151
|
Wang Z, Liu G, Zheng H, Chen X. Rigid nanoparticle-based delivery of anti-cancer siRNA: challenges and opportunities. Biotechnol Adv 2014; 32:831-843. [PMID: 24013011 PMCID: PMC3947394 DOI: 10.1016/j.biotechadv.2013.08.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/21/2013] [Accepted: 08/29/2013] [Indexed: 01/03/2023]
Abstract
Gene therapy is a promising strategy to treat various genetic and acquired diseases. Small interfering RNA (siRNA) is a revolutionary tool for gene therapy and the analysis of gene function. However, the development of a safe, efficient, and targetable non-viral siRNA delivery system remains a major challenge in gene therapy. An ideal delivery system should be able to encapsulate and protect the siRNA cargo from serum proteins, exhibit target tissue and cell specificity, penetrate the cell membrane, and release its cargo in the desired intracellular compartment. Nanomedicine has the potential to deal with these challenges faced by siRNA delivery. The unique characteristics of rigid nanoparticles mostly inorganic nanoparticles and allotropes of carbon nanomaterials, including high surface area, facile surface modification, controllable size, and excellent magnetic/optical/electrical properties, make them promising candidates for targeted siRNA delivery. In this review, recent progresses on rigid nanoparticle-based siRNA delivery systems will be summarized.
Collapse
Affiliation(s)
- Zhiyong Wang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; MOE key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
152
|
Abstract
Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.
Collapse
Affiliation(s)
- Da Ma
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
153
|
Draz MS, Fang BA, Zhang P, Hu Z, Gu S, Weng KC, Gray JW, Chen FF. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Am J Cancer Res 2014; 4:872-92. [PMID: 25057313 PMCID: PMC4107289 DOI: 10.7150/thno.9404] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/27/2014] [Indexed: 12/17/2022] Open
Abstract
RNA interference (RNAi) is an endogenous post-transcriptional gene regulatory mechanism, where non-coding, double-stranded RNA molecules interfere with the expression of certain genes in order to silence it. Since its discovery, this phenomenon has evolved as powerful technology to diagnose and treat diseases at cellular and molecular levels. With a lot of attention, short interfering RNA (siRNA) therapeutics has brought a great hope for treatment of various undruggable diseases, including genetic diseases, cancer, and resistant viral infections. However, the challenge of their systemic delivery and on how they are integrated to exhibit the desired properties and functions remains a key bottleneck for realizing its full potential. Nanoparticles are currently well known to exhibit a number of unique properties that could be strategically tailored into new advanced siRNA delivery systems. This review summarizes the various nanoparticulate systems developed so far in the literature for systemic delivery of siRNA, which include silica and silicon-based nanoparticles, metal and metal oxides nanoparticles, carbon nanotubes, graphene, dendrimers, polymers, cyclodextrins, lipids, hydrogels, and semiconductor nanocrystals. Challenges and barriers to the delivery of siRNA and the role of different nanoparticles to surmount these challenges are also included in the review.
Collapse
|
154
|
Paul AM, Shi Y, Acharya D, Douglas JR, Cooley A, Anderson JF, Huang F, Bai F. Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro. J Gen Virol 2014; 95:1712-1722. [PMID: 24828333 DOI: 10.1099/vir.0.066084-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dengue virus (DENV) infection in humans can cause flu-like illness, life-threatening haemorrhagic fever or even death. There is no specific anti-DENV therapeutic or approved vaccine currently available, partially due to the possibility of antibody-dependent enhancement reaction. Small interfering RNAs (siRNAs) that target specific viral genes are considered a promising therapeutic alternative against DENV infection. However, in vivo, siRNAs are vulnerable to degradation by serum nucleases and rapid renal excretion due to their small size and anionic character. To enhance siRNA delivery and stability, we complexed anti-DENV siRNAs with biocompatible gold nanoparticles (AuNPs) and tested them in vitro. We found that cationic AuNP-siRNA complexes could enter Vero cells and significantly reduce DENV serotype 2 (DENV-2) replication and infectious virion release under both pre- and post-infection conditions. In addition, RNase-treated AuNP-siRNA complexes could still inhibit DENV-2 replication, suggesting that AuNPs maintained siRNA stability. Collectively, these results demonstrated that AuNPs were able to efficiently deliver siRNAs and control infection in vitro, indicating a novel anti-DENV strategy.
Collapse
Affiliation(s)
- Amber M Paul
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Yongliang Shi
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Dhiraj Acharya
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Jessica R Douglas
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Amanda Cooley
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - John F Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Faqing Huang
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Fengwei Bai
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
155
|
Peng LH, Niu J, Zhang CZ, Yu W, Wu JH, Shan YH, Wang XR, Shen YQ, Mao ZW, Liang WQ, Gao JQ. TAT conjugated cationic noble metal nanoparticles for gene delivery to epidermal stem cells. Biomaterials 2014; 35:5605-18. [PMID: 24736021 DOI: 10.1016/j.biomaterials.2014.03.062] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/21/2014] [Indexed: 01/30/2023]
Abstract
Most nonviral gene delivery systems are not efficient enough to manipulate the difficult-to-transfect cell types, including non-dividing, primary, neuronal or stem cells, due to a lack of an intrinsic capacity to enter the membrane and nucleus, release its DNA payload, and activate transcription. Noble metal nanoclusters have emerged as a fascinating area of widespread interest in nanomaterials. Herein, we report the synthesis of the TAT peptide conjugated cationic noble metal nanoparticles (metal NPs@PEI-TAT) as highly efficient carriers for gene delivery to stem cells. The metal NPs@PEI-TAT integrate the advantages of metal NPs and peptides: the presence of metal NPs can effectively decrease the cytotoxicity of cationic molecules, making it possible to apply them in biological systems, while the cell penetrating peptides are essential for enhanced cellular and nucleus entry to achieve high transfection efficiency. Our studies provide strong evidence that the metal NPs@PEI-TAT can be engineered as gene delivery agents for stem cells and subsequently enhance their directed differentiation for biomedical application.
Collapse
Affiliation(s)
- Li-Hua Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jie Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chen-Zhen Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Yu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Jia-He Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ying-Hui Shan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xia-Rong Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - You-Qing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, PR China
| | - Zheng-Wei Mao
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China.
| | - Wen-Quan Liang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
156
|
Cho TJ, MacCuspie RI, Gigault J, Gorham JM, Elliott JT, Hackley VA. Highly stable positively charged dendron-encapsulated gold nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3883-3893. [PMID: 24625049 DOI: 10.1021/la5002013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report the development of a novel cationic dendron (TAG1-PCD) and a positively charged gold nanoparticle-dendron conjugate (PCD-AuNP). TAG1-PCD was designed by considering the reactivity, hydrophilicity, and cationic nature that is required to yield a stable gold conjugate in aqueous media. The PCD-AuNPs, nominally 10 nm in size, were synthesized by reduction of chloroauric acid in the presence of TAG1-PCD. The physicochemical properties of PCD-AuNPs were characterized by dynamic light scattering, transmission electron microscopy, UV-vis absorbance, and X-ray photoelectron spectroscopy for investigation of size distribution, shape uniformity, surface plasmon resonance bands, and Au-dendron bonding. Asymmetric-flow field flow fractionation was employed to confirm the in situ size, purity, and surface properties of the PCD-AuNPs. Additionally, the stability of PCD-AuNPs was systematically evaluated with respect to shelf life determination, stability in biological media and a wide range of pH values, chemical resistance against cyanide, redispersibility from lyophilized state, and stability at temperatures relevant to biological systems. Dose dependent cell viability was evaluated in vitro using the human lung epithelial cell line A549 and a monkey kidney Vero cell line. Observations from in vitro studies are discussed. Overall, the investigation confirmed the successful development of stable PCD-AuNPs with excellent stability in biologically relevant test media containing proteins and electrolytes, and with a shelf life exceeding 6 months. The excellent aqueous stability and apparent lack of toxicity for this conjugate enhances its potential use as a test material for investigating interactions between positively charged NPs and biocellular and biomolecular systems, or as a vehicle for drug delivery.
Collapse
Affiliation(s)
- Tae Joon Cho
- Materials Measurement Science Division and ‡Biosystems and Biomaterials Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | | | | | | | | | | |
Collapse
|
157
|
Jaganathan H, Mitra S, Srinivasan S, Dave B, Godin B. Design and in vitro evaluation of layer by layer siRNA nanovectors targeting breast tumor initiating cells. PLoS One 2014; 9:e91986. [PMID: 24694753 PMCID: PMC3973666 DOI: 10.1371/journal.pone.0091986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/15/2014] [Indexed: 12/31/2022] Open
Abstract
Efficient therapeutics and early detection has helped to increase breast cancer survival rates over the years. However, the recurrence of breast cancer remains to be a problem and this may be due to the presence of a small population of cells, called tumor initiating cells (TICs). Breast TICs are resistant to drugs, difficult to detect, and exhibit high self-renewal capabilities. In this study, layer by layer (LBL) small interfering RNA (siRNA) nanovectors (SNVs) were designed to target breast TICs. SNVs were fabricated using alternating layers of poly-L-lysine and siRNA molecules on gold (Au) nanoparticle (NP) surfaces. The stability, cell uptake, and release profile for SNVs were examined. In addition, SNVs reduced TIC-related STAT3 expression levels, CD44+/CD24−/EpCAM+ surface marker levels and the number of mammospheres formed compared to the standard transfection agent. The data from this study show, for the first time, that SNVs in LBL assembly effectively delivers STAT3 siRNA and inhibit the growth of breast TICs in vitro.
Collapse
Affiliation(s)
- Hamsa Jaganathan
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Sucharita Mitra
- Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Srimeenakshi Srinivasan
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Bhuvanesh Dave
- Cancer Center of Excellence, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
158
|
Beskorovaynyy AV, Kopitsyn DS, Novikov AA, Ziangirova M, Skorikova GS, Kotelev MS, Gushchin PA, Ivanov EV, Getmansky MD, Itzkan I, Muradov AV, Vinokurov VA, Perelman LT. Rapid optimization of metal nanoparticle surface modification with high-throughput gel electrophoresis. ACS NANO 2014; 8:1449-1456. [PMID: 24392839 DOI: 10.1021/nn405352v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The ability to effectively control and optimize surface modification of metal nanoparticles is paramount to the ability to employ metal nanoparticles as diagnostic and therapeutic agents in biology and medicine. Here we present a high-throughput two-dimensional-grid gel electrophoresis cell (2D-GEC)-based method, capable of optimizing the surface modification of as many as 96 samples of metal nanoparticles in approximately 1 h. The 2D-GEC method determines not only the average zeta-potential of the modified particles but also the homogeneity of the surface modification by measuring the distance between the front of the sample track and the area where the maximum optical density is achieved. The method was tested for optimizing pH and concentration of the modifiers (pM) for functionalizing gold nanorod thiol-containing acidic agents.
Collapse
Affiliation(s)
- Alexander V Beskorovaynyy
- Center for Nanodiagnostics, Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas , Moscow, 119991, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Hasan K, Dilgin Y, Emek SC, Tavahodi M, Åkerlund HE, Albertsson PÅ, Gorton L. Photoelectrochemical Communication between Thylakoid Membranes and Gold Electrodes through Different Quinone Derivatives. ChemElectroChem 2014. [DOI: 10.1002/celc.201300148] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
160
|
Li HJ, Wang HX, Sun CY, Du JZ, Wang J. Shell-detachable nanoparticles based on a light-responsive amphiphile for enhanced siRNA delivery. RSC Adv 2014. [DOI: 10.1039/c3ra44866e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
161
|
Cao M, Deng X, Su S, Zhang F, Xiao X, Hu Q, Fu Y, Yang BB, Wu Y, Sheng W, Zeng Y. Protamine sulfate-nanodiamond hybrid nanoparticles as a vector for MiR-203 restoration in esophageal carcinoma cells. NANOSCALE 2013; 5:12120-12125. [PMID: 24154605 DOI: 10.1039/c3nr04056a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report an innovative approach for miRNA-203 delivery in esophageal cancer cells using protamine sulphate (PS)-nanodiamond (ND) nanoparticles. The efficient delivery of miR-203 significantly suppressed the proliferation and migration of cancer cells through targeting Ran and ΔNp63, exhibiting a great potential for PS@ND nanoparticles in miRNA-based cancer therapy.
Collapse
Affiliation(s)
- Minjun Cao
- College of Life Science and Bioengineering, Beijing University of Technology, No. 100 Pingleyuan, Beijing, 100124, P.R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Dykman LA, Khlebtsov NG. Uptake of engineered gold nanoparticles into mammalian cells. Chem Rev 2013; 114:1258-88. [PMID: 24279480 DOI: 10.1021/cr300441a] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| | | |
Collapse
|
163
|
Jiao T, Wang Y, Zhang Q, Yan X, Chen J, Zhou J, Gao F. Preparation and Photocatalytic Property of Gold Nanoparticles by Using Two Bolaform Cholesteryl Imide Derivatives. J DISPER SCI TECHNOL 2013. [DOI: 10.1080/01932691.2013.763727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
164
|
Ramos J, Rege K. Poly(aminoether)-gold nanorod assemblies for shRNA plasmid-induced gene silencing. Mol Pharm 2013; 10:4107-19. [PMID: 24066795 DOI: 10.1021/mp400080f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gold nanorods (GNRs) have emerged as promising nanomaterials for biosensing, imaging, photothermal hyperthermia treatments, and therapeutic delivery for several diseases. We generated poly(aminoether)-GNR nanoassemblies using a layer-by-layer deposition approach based on the 1,4C-1,4Bis polymer from a library recently synthesized in our laboratory. Subtoxic concentrations of 1,4C-1,4Bis-GNR nanoassemblies were employed to deliver expression vectors that express shRNA ("shRNA plasmid") against firefly luciferase gene to knock down expression of the protein constitutively expressed in prostate cancer cells. The role of hydrodynamic size and zeta potential in determining nanoassembly mediated luciferase silencing was investigated. Finally, the theranostic potential of 1,4C-1,4Bis-GNR nanoassemblies was demonstrated using live cell two-photon induced luminescence bioimaging. Our results indicate that poly(aminoether)-GNR nanoassemblies are a promising theranostic platform for delivery of therapeutic payloads capable of simultaneous gene silencing and bioimaging.
Collapse
Affiliation(s)
- James Ramos
- Biomedical Engineering, School of Biological and Health Systems Engineering and ‡Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University , 501 E. Tyler Mall, ECG 303, Tempe, Arizona 85287-6106, United States
| | | |
Collapse
|
165
|
Molinaro R, Wolfram J, Federico C, Cilurzo F, Di Marzio L, Ventura CA, Carafa M, Celia C, Fresta M. Polyethylenimine and chitosan carriers for the delivery of RNA interference effectors. Expert Opin Drug Deliv 2013; 10:1653-68. [DOI: 10.1517/17425247.2013.840286] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
166
|
Conde J, Tian F, Hernández Y, Bao C, Cui D, Janssen KP, Ibarra MR, Baptista PV, Stoeger T, de la Fuente JM. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials 2013; 34:7744-53. [DOI: 10.1016/j.biomaterials.2013.06.041] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/23/2013] [Indexed: 11/28/2022]
|
167
|
Lin G, Hu R, Law WC, Chen CK, Wang Y, Li Chin H, Nguyen QT, Lai CK, Yoon HS, Wang X, Xu G, Ye L, Cheng C, Yong KT. Biodegradable nanocapsules as siRNA carriers for mutant K-Ras gene silencing of human pancreatic carcinoma cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2757-63. [PMID: 23427041 DOI: 10.1002/smll.201201716] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/27/2012] [Indexed: 06/01/2023]
Abstract
The application of small interfering RNA (siRNA)-based RNA interference (RNAi) for cancer gene therapy has attracted great attention. Gene therapy is a promising strategy for cancer treatment because it is relatively non-invasive and has a higher therapeutic specificity than chemotherapy. However, without the use of safe and efficient carriers, siRNAs cannot effectively penetrate the cell membranes and RNAi is impeded. In this work, cationic poly(lactic acid) (CPLA)-based degradable nanocapsules (NCs) are utilized as novel carriers of siRNA for effective gene silencing of pancreatic cancer cells. These CPLA-NCs can readily form nanoplexes with K-Ras siRNA and over 90% transfection efficiency is achieved using the nanoplexes. Cell viability studies show that the nanoparticles are highly biocompatible and non-toxic, indicating that CPLA-NC is a promising potential candidate for gene therapy in a clinical setting.
Collapse
Affiliation(s)
- Guimiao Lin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Stegh AH. Toward personalized cancer nanomedicine - past, present, and future. Integr Biol (Camb) 2013; 5:48-65. [PMID: 22858688 DOI: 10.1039/c2ib20104f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumors are composed of highly proliferate, migratory, invasive, and therapy-evading cells. These characteristics are conferred by an enormously complex landscape of genomic, (epi-)genetic, and proteomic aberrations. Recent efforts to comprehensively catalogue these reversible and irreversible modifications have began to identify molecular mechanisms that contribute to cancer pathophysiology, serve as novel therapeutic targets, and may constitute biomarkers for early diagnosis and prediction of therapy responses. With constantly evolving technologies that will ultimately enable a complete survey of cancer genomes, the challenges for discovery cancer science and drug development are daunting. Bioinformatic and functional studies must differentiate cancer-driving and -contributing mutations from mere bystanders or 'noise', and have to delineate their molecular mechanisms of action as a function of collaborating oncogenic and tumor suppressive signatures. In addition, the translation of these genomic discoveries into meaningful clinical endpoints requires the development of co-extinction strategies to therapeutically target multiple cancer genes, to robustly deliver therapeutics to tumor sites, and to enable widespread dissemination of therapies within tumor tissue. In this perspective, I will describe the most current paradigms to study and validate cancer gene function. I will highlight advances in the area of nanotechnology, in particular, the development of RNA interference (RNAi)-based platforms to more effectively deliver therapeutic agents to tumor sites, and to modulate critical cancer genes that are difficult to target using conventional small-molecule- or antibody-based approaches. I will conclude with an outlook on the deluge of challenges that genomic and bioengineering sciences must overcome to make the long-awaited era of personalized nano-medicine a clinical reality for cancer patients.
Collapse
Affiliation(s)
- Alexander H Stegh
- Ken and Ruth Davee Department of Neurology, The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
169
|
Tian H, Chen J, Chen X. Nanoparticles for gene delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2034-2044. [PMID: 23630123 DOI: 10.1002/smll.201202485] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/21/2012] [Indexed: 05/27/2023]
Abstract
Nanocarriers are a new type of nonviral gene carriers, many of which have demonstrated a broad range of pharmacological and biological properties, such as being biodegradable in the body, stimulus-responsive towards the surrounding environment, and an ability to specifically targeting certain disease sites. By summarizing some main types of nanocarriers, this Concept considers the current status and possible future directions of the potential clinical applications of multifunctional nanocarriers, with primary attention on the combination of such properties as biodegradability, targetability, transfection ability, and stimuli sensitivity.
Collapse
Affiliation(s)
- Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | | | | |
Collapse
|
170
|
Mourdikoudis S, Chirea M, Altantzis T, Pastoriza-Santos I, Pérez-Juste J, Silva F, Bals S, Liz-Marzán LM. Dimethylformamide-mediated synthesis of water-soluble platinum nanodendrites for ethanol oxidation electrocatalysis. NANOSCALE 2013; 5:4776-84. [PMID: 23613112 DOI: 10.1039/c3nr00924f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Herein we describe the synthesis of water-soluble platinum nanodendrites in dimethylformamide (DMF), in the presence of polyethyleneimine (PEI) as a stabilizing agent. The average size of the dendrites is in the range of 20-25 nm while their porosity can be tuned by modifying the concentration of the metal precursor. Electron tomography revealed different crystalline orientations of nanocrystallites in the nanodendrites and allowed a better understanding of their peculiar branching and porosity. The high surface area of the dendrites (up to 22 m(2) g(-1)) was confirmed by BET measurements, while X-ray diffraction confirmed the abundance of high-index facets in the face-centered-cubic crystal structure of Pt. The prepared nanodendrites exhibit excellent performance in the electrocatalytic oxidation of ethanol in alkaline solution. Sensing, selectivity, cycleability and great tolerance toward poisoning were demonstrated by cyclic voltammetry measurements.
Collapse
|
171
|
Lin D, Cheng Q, Jiang Q, Huang Y, Yang Z, Han S, Zhao Y, Guo S, Liang Z, Dong A. Intracellular cleavable poly(2-dimethylaminoethyl methacrylate) functionalized mesoporous silica nanoparticles for efficient siRNA delivery in vitro and in vivo. NANOSCALE 2013; 5:4291-4301. [PMID: 23552843 DOI: 10.1039/c3nr00294b] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A low cytotoxicity and high efficiency delivery system with the advantages of low cost and facile fabrication is needed for the application of small interfering RNA (siRNA) delivery both in vitro and in vivo. For these prerequisites, cationic polymer-mesoporous silica nanoparticles (ssCP-MSNs) were prepared by surface functionalized mesoporous silica nanoparticles with disulfide bond cross-linked poly(2-dimethylaminoethyl methacrylate) (PDMAEMA). In vitro and in vivo evaluations were performed. The synthesized ssCP-MSNs are 100-150 nm in diameter with a pore size of 10 nm and a positively charged surface with a high zeta potential of 27 mV. Consequently, the ssCP-MSNs showed an excellent binding capacity for siRNA, and an enhancement in the cell uptake and cytosolic availability of siRNA. Furthermore, the intracellular reducing cleavage of the disulfide bonds cross-linking the PDMAEMA segments led to intracellular cleavage of PDMAEMA from ssCP-MSNs, which facilitated the intracellular triggered release of siRNA. Therefore, promoted RNA interference was observed in HeLa-Luc cells, which was equal to that of Lipofectamine 2000. Significantly, compared to Lipofectamine 2000, the ssCP-MSNs were more biocompatible, with low cytotoxicity (even non-cytotoxicity) and promotion of cell proliferation to HeLa-Luc cells. The in vivo systemic distribution studies certified that ssCP-MSNs/siRNA could prolong the duration of siRNA in vivo, and that they accumulated in the adrenal gland, liver, lung, spleen, kidney, heart and thymus after intravenous injection. Encouragingly, with the ability to deliver siRNA to a tumor, ssCP-MSNs/siRNA showed a tumor suppression effect in the HeLa-Luc xenograft murine model after intravenous injection. Therefore, the ssCP-MSNs cationic polymer-mesoporous silica nanoparticles with low cytotoxicity are promising for siRNA delivery.
Collapse
Affiliation(s)
- Daoshu Lin
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Zhang AQ, Cai LJ, Sui L, Qian DJ, Chen M. Reducing Properties of Polymers in the Synthesis of Noble Metal Nanoparticles. POLYM REV 2013. [DOI: 10.1080/15583724.2013.776587] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
173
|
Gao L, Xie L, Long X, Wang Z, He CY, Chen ZY, Zhang L, Nan X, Lei H, Liu X, Liu G, Lu J, Qiu B. Efficacy of MRI visible iron oxide nanoparticles in delivering minicircle DNA into liver via intrabiliary infusion. Biomaterials 2013; 34:3688-96. [DOI: 10.1016/j.biomaterials.2013.01.094] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/26/2013] [Indexed: 11/15/2022]
|
174
|
Brown PK, Qureshi AT, Moll AN, Hayes DJ, Monroe WT. Silver nanoscale antisense drug delivery system for photoactivated gene silencing. ACS NANO 2013; 7:2948-59. [PMID: 23473419 DOI: 10.1021/nn304868y] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The unique photophysical properties of noble metal nanoparticles contribute to their potential as photoactivated drug delivery vectors. Here we demonstrate the synthesis and characterization of 60-80 nm silver nanoparticles (SNPs) decorated with thiol-terminated photolabile DNA oligonucleotides. In vitro assays and fluorescent confocal microscopy of treated cell cultures show efficient UV-wavelength photoactivation of surface-tethered caged ISIS2302 antisense oligonucleotides possessing internal photocleavable linkers. As a demonstration of the advantages of these novel nanocarriers, we investigate properties including: enhanced stability to nucleases, increased hybridization activity upon photorelease, and efficient cellular uptake as compared to commercial transfection vectors. Their potential as multicomponent delivery agents for oligonucleotide therapeutics is shown through regulation of ICAM-1 (Intracellular Adhesion Molecule-1) silencing. Our results suggest a means to achieve light-triggered, spatiotemporally controlled gene silencing via nontoxic silver nanocarriers, which hold promise as tailorable platforms for nanomedicine, gene expression studies, and genetic therapies.
Collapse
Affiliation(s)
- Paige K Brown
- Biological and Agricultural Engineering, Louisiana State University and LSU AgCenter, Baton Rouge, Louisiana 70803, United States
| | | | | | | | | |
Collapse
|
175
|
A novel method for genetic transformation of yeast cells using oligoelectrolyte polymeric nanoscale carriers. Biotechniques 2013; 54:35-43. [PMID: 23510387 DOI: 10.2144/000113980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/17/2012] [Indexed: 11/23/2022] Open
Abstract
The genetic transformation of target cells is a key tool in modern biological research, as well as in many gene therapy and biotechnology applications. Here we describe a new method for delivery of DNA into several industrially important species of yeast, including Saccharomyces cerevisiae. Our method is based on the use of a novel nanoscale oligoelectrolyte polymer possessing a comb-like structure as a carrier molecule. Direct comparisons to standard transformation methods clearly show that our approach: (i) yields two times more transformants of Hansenula polymorpha NCYC 495 compared to electroporation approaches and 15 times more transformants compared to lithium acetate protocols, as well as (ii) 5 times more Pichia pastoris GS115 transformants compared to electroporation and 79 times more transformants compared to lithium acetate. Taken together, these results clearly indicate genetic transformation of yeasts using oligoelectrolyte polymer carriers is a highly effective means of gene delivery.
Collapse
|
176
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 854] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 2013; 10:831-47. [PMID: 23360440 DOI: 10.1021/mp3005885] [Citation(s) in RCA: 457] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gold nanoparticles (AuNPs) have a number of physical properties that make them appealing for medical applications. For example, the attenuation of X-rays by gold nanoparticles has led to their use in computed tomography imaging and as adjuvants for radiotherapy. AuNPs have numerous other applications in imaging, therapy and diagnostic systems. The advanced state of synthetic chemistry of gold nanoparticles offers precise control over physicochemical and optical properties. Furthermore gold cores are inert and are considered to be biocompatible and nontoxic. The surface of gold nanoparticles can easily be modified for a specific application, and ligands for targeting, drugs or biocompatible coatings can be introduced. AuNPs can be incorporated into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or add additional imaging labels. This array of features has led to the aforementioned applications in biomedical fields, but more recently in approaches where multifunctional gold nanoparticles are used for multiple methods, such as concurrent diagnosis and therapy, so-called theranostics. This review covers basic principles and recent findings in gold nanoparticle applications for imaging, therapy and diagnostics, with a focus on reports of multifunctional AuNPs.
Collapse
Affiliation(s)
- Aneta J Mieszawska
- Translational and Molecular Imaging Institute and Imaging Science Laboratories, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA
| | | | | | | |
Collapse
|
178
|
Vehicles for Small Interfering RNA transfection: Exosomes versus Synthetic Nanocarriers. ACTA ACUST UNITED AC 2013. [DOI: 10.2478/rnan-2013-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractTherapies based on RNA interference (RNAi) hold a great potential for targeted interference of the expression of specific genes. Small-interfering RNAs (siRNA) and micro-RNAs interrupt protein synthesis by inducing the degradation of messenger RNAs or by blocking their translation. RNAibased therapies can modulate the expression of otherwise undruggable target proteins. Full exploitation of RNAi for medical purposes depends on efficient and safe methods for delivery of small RNAs to the target cells. Tremendous effort has gone into the development of synthetic carriers to meet all requirements for efficient delivery of nucleic acids into particular tissues. Recently, exosomes unveiled their function as a natural communication system which can be utilized for the transport of small RNAs into target cells. In this review, the capabilities of exosomes as delivery vehicles for small RNAs are compared to synthetic carrier systems. The step by step requirements for efficient transfection are considered: production of the vehicle, RNA loading, protection against degradation, lack of immunogenicity, targeting possibilities, cellular uptake, cytotoxicity, RNA release into the cytoplasm and gene silencing efficiency. An exosomebased siRNA delivery system shows many advantages over conventional transfection agents, however, some crucial issues need further optimization before broad clinical application can be realized.
Collapse
|
179
|
Gold-nanobeacons for simultaneous gene specific silencing and intracellular tracking of the silencing events. Biomaterials 2013; 34:2516-23. [PMID: 23312904 DOI: 10.1016/j.biomaterials.2012.12.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/15/2012] [Indexed: 12/19/2022]
Abstract
The potential of a single molecular nanoconjugate to intersect all RNA pathways: from gene specific downregulation to silencing the silencers, i.e. siRNA and miRNA pathways, is demonstrated. Gold-nanobeacons are capable of efficiently silencing single gene expression, exogenous siRNA and endogenous miRNAs while yielding a quantifiable fluorescence signal directly proportional to the level of silencing. The silencing potential is comparable to that of traditional siRNA but the same nanoconjugates structure is also capable of reversing the effect of an exogenous siRNA. We further demonstrate the Gold-nanobeacons' efficiency at targeting and silencing miR-21, an endogenous miRNA involved in cancer development, which could become a valid nanotheranostics approach. Again, expression of miR-21 was inhibited with concomitant increase of the Au-nanobeacons' fluorescence that can be used to assess the silencing effect. This way, a single nanostructure can be used to intersect all RNA regulatory pathways while allowing for direct assessment of effective silencing and cell localization via a quantifiable fluorescence signal, making cancer nanotheranostics possible.
Collapse
|
180
|
Wen S, Zheng F, Shen M, Shi X. Surface modification and PEGylation of branched polyethyleneimine for improved biocompatibility. J Appl Polym Sci 2012. [DOI: 10.1002/app.38444] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
181
|
Conde J, Ambrosone A, Sanz V, Hernandez Y, Marchesano V, Tian F, Child H, Berry CC, Ibarra MR, Baptista PV, Tortiglione C, de la Fuente JM. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. ACS NANO 2012; 6:8316-8324. [PMID: 22882598 DOI: 10.1021/nn3030223] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Over the past decade, the capability of double-stranded RNAs to interfere with gene expression has driven new therapeutic approaches. Since small interfering RNA (siRNAs, 21 base pair double-stranded RNA) was shown to be able to elicit RNA interference (RNAi), efforts were directed toward the development of efficient delivery systems to preserve siRNA bioactivity throughout the delivery route, from the administration site to the target cell. Here we provide evidence of RNAi triggering, specifically silencing c-myc protooncogene, via the synthesis of a library of novel multifunctional gold nanoparticles (AuNPs). The efficiency of the AuNPs is demonstrated using a hierarchical approach including three biological systems of increasing complexity: in vitro cultured human cells, in vivo invertebrate (freshwater polyp, Hydra ), and in vivo vertebrate (mouse) models. Our synthetic methodology involved fine-tuning of multiple structural and functional moieties. Selection of the most active functionalities was assisted step-by-step through functional testing that adopted this hierarchical strategy. Merging these chemical and biological approaches led to a safe, nonpathogenic, self-tracking, and universally valid nanocarrier that could be exploited for therapeutic RNAi.
Collapse
Affiliation(s)
- João Conde
- Instituto de Nanociencia de Aragon, University of Zaragoza, C/Mariano Esquillor s/n Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Zhao E, Zhao Z, Wang J, Yang C, Chen C, Gao L, Feng Q, Hou W, Gao M, Zhang Q. Surface engineering of gold nanoparticles for in vitro siRNA delivery. NANOSCALE 2012; 4:5102-5109. [PMID: 22782309 DOI: 10.1039/c2nr31290e] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cellular uptake, endosomal/lysosomal escape, and the effective dissociation from the carrier are a series of hurdles for specific genes to be delivered both in vitro and in vivo. To construct siRNA delivery systems, poly(allylamine hydrochloride) (PAH) and siRNA were alternately assembled on the surface of 11.8 ± 0.9 nm Au nanoparticles (GNP), stabilized by denatured bovine serum albumin, by the ionic layer-by-layer (LbL) self-assembly method. By manipulating the outmost PAH layer, GNP-PAH vectors with different surface electric potentials were prepared. Then, the surface potential-dependent cytotoxicity of the resultant GNP-PAH particles was evaluated via sulforhodamine B (SRB) assay, while the surface potential-dependent cellular uptake efficiency was quantitatively analyzed by using the flow cytometry method based on carboxyfluorescein (FAM)-labeled siRNA. It was revealed that the GNP-PAH particles with surface potential of +25 mV exhibited the optimal cellular uptake efficiency and cytotoxicity for human breast cancer MCF-7 cells. Following these results, two more positively charged polyelectrolytes with different protonating abilities in comparison with PAH, i.e., polyethylenimine (PEI), and poly(diallyl dimethyl ammonium chloride) (PDDA), were chosen to fabricate similarly structured vectors. Confocal fluorescence microscopy studies indicated that siRNA delivered by GNP-PAH and GNP-PEI systems was better released than that delivered by the GNP-PDDA system. Further flow cytometric assays based on immunofluorescence staining of the epidermal growth factor receptor (EGFR) revealed that EGFR siRNA delivered by GNP-PAH and GNP-PEI exhibited similar down-regulation effects on EGFR expression in MCF-7 cells. The following dual fluorescence flow cytometry assays by co-staining phosphatidylserine and DNA suggested the EGFR siRNA delivered by GNP-PAH exhibited an improved silencing effect in comparison with that delivered by the commercial transfection reagent Lipofectamine 2000.
Collapse
Affiliation(s)
- Enyu Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine 2012; 7:4391-408. [PMID: 22927757 PMCID: PMC3420598 DOI: 10.2147/ijn.s33838] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Indexed: 12/23/2022] Open
Abstract
Cancer is a highly complex disease to understand, because it entails multiple cellular physiological systems. The most common cancer treatments are restricted to chemotherapy, radiation and surgery. Moreover, the early recognition and treatment of cancer remains a technological bottleneck. There is an urgent need to develop new and innovative technologies that could help to delineate tumor margins, identify residual tumor cells and micrometastases, and determine whether a tumor has been completely removed or not. Nanotechnology has witnessed significant progress in the past few decades, and its effect is widespread nowadays in every field. Nanoparticles can be modified in numerous ways to prolong circulation, enhance drug localization, increase drug efficacy, and potentially decrease chances of multidrug resistance by the use of nanotechnology. Recently, research in the field of cancer nanotechnology has made remarkable advances. The present review summarizes the application of various nanotechnology-based approaches towards the diagnostics and therapeutics of cancer.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- Metabolomics and Enzymology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
184
|
Law WC, Mahajan SD, Kopwitthaya A, Reynolds JL, Liu M, Liu X, Chen G, Erogbogbo F, Vathy L, Aalinkeel R, Schwartz SA, Yong KT, Prasad PN. Gene Silencing of Human Neuronal Cells for Drug Addiction Therapy using Anisotropic Nanocrystals. Am J Cancer Res 2012; 2:695-704. [PMID: 22896771 PMCID: PMC3418925 DOI: 10.7150/thno.3459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/20/2011] [Indexed: 12/03/2022] Open
Abstract
Theranostic platform integrating diagnostic imaging and therapeutic function into a single system has become a new direction of nanoparticle research. In the process of treatment, therapeutic efficacy is monitored. The use of theranostic nanoparticle can add an additional "layer" to keep track on the therapeutic agent such as the pharmacokinetics and biodistribution. In this report, we have developed quantum rod (QR) based formulations for the delivery of small interfering RNAs (siRNAs) to human neuronal cells. PEGlyated QRs with different surface functional groups (amine and maleimide) were designed for selectively down-regulating the dopaminergic signaling pathway which is associated with the drug abuse behavior. We have demonstrated that the DARPP-32 siRNAs were successfully delivered to dopaminergic neuronal (DAN) cells which led to drastic knockdown of specific gene expression by both the electrostatic and covalent bond conjugation regimes. The PEGlyated surface offered high biocompatibilities and negligible cytotoxicities to the QR formulations that may facilitate the in vivo applications of these nanoparticles.
Collapse
|
185
|
Abstract
RNA interference (RNAi) is a promising strategy to suppress the expression of disease-relevant genes and induce post-transcriptional gene silencing. Their simplicity and stability endow RNAi with great advantages in molecular medicine. Several RNAi-based drugs are in various stages of clinical investigation. This review summarizes the ongoing research endeavors on RNAi in molecular medicine, delivery systems for RNAi-based drugs, and a compendium of RNAi drugs in different stages of clinical development. Of special interest are RNAi-based drug target discovery and validation, delivery systems for RNAi-based drugs, such as nanoparticles, rabies virus protein-based vehicles, and bacteriophages for RNA packaging.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Modern, Biopharmaceuticals, State Key, Laboratory Breeding Base of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | | |
Collapse
|
186
|
Zhang L, Wang T, Li L, Wang C, Su Z, Li J. Multifunctional fluorescent-magnetic polyethyleneimine functionalized Fe3O4-mesoporous silica yolk-shell nanocapsules for siRNA delivery. Chem Commun (Camb) 2012; 48:8706-8. [PMID: 22824833 DOI: 10.1039/c2cc33472k] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A facile, mild, environmentally friendly and reproducible strategy was used to fabricate the multifunctional fluorescent-magnetic polyethyleneimine functionalized Fe(3)O(4)-mesoporous silica yolk-shell nanocapsules for simultaneous fluorescent tracking and magnetically guided small interfering RNA delivery.
Collapse
Affiliation(s)
- Lingyu Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024 Jilin, PR China
| | | | | | | | | | | |
Collapse
|
187
|
Park J, Kim WJ. Current status of gene delivery: spotlight on nanomaterial-polymer hybrids. J Drug Target 2012; 20:648-66. [PMID: 22804769 DOI: 10.3109/1061186x.2012.704634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gene therapy aims to treat human disorders by introducing genetic materials into specific target cells or tissues. Despite the curability for the origIn of diseases by restoring missing functionalities, no technical feasibility of gene therapy has been established due to the lack of safe and efficient gene delivery systems. The emergence of nanotechnology has provided an opportunity to create nanomaterials that are suitable for the biomedical applications. Nanomaterials integrated with cationic polymers offer novel platforms that allow not only easy incorporation of genetic materials through electrostatic interactions but also further modifications to be upgraded to theranostics. In this article, current status of gene delivery utilizing hybrid nanomaterials that are composed of novel nanoplatforms and cationic polymers are highlighted. In particular, different strategies employed for the construction of nanomaterial-polymer hybrids are described.
Collapse
Affiliation(s)
- Juhee Park
- Department of Chemistry, BK21 Program, Polymer Research Institute, Pohang University of Science and Technology (POSTECH) , Pohang , Republic of Korea
| | | |
Collapse
|
188
|
Wei Y, Chen Q, Wu B, Zhou A, Xing D. High-sensitivity in vivo imaging for tumors using a spectral up-conversion nanoparticle NaYF4: Yb3+, Er3+ in cooperation with a microtubulin inhibitor. NANOSCALE 2012; 4:3901-3909. [PMID: 22652931 DOI: 10.1039/c2nr30804e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fluorescein has been used for in vivo imaging to identify tumors. However, this technique presents several limitations, mainly due to its limited targeting efficiency, tissue autofluorescence and poor light penetration in tissue. In the present study, an alternative fluorescence imaging technique to localize tumors has been developed by using up-conversion nanoparticles (UCNs) and enhanced targeting approaches. A folic acid molecule is conjoined with UCNs (NaYF(4): Yb(3+), Er(3+)) to improve the tumor-specificity; the UCN is also loaded with the microtubule inhibitor CA4P, to further improve the local delivery of particles in the tumor. The proposed imaging technique combines several well-established individual concepts into one novel integrated procedure and significantly improves its tumor-imaging capability: the near-infrared excitation for UCNs minimizes tissue autofluorescence and allows imaging into deeper tissue; the improvement in the signal to noise ratio (SNR) is at least a magnitude better than that of a conventional fluorescence imaging technique, and the modification of UCNs with folic acid significantly improves the tumor targeting efficiency by utilizing its affinity for the folic acid receptor that is often over expressed in tumors. The loading of CA4P further helps UCNs to cross blood vessel walls to reach tumor cells by depolymerizing the microtubules of endothelial cells. The integrated nanoparticle possesses the near-infrared-identical optical properties of UCNs alone, thus achieving a highly effective fluorescence imaging probe. The results demonstrated that the proposed method provides an excellent alternative for tumor localization and a potential traceable vehicle for highly efficient drug delivery.
Collapse
Affiliation(s)
- Yanchun Wei
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | | | | | |
Collapse
|
189
|
Aalinkeel R, Nair B, Reynolds JL, Sykes DE, Law WC, Mahajan SD, Prasad PN, Schwartz SA. Quantum rods as nanocarriers of gene therapy. Drug Deliv 2012; 19:220-31. [DOI: 10.3109/10717544.2012.690001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
190
|
HUANG HUANGCHIAO, RAMOS JAMES, GRANDHI TARAKASAIPAVAN, POTTA THRIMOORTHY, REGE KAUSHAL. GOLD NANOPARTICLES IN CANCER IMAGING AND THERAPEUTICS. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s1793984410000274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of nanomedicine in the war on cancer diseases has progressed significantly in the recent past. Liposomal- and albumin-based chemotherapeutic agents as well as tumor contrast agents (e.g. Gd-DTPA, ferumoxides) have received FDA approval for human clinical use, while many other agents are in different phases of pre-clinical investigation and clinical trials. Plasmonic gold nanoparticles hold great promise as potential theranostic devices for detection and ablation of cancer diseases. This review discusses recent progress in the imaging, photothermal therapy, and nucleic acid/drug delivery using gold nanoparticles (spheres, shells, rods, cages) in vitro and in vivo. Issues relating to toxicity, biocompatibility, biodistribution, cellular uptake, and targeting efficiency are also discussed.
Collapse
Affiliation(s)
- HUANG-CHIAO HUANG
- Molecular and Nanoscale Bioengineering Laboratory, Arizona State University, Tempe, AZ 85287-6106, USA
| | - JAMES RAMOS
- Molecular and Nanoscale Bioengineering Laboratory, Arizona State University, Tempe, AZ 85287-6106, USA
| | - TARAKA SAI PAVAN GRANDHI
- Molecular and Nanoscale Bioengineering Laboratory, Arizona State University, Tempe, AZ 85287-6106, USA
| | - THRIMOORTHY POTTA
- Molecular and Nanoscale Bioengineering Laboratory, Arizona State University, Tempe, AZ 85287-6106, USA
| | - KAUSHAL REGE
- Molecular and Nanoscale Bioengineering Laboratory, Arizona State University, Tempe, AZ 85287-6106, USA
| |
Collapse
|
191
|
Thiel KW, Hernandez LI, Dassie JP, Thiel WH, Liu X, Stockdale KR, Rothman AM, Hernandez FJ, McNamara JO, Giangrande PH. Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Res 2012; 40:6319-37. [PMID: 22467215 PMCID: PMC3401474 DOI: 10.1093/nar/gks294] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) expression in breast cancer is associated with an aggressive phenotype and poor prognosis, making it an appealing therapeutic target. Trastuzumab, an HER2 antibody-based inhibitor, is currently the leading targeted treatment for HER2(+)-breast cancers. Unfortunately, many patients inevitably develop resistance to the therapy, highlighting the need for alternative targeted therapeutic options. In this study, we used a novel, cell-based selection approach for isolating 'cell-type specific', 'cell-internalizing RNA ligands (aptamers)' capable of delivering therapeutic small interfering RNAs (siRNAs) to HER2-expressing breast cancer cells. RNA aptamers with the greatest specificity and internalization potential were covalently linked to siRNAs targeting the anti-apoptotic gene, Bcl-2. We demonstrate that, when applied to cells, the HER2 aptamer-Bcl-2 siRNA conjugates selectively internalize into HER2(+)-cells and silence Bcl-2 gene expression. Importantly, Bcl-2 silencing sensitizes these cells to chemotherapy (cisplatin) suggesting a potential new therapeutic approach for treating breast cancers with HER2(+)-status. In summary, we describe a novel cell-based selection methodology that enables the identification of cell-internalizing RNA aptamers for targeting therapeutic siRNAs to HER2-expressing breast cancer cells. The future refinement of this technology may promote the widespread use of RNA-based reagents for targeted therapeutic applications.
Collapse
Affiliation(s)
- Kristina W Thiel
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Shao W, Paul A, Abbasi S, Chahal PS, Mena JA, Montes J, Kamen A, Prakash S. A novel polyethyleneimine-coated adeno-associated virus-like particle formulation for efficient siRNA delivery in breast cancer therapy: preparation and in vitro analysis. Int J Nanomedicine 2012; 7:1575-86. [PMID: 22619514 PMCID: PMC3356177 DOI: 10.2147/ijn.s26891] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Systemic delivery of small interfering RNA (siRNA) is limited by its poor stability and limited cell-penetrating properties. To overcome these limitations, we designed an efficient siRNA delivery system using polyethyleneimine-coated virus-like particles derived from adeno-associated virus type 2 (PEI-AAV2-VLPs). Methods AAV2-VLPs were produced in insect cells by infection with a baculovirus vector containing three AAV2 capsid genes. Using this method, we generated well dispersed AAV2-VLPs with an average diameter of 20 nm, similar to that of the wild-type AAV2 capsid. The nanoparticles were subsequently purified by chromatography and three viral capsid proteins were confirmed by Western blot. The negatively charged AAV2-VLPs were surface-coated with PEI to develop cationic nanoparticles, and the formulation was used for efficient siRNA delivery under optimized transfection conditions. Results PEI-AAV2-VLPs were able to condense siRNA and to protect it from degradation by nucleases, as confirmed by gel electrophoresis. siRNA delivery mediated by PEI-AAV2-VLPs resulted in a high transfection rate in MCF-7 breast cancer cells with no significant cytotoxicity. A cell death assay also confirmed the efficacy and functionality of this novel siRNA formulation towards MCF-7 cancer cells, in which more than 60% of cell death was induced within 72 hours of transfection. Conclusion The present study explores the potential of virus-like particles as a new approach for gene delivery and confirms its potential for breast cancer therapy.
Collapse
Affiliation(s)
- Wei Shao
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Wang L, Xu L, Mu Z, Wang C, Sun Z. Synergistic enhancement of photovoltaic performance of TiO2 photoanodes by incorporation of Dawson-type polyoxometalate and gold nanoparticles. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm35314h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
194
|
Li X, Xie QR, Zhang J, Xia W, Gu H. The packaging of siRNA within the mesoporous structure of silica nanoparticles. Biomaterials 2011; 32:9546-56. [DOI: 10.1016/j.biomaterials.2011.08.068] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 08/23/2011] [Indexed: 12/31/2022]
|
195
|
Hao L, Patel PC, Alhasan AH, Giljohann DA, Mirkin CA. Nucleic acid-gold nanoparticle conjugates as mimics of microRNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:3158-62. [PMID: 21922667 PMCID: PMC3681955 DOI: 10.1002/smll.201101018] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/24/2011] [Indexed: 05/17/2023]
Abstract
Novel conjugates of gold nanoparticles (13±1nm) functionalized with synthetic microRNAs can enter cells without the aid of cationic co-carriers and mimic the function of endogenous microRNAs. These conjugates can regulate multiple proteins through interactions with 3′ untranslated region of the target mRNA and control cell behavior. The conjugates are a promising new tool for studying miRNA function and new candidates for miRNA replacement therapies.
Collapse
Affiliation(s)
- Liangliang Hao
- Interdepartmental Biological Sciences Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 USA
| | - Pinal C. Patel
- Interdepartmental Biological Sciences Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 USA
| | - Ali H. Alhasan
- Interdepartmental Biological Sciences Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 USA
| | - David A. Giljohann
- Interdepartmental Biological Sciences Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 USA
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 USA
- Corresponding-Author: Prof. Chad A. Mirkin, Department of Chemistry, International Institute for Nanotechnology, Northwestern University 2145 Sheridan Road, Evanston, IL 60208-3113 USA,
| |
Collapse
|
196
|
Abstract
This review will cover the current strategies that are being adopted to efficiently deliver small interfering RNA using nonviral vectors, including the use of polymers such as polyethylenimine, poly(lactic-co-glycolic acid), polypeptides, chitosan, cyclodextrin, dendrimers, and polymers-containing different nanoparticles. The article will provide a brief and concise account of underlying principle of these polymeric vectors and their structural and functional modifications which were intended to serve different purposes to affect efficient therapeutic outcome of small-interfering RNA delivery. The modifications of these polymeric vectors will be discussed with reference to stimuli-responsiveness, target specific delivery, and incorporation of nanoconstructs such as carbon nanotubes, gold nanoparticles, and silica nanoparticles. The emergence of small-interfering RNA as the potential therapeutic agent and its mode of action will also be mentioned in a nutshell.
Collapse
Affiliation(s)
- Kaushik Singha
- Department of Chemistry, BK School of Molecular Science, Polymer Research Institute, Pohang University of Science and Technology, Pohang, Korea
| | | | | |
Collapse
|
197
|
Schiffman JD, Wang Y, Giannelis EP, Elimelech M. Biocidal activity of plasma modified electrospun polysulfone mats functionalized with polyethyleneimine-capped silver nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13159-13164. [PMID: 21928790 DOI: 10.1021/la202605z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The incorporation of silver nanoparticles (AgNPs) into polymeric nanofibers has attracted a great deal of attention due to the strong antimicrobial activity that the resulting fibers exhibit. However, bactericidal efficacy of AgNP-coated electrospun fibrous mats has not yet been demonstrated. In this study, polysulfone (PSf) fibers were electrospun and surface-modified using an oxygen plasma treatment, which allowed for facile irreversible deposition of cationically charged polyethyleneimine (PEI)-AgNPs via electrostatic interactions. The PSf-AgNP mats were characterized for relative silver concentration as a function of plasma treatment time using ICP-MS and changes in contact angle. Plasma treatment of 60 s was the shortest time required for maximum loss of bacteria (Escherichia coli) viability. Time-dependent bacterial cytotoxicity studies indicate that the optimized PSf-AgNP mats exhibit a high level of inactivation against both gram negative bacteria, Escherichia coli, and gram positive bacteria, Bacillus anthracis and Staphylococcus aureus.
Collapse
Affiliation(s)
- Jessica D Schiffman
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States.
| | | | | | | |
Collapse
|
198
|
Liu G, Xie J, Zhang F, Wang ZY, Luo K, Zhu L, Quan QM, Niu G, Lee S, Ai H, Chen X. N-Alkyl-PEI-functionalized iron oxide nanoclusters for efficient siRNA delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2742-9. [PMID: 21861295 PMCID: PMC3759164 DOI: 10.1002/smll.201100825] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 05/17/2011] [Indexed: 05/18/2023]
Abstract
Small-interfering RNA (siRNA) is an emerging class of therapeutics, which works by regulating the expression of a specific gene involved in disease progression. Despite the promises, effective transport of siRNA with minimal side effects remains a challenge. In this study, a nonviral nanoparticle gene carrier is developed and its efficiency for siRNA delivery and transfection is validated at both in vitro and in vivo levels. Such a nanocarrier, abbreviated as Alkyl-PEI2k-IO, was constructed with a core of iron oxide nanoparticles (IOs) and a shell of alkylated polyethyleneimine of 2000 Da [corrected] molecualr weight (Alkyl-PEI2k). It is found to be able to bind with siRNA, resulting in well-dispersed nanoparticles with a controlled clustering structure and narrow size distribution. Electrophoresis studies show that the Alkyl-PEI2k-IOs could retard siRNA completely at N:P ratios (i.e., PEI nitrogen to nucleic acid phosphate) above 10, protect siRNA from enzymatic degradation in serum, and release complexed siRNA efficiently in the presence of polyanionic heparin. The knockdown efficiency of the siRNA-loaded nanocarriers is assessed with 4T1 cells stably expressing luciferase (fluc-4T1) and further, with a fluc-4T1 xenograft model. Significant down-regulation of luciferase is observed, and unlike high-molecular-weight analogues, the Alkyl-PEI2k-coated IOs show good biocompatibility. In conclusion, Alkyl-PEI2k-IOs demonstrate highly efficient delivery of siRNA and an innocuous toxic profile, making it a potential carrier for gene therapy.
Collapse
Affiliation(s)
| | | | - Fan Zhang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892 (USA)
| | - Zhi-Yong Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064 (China)
| | - Kui Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064 (China)
| | - Lei Zhu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892 (USA)
| | - Qi-Meng Quan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892 (USA)
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892 (USA)
| | - Seulki Lee
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892 (USA)
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064 (China). Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041 (China)
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892 (USA)
| |
Collapse
|
199
|
Li H, Nelson CE, Evans BC, Duvall CL. Delivery of intracellular-acting biologics in pro-apoptotic therapies. Curr Pharm Des 2011; 17:293-319. [PMID: 21348831 DOI: 10.2174/138161211795049642] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/18/2011] [Indexed: 12/21/2022]
Abstract
The recent elucidation of molecular regulators of apoptosis and their roles in cellular oncogenesis has motivated the development of biomacromolecular anticancer therapeutics that can activate intracellular apoptotic signaling pathways. Pharmaceutical scientists have employed a variety of classes of biologics toward this goal, including antisense oligodeoxynucleotides, small interfering RNA, proteins, antibodies, and peptides. However, stability in the in vivo environment, tumor-specific biodistribution, cell internalization, and localization to the intracellular microenvironment where the targeted molecule is localized pose significant challenges that limit the ability to directly apply intracellular-acting, pro-apoptotic biologics for therapeutic use. Thus, approaches to improve the pharmaceutical properties of therapeutic biomacromolecules are of great significance and have included chemically modifying the bioactive molecule itself or formulation with auxiliary compounds. Recently, promising advances in delivery of pro-apoptotic biomacromolecular agents have been made using tools such as peptide "stapling", cell penetrating peptides, fusogenic peptides, liposomes, nanoparticles, smart polymers, and synergistic combinations of these components. This review will discuss the molecular mediators of cellular apoptosis, the respective mechanisms by which these mediators are dysregulated in cellular oncogenesis, the history and development of both nucleic-acid and amino-acid based drugs, and techniques to achieve intracellular delivery of these biologics. Finally, recent applications where pro-apoptotic functionality has been achieved through delivery of intracellular-acting biomacromolecular drugs will be highlighted.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
200
|
Zhang W, Meng J, Ji Y, Li X, Kong H, Wu X, Xu H. Inhibiting metastasis of breast cancer cells in vitro using gold nanorod-siRNA delivery system. NANOSCALE 2011; 3:3923-3932. [PMID: 21845256 DOI: 10.1039/c1nr10573f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Breast cancer is the most common malignant disease in women, and it is not the primary tumor but its metastasis kills most patients with breast cancer. Anti-metastasis therapy based on RNA interference (RNAi) is emerging as one of promising strategies in tumor therapy. However, construction of an efficient delivery system for siRNA is still one of the major challenges. In this work, siRNA against protease-activated receptor-1 (PAR-1) which is a pivotal gene involved in tumor metastasis was conjugated to gold nanorods (AuNRs) via electrostatic interaction and delivered to highly metastatic human breast cancer cells. It was demonstrated that the siRNA oligos were successfully delivered into the cancer cells and mainly located in vesicle-like structures including lysosome. After transfected with the complex of AuNRs and PAR-1 siRNA (AuNRs@PAR-1 siRNA), expression of PAR-1 at both mRNA and protein levels were efficiently down regulated, as evidenced by quantitative real time PCR and flow cytometry analysis, respectively. Transwell migration assay confirmed the decrease in metastatic ability of the cancer cells. The silencing efficiency of the complex was in-between that of TurboFect and Lipofectamine, however, the cytotoxicity of the AuNRs was lower than that of the latter two. Taken together, AuNRs with PAR-1 siRNA are suited for RNAi based anti-metastasis therapy.
Collapse
Affiliation(s)
- Weiqi Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P. R. China
| | | | | | | | | | | | | |
Collapse
|