least two different cell lines. On the other hand, the impact of other hnRNP knockdowns was cell line specific. The broadest effects were obtained with hnRNP K and C, two proteins whose role in alternative splicing had not previously been firmly established. Different hnRNP proteins affected distinct sets of targets with little overlap even between closely related hnRNP proteins. Overall, our study highlights the potential contribution of all of these major hnRNP proteins in alternative splicing control and shows that the targets for individual hnRNP proteins can vary in different cellular contexts.
Collapse
Affiliation(s)
- Julian P Venables
- Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, 3001, 12th Avenue Nord, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Mutation of mapped TIA-1/TIAR binding sites in the 3' terminal stem-loop of West Nile virus minus-strand RNA in an infectious clone negatively affects genomic RNA amplification. J Virol 2008; 82:10657-70. [PMID: 18768985 DOI: 10.1128/jvi.00991-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previous data showed that the cellular proteins TIA-1 and TIAR bound specifically to the West Nile virus 3' minus-strand stem-loop [WNV3'(-)SL] RNA (37) and colocalized with flavivirus replication complexes in WNV- and dengue virus-infected cells (21). In the present study, the sites on the WNV3'(-)SL RNA required for efficient in vitro T-cell intracellular antigen-related (TIAR) and T-cell intracellular antigen-1 (TIA-1) protein binding were mapped to short AU sequences (UAAUU) located in two internal loops of the WNV3'(-)SL RNA structure. Infectious clone RNAs with all or most of the binding site nucleotides in one of the 3' (-)SL loops deleted or substituted did not produce detectable virus after transfection or subsequent passage. With one exception, deletion/mutation of a single terminal nucleotide in one of the binding sequences had little effect on the efficiency of protein binding or virus production, but mutation of a nucleotide in the middle of a binding sequence reduced both the in vitro protein binding efficiency and virus production. Plaque size, intracellular genomic RNA levels, and virus production progressively decreased with decreasing in vitro TIAR/TIA-1 binding activity, but the translation efficiency of the various mutant RNAs was similar to that of the parental RNA. Several of the mutant RNAs that inefficiently interacted with TIAR/TIA-1 in vitro rapidly reverted in vivo, indicating that they could replicate at a low level and suggesting that an interaction between TIAR/TIA-1 and the viral 3'(-)SL RNA is not required for initial low-level symmetric RNA replication but instead facilitates the subsequent asymmetric amplification of genome RNA from the minus-strand template.
Collapse
|
167
|
Jo OD, Martin J, Bernath A, Masri J, Lichtenstein A, Gera J. Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c-myc internal ribosome entry site function through Akt signaling. J Biol Chem 2008; 283:23274-87. [PMID: 18562319 DOI: 10.1074/jbc.m801185200] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translation of the cyclin D1 and c-myc mRNAs occurs via internal ribosome entry site (IRES)-mediated initiation under conditions of reduced eIF-4F complex formation and Akt activity. Here we identify hnRNP A1 as an IRES trans-acting factor that regulates cyclin D1 and c-myc IRES activity, depending on the Akt status of the cell. hnRNP A1 binds both IRESs in vitro and in intact cells and enhances in vitro IRES-dependent reporter expression. Akt regulates this IRES activity by inducing phosphorylation of hnRNP A1 on serine 199. Serine 199-phosphorylated hnRNP A1 binds to the IRESs normally but is unable to support IRES activity in vitro. Reducing expression levels of hnRNP A1 or overexpressing a dominant negative version of the protein markedly inhibits rapamycin-stimulated IRES activity in cells and correlated with redistribution of cyclin D1 and c-myc transcripts from heavy polysomes to monosomes. Importantly, knockdown of hnRNP A1 also renders quiescent Akt-containing cells sensitive to rapamycin-induced G(1) arrest. These results support a role for hnRNP A1 in mediating rapamycin-induced alterations of cyclin D1 and c-myc IRES activity in an Akt-dependent manner and provide the first direct link between Akt and the regulation of IRES activity.
Collapse
Affiliation(s)
- Oak D Jo
- Department of Research and Development, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California 91343, USA
| | | | | | | | | | | |
Collapse
|
168
|
Skoko N, Baralle M, Buratti E, Baralle FE. The pathological splicing mutation c.6792C>G in NF1 exon 37 causes a change of tenancy between antagonistic splicing factors. FEBS Lett 2008; 582:2231-6. [PMID: 18503770 DOI: 10.1016/j.febslet.2008.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/12/2008] [Accepted: 05/14/2008] [Indexed: 11/25/2022]
Abstract
We have previously identified an ESE in NF1 exon 37 whose disruption by the pathological mutation c.6792C>G caused aberrant splicing. We now investigate the RNA-protein complexes affected by the c.6792C>G mutation observing that this concurrently decreases the affinity for the positive splicing factor YB-1 and increases the affinity for the negative splicing factors, hnRNPA1, hnRNPA2 and a new player in these type of complexes, DAZAP1. Our findings highlight the complexity of the interplay between positive and negative factors in the exon inclusion/skipping outcome. Furthermore, our observations stress the role of a wide genomic context in NF1 exon 37 definition.
Collapse
Affiliation(s)
- Natasa Skoko
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, Trieste, Italy
| | | | | | | |
Collapse
|
169
|
Binding of DAZAP1 and hnRNPA1/A2 to an exonic splicing silencer in a natural BRCA1 exon 18 mutant. Mol Cell Biol 2008; 28:3850-60. [PMID: 18391021 DOI: 10.1128/mcb.02253-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A disease-causing G-to-T transversion at position +6 of BRCA1 exon 18 induces exclusion of the exon from the mRNA and, as has been suggested by in silico analysis, disrupts an ASF/SF2-dependent splicing enhancer. We show here using a pulldown assay with an internal standard that wild-type (WT) and mutant T6 sequences displayed similar ASF/SF2 binding efficiencies, which were significantly lower than that of a typical exonic splicing enhancer derived from the extra domain A exon of fibronectin. Overexpression or small interfering RNA (siRNA)-mediated depletion of ASF/SF2 did not affect the splicing of a WT BRCA1 minigene but resulted in an increase and decrease of T6 exon 18 inclusion, respectively. Furthermore, extensive mutation analysis using hybrid minigenes indicated that the T6 mutant creates a sequence with a prevalently inhibitory function. Indeed, RNA-protein interaction and siRNA experiments showed that the skipping of T6 BRCA1 exon 18 is due to the creation of a splicing factor-dependent silencer. This sequence specifically binds to the known repressor protein hnRNPA1/A2 and to DAZAP1, the involvement of which in splicing inhibition we have demonstrated. Our results indicate that the binding of the splicing factors hnRNPA1/A2 and DAZAP1 is the primary determinant of T6 BRCA1 exon 18 exclusion.
Collapse
|
170
|
Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet 2008; 82:834-48. [PMID: 18371932 DOI: 10.1016/j.ajhg.2008.01.014] [Citation(s) in RCA: 427] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 01/04/2008] [Accepted: 01/10/2008] [Indexed: 12/20/2022] Open
Abstract
Survival of motor neuron 2, centromeric (SMN2) is a gene that modifies the severity of spinal muscular atrophy (SMA), a motor-neuron disease that is the leading genetic cause of infant mortality. Increasing inclusion of SMN2 exon 7, which is predominantly skipped, holds promise to treat or possibly cure SMA; one practical strategy is the disruption of splicing silencers that impair exon 7 recognition. By using an antisense oligonucleotide (ASO)-tiling method, we systematically screened the proximal intronic regions flanking exon 7 and identified two intronic splicing silencers (ISSs): one in intron 6 and a recently described one in intron 7. We analyzed the intron 7 ISS by mutagenesis, coupled with splicing assays, RNA-affinity chromatography, and protein overexpression, and found two tandem hnRNP A1/A2 motifs within the ISS that are responsible for its inhibitory character. Mutations in these two motifs, or ASOs that block them, promote very efficient exon 7 inclusion. We screened 31 ASOs in this region and selected two optimal ones to test in human SMN2 transgenic mice. Both ASOs strongly increased hSMN2 exon 7 inclusion in the liver and kidney of the transgenic animals. Our results show that the high-resolution ASO-tiling approach can identify cis-elements that modulate splicing positively or negatively. Most importantly, our results highlight the therapeutic potential of some of these ASOs in the context of SMA.
Collapse
Affiliation(s)
- Yimin Hua
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|
171
|
Eddy J, Maizels N. Conserved elements with potential to form polymorphic G-quadruplex structures in the first intron of human genes. Nucleic Acids Res 2008; 36:1321-33. [PMID: 18187510 PMCID: PMC2275096 DOI: 10.1093/nar/gkm1138] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To understand how potential for G-quadruplex formation might influence regulation of gene expression, we examined the 2 kb spanning the transcription start sites (TSS) of the 18 217 human RefSeq genes, distinguishing contributions of template and nontemplate strands. Regions both upstream and downstream of the TSS are G-rich, but the downstream region displays a clear bias toward G-richness on the nontemplate strand. Upstream of the TSS, much of the G-richness and potential for G-quadruplex formation derives from the presence of well-defined canonical regulatory motifs in duplex DNA, including CpG dinucleotides which are sites of regulatory methylation, and motifs recognized by the transcription factor SP1. This challenges the notion that quadruplex formation upstream of the TSS contributes to regulation of gene expression. Downstream of the TSS, G-richness is concentrated in the first intron, and on the nontemplate strand, where polymorphic sequence elements with potential to form G-quadruplex structures and which cannot be accounted for by known regulatory motifs are found in almost 3000 (16%) of the human RefSeq genes, and are conserved through frogs. These elements could in principle be recognized either as DNA or as RNA, providing structural targets for regulation at the level of transcription or RNA processing.
Collapse
Affiliation(s)
- Johanna Eddy
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195-7650, USA
| | | |
Collapse
|
172
|
Kuwasako K, Dohmae N, Inoue M, Shirouzu M, Taguchi S, Güntert P, Séraphin B, Muto Y, Yokoyama S. Complex assembly mechanism and an RNA-binding mode of the human p14-SF3b155 spliceosomal protein complex identified by NMR solution structure and functional analyses. Proteins 2007; 71:1617-36. [DOI: 10.1002/prot.21839] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
173
|
Cammas A, Pileur F, Bonnal S, Lewis SM, Lévêque N, Holcik M, Vagner S. Cytoplasmic relocalization of heterogeneous nuclear ribonucleoprotein A1 controls translation initiation of specific mRNAs. Mol Biol Cell 2007; 18:5048-59. [PMID: 17898077 PMCID: PMC2096577 DOI: 10.1091/mbc.e07-06-0603] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 09/07/2007] [Accepted: 09/14/2007] [Indexed: 01/30/2023] Open
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is a nucleocytoplasmic shuttling protein that regulates gene expression through its action on mRNA metabolism and translation. The cytoplasmic redistribution of hnRNP A1 is a regulated process during viral infection and cellular stress. Here, we show that hnRNP A1 is an internal ribosome entry site (IRES) trans-acting factor that binds specifically to the 5' untranslated region of both the human rhinovirus-2 and the human apoptotic peptidase activating factor 1 (apaf-1) mRNAs, thereby regulating their translation. Furthermore, the cytoplasmic redistribution of hnRNP A1 after rhinovirus infection leads to enhanced rhinovirus IRES-mediated translation, whereas the cytoplasmic relocalization of hnRNP A1 after UVC irradiation limits the UVC-triggered translational activation of the apaf-1 IRES. Therefore, this study provides a direct demonstration that IRESs behave as translational enhancer elements regulated by specific trans-acting mRNA binding proteins in given physiological conditions. Our data highlight a new way to regulate protein synthesis in eukaryotes through the subcellular relocalization of a nuclear mRNA-binding protein.
Collapse
Affiliation(s)
- Anne Cammas
- *Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France
- Institut Claudius Regaud, Toulouse, F-31052, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31000, France
| | - Frédéric Pileur
- *Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France
- Institut Claudius Regaud, Toulouse, F-31052, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31000, France
| | - Sophie Bonnal
- *Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France
- Institut Claudius Regaud, Toulouse, F-31052, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31000, France
| | - Stephen M. Lewis
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada; and
| | - Nicolas Lévêque
- Laboratoire de Virologie et Pathologie Humaine, Centre National de la Recherche Scientifique FRE 3011, Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laënnec, F-69372 Lyon, France
| | - Martin Holcik
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada; and
| | - Stéphan Vagner
- *Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France
- Institut Claudius Regaud, Toulouse, F-31052, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31000, France
| |
Collapse
|
174
|
Dev A, Nayernia K, Meins M, Adham I, Lacone F, Engel W. Mice deficient for RNA-binding protein brunol1 show reduction of spermatogenesis but are fertile. Mol Reprod Dev 2007; 74:1456-64. [PMID: 17393433 DOI: 10.1002/mrd.20742] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
RNA-binding proteins are involved in post-transcriptional processes like mRNA stabilization, alternative splicing, and transport. Brunol1 is a novel mouse gene related to elav/Bruno family of genes encoding for RNA-binding proteins. We report here the expression and functional analysis of murine Brunol1. Expression analysis of Brunol1 during embryogenesis by RT-PCR showed that Brunol1 expression starts at 9.5 dpc and continues to the later stages of embryonic development. In adult mice, the Brunol1 expression is restricted to brain and testis. We also analyzed the Brunol1 expression in testes of different mutants with spermatogenesis defects: W/W(V), Tfm/y, Leyl(-/-), olt/olt, and qk/qk. Brunol1 transcript was detectable in Leyl(-/-), olt/olt, and qk/qk mutant but not in W/W(V) and Tfm/y mutants. We also showed by transfection of a fusion protein of green fluorescent protein and Brunol1 protein into NIH3T3 cells, that Brunol1 is localized in cytoplasm and nucleus. In order to elucidate the function of the Brunol1 protein in spermatogenesis, we disrupted the Brunol1 locus in mouse by homologous recombination, which resulted in a complete loss of the Brunol1 transcript. Male and female Brunol1(+/-) and Brunol1(-/-) mice from genetic backgrounds C57BL/6J x 129/Sv hybrid and 129X1/SvJ when inbred exhibited normal phenotype and are fertile, although the number and motility of sperms are significantly reduced. An intensive phenotypic analysis showed no gross abnormalities in testis morphology. Collectively our results demonstrate that Brunol1 might be nonessential protein for mouse embryonic development and spermatogenesis.
Collapse
Affiliation(s)
- Arvind Dev
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany.
| | | | | | | | | | | |
Collapse
|
175
|
The alternative splicing factor hnRNP A1 is up-regulated during virus-infected epithelial cell differentiation and binds the human papillomavirus type 16 late regulatory element. Virus Res 2007; 131:189-98. [PMID: 17950949 PMCID: PMC2635527 DOI: 10.1016/j.virusres.2007.09.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/10/2007] [Accepted: 09/10/2007] [Indexed: 01/06/2023]
Abstract
Human papillomavirus type 16 (HPV16) infects anogenital epithelia and is the etiological agent of cervical cancer. We showed previously that HPV16 infection regulates the key splicing/alternative splicing factor SF2/ASF and that virus late transcripts are extensively alternatively spliced. hnRNP A1 is the antagonistic counterpart of SF2/ASF in alternative splicing. We show here that hnRNP A1 is also up-regulated during differentiation of virus-infected epithelial cells in monolayer and organotypic raft culture. Taken together with our previous data on SF2/ASF, this comprises the first report of HPV-mediated regulation of expression of two functionally related cellular proteins during epithelial differentiation. Further, using electrophoretic mobility shift assays and UV crosslinking we demonstrate that hnRNP A1 binds the HPV16 late regulatory element (LRE) in differentiated HPV16 infected cells. The LRE has been shown to be important in temporally controlling virus late gene expression during epithelial differentiation. We suggest that increased levels of these cellular RNA processing factors facilitate appropriate alternative splicing necessary for production of virus late transcripts in differentiated epithelial cells.
Collapse
|
176
|
Kleino I, Ortiz RM, Huovila APJ. ADAM15 gene structure and differential alternative exon use in human tissues. BMC Mol Biol 2007; 8:90. [PMID: 17937806 PMCID: PMC2148059 DOI: 10.1186/1471-2199-8-90] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 10/15/2007] [Indexed: 01/21/2023] Open
Abstract
Background ADAM15 is a metalloprotease-disintegrin implicated in ectodomain shedding and cell adhesion. Aberrant ADAM15 expression has been associated with human cancer and other disorders. We have previously shown that the alternative splicing of ADAM15 transcripts is mis-regulated in cancer cells. To gain a better understanding of ADAM15 regulation, its genomic organization and regulatory elements as well as the alternative exon use in human tissues were characterized. Results Human ADAM15, flanked by the FLJ32785/DCST1 and ephrin-A4 genes, spans 11.4 kb from the translation initiation codon to the polyadenylation signal, being the shortest multiple-exon ADAM gene. The gene contains 23 exons varying from 63 to 316 bp and 22 introns from 79 to 1283 bp. The gene appeared to have several transcription start sites and their location suggested the promoter location within a CpG island proximal to the translation start. Reporter expression experiments confirmed the location of functional GC-rich, TATAless and CAATless promoter, with the most critical transcription-supporting elements located -266 to -23 bp relative to the translation start. Normal human tissues showed different complex patterns of at least 13 different ADAM15 splice variants arising from the alternative use of the cytosolic-encoding exons 19, 20a/b, and 21a/b. The deduced ADAM15 protein isoforms have different combinations of cytosolic regulatory protein interaction motifs. Conclusion Characterization of human ADAM15 gene and identification of elements involved in the regulation of transcription and alternative splicing provide important clues for elucidation of physiological and pathological roles of ADAM15. The present results also show that the alternative exon use is a physiological post-transcriptional mechanism regulating ADAM15 expression in human tissues.
Collapse
Affiliation(s)
- Iivari Kleino
- Institute of Medical Technology, University of Tampere, Tampere, Finland.
| | | | | |
Collapse
|
177
|
Identification of novel posttranscriptional targets of the BCR/ABL oncoprotein by ribonomics: requirement of E2F3 for BCR/ABL leukemogenesis. Blood 2007; 111:816-28. [PMID: 17925491 DOI: 10.1182/blood-2007-05-090472] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several RNA binding proteins (RBPs) have been implicated in the progression of chronic myelogenous leukemia (CML) from the indolent chronic phase to the aggressively fatal blast crisis. In the latter phase, expression and function of specific RBPs are aberrantly regulated at transcriptional or posttranslational levels by the constitutive kinase activity of the BCR/ABL oncoprotein. As a result, altered expression/function of RBPs leads to increased resistance to apoptotic stimuli, enhanced survival, growth advantage, and differentiation arrest of CD34+ progenitors from patients in CML blast crisis. Here, we identify the mRNAs bound to the hnRNP-A1, hnRNP-E2, hnRNP-K, and La/SSB RBPs in BCR/ABLtransformed myeloid cells. Interestingly, we found that the mRNA encoding the transcription factor E2F3 associates to hnRNP-A1 through a conserved binding site located in the E2F3 3' untranslated region (UTR). E2F3 levels were up-regulated in CML-BCCD34+ in a BCR/ABL kinase- and hnRNP-A1 shuttling-dependent manner. Moreover, by using shRNA-mediated E2F3 knock-down and BCR/ABL-transduced lineage-negative bone marrow cells from E2F3+/+ and E2F3-/- mice, we show that E2F3 expression is important for BCR/ABL clonogenic activity and in vivo leukemogenic potential. Thus, the complexity of the mRNA/RBP network, together with the discovery of E2F3 as an hnRNP-A1-regulated factor, outlines the relevant role played by RBPs in posttranscriptional regulation of CML development and progression.
Collapse
|
178
|
Královičová J, Vořechovský I. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition. Nucleic Acids Res 2007; 35:6399-413. [PMID: 17881373 PMCID: PMC2095810 DOI: 10.1093/nar/gkm680] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Auxiliary splicing signals play a major role in the regulation of constitutive and alternative pre-mRNA splicing, but their relative importance in selection of mutation-induced cryptic or de novo splice sites is poorly understood. Here, we show that exonic sequences between authentic and aberrant splice sites that were activated by splice-site mutations in human disease genes have lower frequencies of splicing enhancers and higher frequencies of splicing silencers than average exons. Conversely, sequences between authentic and intronic aberrant splice sites have more enhancers and less silencers than average introns. Exons that were skipped as a result of splice-site mutations were smaller, had lower SF2/ASF motif scores, a decreased availability of decoy splice sites and a higher density of silencers than exons in which splice-site mutation activated cryptic splice sites. These four variables were the strongest predictors of the two aberrant splicing events in a logistic regression model. Elimination or weakening of predicted silencers in two reporters consistently promoted use of intron-proximal splice sites if these elements were maintained at their original positions, with their modular combinations producing expected modification of splicing. Together, these results show the existence of a gradient in exon and intron definition at the level of pre-mRNA splicing and provide a basis for the development of computational tools that predict aberrant splicing outcomes.
Collapse
Affiliation(s)
| | - Igor Vořechovský
- *To whom correspondence should be addressed. +44 2380 796425+44 2380 794264
| |
Collapse
|
179
|
Van Herreweghe E, Egloff S, Goiffon I, Jády BE, Froment C, Monsarrat B, Kiss T. Dynamic remodelling of human 7SK snRNP controls the nuclear level of active P-TEFb. EMBO J 2007; 26:3570-80. [PMID: 17611602 PMCID: PMC1949012 DOI: 10.1038/sj.emboj.7601783] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 06/11/2007] [Indexed: 11/08/2022] Open
Abstract
The 7SK small nuclear RNA (snRNA) regulates RNA polymerase II transcription elongation by controlling the protein kinase activity of the positive transcription elongation factor b (P-TEFb). In cooperation with HEXIM1, the 7SK snRNA sequesters P-TEFb into the kinase-inactive 7SK/HEXIM1/P-TEFb small nuclear ribonucleoprotein (snRNP), and thereby, controls the nuclear level of active P-TEFb. Here, we report that a fraction of HeLa 7SK snRNA that is not involved in 7SK/HEXIM1/P-TEFb formation, specifically interacts with RNA helicase A (RHA), heterogeneous nuclear ribonucleoprotein A1 (hnRNP), A2/B1, R and Q proteins. Inhibition of cellular transcription induces disassembly of 7SK/HEXIM1/P-TEFb and at the same time, increases the level of 7SK snRNPs containing RHA, hnRNP A1, A2/B1, R and Q. Removal of transcription inhibitors restores the original levels of the 7SK/HEXIM1/P-TEFb and '7SK/hnRNP' complexes. 7SK/HEXIM1/P-TEFb snRNPs containing mutant 7SK RNAs lacking the capacity for binding hnRNP A1, A2, R and Q are resistant to stress-induced disassembly, indicating that recruitment of the novel 7SK snRNP proteins is essential for disruption of 7SK/HEXIM1/P-TEFb. Thus, we propose that the nuclear level of active P-TEFb is controlled by dynamic and reversible remodelling of 7SK snRNP.
Collapse
Affiliation(s)
- Elodie Van Herreweghe
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, CNRS-Université Paul Sabatier, Toulouse, France
| | - Sylvain Egloff
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, CNRS-Université Paul Sabatier, Toulouse, France
| | - Isabelle Goiffon
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, CNRS-Université Paul Sabatier, Toulouse, France
| | - Beáta E Jády
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, CNRS-Université Paul Sabatier, Toulouse, France
| | - Carine Froment
- Plate-forme protéomique, Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Toulouse, France
| | - Bernard Monsarrat
- Plate-forme protéomique, Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Toulouse, France
| | - Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, CNRS-Université Paul Sabatier, Toulouse, France
- Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, CNRS-Université Paul Sabatier, IFR109, 118 route de Narbonne, Toulouse Cedex 9, 31062, France. Tel.: +33 561 335 907; Fax: +33 561 335 886; E-mail:
| |
Collapse
|
180
|
Donev R, Newall A, Thome J, Sheer D. A role for SC35 and hnRNPA1 in the determination of amyloid precursor protein isoforms. Mol Psychiatry 2007; 12:681-90. [PMID: 17353911 PMCID: PMC2684093 DOI: 10.1038/sj.mp.4001971] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 12/11/2006] [Accepted: 01/09/2007] [Indexed: 11/09/2022]
Abstract
The beta-amyloid peptide (Abeta) that accumulates in senile plaques in Alzheimer's disease is formed by cleavage of the amyloid precursor protein (APP). The APP gene has several intronic Alu elements inserted in either the sense or antisense orientation. In this study, we demonstrate that binding of SC35 and hnRNPA1 to Alu elements on either side of exon 7 in the transcribed pre-mRNA is involved in alternative splicing of APP exons 7 and 8. Neuronal cells transfected with the full-length form of APP secrete higher levels of Abeta than cells transfected with the APP695 isoform lacking exons 7 and 8. Finally, we show that treatment of neuronal cells with estradiol results in increased expression of APP695, SC35 and hnRNPA1, and lowers the level of secreted Abeta. An understanding of the regulation of splicing of APP may lead to the identification of new targets for treating Alzheimer's disease.
Collapse
Affiliation(s)
- Rossen Donev
- Human Cytogenetics Laboratory, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
- Department of Medical Biochemistry & Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Alistair Newall
- Human Cytogenetics Laboratory, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
| | - Johannes Thome
- Molecular Psychiatry and Psychopharmacology, School of Medicine, University of Wales Swansea, Grove Building, Singleton Park, Swansea, SA2 8PP, UK
| | - Denise Sheer
- Human Cytogenetics Laboratory, Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
- Neuroscience Centre, Institute of Cell and Molecular Science, Queen Mary School of Medicine and Dentistry, 4 Newark Street, London E1 2AT, UK
| |
Collapse
|
181
|
Abstract
Alternative splicing regulation has been shown to be critically important for several developmental pathways. It is particularly prevalent in the testis, which is the site of an extensive adult developmental programme. Alternative splicing is controlled by a splicing code, in which transcripts respond to subtle cell type-specific variations in positive and negative trans-acting RNA-binding proteins according to their unique set of binding sites for these proteins. Because of their unique combinations of cis-acting sequence elements, specific transcripts are able to respond individually to this code. In this review, we discuss how this code may be deciphered in germ cells to mediate a splicing response.
Collapse
Affiliation(s)
- David J Elliott
- Institute of Human Genetics, University of Newcastle, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK.
| | | |
Collapse
|
182
|
Guil S, Cáceres JF. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol 2007; 14:591-6. [PMID: 17558416 DOI: 10.1038/nsmb1250] [Citation(s) in RCA: 420] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 04/09/2007] [Indexed: 12/19/2022]
Abstract
hnRNP A1 is an RNA-binding protein involved in various aspects of RNA processing. Use of an in vivo cross-linking and immunoprecipitation protocol to find hnRNP A1 RNA targets resulted in the identification of a microRNA (miRNA) precursor, pre-miR-18a. This microRNA is expressed as part of a cluster of intronic RNAs, including miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92, and potentially acts as an oncogene. Here we show that hnRNP A1 binds specifically to the primary RNA sequence pri-miR-18a before Drosha processing. HeLa cells depleted of hnRNP A1 have reduced in vitro processing activity with pri-miR-18a and also show reduced abundances of endogenous pre-miR-18a. Furthermore, we show that hnRNP A1 is required for miR-18a-mediated repression of a target reporter in vivo. These results underscore a previously uncharacterized role for general RNA-binding proteins as auxiliary factors that facilitate the processing of specific miRNAs.
Collapse
Affiliation(s)
- Sonia Guil
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland, UK
| | | |
Collapse
|
183
|
Nielsen KB, Sørensen S, Cartegni L, Corydon TJ, Doktor TK, Schroeder LD, Reinert LS, Elpeleg O, Krainer AR, Gregersen N, Kjems J, Andresen BS. Seemingly neutral polymorphic variants may confer immunity to splicing-inactivating mutations: a synonymous SNP in exon 5 of MCAD protects from deleterious mutations in a flanking exonic splicing enhancer. Am J Hum Genet 2007; 80:416-32. [PMID: 17273963 PMCID: PMC1821120 DOI: 10.1086/511992] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 12/19/2006] [Indexed: 11/03/2022] Open
Abstract
The idea that point mutations in exons may affect splicing is intriguing and adds an additional layer of complexity when evaluating their possible effects. Even in the best-studied examples, the molecular mechanisms are not fully understood. Here, we use patient cells, model minigenes, and in vitro assays to show that a missense mutation in exon 5 of the medium-chain acyl-CoA dehydrogenase (MCAD) gene primarily causes exon skipping by inactivating a crucial exonic splicing enhancer (ESE), thus leading to loss of a functional protein and to MCAD deficiency. This ESE functions by antagonizing a juxtaposed exonic splicing silencer (ESS) and is necessary to define a suboptimal 3' splice site. Remarkably, a synonymous polymorphic variation in MCAD exon 5 inactivates the ESS, and, although this has no effect on splicing by itself, it makes splicing immune to deleterious mutations in the ESE. Furthermore, the region of MCAD exon 5 that harbors these elements is nearly identical to the exon 7 region of the survival of motor neuron (SMN) genes that contains the deleterious silent mutation in SMN2, indicating a very similar and finely tuned interplay between regulatory elements in these two genes. Our findings illustrate a mechanism for dramatic context-dependent effects of single-nucleotide polymorphisms on gene-expression regulation and show that it is essential that potential deleterious effects of mutations on splicing be evaluated in the context of the relevant haplotype.
Collapse
MESH Headings
- Acyl-CoA Dehydrogenase/genetics
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- DNA Primers/genetics
- Enhancer Elements, Genetic/genetics
- Exons/genetics
- Female
- Genes, BRCA1/physiology
- Humans
- Immunity
- Infant
- Infant, Newborn
- Lipid Metabolism, Inborn Errors/genetics
- Lipid Metabolism, Inborn Errors/immunology
- Molecular Sequence Data
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/immunology
- Mutation, Missense/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Polymorphism, Single Nucleotide
- RNA Splicing/genetics
- RNA Stability/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- SMN Complex Proteins
- Sequence Homology, Nucleic Acid
- Silencer Elements, Transcriptional/genetics
- Survival of Motor Neuron 2 Protein
- Transcription, Genetic
Collapse
Affiliation(s)
- Karsten Bork Nielsen
- Research Unit for Molecular Medicine, Aarhus University Hospital and Faculty of Health Science, Skejby Sygehus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Ball JR, Dimaano C, Bilak A, Kurchan E, Zundel MT, Ullman KS. Sequence Preference in RNA Recognition by the Nucleoporin Nup153. J Biol Chem 2007; 282:8734-40. [PMID: 17242408 DOI: 10.1074/jbc.m608477200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The vertebrate nuclear pore protein Nup153 contains a novel RNA binding domain. This 150-amino acid region was previously found to bind preferentially to a panel of mRNAs when compared with structured RNAs, such as tRNA, U snRNA, and double-stranded RNA. The ability to broadly recognize mRNA led to the conclusion that the Nup153 RNA binding domain confers a general affinity for single-stranded RNA. Here, we have probed Nup153 RNA recognition to decipher how this unique RNA binding domain discriminates between potential targets. We first mapped the binding determinant within an RNA fragment that associates relatively robustly with the Nup153 RNA binding domain. We next designed synthetic RNA oligonucleotides to systematically delineate the features within this minimal RNA fragment that are key to Nup153 RNA-binding domain binding and demonstrated that the binding preferences of Nup153 do not reflect general preferences of an mRNA/single-stranded RNA-binding protein. We further found that the association between Nup153 and a cellular mRNA can be attributed to an interaction with specific subregions of the RNA. These results indicate that Nup153 can discriminate between mRNA and other classes of RNA transcripts due in part to direct recognition of a loose sequence motif. This information adds a new dimension to the interfaces that can contribute to recognition in mRNA export cargo selection and fate.
Collapse
Affiliation(s)
- Jennifer R Ball
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | |
Collapse
|
185
|
Kashima T, Rao N, Manley JL. An intronic element contributes to splicing repression in spinal muscular atrophy. Proc Natl Acad Sci U S A 2007; 104:3426-31. [PMID: 17307868 PMCID: PMC1805620 DOI: 10.1073/pnas.0700343104] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neurodegenerative disease spinal muscular atrophy is caused by mutation of the survival motor neuron 1 (SMN1) gene. SMN2 is a nearly identical copy of SMN1 that is unable to prevent disease, because most SMN2 transcripts lack exon 7 and thus produce a nonfunctional protein. A key cause of inefficient SMN2 exon 7 splicing is a single nucleotide difference between SMN1 and SMN2 within exon 7. We previously provided evidence that this base change suppresses exon 7 splicing by creating an inhibitory element, a heterogeneous nuclear ribonucleoprotein (hnRNP) A1-dependent exonic splicing silencer. We now find that another rare nucleotide difference between SMN1 and SMN2, in intron 7, potentially creates a second SMN2-specific hnRNP A1 binding site. Remarkably, this single base change does indeed create a high-affinity hnRNP A1 binding site, and base substitutions that disrupt it restore exon 7 inclusion in vivo and prevent hnRNP A1 binding in vitro. We propose that interactions between hnRNP A1 molecules bound to the exonic and intronic sites cooperate to exclude exon 7 and discuss the significance of this exclusion with respect to SMN expression and splicing control more generally.
Collapse
Affiliation(s)
- Tsuyoshi Kashima
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Nishta Rao
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - James L. Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
186
|
Martinez-Contreras R, Cloutier P, Shkreta L, Fisette JF, Revil T, Chabot B. hnRNP proteins and splicing control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:123-47. [PMID: 18380344 DOI: 10.1007/978-0-387-77374-2_8] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteins of the heterogeneous nuclear ribonucleoparticles (hnRNP) family form a structurally diverse group of RNA binding proteins implicated in various functions in metazoans. Here we discuss recent advances supporting a role for these proteins in precursor-messenger RNA (pre-mRNA) splicing. Heterogeneous nuclear RNP proteins can repress splicing by directly antagonizing the recognition of splice sites, or can interfere with the binding of proteins bound to enhancers. Recently, hnRNP proteins have been shown to hinder communication between factors bound to different splice sites. Conversely, several reports have described a positive role for some hnRNP proteins in pre-mRNA splicing. Moreover, cooperative interactions between bound hnRNP proteins may encourage splicing between specific pairs of splice sites while simultaneously hampering other combinations. Thus, hnRNP proteins utilize a variety of strategies to control splice site selection in a manner that is important for both alternative and constitutive pre-mRNA splicing.
Collapse
|
187
|
Browne SK, Roesser JR, Zhu SZ, Ginder GD. Differential IFN-gamma stimulation of HLA-A gene expression through CRM-1-dependent nuclear RNA export. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:8612-9. [PMID: 17142760 DOI: 10.4049/jimmunol.177.12.8612] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFNs regulate most MHC class I genes by stimulating transcription initiation. As shown previously, IFN-gamma controls HLA-A expression primarily at the posttranscriptional level. We have defined two 8-base sequences in a 39-nucleotide region in the 3'-transcribed region of the HLA-A gene that are required for the posttranscriptional response to IFN-gamma. Stimulation of HLA-A expression by IFN-gamma requires nuclear export of HLA-A mRNA by chromosome maintenance region 1 (CRM-1). Treatment of cells with leptomycin B, a specific inhibitor of CRM-1, completely inhibited IFN-gamma induction of HLA-A. Expression of a truncated, dominant-negative form of the nucleoporin NUP214/CAN, DeltaCAN, that specifically interacts with CRM-1, also prevented IFN-gamma stimulation of HLA-A, providing confirmation of the role of CRM-1. Increased expression of HLA-A induced by IFN-gamma also requires protein methylation, as shown by the fact that treatment of SK-N-MC cells or HeLa cells with the PRMT1 inhibitor 5'-methyl-5'-thioadenosine abolished the cellular response to IFN-gamma. In contrast with HLA-A, IFN-gamma-induced expression of the HLA class Ib gene, HLA-E, was not affected by either 5'-methyl-5'-thioadenosine or leptomycin B. These results provide proof of principle that it is possible to differentially modulate the IFN-gamma-induced expression of the HLA-E and HLA-A genes, whose products often mediate opposing effects on cellular immunity to tumor cells, pathogens, and autoantigens.
Collapse
Affiliation(s)
- Sarah K Browne
- Massey Cancer Center, Virginia Commonwealth University Medical Center, 401 College Street, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
188
|
Zhang J, Xu X, Shen H, Zhang X. Analysis of nuclear proteome in C57 mouse liver tissue by a nano-flow 2-D-LC–ESI-MS/MS approach. J Sep Sci 2006; 29:2635-46. [PMID: 17313104 DOI: 10.1002/jssc.200600065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The analysis of whole cell or tissue extracts is too complex for current protein identification technology and not suitable for the study of proteins with low copy levels. To concentrate and enrich low abundance proteins, organelle proteomics is a promising strategy. This approach can not only reduce the protein sample complexity but also provide information about protein location in cells, organs, or tissues under analysis. Nano-flow two-dimensional strong-cation exchange chromatography (SCX)-RPLC-ESI-MS/MS is an ideal platform for analyzing organelle extracts because of its advantages of sample non-bias, low amounts of sample required, powerful separation capability, and high detection sensitivity. In this study, we apply nano-scale multidimensional protein identification technology to the analysis of C57 mouse liver nuclear proteins. Organelle isolation has been optimized to obtain highly pure nuclei. Evaluation of nucleus integrity and purity has been performed to demonstrate the effectiveness of the optimized isolation procedure. The extracted nuclear proteins were identified by five independent nano-flow on-line SCX-RPLC-ESI-MS/MS analyses to improve the proteome coverage. Finally, a total of 462 proteins were identified. Corresponding analyses of protein molecular mass and pI distribution and biological function categorization have been undertaken to further validate our identification strategy.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry, Research Center for Proteome, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
189
|
Griffith BN, Walsh CM, Szeszel-Fedorowicz W, Timperman AT, Salati LM. Identification of hnRNPs K, L and A2/B1 as candidate proteins involved in the nutritional regulation of mRNA splicing. ACTA ACUST UNITED AC 2006; 1759:552-61. [PMID: 17095106 PMCID: PMC1828878 DOI: 10.1016/j.bbaexp.2006.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 09/27/2006] [Accepted: 10/03/2006] [Indexed: 11/24/2022]
Abstract
Nutrient regulation of glucose-6-phosphate dehydrogenase (G6PD) expression occurs through changes in the rate of splicing of G6PD pre-mRNA. This posttranscriptional mechanism accounts for the 12- to 15-fold increase in G6PD expression in livers of mice that were starved and then refed a high-carbohydrate diet. Regulation of G6PD pre-mRNA splicing requires a cis-acting element in exon 12 of the pre-mRNA. Using RNA probes to exon 12 and nuclear extracts from livers of mice that were starved or refed, proteins of 60 kDa and 37 kDa were detected bound to nucleotides 65-79 of exon 12 and this binding was decreased by 50% with nuclear extracts from refed mice. The proteins were identified as hnRNPs K, L, and A2/B1 by LC-MS/MS. The decrease in binding of these proteins to exon 12 during refeeding was not accompanied by a decrease in the total amount of these proteins in total nuclear extract. HnRNPs K, L and A2/B1 have known roles in the regulation of mRNA splicing. The decrease in binding of these proteins during treatments that increase G6PD expression is consistent with a role for these proteins in the inhibition of G6PD mRNA splicing.
Collapse
Affiliation(s)
- Brian N. Griffith
- Department of Biochemistry and Molecular Pharmacology, West Virginia University, Morgantown, WV 26506
| | - Callee M. Walsh
- Department of Biochemistry and Molecular Pharmacology, West Virginia University, Morgantown, WV 26506
| | | | | | - Lisa M. Salati
- Department of Biochemistry and Molecular Pharmacology, West Virginia University, Morgantown, WV 26506
- To whom correspondence should be addressed: Department of Biochemistry and Molecular Pharmacology, WVU Health Sciences Center, PO Box 9142, Morgantown, WV 26506, Phone: (304) 293-7759, e-mail
| |
Collapse
|
190
|
Goren A, Ram O, Amit M, Keren H, Lev-Maor G, Vig I, Pupko T, Ast G. Comparative analysis identifies exonic splicing regulatory sequences--The complex definition of enhancers and silencers. Mol Cell 2006; 22:769-781. [PMID: 16793546 DOI: 10.1016/j.molcel.2006.05.008] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 04/06/2006] [Accepted: 05/03/2006] [Indexed: 12/11/2022]
Abstract
Exonic splicing regulatory sequences (ESRs) are cis-acting factor binding sites that regulate constitutive and alternative splicing. A computational method based on the conservation level of wobble positions and the overabundance of sequence motifs between 46,103 human and mouse orthologous exons was developed, identifying 285 putative ESRs. Alternatively spliced exons that are either short in length or contain weak splice sites show the highest conservation level of those ESRs, especially toward the edges of exons. ESRs that are abundant in those subgroups show a different distribution between constitutively and alternatively spliced exons. Representatives of these ESRs and two SR protein binding sites were shown, experimentally, to display variable regulatory effects on alternative splicing, depending on their relative locations in the exon. This finding signifies the delicate positional effect of ESRs on alternative splicing regulation.
Collapse
Affiliation(s)
- Amir Goren
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oren Ram
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Maayan Amit
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadas Keren
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ida Vig
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
191
|
Abstract
Coronaviruses are large, enveloped RNA viruses of both medical and veterinary importance. Interest in this viral family has intensified in the past few years as a result of the identification of a newly emerged coronavirus as the causative agent of severe acute respiratory syndrome (SARS). At the molecular level, coronaviruses employ a variety of unusual strategies to accomplish a complex program of gene expression. Coronavirus replication entails ribosome frameshifting during genome translation, the synthesis of both genomic and multiple subgenomic RNA species, and the assembly of progeny virions by a pathway that is unique among enveloped RNA viruses. Progress in the investigation of these processes has been enhanced by the development of reverse genetic systems, an advance that was heretofore obstructed by the enormous size of the coronavirus genome. This review summarizes both classical and contemporary discoveries in the study of the molecular biology of these infectious agents, with particular emphasis on the nature and recognition of viral receptors, viral RNA synthesis, and the molecular interactions governing virion assembly.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, 12201, USA
| |
Collapse
|
192
|
Listerman I, Sapra AK, Neugebauer KM. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat Struct Mol Biol 2006; 13:815-22. [PMID: 16921380 DOI: 10.1038/nsmb1135] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 07/24/2006] [Indexed: 01/09/2023]
Abstract
Coupling between transcription and RNA processing is a key gene regulatory mechanism. Here we use chromatin immunoprecipitation to detect transcription-dependent accumulation of the precursor mRNA (pre-mRNA) splicing factors hnRNP A1, U2AF65 and U1 and U5 snRNPs on the intron-containing human FOS gene. These factors were poorly detected on intronless heat-shock and histone genes, a result that opposes direct recruitment by RNA polymerase II (Pol II) or the cap-binding complex in vivo. However, an observed RNA-dependent interaction between U2AF65 and active forms of Pol II may stabilize U2AF65 binding to intron-containing nascent RNA. We establish chromatin-RNA immunoprecipitation and show that FOS pre-mRNA is cotranscriptionally spliced. Notably, the topoisomerase I inhibitor camptothecin, which stalls elongating Pol II, increased cotranscriptional splicing factor accumulation and splicing in parallel. This provides direct evidence for a kinetic link between transcription, splicing factor recruitment and splicing catalysis.
Collapse
Affiliation(s)
- Imke Listerman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | |
Collapse
|
193
|
Passos DO, Quaresma AJC, Kobarg J. The methylation of the C-terminal region of hnRNPQ (NSAP1) is important for its nuclear localization. Biochem Biophys Res Commun 2006; 346:517-25. [PMID: 16765914 DOI: 10.1016/j.bbrc.2006.05.152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/21/2006] [Indexed: 11/19/2022]
Abstract
Protein arginine methylation is an irreversible post-translational protein modification catalyzed by a family of at least nine different enzymes entitled PRMTs (protein arginine methyl transferases). Although PRMT1 is responsible for 85% of the protein methylation in human cells, its substrate spectrum has not yet been fully characterized nor are the functional consequences of methylation for the protein substrates well understood. Therefore, we set out to employ the yeast two-hybrid system in order to identify new substrate proteins for human PRMT1. We were able to identify nine different PRMT1 interacting proteins involved in different aspects of RNA metabolism, five of which had been previously described either as substrates for PRMT1 or as functionally associated with PRMT1. Among the four new identified possible protein substrates was hnRNPQ3 (NSAP1), a protein whose function has been implicated in diverse steps of mRNA maturation, including splicing, editing, and degradation. By in vitro methylation assays we were able to show that hnRNPQ3 is a substrate for PRMT1 and that its C-terminal RGG box domain is the sole target for methylation. By further studies with the inhibitor of methylation Adox we provide evidence that hnRNPQ1-3 are methylated in vivo. Finally, we demonstrate by immunofluorescence analysis of HeLa cells that the methylation of hnRNPQ is important for its nuclear localization, since Adox treatment causes its re-distribution from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Dario O Passos
- Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Campinas, SP, Brazil
| | | | | |
Collapse
|
194
|
Wang Z, Xiao X, Van Nostrand E, Burge CB. General and specific functions of exonic splicing silencers in splicing control. Mol Cell 2006; 23:61-70. [PMID: 16797197 PMCID: PMC1839040 DOI: 10.1016/j.molcel.2006.05.018] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 04/24/2006] [Accepted: 05/05/2006] [Indexed: 11/23/2022]
Abstract
Correct splice site recognition is critical in pre-mRNA splicing. We find that almost all of a diverse panel of exonic splicing silencer (ESS) elements alter splice site choice when placed between competing sites, consistently inhibiting use of intron-proximal 5' and 3' splice sites. Supporting a general role for ESSs in splice site definition, we found that ESSs are both abundant and highly conserved between alternative splice site pairs and that mutation of ESSs located between natural alternative splice site pairs consistently shifted splicing toward the intron-proximal site. Some exonic splicing enhancers (ESEs) promoted use of intron-proximal 5' splice sites, and tethering of hnRNP A1 and SF2/ASF proteins between competing splice sites mimicked the effects of ESS and ESE elements, respectively. Further, we observed that specific subsets of ESSs had distinct effects on a multifunctional intron retention reporter and that one of these subsets is likely preferred for regulation of endogenous intron retention events. Together, our findings provide a comprehensive picture of the functions of ESSs in the control of diverse types of splicing decisions.
Collapse
Affiliation(s)
- Zefeng Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Xinshu Xiao
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Eric Van Nostrand
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Christopher B. Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- * To whom correspondence should be addressed. Phone: (617) 258-5997. Fax: (617) 452-2936.
| |
Collapse
|
195
|
Kabat JL, Barberan-Soler S, McKenna P, Clawson H, Farrer T, Zahler AM. Intronic alternative splicing regulators identified by comparative genomics in nematodes. PLoS Comput Biol 2006; 2:e86. [PMID: 16839192 PMCID: PMC1500816 DOI: 10.1371/journal.pcbi.0020086] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 05/30/2006] [Indexed: 11/18/2022] Open
Abstract
Many alternative splicing events are regulated by pentameric and hexameric intronic sequences that serve as binding sites for splicing regulatory factors. We hypothesized that intronic elements that regulate alternative splicing are under selective pressure for evolutionary conservation. Using a Wobble Aware Bulk Aligner genomic alignment of Caenorhabditis elegans and Caenorhabditis briggsae, we identified 147 alternatively spliced cassette exons that exhibit short regions of high nucleotide conservation in the introns flanking the alternative exon. In vivo experiments on the alternatively spliced let-2 gene confirm that these conserved regions can be important for alternative splicing regulation. Conserved intronic element sequences were collected into a dataset and the occurrence of each pentamer and hexamer motif was counted. We compared the frequency of pentamers and hexamers in the conserved intronic elements to a dataset of all C. elegans intron sequences in order to identify short intronic motifs that are more likely to be associated with alternative splicing. High-scoring motifs were examined for upstream or downstream preferences in introns surrounding alternative exons. Many of the high-scoring nematode pentamer and hexamer motifs correspond to known mammalian splicing regulatory sequences, such as (T)GCATG, indicating that the mechanism of alternative splicing regulation is well conserved in metazoans. A comparison of the analysis of the conserved intronic elements, and analysis of the entire introns flanking these same exons, reveals that focusing on intronic conservation can increase the sensitivity of detecting putative splicing regulatory motifs. This approach also identified novel sequences whose role in splicing is under investigation and has allowed us to take a step forward in defining a catalog of splicing regulatory elements for an organism. In vivo experiments confirm that one novel high-scoring sequence from our analysis, (T)CTATC, is important for alternative splicing regulation of the unc-52 gene.
Collapse
Affiliation(s)
- Jennifer L Kabat
- Department of Molecular, Cell, and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, USA
| | | | | | | | | | | |
Collapse
|
196
|
Mehta A, Trotta CR, Peltz SW. Derepression of the Her-2 uORF is mediated by a novel post-transcriptional control mechanism in cancer cells. Genes Dev 2006; 20:939-53. [PMID: 16598037 PMCID: PMC1472302 DOI: 10.1101/gad.1388706] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcripts harboring 5' upstream open reading frames (uORFs) are often found in genes controlling cell growth including receptors, oncogenes, or growth factors. uORFs can modulate translation or RNA stability and mediate inefficient translation of these potent proteins under normal conditions. In dysregulated cancer cells, where the gene product, for example Her-2 receptor, is overexpressed, post-transcriptional processes must exist that serve to override the inhibitory effects of the uORFs. The 5' untranslated region (UTR) of Her-2 mRNA contains a short uORF that represses translation of the downstream coding region. We demonstrate that in Her-2 overexpressing breast cancer cells, the 3' UTR of the Her-2 mRNA can override translational inhibition mediated by the Her-2 uORF. Within this 3' UTR, a translational derepression element (TDE) that binds to a 38-kDa protein was identified. These results define a novel biological mechanism in which translational control of genes harboring a 5' uORF can be modulated by elements in their 3' UTRs.
Collapse
Affiliation(s)
- Anuradha Mehta
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA.
| | | | | |
Collapse
|
197
|
Disset A, Bourgeois CF, Benmalek N, Claustres M, Stevenin J, Tuffery-Giraud S. An exon skipping-associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements. Hum Mol Genet 2006; 15:999-1013. [PMID: 16461336 DOI: 10.1093/hmg/ddl015] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A nonsense mutation c.4250T>A (p.Leu1417X) in the dystrophin gene of a patient with an intermediate phenotype of muscular dystrophy induces partial in-frame skipping of exon 31. On the basis of UV cross-linking assays and pull-down analysis, we present evidence that the skipping of this exon is because of the creation of an exonic splicing silencer, which acts as a highly specific binding site (UAGACA) for a known repressor protein, hnRNP A1. Recombinant hnRNP A1 represses exon inclusion both in vitro and in vivo upon transient transfection of C2C12 cells with Duchenne muscular dystrophy (DMD) minigenes carrying the c.4250T>A mutation. Furthermore, we identified a downstream splicing enhancer in the central region of exon 31. This region functions as a Tra2beta-dependent exonic splicing enhancer (ESE) in vitro when inserted into a heterologous splicing reporter, and deletion of the ESE showed that incorporation of exon 31 depends on the Tra2beta-dependent enhancer both in the wild-type and mutant context. We conclude that dystrophin exon 31 contains juxtaposed sequence motifs that collaborate to regulate exon usage. This is the first elucidation of the molecular mechanism leading to exon skipping in the dystrophin gene and allowing the occurrence of a milder phenotype than the expected DMD phenotype. The knowledge of which cis-acting sequence within an exon is important for its definition will be essential for the alternative gene therapy approaches based on modulation of splicing to bypass DMD-causing mutations in the endogenous dystrophin gene.
Collapse
Affiliation(s)
- A Disset
- Laboratoire de Génétique Moléculaire, Institut Universitaire de Recherche Clinique (IURC), CHU Montpellier F34000, France
| | | | | | | | | | | |
Collapse
|
198
|
Sugnet CW, Srinivasan K, Clark TA, O'Brien G, Cline MS, Wang H, Williams A, Kulp D, Blume JE, Haussler D, Ares M. Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLoS Comput Biol 2006; 2:e4. [PMID: 16424921 PMCID: PMC1331982 DOI: 10.1371/journal.pcbi.0020004] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 12/14/2005] [Indexed: 01/27/2023] Open
Abstract
Alternative splicing contributes to both gene regulation and protein diversity. To discover broad relationships between regulation of alternative splicing and sequence conservation, we applied a systems approach, using oligonucleotide microarrays designed to capture splicing information across the mouse genome. In a set of 22 adult tissues, we observe differential expression of RNA containing at least two alternative splice junctions for about 40% of the 6,216 alternative events we could detect. Statistical comparisons identify 171 cassette exons whose inclusion or skipping is different in brain relative to other tissues and another 28 exons whose splicing is different in muscle. A subset of these exons is associated with unusual blocks of intron sequence whose conservation in vertebrates rivals that of protein-coding exons. By focusing on sets of exons with similar regulatory patterns, we have identified new sequence motifs implicated in brain and muscle splicing regulation. Of note is a motif that is strikingly similar to the branchpoint consensus but is located downstream of the 5' splice site of exons included in muscle. Analysis of three paralogous membrane-associated guanylate kinase genes reveals that each contains a paralogous tissue-regulated exon with a similar tissue inclusion pattern. While the intron sequences flanking these exons remain highly conserved among mammalian orthologs, the paralogous flanking intron sequences have diverged considerably, suggesting unusually complex evolution of the regulation of alternative splicing in multigene families.
Collapse
Affiliation(s)
- Charles W Sugnet
- Department of Computer Science, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Karpagam Srinivasan
- Department of Molecular, Cell, and Developmental Biology, Sinsheimer Labs, University of California Santa Cruz, Santa Cruz, California, United States of America
- Hughes Undergraduate Research Laboratory, Thimann Laboratories, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Tyson A Clark
- Affymetrix, Santa Clara, California, United States of America
| | - Georgeann O'Brien
- Hughes Undergraduate Research Laboratory, Thimann Laboratories, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Melissa S Cline
- Affymetrix, Santa Clara, California, United States of America
| | - Hui Wang
- Affymetrix, Santa Clara, California, United States of America
| | - Alan Williams
- Affymetrix, Santa Clara, California, United States of America
| | - David Kulp
- Affymetrix, Santa Clara, California, United States of America
| | - John E Blume
- Affymetrix, Santa Clara, California, United States of America
| | - David Haussler
- Department of Computer Science, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Manuel Ares
- Department of Molecular, Cell, and Developmental Biology, Sinsheimer Labs, University of California Santa Cruz, Santa Cruz, California, United States of America
- Hughes Undergraduate Research Laboratory, Thimann Laboratories, University of California Santa Cruz, Santa Cruz, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
199
|
Martinez-Contreras R, Fisette JF, Nasim FUH, Madden R, Cordeau M, Chabot B. Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLoS Biol 2006; 4:e21. [PMID: 16396608 PMCID: PMC1326234 DOI: 10.1371/journal.pbio.0040021] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 11/15/2005] [Indexed: 12/20/2022] Open
Abstract
hnRNP A/B proteins modulate the alternative splicing of several mammalian and viral pre-mRNAs, and are typically viewed as proteins that enforce the activity of splicing silencers. Here we show that intronic hnRNP A/B–binding sites (ABS) can stimulate the in vitro splicing of pre-mRNAs containing artificially enlarged introns. Stimulation of in vitro splicing could also be obtained by providing intronic ABS in trans through the use of antisense oligonucleotides containing a non-hybridizing ABS-carrying tail. ABS-tailed oligonucleotides also improved the in vivo inclusion of an alternative exon flanked by an enlarged intron. Notably, binding sites for hnRNP F/H proteins (FBS) replicate the activity of ABS by improving the splicing of an enlarged intron and by modulating 5′ splice-site selection. One hypothesis formulated to explain these effects is that bound hnRNP proteins self-interact to bring in closer proximity the external pair of splice sites. Consistent with this model, positioning FBS or ABS at both ends of an intron was required to stimulate splicing of some pre-mRNAs. In addition, a computational analysis of the configuration of putative FBS and ABS located at the ends of introns supports the view that these motifs have evolved to support cooperative interactions. Our results document a positive role for the hnRNP A/B and hnRNP F/H proteins in generic splicing, and suggest that these proteins may modulate the conformation of mammalian pre-mRNAs. Typically viewed as enforcing splicing silencers, hnRNP A/B proteins may facilitate splicing by modulating the conformation of mammalian pre-mRNAs.
Collapse
Affiliation(s)
- Rebeca Martinez-Contreras
- 1 RNA/RNP Group, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Fisette
- 1 RNA/RNP Group, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Faiz-ul Hassan Nasim
- 1 RNA/RNP Group, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Madden
- 2 Centre de genomique fonctionnelle de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mélanie Cordeau
- 1 RNA/RNP Group, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Benoit Chabot
- 1 RNA/RNP Group, Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
- 2 Centre de genomique fonctionnelle de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
200
|
Cartegni L, Hastings ML, Calarco JA, de Stanchina E, Krainer AR. Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet 2006; 78:63-77. [PMID: 16385450 PMCID: PMC1380224 DOI: 10.1086/498853] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 10/07/2005] [Indexed: 11/03/2022] Open
Abstract
Spinal muscular atrophy is a neurodegenerative disorder caused by the deletion or mutation of the survival-of-motor-neuron gene, SMN1. An SMN1 paralog, SMN2, differs by a C-->T transition in exon 7 that causes substantial skipping of this exon, such that SMN2 expresses only low levels of functional protein. A better understanding of SMN splicing mechanisms should facilitate the development of drugs that increase survival motor neuron (SMN) protein levels by improving SMN2 exon 7 inclusion. In addition, exonic mutations that cause defective splicing give rise to many genetic diseases, and the SMN1/2 system is a useful paradigm for understanding exon-identity determinants and alternative-splicing mechanisms. Skipping of SMN2 exon 7 was previously attributed either to the loss of an SF2/ASF-dependent exonic splicing enhancer or to the creation of an hnRNP A/B-dependent exonic splicing silencer, as a result of the C-->T transition. We report the extensive testing of the enhancer-loss and silencer-gain models by mutagenesis, RNA interference, overexpression, RNA splicing, and RNA-protein interaction experiments. Our results support the enhancer-loss model but also demonstrate that hnRNP A/B proteins antagonize SF2/ASF-dependent ESE activity and promote exon 7 skipping by a mechanism that is independent of the C-->T transition and is, therefore, common to both SMN1 and SMN2. Our findings explain the basis of defective SMN2 splicing, illustrate the fine balance between positive and negative determinants of exon identity and alternative splicing, and underscore the importance of antagonistic splicing factors and exonic elements in a disease context.
Collapse
Affiliation(s)
- Luca Cartegni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|