151
|
López M, Gómez E, Faye C, Gerentes D, Paul W, Royo J, Hueros G, Muñiz LM. zmsbt1 and zmsbt2, two new subtilisin-like serine proteases genes expressed in early maize kernel development. PLANTA 2017; 245:409-424. [PMID: 27830397 DOI: 10.1007/s00425-016-2615-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Two subtilisin-like proteases show highly specific and complementary expression patterns in developing grains. These genes label the complete surface of the filial-maternal interface, suggesting a role in filial epithelial differentiation. The cereal endosperm is the most important source of nutrition and raw materials for mankind, as well as the storage compartment enabling initial growth of the germinating plantlets. The development of the different cell types in this tissue is regulated environmentally, genetically and epigenetically, resulting in the formation of top-bottom, adaxial-abaxial and surface-central axes. However, the mechanisms governing the interactions among the different inputs are mostly unknown. We have screened a kernel cDNA library for tissue-specific transcripts as initial step to identify genes relevant in cell differentiation. We report here on the isolation of two maize subtilisin-related genes that show grain-specific, surficial expression. zmsbt1 (Zea mays Subtilisin1) is expressed at the developing aleurone in a time-regulated manner, while zmsbt2 concentrates at the pedicel in front of the endosperm basal transfer layer. We have shown that their presence, early in the maize caryopsis development, is dependent on proper initial tissue determination, and have isolated their promoters to produce transgenic reporter lines that assist in the study of their regulation.
Collapse
Affiliation(s)
- Maribel López
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| | - Elisa Gómez
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| | - Christian Faye
- GM Trait Discovery, Biogemma, Centre de Recherche de Chappes, Chappes, France
| | - Denise Gerentes
- GM Trait Discovery, Biogemma, Centre de Recherche de Chappes, Chappes, France
| | - Wyatt Paul
- GM Trait Discovery, Biogemma, Centre de Recherche de Chappes, Chappes, France
| | - Joaquín Royo
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| | - Gregorio Hueros
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain.
| | - Luis M Muñiz
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
152
|
Hosseini-Koupaei M, Shareghi B, Saboury AA, Davar F. Molecular investigation on the interaction of spermine with proteinase K by multispectroscopic techniques and molecular simulation studies. Int J Biol Macromol 2017; 94:406-414. [DOI: 10.1016/j.ijbiomac.2016.10.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/30/2016] [Accepted: 10/14/2016] [Indexed: 11/17/2022]
|
153
|
Yang LQ, Sang P, Zhang RP, Liu SQ. Substrate-induced changes in dynamics and molecular motions of cuticle-degrading serine protease PL646: a molecular dynamics study. RSC Adv 2017. [DOI: 10.1039/c7ra07797a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cuticle-degrading serine proteases secreted by nematophagous fungi can degrade the nematode cuticle during the infection processes.
Collapse
Affiliation(s)
- Li-Quan Yang
- College of Agriculture and Biological Science
- Dali University
- Dali
- P. R. China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China
| | - Peng Sang
- College of Agriculture and Biological Science
- Dali University
- Dali
- P. R. China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China
| | - Ruo-Peng Zhang
- Department of Reproductive Medicine
- The First Affiliated Hospital of Dali University
- Dali
- P. R. China
| | - Shu-Qun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
| |
Collapse
|
154
|
Das C, Ghosh TS, Mande SS. In silico dissection of Type VII Secretion System components across bacteria: New directions towards functional characterization. J Biosci 2016; 41:133-43. [PMID: 26949095 DOI: 10.1007/s12038-016-9599-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type VII Secretion System (T7SS) is one of the factors involved in virulence of Mycobacterium tuberculosis H37Rv. Numerous research efforts have been made in the last decade towards characterizing the components of this secretion system. An extensive genome-wide analysis through compilation of isolated information is required to obtain a global view of diverse characteristics and pathogenicity-related aspects of this machinery. The present study suggests that differences in structural components (of T7SS) between Actinobacteria and Firmicutes, observed earlier in a few organisms, is indeed a global trend. A few hitherto uncharacterized T7SS-like clusters have been identified in the pathogenic bacteria Enterococcus faecalis, Saccharomonospora viridis, Streptococcus equi, Streptococcus gordonii and Streptococcus sanguinis. Experimental verification of these clusters can shed lights on their role in bacterial pathogenesis. Similarly, verification of the identified variants of T7SS clusters consisting additional membrane components may help in unraveling new mechanism of protein translocation through T7SS. A database of various components of T7SS has been developed to facilitate easy access and interpretation of T7SS related data.
Collapse
Affiliation(s)
- Chandrani Das
- Bio-Sciences R and D Division, TCS Innovation Labs, Tata Research Development and Design Centre, Tata Consultancy Service Ltd., Pune 411 013, India
| | | | | |
Collapse
|
155
|
Freeman MF, Helf MJ, Bhushan A, Morinaka BI, Piel J. Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nat Chem 2016; 9:387-395. [DOI: 10.1038/nchem.2666] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/02/2016] [Indexed: 12/20/2022]
|
156
|
Figueiredo J, Costa GJ, Maia M, Paulo OS, Malhó R, Sousa Silva M, Figueiredo A. Revisiting Vitis vinifera Subtilase Gene Family: A Possible Role in Grapevine Resistance against Plasmopara viticola. FRONTIERS IN PLANT SCIENCE 2016; 7:1783. [PMID: 27933087 PMCID: PMC5122586 DOI: 10.3389/fpls.2016.01783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/11/2016] [Indexed: 05/08/2023]
Abstract
Subtilisin-like proteases, also known as subtilases, are a very diverse family of serine peptidases present in many organisms. In grapevine, there are hints of the involvement of subtilases in defense mechanisms, but their role is not yet understood. The first characterization of the subtilase gene family was performed in 2014. However, simultaneously, the grapevine genome was re-annotated and several sequences were re-annotated or retrieved. We have performed a re-characterization of this family in grapevine and identified 82 genes coding for 97 putative proteins, as result of alternative splicing. All the subtilases identified present the characteristic S8 peptidase domain and the majority of them also have a pro-domain I9 inhibitor, a protease-associated (PA) domain, and a signal peptide for targeting to the secretory pathway. Phylogenetic studies revealed six subtilase groups denominated VvSBT1 to VvSBT6. As several evidences have highlighted the participation of plant subtilases in response to biotic stimulus, we have investigated subtilase participation in grapevine resistance to Plasmopara viticola, the causative agent of downy mildew. Fourteen grapevine subtilases presenting either high homology to P69C from tomato, SBT3.3 from Arabidopsis thaliana or located near the Resistance to P. viticola (RPV) locus were selected. Expression studies were conducted in the grapevine-P. viticola pathosystem with resistant and susceptible cultivars. Our results may indicate that some of grapevine subtilisins are potentially participating in the defense response against this biotrophic oomycete.
Collapse
Affiliation(s)
- Joana Figueiredo
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
| | - Gonçalo J. Costa
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
| | - Marisa Maia
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
| | - Octávio S. Paulo
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
| | - Rui Malhó
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
| | - Marta Sousa Silva
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
| | - Andreia Figueiredo
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
| |
Collapse
|
157
|
Zhang L, Li Y, Yuan Y, Jiang Y, Guo Y, Li M, Pu X. Molecular mechanism of carbon nanotube to activate Subtilisin Carlsberg in polar and non-polar organic media. Sci Rep 2016; 6:36838. [PMID: 27874101 PMCID: PMC5118797 DOI: 10.1038/srep36838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/17/2016] [Indexed: 02/04/2023] Open
Abstract
In the work, we mainly used molecular dynamics (MD) simulation and protein structure network (PSN) to study subtilisin Carlsberg (SC) immobilized onto carbon nanotube (CNT) in water, acetonitrile and heptane solvents, in order to explore activation mechanism of enzymes in non-aqueous media. The result indicates that the affinity of SC with CNT follows the decreasing order of water > acetonitrile > heptane. The overall structure of SC and the catalytic triad display strong robustness to the change of environments, responsible for the activity retaining. However, the distances between two β-strands of substrate-binding pocket are significantly expanded by the immobilization in the increasing order of water < acetonitrile < heptane, contributing to the highest substrate-binding energy in heptane media. PSN analysis further reveals that the immobilization enhances structural communication paths to the substrate-binding pocket, leading to its larger change than the free-enzymes. Interestingly, the increase in the number of the pathways upon immobilization is not dependent on the absorbed extent but the desorbed one, indicating significant role of shifting process of experimental operations in influencing the functional region. In addition, some conserved and important hot-residues in the paths are identified, providing molecular information for functional modification.
Collapse
Affiliation(s)
- Liyun Zhang
- Faculty of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yuzhi Li
- Faculty of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu 610041, People's Republic of China
| | - Yuanyuan Jiang
- Faculty of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yanzhi Guo
- Faculty of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Menglong Li
- Faculty of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| | - Xuemei Pu
- Faculty of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
158
|
Manfredi MA, Antunes AA, Jesus LDOP, Juliano MA, Juliano L, Judice WADS. Specificity characterization of the α-mating factor hormone by Kex2 protease. Biochimie 2016; 131:149-158. [PMID: 27720750 DOI: 10.1016/j.biochi.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
Kex2 is a Ca2+-dependent serine protease from S. cerevisiae. Characterization of the substrate specificity of Kex2 is of particular interest because this protease serves as the prototype of a large family of eukaryotic subtilisin-related proprotein-processing proteases that cleave sites consisting of pairs or clusters of basic residues. Our goal was to study the prime region subsite S' of Kex2 because previous studies have only taken into account non-prime sites using AMC substrates but not the specificity of prime sites identified through structural modeling or predicted cleavage sites. Therefore, we used peptides derived from Abz-KR↓EADQ-EDDnp and Abz-YKR↓EADQ-EDDnp based on the pro-α-mating factor sequence. The specificity of Kex2 due to basic residues at P1' is affected by the type of residue in the P3 position. Some residues in P1' with large or bulky side chains yielded poor substrate specificity. The kcat/KM values for peptides with P2' substitutions containing Tyr in P3 were higher than those obtained for the peptides without Tyr. In fact, P' and P modifications mainly promoted changes in kcat and KM, respectively. The pH profile of Kex2 was fit to a double-sigmoidal pH-titration curve. The specificity results suggest that Kex2 might be involved in the processing of the putative cleavage sites in a polypeptide involved in cell elongation, hyphal formation and the processing of a toxin, which result in host cell lysis. In summary, the specificity of Kex2 is dependent on the set of interactions with prime and non-prime subsites, resulting in synergism.
Collapse
Affiliation(s)
- Marcella Araújo Manfredi
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes - UMC, Mogi das Cruzes, SP, Brazil
| | - Alyne Alexandrino Antunes
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes - UMC, Mogi das Cruzes, SP, Brazil
| | | | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, 04044-020, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, 04044-020, Brazil
| | - Wagner Alves de Souza Judice
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes - UMC, Mogi das Cruzes, SP, Brazil.
| |
Collapse
|
159
|
Isolation and characterization of a broad pH- and temperature-active, solvent and surfactant stable protease from a new strain of Bacillus subtilis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
160
|
Abstract
Many anaerobic spore-forming clostridial species are pathogenic, and some are industrially useful. Although many are strict anaerobes, the bacteria persist under aerobic and growth-limiting conditions as multilayered metabolically dormant spores. For many pathogens, the spore form is what most commonly transmits the organism between hosts. After the spores are introduced into the host, certain proteins (germinant receptors) recognize specific signals (germinants), inducing spores to germinate and subsequently grow into metabolically active cells. Upon germination of the spore into the metabolically active vegetative form, the resulting bacteria can colonize the host and cause disease due to the secretion of toxins from the cell. Spores are resistant to many environmental stressors, which make them challenging to remove from clinical environments. Identifying the conditions and the mechanisms of germination in toxin-producing species could help develop affordable remedies for some infections by inhibiting germination of the spore form. Unrelated to infectious disease, spore formation in species used in the industrial production of chemicals hinders the optimum production of the chemicals due to the depletion of the vegetative cells from the population. Understanding spore germination in acetone-butanol-ethanol-producing species can help boost the production of chemicals, leading to cheaper ethanol-based fuels. Until recently, clostridial spore germination is assumed to be similar to that of Bacillus subtilis However, recent studies in Clostridium difficile shed light on a mechanism of spore germination that has not been observed in any endospore-forming organisms to date. In this review, we focus on the germinants and the receptors recognizing these germinants in various clostridial species.
Collapse
|
161
|
Czekster CM, Ge Y, Naismith JH. Mechanisms of cyanobactin biosynthesis. Curr Opin Chem Biol 2016; 35:80-88. [PMID: 27639115 DOI: 10.1016/j.cbpa.2016.08.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 01/22/2023]
Abstract
Cyanobactins are a diverse collection of natural products that originate from short peptides made on a ribosome. The amino acids are modified in a series of transformations catalyzed by multiple enzymes. The patellamide pathway is the most well studied and characterized example. Here we review the structures and mechanisms of the enzymes that cleave peptide bonds, macrocyclise peptides, heterocyclise cysteine (as well as threonine and serine) residues, oxidize five-membered heterocycles and attach prenyl groups. Some enzymes operate by novel mechanisms which is of interest and in addition the enzymes uncouple recognition from catalysis. The normally tight relationship between these factors hinders biotechnology. The cyanobactin pathway may be particularly suitable for exploitation, with progress observed with in vivo and in vitro approaches.
Collapse
Affiliation(s)
- Clarissa Melo Czekster
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST Scotland, UK
| | - Ying Ge
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST Scotland, UK
| | - James H Naismith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST Scotland, UK
- State Key Laboratory of Biotherapy, Sichuan University, China
| |
Collapse
|
162
|
Wei G, Tian N, Siezen R, Schuppan D, Helmerhorst EJ. Identification of food-grade subtilisins as gluten-degrading enzymes to treat celiac disease. Am J Physiol Gastrointest Liver Physiol 2016; 311:G571-80. [PMID: 27469368 PMCID: PMC5076000 DOI: 10.1152/ajpgi.00185.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023]
Abstract
Gluten are proline- and glutamine-rich proteins present in wheat, barley, and rye and contain the immunogenic sequences that drive celiac disease (CD). Rothia mucilaginosa, an oral microbial colonizer, can cleave these gluten epitopes. The aim was to isolate and identify the enzymes and evaluate their potential as novel enzyme therapeutics for CD. The membrane-associated R. mucilaginosa proteins were extracted and separated by DEAE chromatography. Enzyme activities were monitored with paranitroanilide-derivatized and fluorescence resonance energy transfer (FRET) peptide substrates, and by gliadin zymography. Epitope elimination was determined in R5 and G12 ELISAs. The gliadin-degrading Rothia enzymes were identified by LC-ESI-MS/MS as hypothetical proteins ROTMU0001_0241 (C6R5V9_9MICC), ROTMU0001_0243 (C6R5W1_9MICC), and ROTMU0001_240 (C6R5V8_9MICC). A search with the Basic Local Alignment Search Tool revealed that these are subtilisin-like serine proteases belonging to the peptidase S8 family. Alignment of the major Rothia subtilisins indicated that all contain the catalytic triad with Asp (D), His (H), and Ser (S) in the D-H-S order. They cleaved succinyl-Ala-Ala-Pro-Phe-paranitroanilide, a substrate for subtilisin with Pro in the P2 position, as in Tyr-Pro-Gln and Leu-Pro-Tyr in gluten, which are also cleaved. Consistently, FRET substrates of gliadin immunogenic epitopes comprising Xaa-Pro-Xaa motives were rapidly hydrolyzed. The Rothia subtilisins and two subtilisins from Bacillus licheniformis, subtilisin A and the food-grade Nattokinase, efficiently degraded the immunogenic gliadin-derived 33-mer peptide and the immunodominant epitopes recognized by the R5 and G12 antibodies. This study identified Rothia and food-grade Bacillus subtilisins as promising new candidates for enzyme therapeutics in CD.
Collapse
Affiliation(s)
- Guoxian Wei
- 1Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| | - Na Tian
- 1Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| | - Roland Siezen
- 2Bacterial Genomics Group, Center for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, the Netherlands;
| | - Detlef Schuppan
- 3Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and ,4Institute of Translational Immunology and Research Center for Immunology, University Medical Center, Johannes-Gutenberg-University, Mainz, Germany
| | - Eva J. Helmerhorst
- 1Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| |
Collapse
|
163
|
Apolinar-Hernández MM, Peña-Ramírez YJ, Pérez-Rueda E, Canto-Canché BB, De Los Santos-Briones C, O'Connor-Sánchez A. Identification and in silico characterization of two novel genes encoding peptidases S8 found by functional screening in a metagenomic library of Yucatán underground water. Gene 2016; 593:154-161. [PMID: 27522038 DOI: 10.1016/j.gene.2016.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/19/2016] [Accepted: 08/04/2016] [Indexed: 01/19/2023]
Abstract
Metagenomics is a culture-independent technology that allows access to novel and potentially useful genetic resources from a wide range of unknown microorganisms. In this study, a fosmid metagenomic library of tropical underground water was constructed, and clones were functionally screened for extracellular proteolytic activity. One of the positive clones, containing a 41,614-bp insert, had two genes with 60% and 68% identity respectively with a peptidase S8 of Chitinimonas koreensis. When these genes were individually sub-cloned, in both cases their sub-clones showed proteolytic phenotype, confirming that they both encode functional proteases. These genes -named PrAY5 and PrAY6- are next to each other. They are similar in size (1845bp and 1824bp respectively) and share 66.5% identity. An extensive in silico characterization showed that their ORFs encode complex zymogens having a signal peptide at their 5' end, followed by a pro-peptide, a catalytic region, and a PPC domain at their 3' end. Their translated sequences were classified as peptidases S8A by sequence comparisons against the non-redundant database and corroborated by Pfam and MEROPS. Phylogenetic analysis of the catalytic region showed that they encode novel proteases that clustered with the sub-family S8_13, which according to the CDD database at NCBI, is an uncharacterized subfamily. They clustered in a clade different from the other three proteases S8 found so far by functional metagenomics, and also different from proteases S8 found in sequenced environmental samples, thereby expanding the range of potentially useful proteases that have been identified by metagenomics. I-TASSER modeling corroborated that they may be subtilases, thus possibly they participate in the hydrolysis of proteins with broad specificity for peptide bonds, and have a preference for a large uncharged residue in P1.
Collapse
Affiliation(s)
- Max M Apolinar-Hernández
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Chuburná de Hidalgo, Mérida, Yucatán CP 97200, Mexico
| | - Yuri J Peña-Ramírez
- El Colegio de la Frontera Sur (ECOSUR) Unidad Campeche, Avenida Rancho Polígono 2A, Ciudad Industrial Lerma, Campeche, Campeche CP 24500, Mexico
| | - Ernesto Pérez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Cuernavaca, Morelos CP 62210, Mexico
| | - Blondy B Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Chuburná de Hidalgo, Mérida, Yucatán CP 97200, Mexico
| | - César De Los Santos-Briones
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Chuburná de Hidalgo, Mérida, Yucatán CP 97200, Mexico
| | - Aileen O'Connor-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán A.C., Calle 43 No. 130, Chuburná de Hidalgo, Mérida, Yucatán CP 97200, Mexico.
| |
Collapse
|
164
|
Meyer M, Leptihn S, Welz M, Schaller A. Functional Characterization of Propeptides in Plant Subtilases as Intramolecular Chaperones and Inhibitors of the Mature Protease. J Biol Chem 2016; 291:19449-61. [PMID: 27451395 DOI: 10.1074/jbc.m116.744151] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Indexed: 12/23/2022] Open
Abstract
Subtilisin-like serine proteases (SBTs) are extracellular proteases that depend on their propeptides for zymogen maturation and activation. The function of propeptides in plant SBTs is poorly understood and was analyzed here for the propeptide of tomato subtilase 3 (SBT3PP). SBT3PP was found to be required as an intramolecular chaperone for zymogen maturation and secretion of SBT3 in vivo Secretion was impaired in a propeptide-deletion mutant but could be restored by co-expression of the propeptide in trans SBT3 was inhibited by SBT3PP with a Kd of 74 nm for the enzyme-inhibitor complex. With a melting point of 87 °C, thermal stability of the complex was substantially increased as compared with the free protease suggesting that propeptide binding stabilizes the structure of SBT3. Even closely related propeptides from other plant SBTs could not substitute for SBT3PP as a folding assistant or autoinhibitor, revealing high specificity for the SBT3-SBT3PP interaction. Separation of the chaperone and inhibitor functions of SBT3PP in a domain-swap experiment indicated that they are mediated by different regions of the propeptide and, hence, different modes of interaction with SBT3. Release of active SBT3 from the autoinhibited complex relied on a pH-dependent cleavage of the propeptide at Asn-38 and Asp-54. The remarkable stability of the autoinhibited complex and pH dependence of the secondary cleavage provide means for stringent control of SBT3 activity, to ensure that the active enzyme is not released before it reaches the acidic environment of the trans-Golgi network or its final destination in the cell wall.
Collapse
Affiliation(s)
- Michael Meyer
- From the Institute of Plant Physiology and Biotechnology and
| | - Sebastian Leptihn
- the Department of Microbiology, University of Hohenheim, D-70593 Stuttgart, Germany
| | - Max Welz
- From the Institute of Plant Physiology and Biotechnology and
| | | |
Collapse
|
165
|
Zeiner CA, Purvine SO, Zink EM, Paša-Tolić L, Chaput DL, Haridas S, Wu S, LaButti K, Grigoriev IV, Henrissat B, Santelli CM, Hansel CM. Comparative Analysis of Secretome Profiles of Manganese(II)-Oxidizing Ascomycete Fungi. PLoS One 2016; 11:e0157844. [PMID: 27434633 PMCID: PMC4951024 DOI: 10.1371/journal.pone.0157844] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/06/2016] [Indexed: 01/08/2023] Open
Abstract
Fungal secretomes contain a wide range of hydrolytic and oxidative enzymes, including cellulases, hemicellulases, pectinases, and lignin-degrading accessory enzymes, that synergistically drive litter decomposition in the environment. While secretome studies of model organisms such as Phanerochaete chrysosporium and Aspergillus species have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates or conducted side-by-side comparisons of diverse species. Thus, the mechanisms of carbon degradation by many ubiquitous soil fungi remain poorly understood. Here we use a combination of LC-MS/MS, genomic, and bioinformatic analyses to characterize and compare the protein composition of the secretomes of four recently isolated, cosmopolitan, Mn(II)-oxidizing Ascomycetes (Alternaria alternata SRC1lrK2f, Stagonospora sp. SRC1lsM3a, Pyrenochaeta sp. DS3sAY3a, and Paraconiothyrium sporulosum AP3s5-JAC2a). We demonstrate that the organisms produce a rich yet functionally similar suite of extracellular enzymes, with species-specific differences in secretome composition arising from unique amino acid sequences rather than overall protein function. Furthermore, we identify not only a wide range of carbohydrate-active enzymes that can directly oxidize recalcitrant carbon, but also an impressive suite of redox-active accessory enzymes that suggests a role for Fenton-based hydroxyl radical formation in indirect, non-specific lignocellulose attack. Our findings highlight the diverse oxidative capacity of these environmental isolates and enhance our understanding of the role of filamentous Ascomycetes in carbon turnover in the environment.
Collapse
Affiliation(s)
- Carolyn A. Zeiner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Samuel O. Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Erika M. Zink
- Biological Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Dominique L. Chaput
- Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Si Wu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR7257, Centre National de la Recherche Scientifique and Aix-Marseille Université, 13288 Marseille Cedex 9, France
- Department of Biological Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Cara M. Santelli
- Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Colleen M. Hansel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
166
|
Singh N, Bhattacharyya D. Cholesterol and Its Derivatives Reversibly Inhibit Proteinase K. J Cell Physiol 2016; 232:596-609. [DOI: 10.1002/jcp.25457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Namrata Singh
- Division of Structural Biology and Bioinformatics; CSIR-Indian Institute of Chemical Biology; Jadavpur Kolkata India
| | - Debasish Bhattacharyya
- Division of Structural Biology and Bioinformatics; CSIR-Indian Institute of Chemical Biology; Jadavpur Kolkata India
| |
Collapse
|
167
|
Autocatalytic activation of a thermostable glutamyl endopeptidase capable of hydrolyzing proteins at high temperatures. Appl Microbiol Biotechnol 2016; 100:10429-10441. [PMID: 27377749 DOI: 10.1007/s00253-016-7697-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 01/27/2023]
Abstract
Glutamyl endopeptidases (GSEs) specifically hydrolyze peptide bonds formed by α-carboxyl groups of Glu and Asp residues. We cloned the gene for a thermophilic GSE (designated TS-GSE) from Thermoactinomyces sp. CDF. A proform of TS-GSE that contained a 61-amino acid N-terminal propeptide and a 218-amino acid mature domain was produced in Escherichia coli. We found that the proform possessed two processing sites and was capable of autocatalytic activation via multiple pathways. The N-terminal propeptide could be autoprocessed at the Glu-1-Ser1 bond to directly generate the mature enzyme. It could also be autoprocessed at the Glu-12-Lys-11 bond to yield an intermediate, which was then converted into the mature form after removal of the remaining part of the propeptide. The segment surrounding the two processing sites was flexible, which allowed the proform and the intermediate form to be trans-processed into the mature form by either active TS-GSE or heterogeneous proteases. Deletion analysis revealed that the N-terminal propeptide is important for the correct folding and maturation of TS-GSE. The propeptide, even its last 11-amino acid peptide segment, could inhibit the activity of its cognate mature domain. The mature TS-GSE displayed a temperature optimum of 85 °C and retained approximately 90 % of its original activity after incubation at 70 °C for 6 h, representing the most thermostable GSE reported to date. Mutational analysis suggested that the disulfide bonds Cys32-Cys48 and Cys180-Cys183 cumulatively contributed to the thermostability of TS-GSE.
Collapse
|
168
|
Biochemical and molecular characterization of new keratinoytic protease from Actinomadura viridilutea DZ50. Int J Biol Macromol 2016; 92:299-315. [PMID: 27387016 DOI: 10.1016/j.ijbiomac.2016.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 11/22/2022]
Abstract
A new extracellular thermostable keratinolytic protease, designated KERDZ, was purified and characterized from a thermophilic actinomycetes Actinomadura viridilutea DZ50 isolated from Algerian fishing port. The isolate exhibited high keratinase production when grown in chicken-feather meal media (18,000U/ml) after 96-h of incubation at 45°C. The enzyme was purified by ammonium sulfate precipitation (35-55%)-dialysis and heat treatment (30min at 75°C) followed by UNO S-1 FPLC cation exchange chromatography and size exclusion HPLC column. The biochemical characterizations carried on include physico-chemical determination and spectroscopic analysis. The MALDI-TOF/MS analysis revealed that the purified enzyme was a monomer with a molecular mass of 19536.10-Da. The sequence of the 25 N-terminal residues of KERDZ showed high homology with those of actinomycetes keratinases. Optimal activity was achieved at pH 11 and 80°C. KERDZ was completely inhibited by PMSF and DFP suggested its belonging to the serine keratinase family. KERDZ displayed higher levels of hydrolysis and catalytic efficiency than bacterial keratinases (KERAK-29, Actinase E, and KERAB) and subtilisins (subtilisin Carlsberg and subtilisin Novo). The kerDZ gene encoding KERDZ was isolated and its DNA sequence was determined. These properties make KERDZ a potential, promising and eco-friendly alternative to the conventional chemicals used for industrial applications.
Collapse
|
169
|
Hintze BJ, Lewis SM, Richardson JS, Richardson DC. Molprobity's ultimate rotamer-library distributions for model validation. Proteins 2016; 84:1177-89. [PMID: 27018641 DOI: 10.1002/prot.25039] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 12/22/2022]
Abstract
Here we describe the updated MolProbity rotamer-library distributions derived from an order-of-magnitude larger and more stringently quality-filtered dataset of about 8000 (vs. 500) protein chains, and we explain the resulting changes and improvements to model validation as seen by users. To include only side-chains with satisfactory justification for their given conformation, we added residue-specific filters for electron-density value and model-to-density fit. The combined new protocol retains a million residues of data, while cleaning up false-positive noise in the multi- χ datapoint distributions. It enables unambiguous characterization of conformational clusters nearly 1000-fold less frequent than the most common ones. We describe examples of local interactions that favor these rare conformations, including the role of authentic covalent bond-angle deviations in enabling presumably strained side-chain conformations. Further, along with favored and outlier, an allowed category (0.3-2.0% occurrence in reference data) has been added, analogous to Ramachandran validation categories. The new rotamer distributions are used for current rotamer validation in MolProbity and PHENIX, and for rotamer choice in PHENIX model-building and refinement. The multi-dimensional χ distributions and Top8000 reference dataset are freely available on GitHub. These rotamers are termed "ultimate" because data sampling and quality are now fully adequate for this task, and also because we believe the future of conformational validation should integrate side-chain with backbone criteria. Proteins 2016; 84:1177-1189. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bradley J Hintze
- Department of Biochemistry, Duke University, Durham North Carolina 27710
| | - Steven M Lewis
- Department of Biochemistry, Duke University, Durham North Carolina 27710
| | - Jane S Richardson
- Department of Biochemistry, Duke University, Durham North Carolina 27710
| | - David C Richardson
- Department of Biochemistry, Duke University, Durham North Carolina 27710
| |
Collapse
|
170
|
Alternative Translation Initiation of a Haloarchaeal Serine Protease Transcript Containing Two In-Frame Start Codons. J Bacteriol 2016; 198:1892-901. [PMID: 27137502 DOI: 10.1128/jb.00202-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Recent studies have shown that haloarchaea employ leaderless and Shine-Dalgarno (SD)-less mechanisms for translation initiation of leaderless transcripts with a 5' untranslated region (5' UTR) of <10 nucleotides (nt) and leadered transcripts with a 5' UTR of ≥10 nt, respectively. However, whether the two mechanisms can operate on the same naturally occurring haloarchaeal transcript carrying multiple potential start codons is unknown. In this study, the transcript of the sptA gene (encoding an extracellular serine protease of Natrinema sp. strain J7-2) was experimentally determined and found to contain two potential in-frame AUG codons (AUG(1) and AUG(2)) located 5 and 29 nt, respectively, downstream of the transcription start site. Mutational analysis revealed that both AUGs can function as the translation start codon for production of active SptA, although AUG(1) is more efficient than AUG(2) for translation initiation. Insertion of a stable stem-loop structure between the two AUGs completely abolished initiation at AUG(1) but did not affect initiation at AUG(2), indicating that AUG(2)-initiated translation does not involve ribosome scanning from the 5' end of the transcript. Furthermore, the efficiency of AUG(2)-initiated translation was not influenced by an upstream SD-like sequence. In addition, both AUG(1) and AUG(2) contribute to transcript stability, probably by recruiting ribosomes to protect the transcript against degradation. These data suggest that depending on which of two in-frame start codons is used, the sptA transcript can act as either a leaderless or a leadered transcript for SptA production in haloarchaea. IMPORTANCE In eukaryotes and bacteria, alternative translation start sites contribute to proteome complexity and can be used as a functional mechanism to increase translation efficiency. However, little is known about alternative translation initiation in archaea. Our results demonstrate that leaderless and SD-less mechanisms can be used for translation initiation of the sptA transcript from two in-frame start codons, raising the possibility that in haloarchaea, alternative translation initiation on one transcript functions to increase translation efficiency and/or contribute to proteome complexity.
Collapse
|
171
|
Khan S, Nadir S, Wang X, Khan A, Xu J, Li M, Tao L, Khan S, Karunarathna SC. Using in silico techniques: Isolation and characterization of an insect cuticle-degrading-protease gene from Beauveria bassiana. Microb Pathog 2016; 97:189-97. [PMID: 27287496 DOI: 10.1016/j.micpath.2016.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/05/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
Abstract
Cuticle-degrading-proteases (CDPs) secreted by Beauveria spp. are pivotal biocontrol substances, possessing commercial potential for developing bio-pesticides. Therefore, a thoughtful and contemplative understanding and assessment of the structural and functional features of these proteases would markedly assist the development of biogenic pesticides. Computational molecular biology is a new facile alternative approach to the tedious experimental molecular biology; therefore, by using bioinformatics tools, we isolated and characterized an insect CDP gene from Beauveria bassiana 70 s.l. genomic DNA. The CDP gene (1240 bp with GeneBank accession no. KT804651.1) consisted of three introns and four CDS exons, and shared 74-100% sequence identity to the reference CDP genes. Its phylogenetic tree results showed a unique evolution pattern, and the predicted amino acid peptide (PAAP) consisted of 344 amino acid residues with pI, molecular weight, instability index, grand average hydropathicity value and aliphatic index of 7.2, 35.4 kDa, 24.45, -0.149, and 76.63, respectively. The gene possessed 74-89% amino acid sequence similarity to the 12 reference strains. Three motifs (Peptidase_S8 subtilase family) were detected in the PAAP, and the computed 3D structure possessed 79.09% structural identity to alkaline serine proteases. The PAAP had four (three serine proteases and one Pyridoxal-dependent decarboxylase) conserved domains, a disulfide bridge, two calcium binding sites, MY domain, and three predicted active sites in the serine family domains. These results will set the groundwork for further exploitation of proteases and understanding the mechanism of disease caused by cuticle-degrading-serine-proteases from entomopathogenic fungi.
Collapse
Affiliation(s)
- Sehroon Khan
- World Agroforestry Centre, East and Central Asia Office, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Rd, Heilongtan, Kunming 650201, Yunnan, China; Centre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Sadia Nadir
- Department of Chemistry, Faculty of Sciences, University of Science and Technology Bannu, 28100 Bannu, Khyber Pakhtunkhwa, Pakistan; Rice Research Institute, Yunnan Agriculture University, Heilongtan, Kunming 650201, Yunnan, China
| | - Xuewen Wang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China.
| | - Afsar Khan
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Jianchu Xu
- World Agroforestry Centre, East and Central Asia Office, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Rd, Heilongtan, Kunming 650201, Yunnan, China; Centre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Meng Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China
| | - Lihong Tao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China
| | - Siraj Khan
- School of Software, Beijing Institute of Technology, Beijing, China
| | - Samantha C Karunarathna
- World Agroforestry Centre, East and Central Asia Office, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Rd, Heilongtan, Kunming 650201, Yunnan, China
| |
Collapse
|
172
|
Characterization of a salt-activated protease with temperature-dependent secretion in Stenotrophomonas maltophilia FF11 isolated from frozen Antarctic krill. ACTA ACUST UNITED AC 2016; 43:829-40. [DOI: 10.1007/s10295-016-1749-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 11/26/2022]
Abstract
Abstract
Seafood is sometimes wasted due to the growth of psychrotolerant microbes which secrete proteases and break down proteins. Stenotrophomonas maltophilia FF11, isolated from frozen Antarctic krill, grows at a wide range of temperatures and secretes more proteases at low temperatures. According to zymogram analysis, two kinds of proteases were produced from this strain. A major protease was produced largely at 15 °C, but not at 37 °C. The temperature-dependent secreted protease was purified to homogeneity. Its molecular mass was determined at 37.4 kDa and its amino acid sequence was also obtained. This protease is a member of the subtilase group according to the NCBI blast analysis. The enzyme was highly stable at high salt concentration (4 M). Interestingly, its activity increased about 1.6-fold under high salt condition. The enzyme remains active and stable in different organic solvents (50 %, v/v) such as dimethylsulfoxide, dimethyl formamide, dioxane and acetone. These properties may provide potential applications in quality control for sea foods, in protein degradation at high salt concentration, in biocatalysis and biotransformation within non-aqueous media, such as detergent and transesterification.
Collapse
|
173
|
Kurata A, Senoo H, Ikeda Y, Kaida H, Matsuhara C, Kishimoto N. Properties of an ionic liquid-tolerant Bacillus
amyloliquefaciens CMW1 and its extracellular protease. Extremophiles 2016; 20:415-24. [DOI: 10.1007/s00792-016-0832-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
|
174
|
Hatzios SK, Abel S, Martell J, Hubbard T, Sasabe J, Munera D, Clark L, Bachovchin DA, Qadri F, Ryan ET, Davis BM, Weerapana E, Waldor MK. Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat Chem Biol 2016; 12:268-274. [PMID: 26900865 PMCID: PMC4765928 DOI: 10.1038/nchembio.2025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/31/2015] [Indexed: 12/15/2022]
Abstract
Activity-based protein profiling (ABPP) is a chemoproteomic tool for detecting active enzymes in complex biological systems. We used ABPP to identify secreted bacterial and host serine hydrolases that are active in animals infected with the cholera pathogen Vibrio cholerae. Four V. cholerae proteases were consistently active in infected rabbits, and one, VC0157 (renamed IvaP), was also active in human choleric stool. Inactivation of IvaP influenced the activity of other secreted V. cholerae and rabbit enzymes in vivo, and genetic disruption of all four proteases increased the abundance of intelectin, an intestinal lectin, and its binding to V. cholerae in infected rabbits. Intelectin also bound to other enteric bacterial pathogens, suggesting that it may constitute a previously unrecognized mechanism of bacterial surveillance in the intestine that is inhibited by pathogen-secreted proteases. Our work demonstrates the power of activity-based proteomics to reveal host-pathogen enzymatic dialog in an animal model of infection.
Collapse
Affiliation(s)
- Stavroula K. Hatzios
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Sören Abel
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Department of Pharmacy, University of Tromsø (UiT), The Arctic University of Norway, Tromsø, Norway
| | | | - Troy Hubbard
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Jumpei Sasabe
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Diana Munera
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Lars Clark
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Brigid M. Davis
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
175
|
Lylloff JE, Hansen LBS, Jepsen M, Sanggaard KW, Vester JK, Enghild JJ, Sørensen SJ, Stougaard P, Glaring MA. Genomic and exoproteomic analyses of cold- and alkaline-adapted bacteria reveal an abundance of secreted subtilisin-like proteases. Microb Biotechnol 2016; 9:245-56. [PMID: 26834075 PMCID: PMC4767292 DOI: 10.1111/1751-7915.12343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Proteases active at low temperature or high pH are used in many commercial applications, including the detergent, food and feed industries, and bacteria specifically adapted to these conditions are a potential source of novel proteases. Environments combining these two extremes are very rare, but offer the promise of proteases ideally suited to work at both high pH and low temperature. In this report, bacteria from two cold and alkaline environments, the ikaite columns in Greenland and alkaline ponds in the McMurdo Dry Valley region, Antarctica, were screened for extracellular protease activity. Two isolates, Arsukibacterium ikkense from Greenland and a related strain, Arsukibacterium sp. MJ3, from Antarctica, were further characterized with respect to protease production. Genome sequencing identified a range of potential extracellular proteases including a number of putative secreted subtilisins. An extensive liquid chromatography–tandem mass spectrometry analysis of proteins secreted by A. ikkense identified six subtilisin‐like proteases as abundant components of the exoproteome in addition to other peptidases potentially involved in complete degradation of extracellular protein. Screening of Arsukibacterium genome libraries in Escherichia coli identified two orthologous secreted subtilisins active at pH 10 and 20°C, which were also present in the A. ikkense exoproteome. Recombinant production of both proteases confirmed the observed activity.
Collapse
Affiliation(s)
- Jeanette E Lylloff
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Lea B S Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Jepsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Kristian W Sanggaard
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan K Vester
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Jan J Enghild
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Søren J Sørensen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Stougaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Mikkel A Glaring
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| |
Collapse
|
176
|
Safarchi A, Octavia S, Wu SZ, Kaur S, Sintchenko V, Gilbert GL, Wood N, McIntyre P, Marshall H, Keil AD, Lan R. Genomic dissection of Australian Bordetella pertussis isolates from the 2008-2012 epidemic. J Infect 2016; 72:468-77. [PMID: 26826518 DOI: 10.1016/j.jinf.2016.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/15/2015] [Accepted: 01/14/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Despite high pertussis vaccination coverage, Australia experienced a prolonged epidemic in 2008-2012. The predominant Bordetella pertussis genotype harboured pertussis toxin promoter allele, ptxP3, and pertactin gene allele, prn2. The emergence and expansion of prn non-expressing isolates (Prn negative), were also observed. We aimed to investigate the microevolution and genomic diversity of epidemic B. pertussis isolates. METHODS We sequenced 22 B. pertussis isolates collected in 2008-2012 from two states of Australia which are geographically widely separated. Ten of the 22 were Prn negative isolates with three different modes of silencing of prn (prn::IS481F, prn::IS481R and prn::IS1002). Five pre-epidemic isolates were also sequenced for comparison. RESULTS Five single nucleotide polymorphisms were common in the epidemic isolates and differentiated them from pre-epidemic isolates. The Australian epidemic isolates can be divided into five lineages (EL1-EL5) with EL1 containing only Prn negative isolates. Comparison with global isolates showed that three lineages remained geographically and temporally distinct whereas two lineages mixed with isolates from 2012 UK outbreak. CONCLUSION Our results suggest significant diversification and the microevolution of B. pertussis within the 2008-2012 Australian epidemic.
Collapse
Affiliation(s)
- Azadeh Safarchi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sunny Z Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology - Public Health, Institute of Clinical Pathology and Medical Research, Pathology West, Westmead Hospital, New South Wales, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, New South Wales, Australia
| | - Gwendolyn L Gilbert
- Centre for Infectious Diseases and Microbiology - Public Health, Institute of Clinical Pathology and Medical Research, Pathology West, Westmead Hospital, New South Wales, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, New South Wales, Australia
| | - Nicholas Wood
- National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases (NCIRS), The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia; Discipline of Paediatrics and Child Health, University of Sydney, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia; Department of Microbiology and Infectious Diseases, The Children's Hospital at Westmead, New South Wales, Australia
| | - Peter McIntyre
- National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases (NCIRS), The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia; Discipline of Paediatrics and Child Health, University of Sydney, The Children's Hospital at Westmead, Westmead, New South Wales 2145, Australia; Department of Microbiology and Infectious Diseases, The Children's Hospital at Westmead, New South Wales, Australia
| | - Helen Marshall
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Hospital and School of Medicine and Robinson Research Institute, University of Adelaide, South Australia, Australia
| | - Anthony D Keil
- Department of Microbiology, PathWest Laboratory Medicine WA, Princess Margaret Hospital for Children, Perth, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
177
|
Diomede L, Romeo M, Cagnotto A, Rossi A, Beeg M, Stravalaci M, Tagliavini F, Di Fede G, Gobbi M, Salmona M. The new β amyloid-derived peptide Aβ1-6A2V-TAT(D) prevents Aβ oligomer formation and protects transgenic C. elegans from Aβ toxicity. Neurobiol Dis 2016; 88:75-84. [PMID: 26792398 DOI: 10.1016/j.nbd.2016.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/18/2015] [Accepted: 01/09/2016] [Indexed: 01/23/2023] Open
Abstract
One attractive pharmacological strategy for Alzheimer's disease (AD) is to design small peptides to interact with amyloid-β (Aβ) protein reducing its aggregation and toxicity. Starting from clinical observations indicating that patients coding a mutated Aβ variant (AβA2V) in the heterozygous state do not develop AD, we developed AβA2V synthetic peptides, as well as a small peptide homologous to residues 1-6. These hindered the amyloidogenesis of Aβ and its neurotoxicity in vitro, suggesting a basis for the design of a new small peptide in D-isomeric form, linked to the arginine-rich TAT sequence [Aβ1-6A2V-TAT(D)], to allow translocation across biological membranes and the blood-brain barrier. Aβ1-6A2V-TAT(D) was resistant to protease degradation, stable in serum and specifically able to interfere with Aβ aggregation in vitro, reducing the appearance of toxic soluble species and protecting transgenic C. elegans from toxicity related to the muscular expression of human Aβ. These observations offer a proof of concept for future pharmacological studies in mouse models of AD, providing a foundation for the design of AβA2V-based peptidomimetic molecules for therapeutic purposes.
Collapse
Affiliation(s)
- Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy.
| | - Margherita Romeo
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy
| | - Alfredo Cagnotto
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy
| | - Alessandro Rossi
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy
| | - Marten Beeg
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy
| | - Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy
| | - Fabrizio Tagliavini
- Division of Neurology and Neuropathology, "Carlo Besta" National Neurological Institute, 20133 Milan, Italy
| | - Giuseppe Di Fede
- Division of Neurology and Neuropathology, "Carlo Besta" National Neurological Institute, 20133 Milan, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy
| |
Collapse
|
178
|
Masilamani R, Natarajan S. Molecular cloning, overexpression and characterization of a new thiol-dependent, alkaline serine protease with destaining function and fibrinolytic potential from Marinobacter aquaeolei MS2-1. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
179
|
Kida Y, Taira J, Kuwano K. EprS, an autotransporter serine protease, plays an important role in various pathogenic phenotypes of Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2015; 162:318-329. [PMID: 26678838 DOI: 10.1099/mic.0.000228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa possesses an arsenal of both cell-associated (flagella, pili, alginate, etc.) and extracellular (exotoxin A, proteases, type III secretion effectors, etc.) virulence factors. Among them, secreted proteases that damage host tissues are considered to play an important role in the pathogenesis of P. aeruginosa infections. We previously reported that EprS, an autotransporter protease of P. aeruginosa, induces host inflammatory responses through protease-activated receptors. However, little is known about the role of EprS as a virulence factor of P. aeruginosa. In this study, to investigate whether EprS participates in the pathogenicity of P. aeruginosa, we characterized various pathogenic phenotypes of the wild-type PAO1 strain and its eprS-disrupted mutant. The growth assays demonstrated that the growth of the eprS mutant was somewhat lower than that of the wild-type strain in a minimal medium containing BSA as the sole carbon and nitrogen source. Thus, these results indicate that eprS would have a role in the growth of P. aeruginosa in the presence of limited nutrients, such as a medium containing proteinaceous materials as a sole nutrient source. Furthermore, disruption of eprS resulted in a decreased production of elastase, pigments, autoinducers and surfactants, and a reduction of swimming and swarming motilities. In addition, the eprS mutant exhibited a reduction in the ability to associate with A549 cells and an attenuation of virulence in leucopenic mice as compared with the wild-type strain. Collectively, these results suggest that EprS exerts pleiotropic effects on various pathogenic phenotypes of P. aeruginosa.
Collapse
Affiliation(s)
- Y Kida
- Division of Microbiology, Department of Infectious Medicine,Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011,Japan
| | - J Taira
- Department of Bioscience and Bioinformatics,Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502,Japan
| | - K Kuwano
- Division of Microbiology, Department of Infectious Medicine,Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011,Japan
| |
Collapse
|
180
|
Ksiazek M, Karim AY, Bryzek D, Enghild JJ, Thøgersen IB, Koziel J, Potempa J. Mirolase, a novel subtilisin-like serine protease from the periodontopathogen Tannerella forsythia. Biol Chem 2015; 396:261-75. [PMID: 25391881 DOI: 10.1515/hsz-2014-0256] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/10/2014] [Indexed: 12/22/2022]
Abstract
The genome of Tannerella forsythia, an etiological factor of chronic periodontitis, contains several genes encoding putative proteases. Here, we characterized a subtilisin-like serine protease of T. forsythia referred to as mirolase. Recombinant full-length latent promirolase [85 kDa, without its signal peptide (SP)] processed itself through sequential autoproteolytic cleavages into a mature enzyme of 40 kDa. Mirolase latency was driven by the N-terminal prodomain (NTP). In stark contrast to almost all known subtilases, the cleaved NTP remained non-covalently associated with mirolase, inhibiting its proteolytic, but not amidolytic, activity. Full activity was observed only after the NTP was gradually, and fully, degraded. Both activity and processing was absolutely dependent on calcium ions, which were also essential for enzyme stability. As a consequence, both serine protease inhibitors and calcium ions chelators inhibited mirolase activity. Activity assays using an array of chromogenic substrates revealed that mirolase specificity is driven not only by the substrate-binding subsite S1, but also by other subsites. Taken together, mirolase is a calcium-dependent serine protease of the S8 family with the unique mechanism of activation that may contribute to T. forsythia pathogenicity by degradation of fibrinogen, hemoglobin, and the antimicrobial peptide LL-37.
Collapse
|
181
|
Maturation of Fibrinolytic Bacillopeptidase F Involves both Hetero- and Autocatalytic Processes. Appl Environ Microbiol 2015; 82:318-27. [PMID: 26497454 DOI: 10.1128/aem.02673-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/19/2015] [Indexed: 11/20/2022] Open
Abstract
Bacillopeptidase F (Bpr) is a fibrinolytic serine protease produced by Bacillus subtilis. Its precursor is composed of a signal peptide, an N-terminal propeptide, a catalytic domain, and a long C-terminal extension (CTE). Several active forms of Bpr have been previously reported, but little is known about the maturation of this enzyme. Here, a gene encoding a Bpr (BprL) was cloned from B. subtilis LZW and expressed in B. subtilis WB700, and three fibrinolytic mature forms with apparent molecular masses of 45, 75, and 85 kDa were identified in the culture supernatant. After treatment with urea, the 75-kDa mature form had the same molecular mass as the 85-kDa mature form, from which we infer that they adopt different conformations. Mutational analysis revealed that while the 85-kDa mature form is generated via heterocatalytic processing of a BprL proform by an unidentified protease of B. subtilis, the production of the 75- and 45-kDa mature forms involves both hetero- and autocatalytic events. From in vitro analysis of BprL and its sequential C-terminal truncation variants, it appears that partial removal of the CTE is required for the initiation of autoprocessing of the N-terminal propeptide, which is composed of a core domain (N*) and a 15-residue linker peptide, thereby yielding the 45-kDa mature form. These data suggest that the differential processing of BprL, either heterocatalytically or autocatalytically, leads to the formation of multiple mature forms with different molecular masses or conformations.
Collapse
|
182
|
A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650. Int J Biol Macromol 2015; 79:871-82. [DOI: 10.1016/j.ijbiomac.2015.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/22/2022]
|
183
|
Zaraî Jaouadi N, Rekik H, Ben Elhoul M, Zohra Rahem F, Gorgi Hila C, Slimene Ben Aicha H, Badis A, Toumi A, Bejar S, Jaouadi B. A novel keratinase from Bacillus tequilensis strain Q7 with promising potential for the leather bating process. Int J Biol Macromol 2015; 79:952-64. [DOI: 10.1016/j.ijbiomac.2015.05.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
|
184
|
Juntunen K, Mäkinen S, Isoniemi S, Valtakari L, Pelzer A, Jänis J, Paloheimo M. A New Subtilase-Like Protease Deriving from Fusarium equiseti with High Potential for Industrial Applications. Appl Biochem Biotechnol 2015; 177:407-30. [DOI: 10.1007/s12010-015-1752-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/06/2015] [Indexed: 11/28/2022]
|
185
|
Pelzer A, Schwarz C, Knapp A, Wirtz A, Wilhelm S, Smits S, Schmitt L, Funken H, Jaeger KE. Functional expression, purification, and biochemical properties of subtilase SprP from Pseudomonas aeruginosa. Microbiologyopen 2015; 4:743-52. [PMID: 26175208 PMCID: PMC4618607 DOI: 10.1002/mbo3.275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/30/2015] [Accepted: 06/15/2015] [Indexed: 12/22/2022] Open
Abstract
The Pseudomonas aeruginosa genome encodes a variety of different proteolytic enzymes several of which play an important role as virulence factors. Interestingly, only two of these proteases are predicted to belong to the subtilase family and we have recently studied the physiological role of the subtilase SprP. Here, we describe the functional overexpression of SprP in Escherichia coli using a novel expression and secretion system. We show that SprP is autocatalytically activated by proteolysis and exhibits optimal activity at 50°C in a pH range of 7-8. We also demonstrate a significant increase in sprP promoter activity upon growth of P. aeruginosa at 43°C indicating a role for SprP in heat shock response.
Collapse
Affiliation(s)
- Alexander Pelzer
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Juelich, D-52426, Juelich, Germany
| | - Christian Schwarz
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, D-40225, Duesseldorf, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Juelich, D-52426, Juelich, Germany
| | - Astrid Wirtz
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Juelich, D-52426, Juelich, Germany
| | - Susanne Wilhelm
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Juelich, D-52426, Juelich, Germany
| | - Sander Smits
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, D-40225, Duesseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, D-40225, Duesseldorf, Germany
| | - Horst Funken
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Juelich, D-52426, Juelich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Juelich, D-52426, Juelich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Juelich GmbH, D-52426, Juelich, Germany
| |
Collapse
|
186
|
Demuez M, Mahdy A, Tomás-Pejó E, González-Fernández C, Ballesteros M. Enzymatic cell disruption of microalgae biomass in biorefinery processes. Biotechnol Bioeng 2015; 112:1955-66. [DOI: 10.1002/bit.25644] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Marie Demuez
- IMDEA Energy Institute; Biotechnological Processes for Energy Production Unit; Av. Ramón de la Sagra 3 28935 Móstoles Spain
| | - Ahmed Mahdy
- IMDEA Energy Institute; Biotechnological Processes for Energy Production Unit; Av. Ramón de la Sagra 3 28935 Móstoles Spain
- Department of Agricultural Microbiology; Faculty of Agriculture; Zagazig University; 44511 Zagazig Egypt
| | - Elia Tomás-Pejó
- IMDEA Energy Institute; Biotechnological Processes for Energy Production Unit; Av. Ramón de la Sagra 3 28935 Móstoles Spain
| | - Cristina González-Fernández
- IMDEA Energy Institute; Biotechnological Processes for Energy Production Unit; Av. Ramón de la Sagra 3 28935 Móstoles Spain
| | - Mercedes Ballesteros
- IMDEA Energy Institute; Biotechnological Processes for Energy Production Unit; Av. Ramón de la Sagra 3 28935 Móstoles Spain
- CIEMAT; Renewable Energy Division; Biofuels Unit; Av. Complutense 40 28040 Madrid Spain
| |
Collapse
|
187
|
Improving the Thermostability and Activity of a Thermophilic Subtilase by Incorporating Structural Elements of Its Psychrophilic Counterpart. Appl Environ Microbiol 2015; 81:6302-13. [PMID: 26150464 DOI: 10.1128/aem.01478-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/29/2015] [Indexed: 11/20/2022] Open
Abstract
The incorporation of the structural elements of thermostable enzymes into their less stable counterparts is generally used to improve enzyme thermostability. However, the process of engineering enzymes with both high thermostability and high activity remains an important challenge. Here, we report that the thermostability and activity of a thermophilic subtilase were simultaneously improved by incorporating structural elements of a psychrophilic subtilase. There were 64 variable regions/residues (VRs) in the alignment of the thermophilic WF146 protease, mesophilic sphericase, and psychrophilic S41. The WF146 protease was subjected to systematic mutagenesis, in which each of its VRs was replaced with those from S41 and sphericase. After successive rounds of combination and screening, we constructed the variant PBL5X with eight amino acid residues from S41. The half-life of PBL5X at 85°C (57.1 min) was approximately 9-fold longer than that of the wild-type (WT) WF146 protease (6.3 min). The substitutions also led to an increase in the apparent thermal denaturation midpoint temperature (Tm) of the enzyme by 5.5°C, as determined by differential scanning calorimetry. Compared to the WT, PBL5X exhibited high caseinolytic activity (25 to 95°C) and high values of Km and kcat (25 to 80°C). Our study may provide a rational basis for developing highly stable and active enzymes, which are highly desired in industrial applications.
Collapse
|
188
|
Toplak A, Nuijens T, Quaedflieg PJ, Wu B, Janssen DB. Peptide synthesis in neat organic solvents with novel thermostable proteases. Enzyme Microb Technol 2015; 73-74:20-8. [DOI: 10.1016/j.enzmictec.2015.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/24/2015] [Accepted: 03/03/2015] [Indexed: 11/30/2022]
|
189
|
Plattner S, Gruber C, Stadlmann J, Widmann S, Gruber CW, Altmann F, Bohlmann H. Isolation and Characterization of a Thionin Proprotein-processing Enzyme from Barley. J Biol Chem 2015; 290:18056-18067. [PMID: 26013828 DOI: 10.1074/jbc.m115.647859] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 01/17/2023] Open
Abstract
Thionins are plant-specific antimicrobial peptides that have been isolated from the endosperm and leaves of cereals, from the leaves of mistletoes, and from several other plant species. They are generally basic peptides with three or four disulfide bridges and a molecular mass of ~5 kDa. Thionins are produced as preproproteins consisting of a signal peptide, the thionin domain, and an acidic domain. Previously, only mature thionin peptides have been isolated from plants, and in addition to removal of the signal peptide, at least one cleavage processing step between the thionin and the acidic domain is necessary to release the mature thionin. In this work, we identified a thionin proprotein-processing enzyme (TPPE) from barley. Purification of the enzyme was guided by an assay that used a quenched fluorogenic peptide comprising the amino acid sequence between the thionin and the acidic domain of barley leaf-specific thionin. The barley TPPE was identified as a serine protease (BAJ93208) and expressed in Escherichia coli as a strep tag-labeled protein. The barley BTH6 thionin proprotein was produced in E. coli using the vector pETtrx1a and used as a substrate. We isolated and sequenced the BTH6 thionin from barley to confirm the N and C terminus of the peptide in planta. Using an in vitro enzymatic assay, the recombinant TPPE was able to process the quenched fluorogenic peptide and to cleave the acidic domain at least at six sites releasing the mature thionin from the proprotein. Moreover, it was found that the intrinsic three-dimensional structure of the BTH6 thionin domain prevents cleavage of the mature BTH6 thionin by the TPPE.
Collapse
Affiliation(s)
- Stephan Plattner
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, A-1190 Vienna
| | - Clemens Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences, A-1190 Vienna
| | - Johannes Stadlmann
- Department of Chemistry, University of Natural Resources and Life Sciences, A-1190 Vienna
| | - Stefan Widmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, A-1190 Vienna
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, A-1190 Vienna
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, A-1190 Vienna.
| |
Collapse
|
190
|
Šnajder M, Mihelič M, Turk D, Ulrih NP. Codon optimisation is key for pernisine expression in Escherichia coli. PLoS One 2015; 10:e0123288. [PMID: 25856104 PMCID: PMC4391949 DOI: 10.1371/journal.pone.0123288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/17/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pernisine is an extracellular serine protease from the hyperthermophilic Archaeon Aeropyrum pernix K1. Low yields from the natural host and expression problems in heterologous hosts have limited the potential applications of pernisine in industry. METHODOLOGY/ PRINCIPAL FINDINGS The challenges of pernisine overexpression in Escherichia coli were overcome by codon preference optimisation and de-novo DNA synthesis. The following forms of the pernisine gene were cloned into the pMCSGx series of vectors and expressed in E. coli cells: wild-type (pernisinewt), codon-optimised (pernisineco), and codon-optimised with a S355A mutation of a predicted active site (pernisineS355Aco). The fusion-tagged pernisines were purified using fast protein liquid chromatography equipped with Ni2+ chelate and gel filtration chromatography columns. The identities of the resultant proteins were confirmed with N-terminal sequencing, tandem mass spectrometry analysis, and immunodetection. Pernisinewt was not expressed in E. coli at detectable levels, while pernisineco and pernisineS355Aco were expressed and purified as 55-kDa proforms with yields of around 10 mg per litre E. coli culture. After heat activation of purified pernisine, the proteolytic activity of the mature pernisineco was confirmed using zymography, at a molecular weight of 36 kDa, while the mutant pernisineS355Aco remained inactive. Enzymatic performances of pernisine evaluated under different temperatures and pHs demonstrate that the optimal enzymatic activity of the recombinant pernisine is ca. 100°C and pH 7.0, respectively. CONCLUSIONS/ SIGNIFICANCE These data demonstrate that codon optimisation is crucial for pernisine overexpression in E. coli, and that the proposed catalytic Ser355 has an important role in pernisine activity, but not in its activation process. Pernisine is activated by autoproteolytical cleavage of its N-terminal proregion. We have also confirmed that the recombinant pernisine retains the characteristics of native pernisine, as a calcium modulated thermostable serine protease.
Collapse
Affiliation(s)
- Marko Šnajder
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Mihelič
- Centre of Excellence for Integrated Approaches in Chemistry and Biology (CipKeBiP), Ljubljana, Slovenia
- Institute Jozef Stefan, Ljubljana, Slovenia
| | - Dušan Turk
- Centre of Excellence for Integrated Approaches in Chemistry and Biology (CipKeBiP), Ljubljana, Slovenia
- Institute Jozef Stefan, Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology (CipKeBiP), Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
191
|
Kobayashi H, Yoshida T, Miyakawa T, Tashiro M, Okamoto K, Yamanaka H, Tanokura M, Tsuge H. Structural Basis for Action of the External Chaperone for a Propeptide-deficient Serine Protease from Aeromonas sobria. J Biol Chem 2015; 290:11130-43. [PMID: 25784551 DOI: 10.1074/jbc.m114.622852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Indexed: 11/06/2022] Open
Abstract
Subtilisin-like proteases are broadly expressed in organisms ranging from bacteria to mammals. During maturation of these enzymes, N-terminal propeptides function as intramolecular chaperones, assisting the folding of their catalytic domains. However, we have identified an exceptional case, the serine protease from Aeromonas sobria (ASP), that lacks a propeptide. Instead, ORF2, a protein encoded just downstream of asp, appears essential for proper ASP folding. The mechanism by which ORF2 functions remains an open question, because it shares no sequence homology with any known intramolecular propeptide or other protein. Here we report the crystal structure of the ORF2-ASP complex and the solution structure of free ORF2. ORF2 consists of three regions: an N-terminal extension, a central body, and a C-terminal tail. Together, the structure of the central body and the C-terminal tail is similar to that of the intramolecular propeptide. The N-terminal extension, which is not seen in other subtilisin-like enzymes, is intrinsically disordered but forms some degree of secondary structure upon binding ASP. We also show that C-terminal (ΔC1 and ΔC5) or N-terminal (ΔN43 and ΔN64) deletion eliminates the ability of ORF2 to function as a chaperone. Characterization of the maturation of ASP with ORF2 showed that folding occurs in the periplasmic space and is followed by translocation into extracellular space and dissociation from ORF2, generating active ASP. Finally, a PSI-BLAST search revealed that operons encoding subtilases and their external chaperones are widely distributed among Gram-negative bacteria, suggesting that ASP and its homologs form a novel family of subtilases having an external chaperone.
Collapse
Affiliation(s)
- Hidetomo Kobayashi
- From the Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima 737-0112, Japan
| | - Toru Yoshida
- the Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Takuya Miyakawa
- the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mitsuru Tashiro
- the Department of Chemistry, College of Science and Technology, Meisei University, Hodokubo, Hino, Tokyo 191-0042, Japan, and
| | - Keinosuke Okamoto
- the Department of Pharmacogenetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Hiroyasu Yamanaka
- From the Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima 737-0112, Japan
| | - Masaru Tanokura
- the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Tsuge
- the Department of Bioresource and Environmental Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan,
| |
Collapse
|
192
|
Latka C, Dey SS, Mahajan S, Prabu R, Jangir PK, Gupta C, Das S, Ramachandran VG, Bhattacharya SN, Pandey R, Sharma R, Ramachandran S, Taneja B. Genome sequence of a clinical isolate of dermatophyte, Trichophyton rubrum from India. FEMS Microbiol Lett 2015; 362:fnv039. [DOI: 10.1093/femsle/fnv039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
|
193
|
Du X, Li M, Tang W, Zhang Y, Zhang L, Wang J, Li T, Tang B, Tang XF. Secretion of Tat-dependent halolysin SptA capable of autocatalytic activation and its relation to haloarchaeal growth. Mol Microbiol 2015; 96:548-65. [DOI: 10.1111/mmi.12955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Du
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Moran Li
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Wei Tang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Yaoxin Zhang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Li Zhang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Jian Wang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Tingting Li
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
| | - Bing Tang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation; Wuhan China
| | - Xiao-Feng Tang
- State Key Laboratory of Virology, College of Life Sciences; Wuhan University; Wuhan China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation; Wuhan China
| |
Collapse
|
194
|
Undheim EAB, Fry BG, King GF. Centipede venom: recent discoveries and current state of knowledge. Toxins (Basel) 2015; 7:679-704. [PMID: 25723324 PMCID: PMC4379518 DOI: 10.3390/toxins7030679] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/27/2022] Open
Abstract
Centipedes are among the oldest extant venomous predators on the planet. Armed with a pair of modified, venom-bearing limbs, they are an important group of predatory arthropods and are infamous for their ability to deliver painful stings. Despite this, very little is known about centipede venom and its composition. Advances in analytical tools, however, have recently provided the first detailed insights into the composition and evolution of centipede venoms. This has revealed that centipede venom proteins are highly diverse, with 61 phylogenetically distinct venom protein and peptide families. A number of these have been convergently recruited into the venoms of other animals, providing valuable information on potential underlying causes of the occasionally serious complications arising from human centipede envenomations. However, the majority of venom protein and peptide families bear no resemblance to any characterised protein or peptide family, highlighting the novelty of centipede venoms. This review highlights recent discoveries and summarises the current state of knowledge on the fascinating venom system of centipedes.
Collapse
Affiliation(s)
- Eivind A B Undheim
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Bryan G Fry
- School of Biological Sciences, the University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Glenn F King
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
195
|
Subbian E, Williamson DM, Shinde U. Protein Folding Mediated by an Intramolecular Chaperone: Energy Landscape for Unimolecular Pro-Subtilisin E Maturation. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abb.2015.62008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
196
|
Panyakampol J, Cheevadhanarak S, Sutheeworapong S, Chaijaruwanich J, Senachak J, Siangdung W, Jeamton W, Tanticharoen M, Paithoonrangsarid K. Physiological and Transcriptional Responses to High Temperature in Arthrospira ( Spirulina ) platensis C1. ACTA ACUST UNITED AC 2014; 56:481-96. [DOI: 10.1093/pcp/pcu192] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
197
|
Cao J, Han X, Zhang T, Yang Y, Huang J, Hu X. Genome-wide and molecular evolution analysis of the subtilase gene family in Vitis vinifera. BMC Genomics 2014; 15:1116. [PMID: 25512249 PMCID: PMC4378017 DOI: 10.1186/1471-2164-15-1116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 12/11/2014] [Indexed: 12/03/2022] Open
Abstract
Background Vitis vinifera (grape) is one of the most economically significant fruit crops in the world. The availability of the recently released grape genome sequence offers an opportunity to identify and analyze some important gene families in this species. Subtilases are a group of subtilisin-like serine proteases that are involved in many biological processes in plants. However, no comprehensive study incorporating phylogeny, chromosomal location and gene duplication, gene organization, functional divergence, selective pressure and expression profiling has been reported so far for the grape. Results In the present study, a comprehensive analysis of the subtilase gene family in V. vinifera was performed. Eighty subtilase genes were identified. Phylogenetic analyses indicated that these subtilase genes comprised eight groups. The gene organization is considerably conserved among the groups. Distribution of the subtilase genes is non-random across the chromosomes. A high proportion of these genes are preferentially clustered, indicating that tandem duplications may have contributed significantly to the expansion of the subtilase gene family. Analyses of divergence and adaptive evolution show that while purifying selection may have been the main force driving the evolution of grape subtilases, some of the critical sites responsible for the divergence may have been under positive selection. Further analyses of real-time PCR data suggested that many subtilase genes might be important in the stress response and functional development of plants. Conclusions Tandem duplications as well as purifying and positive selections have contributed to the functional divergence of subtilase genes in V. vinifera. The data may contribute to a better understanding of the grape subtilase gene family. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1116) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Jinling Huang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | | |
Collapse
|
198
|
Jónsdóttir LB, Ellertsson BÖ, Invernizzi G, Magnúsdóttir M, Thorbjarnardóttir SH, Papaleo E, Kristjánsson MM. The role of salt bridges on the temperature adaptation of aqualysin I, a thermostable subtilisin-like proteinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2174-81. [DOI: 10.1016/j.bbapap.2014.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/05/2014] [Accepted: 08/20/2014] [Indexed: 11/30/2022]
|
199
|
Wang L, Cheng G, Ren Y, Dai Z, Zhao ZS, Liu F, Li S, Wei Y, Xiong J, Tang XF, Tang B. Degradation of intact chicken feathers by Thermoactinomyces sp. CDF and characterization of its keratinolytic protease. Appl Microbiol Biotechnol 2014; 99:3949-59. [PMID: 25412577 DOI: 10.1007/s00253-014-6207-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/20/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
Thermoactinomyces is known for its resistance to extreme environmental conditions and its ability to digest a wide range of hard-to-degrade compounds. Here, Thermoactinomyces sp. strain CDF isolated from soil was found to completely degrade intact chicken feathers at 55 °C, with the resulting degradation products sufficient to support growth as the primary source of both carbon and nitrogen. Although feathers were not essential for the expression of keratinase, the use of this substrate led to a further 50-300 % increase in enzyme production level under different nutrition conditions, with extracellular keratinolytic activity reaching its highest level (∼400 U/mL) during the late-log phase. Full degradation of feathers required the presence of living cells, which are thought to supply reducing agents necessary for the cleavage of keratin disulfide bonds. Direct contact between the hyphae and substrate may enhance the reducing power and protease concentrations present in the local microenvironment, thereby facilitating keratin degradation. The gene encoding the major keratinolytic protease (protease C2) of strain CDF was cloned, revealing an amino acid sequence identical to that of subtilisin-like E79 protease from Thermoactinomyces sp. E79, albeit with significant differences in the upstream flanking region. Exogenous expression of protease C2 in Escherichia coli resulted in the production of inclusion bodies with proteolytic activity, which could be solubilized to an alkaline solution to produce mature protease C2. Purified protease C2 was able to efficiently hydrolyze α- and β-keratins at 60-80 °C and pH 11.0, representing a promising candidate for enzymatic processing of hard-to-degrade proteins such as keratinous wastes.
Collapse
Affiliation(s)
- Liyuan Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Zaraî Jaouadi N, Jaouadi B, Ben Hlima H, Rekik H, Belhoul M, Hmidi M, Aicha HSB, Hila CG, Toumi A, Aghajari N, Bejar S. Probing the crucial role of Leu31 and Thr33 of the Bacillus pumilus CBS alkaline protease in substrate recognition and enzymatic depilation of animal hide. PLoS One 2014; 9:e108367. [PMID: 25264614 PMCID: PMC4181652 DOI: 10.1371/journal.pone.0108367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/21/2014] [Indexed: 12/03/2022] Open
Abstract
The sapB gene, encoding Bacillus pumilus CBS protease, and seven mutated genes (sapB-L31I, sapB-T33S, sapB-N99Y, sapB-L31I/T33S, sapB-L31I/N99Y, sapB-T33S/N99Y, and sapB-L31I/T33S/N99Y) were overexpressed in protease-deficient Bacillus subtilis DB430 and purified to homogeneity. SAPB-N99Y and rSAPB displayed the highest levels of keratinolytic activity, hydrolysis efficiency, and enzymatic depilation. Interestingly, and at the semi-industrial scale, rSAPB efficiently removed the hair of goat hides within a short time interval of 8 h, thus offering a promising opportunity for the attainment of a lime and sulphide-free depilation process. The efficacy of the process was supported by submitting depilated pelts and dyed crusts to scanning electron microscopic analysis, and the results showed well opened fibre bundles and no apparent damage to the collagen layer. The findings also revealed better physico-chemical properties and less effluent loads, which further confirmed the potential candidacy of the rSAPB enzyme for application in the leather industry to attain an ecofriendly process of animal hide depilation. More interestingly, the findings on the substrate specificity and kinetic properties of the enzyme using the synthetic peptide para-nitroanilide revealed strong preferences for an aliphatic amino-acid (valine) at position P1 for keratinases and an aromatic amino-acid (phenylalanine) at positions P1/P4 for subtilisins. Molecular modeling suggested the potential involvement of a Leu31 residue in a network of hydrophobic interactions, which could have shaped the S4 substrate binding site. The latter could be enlarged by mutating L31I, fitting more easily in position P4 than a phenylalanine residue. The molecular modeling of SAPB-T33S showed a potential S2 subside widening by a T33S mutation, thus suggesting its importance in substrate specificity.
Collapse
Affiliation(s)
- Nadia Zaraî Jaouadi
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Bassem Jaouadi
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
- * E-mail: (BJ); (SB)
| | - Hajer Ben Hlima
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Hatem Rekik
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Mouna Belhoul
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Maher Hmidi
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | | | - Chiraz Gorgi Hila
- National Leather and Shoe Center (CNCC), Mégrine, Ben Arous, Tunisia
| | - Abdessatar Toumi
- National Leather and Shoe Center (CNCC), Mégrine, Ben Arous, Tunisia
| | - Nushin Aghajari
- Laboratory for Biocrystallography and Structural Biology of Therapeutic Targets, Molecular and Structural Bases of Infectious Systems, UMR 5086-CNRS-University of Lyon 1, Institute for the Biology and Chemistry of Proteins (IBCP), FR3302, Lyon, France
| | - Samir Bejar
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
- * E-mail: (BJ); (SB)
| |
Collapse
|