151
|
Suppression of excitotoxicity and foreign body response by memantine in chronic cannula implantation into the rat brain. Brain Res Bull 2015; 117:54-68. [DOI: 10.1016/j.brainresbull.2015.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/29/2022]
|
152
|
Huang WC, Lai HY, Kuo LW, Liao CH, Chang PH, Liu TC, Chen SY, Chen YY. Multifunctional 3D Patternable Drug-Embedded Nanocarrier-Based Interfaces to Enhance Signal Recording and Reduce Neuron Degeneration in Neural Implantation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:4186-4193. [PMID: 26074252 DOI: 10.1002/adma.201500136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/12/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Wei-Chen Huang
- Department of Materials Science and Engineering, National Chiao Tung University, No. 1001, Ta-Hsueh Rd., Hsinchu, 30010, Taiwan
| | - Hsin-Yi Lai
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, No. 268, Kaixuan Road, Hangzhou City, Zhejiang Province, 310029, China
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. Keyan Road, Miaoli, 35053, Taiwan
| | - Chia-Hsin Liao
- Department of Medical Research, Buddhist Tzu Chi General Hospital, No. 707, Sec. 3, Chung-Yang Rd., Hualien, 97002, Taiwan
| | - Po-Hsieh Chang
- Department of Materials Science and Engineering, National Chiao Tung University, No. 1001, Ta-Hsueh Rd., Hsinchu, 30010, Taiwan
| | - Ta-Chung Liu
- Department of Materials Science and Engineering, National Chiao Tung University, No. 1001, Ta-Hsueh Rd., Hsinchu, 30010, Taiwan
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Chiao Tung University, No. 1001, Ta-Hsueh Rd., Hsinchu, 30010, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University, No. 155, Sec. 2, Linong St., Taipei, 11221, Taiwan
| |
Collapse
|
153
|
Du ZJ, Luo X, Weaver C, Cui XT. Poly (3, 4-ethylenedioxythiophene)-ionic liquid coating improves neural recording and stimulation functionality of MEAs. JOURNAL OF MATERIALS CHEMISTRY. C 2015; 3:6515-6524. [PMID: 26491540 PMCID: PMC4610193 DOI: 10.1039/c5tc00145e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In vivo multi-electrode arrays (MEAs) can sense electrical signals from a small set of neurons or modulate neural activity through micro-stimulation. Electrode's geometric surface area (GSA) and impedance are important for both unit recording and neural stimulation. Smaller GSA is preferred due to enhanced selectivity of neural signal, but it tends to increase electrode impedance. Higher impedance leads to increased electrical noise and signal loss in single unit neural recording. It also yields a smaller charge injection window for safe neural stimulation. To address these issues, poly (3, 4-ethylenedioxythiophene) - ionic liquid (PEDOT-IL) conducting polymers were electrochemically polymerized on the surface of the microelectrodes. The PEDOT-IL coating reduced the electrode impedance modulus by over 35 times at 1 kHz. It also exhibited compelling nanostructure in surface morphology and significant impedance reduction in other physiologically relevant range (100Hz-1000Hz). PEDOT-IL coated electrodes exhibited a Charge Storage Capacity (CSC) that was about 20 times larger than that of bare electrodes. The neural recording performance of PEDOT-IL coated electrodes was also compared with uncoated electrodes and PEDOT-poly (styrenesulfonate) (PSS) coated electrodes in rat barrel cortex (SI). Spontaneous neural activity and sensory evoked neural response were utilized for characterizing the electrode performance. The PEDOT-IL electrodes exhibited a higher unit yield and signal-to-noise ratio (SNR) in vivo. The local field potential recording was benefited from the low impedance PEDOT-IL coating in noise and artifact reduction as well. Moreover, cell culture on PEDOT-IL coating demonstrated that the material is safe for neural tissue and reduces astrocyte fouling. Taken together, PEDOT-IL coating has the potential to benefit neural recording and stimulation electrodes, especially when integrated with novel small GSA electrode arrays designed for high recording density, minimal insertion damage and alleviated tissue reaction.
Collapse
Affiliation(s)
- Zhanhong Jeff Du
- Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiliang Luo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Cassandra Weaver
- Bioengineering Department, University of California at San Diego, La Jolla, CA, USA
| | - Xinyan Tracy Cui
- Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
154
|
Dryg ID, Ward MP, Qing KY, Mei H, Schaffer JE, Irazoqui PP. Magnetically Inserted Neural Electrodes: Tissue Response and Functional Lifetime. IEEE Trans Neural Syst Rehabil Eng 2015; 23:562-71. [DOI: 10.1109/tnsre.2015.2399856] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
155
|
Kolarcik CL, Luebben SD, Sapp SA, Hanner J, Snyder N, Kozai TDY, Chang E, Nabity JA, Nabity ST, Lagenaur CF, Cui XT. Elastomeric and soft conducting microwires for implantable neural interfaces. SOFT MATTER 2015; 11:4847-61. [PMID: 25993261 PMCID: PMC4466039 DOI: 10.1039/c5sm00174a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Current designs for microelectrodes used for interfacing with the nervous system elicit a characteristic inflammatory response that leads to scar tissue encapsulation, electrical insulation of the electrode from the tissue and ultimately failure. Traditionally, relatively stiff materials like tungsten and silicon are employed which have mechanical properties several orders of magnitude different from neural tissue. This mechanical mismatch is thought to be a major cause of chronic inflammation and degeneration around the device. In an effort to minimize the disparity between neural interface devices and the brain, novel soft electrodes consisting of elastomers and intrinsically conducting polymers were fabricated. The physical, mechanical and electrochemical properties of these materials were extensively characterized to identify the formulations with the optimal combination of parameters including Young's modulus, elongation at break, ultimate tensile strength, conductivity, impedance and surface charge injection. Our final electrode has a Young's modulus of 974 kPa which is five orders of magnitude lower than tungsten and significantly lower than other polymer-based neural electrode materials. In vitro cell culture experiments demonstrated the favorable interaction between these soft materials and neurons, astrocytes and microglia, with higher neuronal attachment and a two-fold reduction in inflammatory microglia attachment on soft devices compared to stiff controls. Surface immobilization of neuronal adhesion proteins on these microwires further improved the cellular response. Finally, in vivo electrophysiology demonstrated the functionality of the elastomeric electrodes in recording single unit activity in the rodent visual cortex. The results presented provide initial evidence in support of the use of soft materials in neural interface applications.
Collapse
Affiliation(s)
- Christi L Kolarcik
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Nolta NF, Christensen MB, Crane PD, Skousen JL, Tresco PA. BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance. Biomaterials 2015; 53:753-62. [DOI: 10.1016/j.biomaterials.2015.02.081] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
|
157
|
Lo MC, Wang S, Singh S, Damodaran VB, Kaplan HM, Kohn J, Shreiber DI, Zahn JD. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion. Biomed Microdevices 2015; 17:34. [PMID: 25681971 PMCID: PMC4827618 DOI: 10.1007/s10544-015-9927-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings.
Collapse
Affiliation(s)
- Meng-chen Lo
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ, USA,
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Ersen A, Elkabes S, Freedman DS, Sahin M. Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord. J Neural Eng 2015; 12:016019. [PMID: 25605679 DOI: 10.1088/1741-2560/12/1/016019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Microelectrodes implanted in the central nervous system (CNS) often fail in long term implants due to the immunological tissue response caused by tethering forces of the connecting wires. In addition to the tethering effect, there is a mechanical stress that occurs at the device-tissue interface simply because the microelectrode is a rigid body floating in soft tissue and it cannot reshape itself to comply with changes in the surrounding tissue. In the current study we evaluated the scar tissue formation to tetherless devices with two significantly different geometries in the rat brain and spinal cord in order to investigate the effects of device geometry. APPROACH One of the implant geometries resembled the wireless, floating microstimulators that we are currently developing in our laboratory and the other was a (shank only) Michigan probe for comparison. Both electrodes were implanted into either the cervical spinal cord or the motor cortices, one on each side. MAIN RESULTS The most pronounced astroglial and microglial reactions occurred within 20 μm from the device and decreased sharply at larger distances. Both cell types displayed the morphology of non-activated cells past the 100 μm perimeter. Even though the aspect ratios of the implants were different, the astroglial and microglial responses to both microelectrode types were very mild in the brain, stronger and yet limited in the spinal cord. SIGNIFICANCE These observations confirm previous reports and further suggest that tethering may be responsible for most of the tissue response in chronic implants and that the electrode size has a smaller contribution with floating electrodes. The electrode size may be playing primarily an amplifying role to the tethering forces in the brain whereas the size itself may induce chronic response in the spinal cord where the movement of surrounding tissues is more significant.
Collapse
Affiliation(s)
- Ali Ersen
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | | | | | | |
Collapse
|
159
|
Lee HC, Gaire J, McDowell SP, Otto KJ. The effect of site placement within silicon microelectrodes on the long-term electrophysiological recordings. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:465-8. [PMID: 25569997 DOI: 10.1109/embc.2014.6943629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intracortical microelectrodes can be used to treat various neurological disorders given their capabilities to interface with single or multiple populations of neurons. However, most of these penetrating devices have been reported to fail over time, within weeks to months, putatively due to the foreign body response (FBR) which persistently aggravates the surrounding brain tissues. A number of studies have confirmed that various electrode properties, such as size, shape, and surface area, may play a role in the biological responses to the microelectrode. Further experimental data is needed to determine the effect of these properties on the FBR and the recording performance. In this paper, we evaluate the effect of site placement using Michigan arrays with sites on the center, edge, and tip of the shank. The results show that there is significant performance variance between the center, edge, and tip sites.
Collapse
|
160
|
Goding JA, Gilmour AD, Martens PJ, Poole-Warren LA, Green RA. Small bioactive molecules as dual functional co-dopants for conducting polymers. J Mater Chem B 2015; 3:5058-5069. [DOI: 10.1039/c5tb00384a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Scanning electron microscope image of surface morphology of conducting polymer PEDOT doped with bioactive molecules.
Collapse
Affiliation(s)
- J. A. Goding
- Graduate School of Biomedical Engineering
- University of New South Wales
- Sydney 2052
- Australia
| | - A. D. Gilmour
- Graduate School of Biomedical Engineering
- University of New South Wales
- Sydney 2052
- Australia
| | - P. J. Martens
- Graduate School of Biomedical Engineering
- University of New South Wales
- Sydney 2052
- Australia
| | - L. A. Poole-Warren
- Graduate School of Biomedical Engineering
- University of New South Wales
- Sydney 2052
- Australia
| | - R. A. Green
- Graduate School of Biomedical Engineering
- University of New South Wales
- Sydney 2052
- Australia
| |
Collapse
|
161
|
Jorfi M, Skousen JL, Weder C, Capadona JR. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. J Neural Eng 2014; 12:011001. [PMID: 25460808 DOI: 10.1088/1741-2560/12/1/011001] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To ensure long-term consistent neural recordings, next-generation intracortical microelectrodes are being developed with an increased emphasis on reducing the neuro-inflammatory response. The increased emphasis stems from the improved understanding of the multifaceted role that inflammation may play in disrupting both biologic and abiologic components of the overall neural interface circuit. To combat neuro-inflammation and improve recording quality, the field is actively progressing from traditional inorganic materials towards approaches that either minimizes the microelectrode footprint or that incorporate compliant materials, bioactive molecules, conducting polymers or nanomaterials. However, the immune-privileged cortical tissue introduces an added complexity compared to other biomedical applications that remains to be fully understood. This review provides a comprehensive reflection on the current understanding of the key failure modes that may impact intracortical microelectrode performance. In addition, a detailed overview of the current status of various materials-based approaches that have gained interest for neural interfacing applications is presented, and key challenges that remain to be overcome are discussed. Finally, we present our vision on the future directions of materials-based treatments to improve intracortical microelectrodes for neural interfacing.
Collapse
Affiliation(s)
- Mehdi Jorfi
- Adolphe Merkle Institute, University of Fribourg, Rte de l'Ancienne Papeterie, CH-1723 Marly, Switzerland
| | | | | | | |
Collapse
|
162
|
Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. Biomaterials 2014; 37:25-39. [PMID: 25453935 DOI: 10.1016/j.biomaterials.2014.10.040] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/02/2014] [Indexed: 12/20/2022]
Abstract
Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133-189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array.
Collapse
|
163
|
Sarkiss CA, Sarkar R, Yong W, Lazareff JA. Time dependent pattern of cellular characteristics causing ventriculoperitoneal shunt failure in children. Clin Neurol Neurosurg 2014; 127:30-2. [PMID: 25459240 DOI: 10.1016/j.clineuro.2014.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/22/2014] [Accepted: 09/28/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ventriculoperitoneal shunt obstruction remains a major problem in pediatric neurosurgery. We analyzed the tissue reaction to ventriculoperitoneal shunts and compared the histology versus time elapsed to shunt failure. METHODS 85 ventricular catheter tissues samples obtained from 71 patients were reviewed along with time elapsed to shunt revision. Pathology reports of all tissue samples were divided into three categories: inflammatory based on the presence of lymphocytes, macrophages, and microglial cells; reactive based on the presence of fibro-connective tissue, reactive astrocytes, and Rosenthal fibers; and normal brain tissue based on presence of choroid plexus. These categories were then grouped according to time elapsed to shunt revision. Group I had those shunts revised <6 months, group II included shunts revised between 6 months and 3 years, while group III had shunts revised after more than 3 years. RESULTS The incidence of inflammatory type of histology was 44% (16/36) in group I, 22% (6/27) in group II, and 18% (4/22) in group III. The reactive histology was 42% (15/36) in group I, 67% (18/27) in group II, and 77% (17/22) in group III. There was a clear noted difference of incidence between inflammatory versus reactive histology between early shunt failure compared to late shunt failure. Incidence of normal brain tissue remained high in group I with 8%, 11% in group II, and none in group III. CONCLUSION Early shunt obstruction arises from pathologies different from those causing late shunt obstructions.
Collapse
Affiliation(s)
- Christopher A Sarkiss
- Icahn School of Medicine, Department of Neurosurgery, Mount Sinai Medical Center, New York, USA
| | - Rajashree Sarkar
- David Geffen School of Medicine at UCLA, Department of Neurosurgery, Los Angeles, USA
| | - William Yong
- David Geffen School of Medicine at UCLA, Division of Neuropathology, Los Angeles, USA
| | - Jorge A Lazareff
- David Geffen School of Medicine at UCLA, Department of Neurosurgery, Los Angeles, USA.
| |
Collapse
|
164
|
Xie Y, Martini N, Hassler C, Kirch RD, Stieglitz T, Seifert A, Hofmann UG. In vivo monitoring of glial scar proliferation on chronically implanted neural electrodes by fiber optical coherence tomography. FRONTIERS IN NEUROENGINEERING 2014; 7:34. [PMID: 25191264 PMCID: PMC4139652 DOI: 10.3389/fneng.2014.00034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/05/2014] [Indexed: 11/14/2022]
Abstract
In neural prosthetics and stereotactic neurosurgery, intracortical electrodes are often utilized for delivering therapeutic electrical pulses, and recording neural electrophysiological signals. Unfortunately, neuroinflammation impairs the neuron-electrode-interface by developing a compact glial encapsulation around the implants in long term. At present, analyzing this immune reaction is only feasible with post-mortem histology; currently no means for specific in vivo monitoring exist and most applicable imaging modalities can not provide information in deep brain regions. Optical coherence tomography (OCT) is a well established imaging modality for in vivo studies, providing cellular resolution and up to 1.2 mm imaging depth in brain tissue. A fiber based spectral domain OCT was shown to be capable of minimally invasive brain imaging. In the present study, we propose to use a fiber based spectral domain OCT to monitor the progression of the tissue's immune response through scar encapsulation progress in a rat animal model. A fine fiber catheter was implanted in rat brain together with a flexible polyimide microelectrode in sight both of which acts as a foreign body and induces the brain tissue immune reaction. OCT signals were collected from animals up to 12 weeks after implantation and thus gliotic scarring in vivo monitored for that time. Preliminary data showed a significant enhancement of the OCT backscattering signal during the first 3 weeks after implantation, and increased attenuation factor of the sampled tissue due to the glial scar formation.
Collapse
Affiliation(s)
- Yijing Xie
- Neuroelectronic Systems, Department of General Neurosurgery, University Medical Center Freiburg Freiburg, Germany
| | - Nadja Martini
- Neuroelectronic Systems, Department of General Neurosurgery, University Medical Center Freiburg Freiburg, Germany
| | - Christina Hassler
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering(IMTEK), University of Freiburg Freiburg, Germany
| | - Robert D Kirch
- Neuroelectronic Systems, Department of General Neurosurgery, University Medical Center Freiburg Freiburg, Germany
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering(IMTEK), University of Freiburg Freiburg, Germany
| | - Andreas Seifert
- Gisela and Erwin Sick Chair of Micro-optics, Department of Microsystems Engineering(IMTEK), University of Freiburg Freiburg, Germany
| | - Ulrich G Hofmann
- Neuroelectronic Systems, Department of General Neurosurgery, University Medical Center Freiburg Freiburg, Germany
| |
Collapse
|
165
|
Nguyen JK, Park DJ, Skousen JL, Hess-Dunning AE, Tyler DJ, Rowan SJ, Weder C, Capadona JR. Mechanically-compliant intracortical implants reduce the neuroinflammatory response. J Neural Eng 2014; 11:056014. [PMID: 25125443 DOI: 10.1088/1741-2560/11/5/056014] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The mechanisms underlying intracortical microelectrode encapsulation and failure are not well understood. A leading hypothesis implicates the role of the mechanical mismatch between rigid implant materials and the much softer brain tissue. Previous work has established the benefits of compliant materials on reducing early neuroinflammatory events. However, recent studies established late onset of a disease-like neurodegenerative state. APPROACH In this study, we implanted mechanically-adaptive materials, which are initially rigid but become compliant after implantation, to investigate the long-term chronic neuroinflammatory response to compliant intracortical microelectrodes. MAIN RESULTS Three days after implantation, during the acute healing phase of the response, the tissue response to the compliant implants was statistically similar to that of chemically matched stiff implants with much higher rigidity. However, at two, eight, and sixteen weeks post-implantation in the rat cortex, the compliant implants demonstrated a significantly reduced neuroinflammatory response when compared to stiff reference materials. Chronically implanted compliant materials also exhibited a more stable blood-brain barrier than the stiff reference materials. SIGNIFICANCE Overall, the data show strikingly that mechanically-compliant intracortical implants can reduce the neuroinflammatory response in comparison to stiffer systems.
Collapse
Affiliation(s)
- Jessica K Nguyen
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr Drive, Wickenden Bldg, Cleveland, OH 44106, USA. Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Blvd, 151W/APT, Cleveland, OH 44106-1702, USA
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Model validation of untethered, ultrasonic neural dust motes for cortical recording. J Neurosci Methods 2014; 244:114-22. [PMID: 25109901 DOI: 10.1016/j.jneumeth.2014.07.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/25/2014] [Accepted: 07/30/2014] [Indexed: 11/20/2022]
Abstract
A major hurdle in brain-machine interfaces (BMI) is the lack of an implantable neural interface system that remains viable for a substantial fraction of the user's lifetime. Recently, sub-mm implantable, wireless electromagnetic (EM) neural interfaces have been demonstrated in an effort to extend system longevity. However, EM systems do not scale down in size well due to the severe inefficiency of coupling radio-waves at those scales within tissue. This paper explores fundamental system design trade-offs as well as size, power, and bandwidth scaling limits of neural recording systems built from low-power electronics coupled with ultrasonic power delivery and backscatter communication. Such systems will require two fundamental technology innovations: (1) 10-100 μm scale, free-floating, independent sensor nodes, or neural dust, that detect and report local extracellular electrophysiological data via ultrasonic backscattering and (2) a sub-cranial ultrasonic interrogator that establishes power and communication links with the neural dust. We provide experimental verification that the predicted scaling effects follow theory; (127 μm)(3) neural dust motes immersed in water 3 cm from the interrogator couple with 0.002064% power transfer efficiency and 0.04246 ppm backscatter, resulting in a maximum received power of ∼0.5 μW with ∼1 nW of change in backscatter power with neural activity. The high efficiency of ultrasonic transmission can enable the scaling of the sensing nodes down to 10s of micrometer. We conclude with a brief discussion of the application of neural dust for both central and peripheral nervous system recordings, and perspectives on future research directions.
Collapse
|
167
|
Lewitus DY, Smith KL, Landers J, Neimark AV, Kohn J. Bioactive Agarose Carbon-Nanotube Composites are Capable of Manipulating Brain-Implant Interface. J Appl Polym Sci 2014; 131:10.1002/app.40297. [PMID: 25382868 PMCID: PMC4221857 DOI: 10.1002/app.40297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Composite electrodes made of the polysaccharide agarose and carbon nanotube fibers (A-CNE) have shown potential to be applied as tissue-compatible, micro-electronic devices. In the present work, A-CNEs were functionalized using neuro-relevant proteins (laminin and alpha-melanocyte stimulating hormone) and implanted in brain tissue for 1 week (acute response) and 4 weeks (chronic response). Qualitative and quantitative analysis of neuronal and immunological responses revealed significant changes in immunological response to implanted materials depending on the type of biomolecule used. The potential to manipulate tissue response through the use of an anti-inflammatory protein, alpha-melanocyte stimulating hormone, was shown in the reduction of astroglia presence near the implant site during the glial scar formation. These results suggest that A-CNEs, which are soft, flexible, and easily made bioactive, have the ability to modify brain tissue response through surface modification as a function of the biomolecule used.
Collapse
Affiliation(s)
- Dan Y. Lewitus
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Karen L. Smith
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
| | - John Landers
- Department of Chemical and Biochemical Engineering Rutgers, State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Alexander V. Neimark
- Department of Chemical and Biochemical Engineering Rutgers, State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
168
|
Debnath S, Bauman MJ, Fisher LE, Weber DJ, Gaunt RA. Microelectrode array recordings from the ventral roots in chronically implanted cats. Front Neurol 2014; 5:104. [PMID: 25071697 PMCID: PMC4083189 DOI: 10.3389/fneur.2014.00104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/07/2014] [Indexed: 11/13/2022] Open
Abstract
The ventral spinal roots contain the axons of spinal motoneurons and provide the only location in the peripheral nervous system where recorded neural activity can be assured to be motor rather than sensory. This study demonstrates recordings of single unit activity from these ventral root axons using floating microelectrode arrays (FMAs). Ventral root recordings were characterized by examining single unit yield and signal-to-noise ratios (SNR) with 32-channel FMAs implanted chronically in the L6 and L7 spinal roots of nine cats. Single unit recordings were performed for implant periods of up to 12 weeks. Motor units were identified based on active discharge during locomotion and inactivity under anesthesia. Motor unit yield and SNR were calculated for each electrode, and results were grouped by electrode site size, which were varied systematically between 25 and 160 μm to determine effects on signal quality. The unit yields and SNR did not differ significantly across this wide range of electrode sizes. Both SNR and yield decayed over time, but electrodes were able to record spikes with SNR >2 up to 12 weeks post-implant. These results demonstrate that it is feasible to record single unit activity from multiple isolated motor units with penetrating microelectrode arrays implanted chronically in the ventral spinal roots. This approach could be useful for creating a spinal nerve interface for advanced neural prostheses, and results of this study will be used to improve design of microelectrodes for chronic neural recording in the ventral spinal roots.
Collapse
Affiliation(s)
- Shubham Debnath
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, PA , USA
| | - Matthew J Bauman
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, PA , USA
| | - Lee E Fisher
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, PA , USA
| | - Douglas J Weber
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, PA , USA
| | - Robert A Gaunt
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
169
|
Ereifej ES, Khan S, Newaz G, Zhang J, Auner GW, VandeVord PJ. Comparative assessment of iridium oxide and platinum alloy wires using an in vitro glial scar assay. Biomed Microdevices 2014; 15:917-24. [PMID: 23764951 DOI: 10.1007/s10544-013-9780-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The long-term effect of chronically implanted electrodes is the formation of a glial scar. Therefore, it is imperative to assess the biocompatibility of materials before employing them in neural electrode fabrication. Platinum alloy and iridium oxide have been identified as good candidates as neural electrode biomaterials due to their mechanical and electrical properties, however, effect of glial scar formation for these two materials is lacking. In this study, we applied a glial scarring assay to observe the cellular reactivity to platinum alloy and iridium oxide wires in order to assess the biocompatibility based on previously defined characteristics. Through real-time PCR, immunostaining and imaging techniques, we will advance the understanding of the biocompatibility of these materials. Results of this study demonstrate iridium oxide wires exhibited a more significant reactive response as compared to platinum alloy wires. Cells cultured with platinum alloy wires had less GFAP gene expression, lower average GFAP intensity, and smaller glial scar thickness. Collectively, these results indicated that platinum alloy wires were more biocompatible than the iridium oxide wires.
Collapse
Affiliation(s)
- Evon S Ereifej
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
170
|
Frewin C, Reyes M, Register J, Thomas SW, Saddow SE. 3C-SiC on Si: A Versatile Material for Electronic, Biomedical and Clean Energy Applications. ACTA ACUST UNITED AC 2014. [DOI: 10.1557/opl.2014.567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractSilicon carbide (SiC) has long been known as a robust semiconductor with superior properties to silicon for electronic applications. Consequently a tremendous amount of international activity has been on-going for over four decades to develop high-power solid state SiC electronics. While this activity has focused on the hexagonal polytypes of SiC, the only form that can be grown directly on Si substrates, 3C-SiC (or cubic SiC), has been researched for non-electronic applications such as MEMS and biosensors. In particular in our group we have pioneered several biomedical devices using 3C-SiC grown on Si substrates, and recently have been investigating the use of this novel material for clean energy applications. This paper first reviews progress made in the area of 3C-SiC electronic devices. Next a review of nearly a decade of biomedical activity is presented, with particular emphasis on the most promising applications: in vivo glucose monitoring, biomedical implants for connecting the human nervous system to advanced prosthetics, and MEMS/NEMS research aimed at allowing for in vivo diagnostic and therapeutic systems for advanced biomedical applications. Recent published work in the area of hydrogen production via electrolysis using 3C-SiC closes the paper as this last application is extremely promising for the burgeoning hydrogen economy and demonstrates a third important application of 3C-SiC on Si – its potential use in clean energy systems.
Collapse
|
171
|
Aregueta-Robles UA, Woolley AJ, Poole-Warren LA, Lovell NH, Green RA. Organic electrode coatings for next-generation neural interfaces. FRONTIERS IN NEUROENGINEERING 2014; 7:15. [PMID: 24904405 PMCID: PMC4034607 DOI: 10.3389/fneng.2014.00015] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/06/2014] [Indexed: 01/05/2023]
Abstract
Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however, several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes.
Collapse
Affiliation(s)
| | - Andrew J. Woolley
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
- School of Medicine, University of Western SydneySydney, NSW, Australia
| | - Laura A. Poole-Warren
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
| | - Nigel H. Lovell
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
| | - Rylie A. Green
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
172
|
Asplund M, Boehler C, Stieglitz T. Anti-inflammatory polymer electrodes for glial scar treatment: bringing the conceptual idea to future results. FRONTIERS IN NEUROENGINEERING 2014; 7:9. [PMID: 24860493 PMCID: PMC4026681 DOI: 10.3389/fneng.2014.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/02/2014] [Indexed: 01/03/2023]
Abstract
Conducting polymer films offer a convenient route for the functionalization of implantable microelectrodes without compromising their performance as excellent recording units. A micron thick coating, deposited on the surface of a regular metallic electrode, can elute anti-inflammatory drugs for the treatment of glial scarring as well as growth factors for the support of surrounding neurons. Electro-activation of the polymer drives the release of the substance and should ideally provide a reliable method for controlling quantity and timing of release. Driving signals in the form of a constant potential (CP), a slow redox sweep or a fast pulse are all represented in literature. Few studies present such release in vivo from actual recording and stimulating microelectronic devices. It is essential to bridge the gap between studies based on release in vitro, and the intended application, which would mean release into living and highly delicate tissue. In the biological setting, signals are limited both by available electronics and by the biological safety. Driving signals must not be harmful to tissue and also not activate the tissue in an uncontrolled manner. This review aims at shedding more light on how to select appropriate driving parameters for the polymer electrodes for the in vivo setting. It brings together information regarding activation thresholds for neurons, as well as injury thresholds, and puts this into context with what is known about efficient driving of release from conducting polymer films.
Collapse
Affiliation(s)
- Maria Asplund
- Biomedical Microtechnology, IMTEK, Albert-Ludwigs Universität Freiburg, Germany ; Freiburg Institute for Advanced Studies FRIAS, Albert-Ludwigs Universität Freiburg, Germany ; BrainLinks-BrainTools Cluster of Excellence, Albert-Ludwigs Universität Freiburg, Germany
| | - Christian Boehler
- Biomedical Microtechnology, IMTEK, Albert-Ludwigs Universität Freiburg, Germany ; Freiburg Institute for Advanced Studies FRIAS, Albert-Ludwigs Universität Freiburg, Germany ; BrainLinks-BrainTools Cluster of Excellence, Albert-Ludwigs Universität Freiburg, Germany
| | - Thomas Stieglitz
- Biomedical Microtechnology, IMTEK, Albert-Ludwigs Universität Freiburg, Germany ; BrainLinks-BrainTools Cluster of Excellence, Albert-Ludwigs Universität Freiburg, Germany
| |
Collapse
|
173
|
Sankar V, Patrick E, Dieme R, Sanchez JC, Prasad A, Nishida T. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions. FRONTIERS IN NEUROENGINEERING 2014; 7:13. [PMID: 24847248 PMCID: PMC4021112 DOI: 10.3389/fneng.2014.00013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/17/2014] [Indexed: 11/13/2022]
Abstract
Changes in biotic and abiotic factors can be reflected in the complex impedance spectrum of the microelectrodes chronically implanted into the neural tissue. The recording surface of the tungsten electrode in vivo undergoes abiotic changes due to recording site corrosion and insulation delamination as well as biotic changes due to tissue encapsulation as a result of the foreign body immune response. We reported earlier that large changes in electrode impedance measured at 1 kHz were correlated with poor electrode functional performance, quantified through electrophysiological recordings during the chronic lifetime of the electrode. There is a need to identity the factors that contribute to the chronic impedance variation. In this work, we use numerical simulation and regression to equivalent circuit models to evaluate both the abiotic and biotic contributions to the impedance response over chronic implant duration. COMSOL® simulation of abiotic electrode morphology changes provide a possible explanation for the decrease in the electrode impedance at long implant duration while biotic changes play an important role in the large increase in impedance observed initially.
Collapse
Affiliation(s)
- Viswanath Sankar
- Electrical and Computer Engineering Department, University of Florida Gainesville, FL, USA
| | - Erin Patrick
- Electrical and Computer Engineering Department, University of Florida Gainesville, FL, USA
| | - Robert Dieme
- Electrical and Computer Engineering Department, University of Florida Gainesville, FL, USA
| | - Justin C Sanchez
- Biomedical Engineering Department, University of Miami Coral Gables, FL, USA
| | - Abhishek Prasad
- Biomedical Engineering Department, University of Miami Coral Gables, FL, USA
| | - Toshikazu Nishida
- Electrical and Computer Engineering Department, University of Florida Gainesville, FL, USA
| |
Collapse
|
174
|
Kou Z, VandeVord PJ. Traumatic white matter injury and glial activation: from basic science to clinics. Glia 2014; 62:1831-55. [PMID: 24807544 DOI: 10.1002/glia.22690] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/27/2014] [Accepted: 04/23/2014] [Indexed: 12/15/2022]
Abstract
An improved understanding and characterization of glial activation and its relationship with white matter injury will likely serve as a novel treatment target to curb post injury inflammation and promote axonal remyelination after brain trauma. Traumatic brain injury (TBI) is a significant public healthcare burden and a leading cause of death and disability in the United States. Particularly, traumatic white matter (WM) injury or traumatic axonal injury has been reported as being associated with patients' poor outcomes. However, there is very limited data reporting the importance of glial activation after TBI and its interaction with WM injury. This article presents a systematic review of traumatic WM injury and the associated glial activation, from basic science to clinical diagnosis and prognosis, from advanced neuroimaging perspective. It concludes that there is a disconnection between WM injury research and the essential role of glia which serve to restore a healthy environment for axonal regeneration following WM injury. Particularly, there is a significant lack of non-invasive means to characterize the complex pathophysiology of WM injury and glial activation in both animal models and in humans. An improved understanding and characterization of the relationship between glia and WM injury will likely serve as a novel treatment target to curb post injury inflammation and promote axonal remyelination.
Collapse
Affiliation(s)
- Zhifeng Kou
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan; Department of Radiology, Wayne State University, Detroit, Michigan
| | | |
Collapse
|
175
|
Castagnola E, Ansaldo A, Maggiolini E, Ius T, Skrap M, Ricci D, Fadiga L. Smaller, softer, lower-impedance electrodes for human neuroprosthesis: a pragmatic approach. FRONTIERS IN NEUROENGINEERING 2014; 7:8. [PMID: 24795621 PMCID: PMC3997015 DOI: 10.3389/fneng.2014.00008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/29/2014] [Indexed: 12/19/2022]
Abstract
Finding the most appropriate technology for building electrodes to be used for long term implants in humans is a challenging issue. What are the most appropriate technologies? How could one achieve robustness, stability, compatibility, efficacy, and versatility, for both recording and stimulation? There are no easy answers to these questions as even the most fundamental and apparently obvious factors to be taken into account, such as the necessary mechanical, electrical and biological properties, and their interplay, are under debate. We present here our approach along three fundamental parallel pathways: we reduced electrode invasiveness and size without impairing signal-to-noise ratio, we increased electrode active surface area by depositing nanostructured materials, and we protected the brain from direct contact with the electrode without compromising performance. Altogether, these results converge toward high-resolution ECoG arrays that are soft and adaptable to cortical folds, and have been proven to provide high spatial and temporal resolution. This method provides a piece of work which, in our view, makes several steps ahead in bringing such novel devices into clinical settings, opening new avenues in diagnostics of brain diseases, and neuroprosthetic applications.
Collapse
Affiliation(s)
- Elisa Castagnola
- Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Alberto Ansaldo
- Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Emma Maggiolini
- Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Tamara Ius
- Struttura Complessa di Neurochirurgia, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia Udine, Italy
| | - Miran Skrap
- Struttura Complessa di Neurochirurgia, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia Udine, Italy
| | - Davide Ricci
- Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Luciano Fadiga
- Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia Genoa, Italy ; Section of Human Physiology, Department of Biomedical Sciences, University of Ferrara Ferrara, Italy
| |
Collapse
|
176
|
Jeon H, Simon CG, Kim G. A mini-review: Cell response to microscale, nanoscale, and hierarchical patterning of surface structure. J Biomed Mater Res B Appl Biomater 2014; 102:1580-94. [DOI: 10.1002/jbm.b.33158] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/04/2014] [Accepted: 03/13/2014] [Indexed: 12/17/2022]
Affiliation(s)
- HoJun Jeon
- Department of Bio-Mechatronic Engineering; College of Biotechnology and Bioengineering, Sungkyunkwan University; Suwon South Korea
| | - Carl G. Simon
- Biosystems and Biomaterials Division; National Institute of Standards and Technology; Gaithersburg Maryland
| | - GeunHyung Kim
- Department of Bio-Mechatronic Engineering; College of Biotechnology and Bioengineering, Sungkyunkwan University; Suwon South Korea
| |
Collapse
|
177
|
Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1846-85. [PMID: 24677434 PMCID: PMC4373558 DOI: 10.1002/adma.201304496] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/08/2013] [Indexed: 05/18/2023]
Abstract
Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided fi rst, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces.
Collapse
Affiliation(s)
- Pouria Fattahi
- Biomedical Engineering Department and Chemical Engineering Departments, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guang Yang
- Biomedical Engineering Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Gloria Kim
- Biomedical Engineering Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mohammad Reza Abidian
- Biomedical Engineering Department, Materials Science & Engineering Department, Chemical Engineering Department, Materials Research Institute, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
178
|
Birngruber T, Ghosh A, Hochmeister S, Asslaber M, Kroath T, Pieber TR, Sinner F. Long-term implanted cOFM probe causes minimal tissue reaction in the brain. PLoS One 2014; 9:e90221. [PMID: 24621608 PMCID: PMC3951198 DOI: 10.1371/journal.pone.0090221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/27/2014] [Indexed: 02/07/2023] Open
Abstract
This study investigated the histological tissue reaction to long-term implanted cerebral open flow microperfusion (cOFM) probes in the frontal lobe of the rat brain. Most probe-based cerebral fluid sampling techniques are limited in application time due to the formation of a glial scar that hinders substance exchange between brain tissue and the probe. A glial scar not only functions as a diffusion barrier but also alters metabolism and signaling in extracellular brain fluid. cOFM is a recently developed probe-based technique to continuously sample extracellular brain fluid with an intact blood-brain barrier. After probe implantation, a 2 week healing period is needed for blood-brain barrier reestablishment. Therefore, cOFM probes need to stay in place and functional for at least 15 days after implantation to ensure functionality. Probe design and probe materials are optimized to evoke minimal tissue reaction even after a long implantation period. Qualitative and quantitative histological tissue analysis revealed no continuous glial scar formation around the cOFM probe 30 days after implantation and only a minor tissue reaction regardless of perfusion of the probe.
Collapse
Affiliation(s)
- Thomas Birngruber
- HEALTH – Institute of Biomedicine and Health Sciences, JOANNEUM RESEARCH, Graz, Austria
| | - Arijit Ghosh
- Division of Endocrinology and Metabolism, Medical University of Graz, Graz, Austria
| | - Sonja Hochmeister
- Division of General Neurology, Medical University of Graz, Graz, Austria
| | - Martin Asslaber
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Thomas Kroath
- HEALTH – Institute of Biomedicine and Health Sciences, JOANNEUM RESEARCH, Graz, Austria
| | - Thomas R. Pieber
- HEALTH – Institute of Biomedicine and Health Sciences, JOANNEUM RESEARCH, Graz, Austria
- Division of Endocrinology and Metabolism, Medical University of Graz, Graz, Austria
| | - Frank Sinner
- HEALTH – Institute of Biomedicine and Health Sciences, JOANNEUM RESEARCH, Graz, Austria
- Division of Endocrinology and Metabolism, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
179
|
Ouyang L, Shaw CL, Kuo CC, Griffin AL, Martin DC. In vivo polymerization of poly(3,4-ethylenedioxythiophene) in the living rat hippocampus does not cause a significant loss of performance in a delayed alternation task. J Neural Eng 2014; 11:026005. [PMID: 24503720 DOI: 10.1088/1741-2560/11/2/026005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
After extended implantation times, traditional intracortical neural probes exhibit a foreign-body reaction characterized by a reactive glial sheath that has been associated with increased system impedance and signal deterioration. Previously, we have proposed that the local in vivo polymerization of an electronically and ionically conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), might help to rebuild charge transport pathways across the glial scar between the device and surrounding parenchyma (Richardson-Burns et al 2007 J. Neural Eng. 4 L6-13). The EDOT monomer can be delivered via a microcannula/electrode system into the brain tissue of living animals followed by direct electrochemical polymerization, using the electrode itself as a source of oxidative current. In this study, we investigated the long-term effect of local in vivo PEDOT deposition on hippocampal neural function and histology. Rodent subjects were trained on a hippocampus-dependent task, delayed alternation (DA), and implanted with the microcannula/electrode system in the hippocampus. The animals were divided into four groups with different delay times between the initial surgery and the electrochemical polymerization: (1) control (no polymerization), (2) immediate (polymerization within 5 min of device implantation), (3) early (polymerization within 3-4 weeks after implantation) and (4) late (polymerization 7-8 weeks after polymerization). System impedance at 1 kHz was recorded and the tissue reactions were evaluated by immunohistochemistry. We found that under our deposition conditions, PEDOT typically grew at the tip of the electrode, forming an ∼500 µm cloud in the tissue. This is much larger than the typical width of the glial scar (∼150 µm). After polymerization, the impedance amplitude near the neurologically important frequency of 1 kHz dropped for all the groups; however, there was a time window of 3-4 weeks for an optimal decrease in impedance. For all surgery-polymerization time intervals, the polymerization did not cause significant deficits in performance of the DA task, suggesting that hippocampal function was not impaired by PEDOT deposition. However, GFAP+ and ED-1+ cells were also found at the deposition two weeks after the polymerization, suggesting potential secondary scarring. Therefore, less extensive deposition or milder deposition conditions may be desirable to minimize this scarring while maintaining decreased system impedance.
Collapse
Affiliation(s)
- Liangqi Ouyang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
180
|
Prasad A, Xue QS, Dieme R, Sankar V, Mayrand RC, Nishida T, Streit WJ, Sanchez JC. Abiotic-biotic characterization of Pt/Ir microelectrode arrays in chronic implants. FRONTIERS IN NEUROENGINEERING 2014; 7:2. [PMID: 24550823 PMCID: PMC3912984 DOI: 10.3389/fneng.2014.00002] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/14/2014] [Indexed: 11/13/2022]
Abstract
Pt/Ir electrodes have been extensively used in neurophysiology research in recent years as they provide a more inert recording surface as compared to tungsten or stainless steel. While floating microelectrode arrays (FMA) consisting of Pt/Ir electrodes are an option for neuroprosthetic applications, long-term in vivo functional performance characterization of these FMAs is lacking. In this study, we have performed comprehensive abiotic-biotic characterization of Pt/Ir arrays in 12 rats with implant periods ranging from 1 week up to 6 months. Each of the FMAs consisted of 16-channel, 1.5 mm long, and 75 μm diameter microwires with tapered tips that were implanted into the somatosensory cortex. Abiotic characterization included (1) pre-implant and post-explant scanning electron microscopy (SEM) to study recording site changes, insulation delamination and cracking, and (2) chronic in vivo electrode impedance spectroscopy. Biotic characterization included study of microglial responses using a panel of antibodies, such as Iba1, ED1, and anti-ferritin, the latter being indicative of blood-brain barrier (BBB) disruption. Significant structural variation was observed pre-implantation among the arrays in the form of irregular insulation, cracks in insulation/recording surface, and insulation delamination. We observed delamination and cracking of insulation in almost all electrodes post-implantation. These changes altered the electrochemical surface area of the electrodes and resulted in declining impedance over the long-term due to formation of electrical leakage pathways. In general, the decline in impedance corresponded with poor electrode functional performance, which was quantified via electrode yield. Our abiotic results suggest that manufacturing variability and insulation material as an important factor contributing to electrode failure. Biotic results show that electrode performance was not correlated with microglial activation (neuroinflammation) as we were able to observe poor performance in the absence of neuroinflammation, as well as good performance in the presence of neuroinflammation. One biotic change that correlated well with poor electrode performance was intraparenchymal bleeding, which was evident macroscopically in some rats and presented microscopically by intense ferritin immunoreactivity in microglia/macrophages. Thus, we currently consider intraparenchymal bleeding, suboptimal electrode fabrication, and insulation delamination as the major factors contributing toward electrode failure.
Collapse
Affiliation(s)
- Abhishek Prasad
- Department of Biomedical Engineering, University of Miami Coral Gables, FL, USA
| | - Qing-Shan Xue
- Department of Neuroscience, University of Florida Gainesville, FL, USA
| | - Robert Dieme
- Department of Electrical and Computer Engineering, University of Florida Gainesville, FL, USA
| | - Viswanath Sankar
- Department of Electrical and Computer Engineering, University of Florida Gainesville, FL, USA
| | - Roxanne C Mayrand
- Department of Neuroscience, University of Miami Coral Gables, FL, USA
| | - Toshikazu Nishida
- Department of Electrical and Computer Engineering, University of Florida Gainesville, FL, USA
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida Gainesville, FL, USA
| | - Justin C Sanchez
- Department of Biomedical Engineering, University of Miami Coral Gables, FL, USA ; Department of Neuroscience, University of Miami Coral Gables, FL, USA ; Miami Project to Cure Paralysis, University of Miami Miami, FL, USA
| |
Collapse
|
181
|
Pohlmeyer EA, Mahmoudi B, Geng S, Prins NW, Sanchez JC. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization. PLoS One 2014; 9:e87253. [PMID: 24498055 PMCID: PMC3907465 DOI: 10.1371/journal.pone.0087253] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/25/2013] [Indexed: 12/13/2022] Open
Abstract
Brain-machine interface (BMI) systems give users direct neural control of robotic, communication, or functional electrical stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable control for long periods of time, and can be responsive to fluctuations in the decoder’s neural input space (e.g. neurons appearing or being lost amongst electrode recordings). These are significant challenges for static neural decoding algorithms that assume stationary input/output relationships. Here we use an actor-critic reinforcement learning architecture to provide an adaptive BMI controller that can successfully adapt to dramatic neural reorganizations, can maintain its performance over long time periods, and which does not require the user to produce specific kinetic or kinematic activities to calibrate the BMI. Two marmoset monkeys used the Reinforcement Learning BMI (RLBMI) to successfully control a robotic arm during a two-target reaching task. The RLBMI was initialized using random initial conditions, and it quickly learned to control the robot from brain states using only a binary evaluative feedback regarding whether previously chosen robot actions were good or bad. The RLBMI was able to maintain control over the system throughout sessions spanning multiple weeks. Furthermore, the RLBMI was able to quickly adapt and maintain control of the robot despite dramatic perturbations to the neural inputs, including a series of tests in which the neuron input space was deliberately halved or doubled.
Collapse
Affiliation(s)
- Eric A Pohlmeyer
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, United States of America
| | - Babak Mahmoudi
- Department of Neurosurgery, Emory University, Atlanta, Georgia, United States of America
| | - Shijia Geng
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, United States of America
| | - Noeline W Prins
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, United States of America
| | - Justin C Sanchez
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, United States of America ; Department of Neuroscience, University of Miami, Miami, Florida, United States of America ; Miami Project to Cure Paralysis, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
182
|
Jennings JH, Stuber GD. Tools for resolving functional activity and connectivity within intact neural circuits. Curr Biol 2014; 24:R41-R50. [PMID: 24405680 PMCID: PMC4075962 DOI: 10.1016/j.cub.2013.11.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mammalian neural circuits are sophisticated biological systems that choreograph behavioral processes vital for survival. While the inherent complexity of discrete neural circuits has proven difficult to decipher, many parallel methodological developments promise to help delineate the function and connectivity of molecularly defined neural circuits. Here, we review recent technological advances designed to precisely monitor and manipulate neural circuit activity. We propose a holistic, multifaceted approach for unraveling how behavioral states are manifested through the cooperative interactions between discrete neurocircuit elements.
Collapse
Affiliation(s)
- Joshua H Jennings
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
| | - Garret D Stuber
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
183
|
Groothuis J, Ramsey NF, Ramakers GM, van der Plasse G. Physiological Challenges for Intracortical Electrodes. Brain Stimul 2014; 7:1-6. [DOI: 10.1016/j.brs.2013.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 02/08/2023] Open
|
184
|
McGie SC, Nagai MK, Artinian-Shaheen T. Clinical ethical concerns in the implantation of brain-machine interfaces. IEEE Pulse 2013; 4:32-7. [PMID: 23558502 DOI: 10.1109/mpul.2013.2242014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Steven C McGie
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada.
| | | | | |
Collapse
|
185
|
Barrese JC, Rao N, Paroo K, Triebwasser C, Vargas-Irwin C, Franquemont L, Donoghue JP. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J Neural Eng 2013; 10:066014. [PMID: 24216311 DOI: 10.1088/1741-2560/10/6/066014] [Citation(s) in RCA: 386] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Brain-computer interfaces (BCIs) using chronically implanted intracortical microelectrode arrays (MEAs) have the potential to restore lost function to people with disabilities if they work reliably for years. Current sensors fail to provide reliably useful signals over extended periods of time for reasons that are not clear. This study reports a comprehensive retrospective analysis from a large set of implants of a single type of intracortical MEA in a single species, with a common set of measures in order to evaluate failure modes. APPROACH Since 1996, 78 silicon MEAs were implanted in 27 monkeys (Macaca mulatta). We used two approaches to find reasons for sensor failure. First, we classified the time course leading up to complete recording failure as acute (abrupt) or chronic (progressive). Second, we evaluated the quality of electrode recordings over time based on signal features and electrode impedance. Failure modes were divided into four categories: biological, material, mechanical, and unknown. MAIN RESULTS Recording duration ranged from 0 to 2104 days (5.75 years), with a mean of 387 days and a median of 182 days (n = 78). Sixty-two arrays failed completely with a mean time to failure of 332 days (median = 133 days) while nine array experiments were electively terminated for experimental reasons (mean = 486 days). Seven remained active at the close of this study (mean = 753 days). Most failures (56%) occurred within a year of implantation, with acute mechanical failures the most common class (48%), largely because of connector issues (83%). Among grossly observable biological failures (24%), a progressive meningeal reaction that separated the array from the parenchyma was most prevalent (14.5%). In the absence of acute interruptions, electrode recordings showed a slow progressive decline in spike amplitude, noise amplitude, and number of viable channels that predicts complete signal loss by about eight years. Impedance measurements showed systematic early increases, which did not appear to affect recording quality, followed by a slow decline over years. The combination of slowly falling impedance and signal quality in these arrays indicates that insulating material failure is the most significant factor. SIGNIFICANCE This is the first long-term failure mode analysis of an emerging BCI technology in a large series of non-human primates. The classification system introduced here may be used to standardize how neuroprosthetic failure modes are evaluated. The results demonstrate the potential for these arrays to record for many years, but achieving reliable sensors will require replacing connectors with implantable wireless systems, controlling the meningeal reaction, and improving insulation materials. These results will focus future research in order to create clinical neuroprosthetic sensors, as well as valuable research tools, that are able to safely provide reliable neural signals for over a decade.
Collapse
Affiliation(s)
- James C Barrese
- Department of Neurological Surgery, UMDNJ-New Jersey Medical School, Newark, NJ, USA. Department of Neuroscience and Brown Institute for Brain Science, Brown University, Providence, RI, USA. Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Rehabilitation Research and Development Service, Providence, RI, USA
| | | | | | | | | | | | | |
Collapse
|
186
|
Lind G, Linsmeier CE, Schouenborg J. The density difference between tissue and neural probes is a key factor for glial scarring. Sci Rep 2013; 3:2942. [PMID: 24127004 PMCID: PMC3796741 DOI: 10.1038/srep02942] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/27/2013] [Indexed: 12/21/2022] Open
Abstract
A key to successful chronic neural interfacing is to achieve minimal glial scarring surrounding the implants, as the astrocytes and microglia may functionally insulate the interface. A possible explanation for the development of these reactions is mechanical forces arising between the implants and the brain. Here, we show that the difference between the density of neural probes and that of the tissue, and the resulting inertial forces, are key factors for the development of the glial scar. Two probes of similar size, shape, surface structure and elastic modulus but differing greatly in density were implanted into the rat brain. After six weeks, significantly lower astrocytic and microglial reactions were found surrounding the low-density probes, approaching no reaction at all. This provides a major key to design fully biocompatible neural interfaces and a new platform for in vivo assays of tissue reactions to probes with differing materials, surface structures, and shapes.
Collapse
Affiliation(s)
- Gustav Lind
- Neuronano Research Center, Department of Experimental Medical Sciences, Medical Faculty, Lund University
| | | | | |
Collapse
|
187
|
Carbon nanomaterials for nerve tissue stimulation and regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 34:35-49. [PMID: 24268231 DOI: 10.1016/j.msec.2013.09.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/11/2013] [Accepted: 09/28/2013] [Indexed: 01/25/2023]
Abstract
Nanotechnology offers new perspectives in the field of innovative medicine, especially for reparation and regeneration of irreversibly damaged or diseased nerve tissues due to lack of effective self-repair mechanisms in the peripheral and central nervous systems (PNS and CNS, respectively) of the human body. Carbon nanomaterials, due to their unique physical, chemical and biological properties, are currently considered as promising candidates for applications in regenerative medicine. This chapter discusses the potential applications of various carbon nanomaterials including carbon nanotubes, nanofibers and graphene for regeneration and stimulation of nerve tissue, as well as in drug delivery systems for nerve disease therapy.
Collapse
|
188
|
Abstract
Development of neural prostheses over the past few decades has produced a number of clinically relevant brain-machine interfaces (BMIs), such as the cochlear prostheses and deep brain stimulators. Current research pursues the restoration of communication or motor function to individuals with neurological disorders. Efforts in the field, such as the BrainGate trials, have already demonstrated that such interfaces can enable humans to effectively control external devices with neural signals. However, a number of significant issues regarding BMI performance, device capabilities, and surgery must be resolved before clinical use of BMI technology can become widespread. This chapter reviews challenges to clinical translation and discusses potential solutions that have been reported in recent literature, with focuses on hardware reliability, state-of-the-art decoding algorithms, and surgical considerations during implantation.
Collapse
|
189
|
Sillay KA, Rutecki P, Cicora K, Worrell G, Drazkowski J, Shih JJ, Sharan AD, Morrell MJ, Williams J, Wingeier B. Long-Term Measurement of Impedance in Chronically Implanted Depth and Subdural Electrodes During Responsive Neurostimulation in Humans. Brain Stimul 2013; 6:718-26. [DOI: 10.1016/j.brs.2013.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/07/2013] [Accepted: 02/20/2013] [Indexed: 01/22/2023] Open
|
190
|
Richter A, Xie Y, Schumacher A, Löffler S, Kirch RD, Al-Hasani J, Rapoport DH, Kruse C, Moser A, Tronnier V, Danner S, Hofmann UG. A simple implantation method for flexible, multisite microelectrodes into rat brains. FRONTIERS IN NEUROENGINEERING 2013; 6:6. [PMID: 23898266 PMCID: PMC3721086 DOI: 10.3389/fneng.2013.00006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/02/2013] [Indexed: 11/18/2022]
Abstract
A long term functional and reliable coupling between neural tissue and implanted microelectrodes is the key issue in acquiring neural electrophysiological signals or therapeutically excite neural tissue. The currently often used rigid micro-electrodes are thought to cause a severe foreign body reaction resulting in a thick glial scar and consequently a poor tissue-electrode coupling in the chronic phase. We hypothesize, that this adverse effect might be remedied by probes compliant to the soft brain tissue, i.e., replacing rigid electrodes by flexible ones. Unfortunately, this flexibility comes at the price of a low stiffness, which makes targeted low trauma implantation very challenging. In this study, we demonstrate an adaptable and simple method to implant extremely flexible microprobes even to deep areas of rat's brain. Implantation of flexible probes is achieved by rod supported stereotactic insertion fostered by a hydrogel (2% agarose in PBS) cushion on the exposed skull. We were thus able to implant very flexible micro-probes in 70 rats as deep as the rodent's subthalamic nucleus. This work describes in detail the procedures and steps needed for minimal invasive, but reliable implantation of flexible probes.
Collapse
Affiliation(s)
- Anja Richter
- Neurochemistry Group, Department of Neurology, University of Luebeck Luebeck, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Wang C, Brunton E, Haghgooie S, Cassells K, Lowery A, Rajan R. Characteristics of electrode impedance and stimulation efficacy of a chronic cortical implant using novel annulus electrodes in rat motor cortex. J Neural Eng 2013; 10:046010. [PMID: 23819958 DOI: 10.1088/1741-2560/10/4/046010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Cortical neural prostheses with implanted electrode arrays have been used to restore compromised brain functions but concerns remain regarding their long-term stability and functional performance. APPROACH Here we report changes in electrode impedance and stimulation thresholds for a custom-designed electrode array implanted in rat motor cortex for up to three months. MAIN RESULTS The array comprises four 2000 µm long electrodes with a large annular stimulating surface (7860-15700 µm(2)) displaced from the penetrating insulated tip. Compared to pre-implantation in vitro values there were three phases of impedance change: (1) an immediate large increase of impedance by an average of two-fold on implantation; (2) a period of continued impedance increase, albeit with considerable variability, which reached a peak at approximately four weeks post-implantation and remained high over the next two weeks; (3) finally, a period of 5-6 weeks when impedance stabilized at levels close to those seen immediately post-implantation. Impedance could often be temporarily decreased by applying brief trains of current stimulation, used to evoke motor output. The stimulation threshold to induce observable motor behaviour was generally between 75-100 µA, with charge density varying from 48-128 µC cm(-2), consistent with the lower current density generated by electrodes with larger stimulating surface area. No systematic change in thresholds occurred over time, suggesting that device functionality was not compromised by the factors that caused changes in electrode impedance. SIGNIFICANCE The present results provide support for the use of annulus electrodes in future applications in cortical neural prostheses.
Collapse
Affiliation(s)
- Chun Wang
- Monash Vision Group and Department of Physiology, Monash University, Clayton, VIC 3168, Australia.
| | | | | | | | | | | |
Collapse
|
192
|
Ereifej ES, Cheng MMC, Mao G, VandeVord PJ. Examining the inflammatory response to nanopatterned polydimethylsiloxane using organotypic brain slice methods. J Neurosci Methods 2013; 217:17-25. [DOI: 10.1016/j.jneumeth.2013.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 12/18/2022]
|
193
|
Gutowski SM, Templeman KL, South AB, Gaulding JC, Shoemaker JT, LaPlaca MC, Bellamkonda RV, Lyon LA, García AJ. Host response to microgel coatings on neural electrodes implanted in the brain. J Biomed Mater Res A 2013; 102:1486-99. [PMID: 23666919 DOI: 10.1002/jbm.a.34799] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/15/2013] [Accepted: 05/03/2013] [Indexed: 11/10/2022]
Abstract
The performance of neural electrodes implanted in the brain is often limited by host response in the surrounding brain tissue, including astrocytic scar formation, neuronal cell death, and inflammation around the implant. We applied conformal microgel coatings to silicon neural electrodes and examined host responses to microgel-coated and uncoated electrodes following implantation in the rat brain. In vitro analyses demonstrated significantly reduced astrocyte and microglia adhesion to microgel-coated electrodes compared to uncoated controls. Microgel-coated and uncoated electrodes were implanted in the rat brain cortex and the extent of activated microglia and astrocytes as well as neuron density around the implant were evaluated at 1, 4, and 24 weeks postimplantation. Microgel coatings reduced astrocytic recruitment around the implant at later time points. However, microglial response indicated persistence of inflammation in the area around the electrode. Neuronal density around the implanted electrodes was also lower for both implant groups compared to the uninjured control. These results demonstrate that microgel coatings do not significantly improve host responses to implanted neural electrodes and underscore the need for further improvements in implantable materials.
Collapse
Affiliation(s)
- Stacie M Gutowski
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30332-0363; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332-0363
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Kim BJ, Kuo JTW, Hara SA, Lee CD, Yu L, Gutierrez CA, Hoang TQ, Pikov V, Meng E. 3D Parylene sheath neural probe for chronic recordings. J Neural Eng 2013; 10:045002. [DOI: 10.1088/1741-2560/10/4/045002] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
195
|
Voigts J, Siegle JH, Pritchett DL, Moore CI. The flexDrive: an ultra-light implant for optical control and highly parallel chronic recording of neuronal ensembles in freely moving mice. Front Syst Neurosci 2013; 7:8. [PMID: 23717267 PMCID: PMC3652307 DOI: 10.3389/fnsys.2013.00008] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/25/2013] [Indexed: 11/13/2022] Open
Abstract
Electrophysiological recordings from ensembles of neurons in behaving mice are a central tool in the study of neural circuits. Despite the widespread use of chronic electrophysiology, the precise positioning of recording electrodes required for high-quality recordings remains a challenge, especially in behaving mice. The complexity of available drive mechanisms, combined with restrictions on implant weight tolerated by mice, limits current methods to recordings from no more than 4-8 electrodes in a single target area. We developed a highly miniaturized yet simple drive design that can be used to independently position 16 electrodes with up to 64 channels in a package that weighs ~2 g. This advance over current designs is achieved by a novel spring-based drive mechanism that reduces implant weight and complexity. The device is easy to build and accommodates arbitrary spatial arrangements of electrodes. Multiple optical fibers can be integrated into the recording array and independently manipulated in depth. Thus, our novel design enables precise optogenetic control and highly parallel chronic recordings of identified single neurons throughout neural circuits in mice.
Collapse
Affiliation(s)
- Jakob Voigts
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA ; Department of Neuroscience, Brown University Providence, RI, USA
| | | | | | | |
Collapse
|
196
|
Zhou H, Cheng X, Rao L, Li T, Duan YY. Poly(3,4-ethylenedioxythiophene)/multiwall carbon nanotube composite coatings for improving the stability of microelectrodes in neural prostheses applications. Acta Biomater 2013; 9:6439-49. [PMID: 23402765 DOI: 10.1016/j.actbio.2013.01.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/26/2013] [Accepted: 01/31/2013] [Indexed: 02/02/2023]
Abstract
With the purpose of improving the stability of microelectrodes under continuous high charge density stimulation, which is required for neural prostheses applications such as visual prostheses, multiwall carbon nanotube (MWCNT)-doped poly(3,4-ethylenedioxythiophene) (PEDOT) composite films were coated onto a platinum microelectrode by electrochemical polymerization. Galvanostatically polymerized PEDOT/MWCNT films demonstrated superior characteristics compared to polystyrene sulfonate doping and potentiostatic polymerization, including a three-dimensional cone morphology and enhanced electrochemical performance (the safe charge injection limit reached 6.2 mC cm(-2) for cathodic-first pulses). Most important of all, the improved stability of the coatings has been revealed through stimulation for 96 h using 3.0 mCc m(-2) current pulses in bicarbonate- and phosphate-buffered saline solution. Cell assays revealed that PEDOT/MWCNT films could promote the adhesion and neurite outgrowth of rat pheochromocytoma cells. Finally, platinum wires coated with PEDOT/MWCNT films were implanted into rat cortex for 6 weeks for histological evaluation. Glial fibrillary acidic protein and neuronal nuclei staining revealed that the films elicit a lower tissue response compared to platinum implants. These results suggest that the galvanostatically polymerized PEDOT/MWCNT films can improve the stability of stimulation microelectrodes and that PEDOT/MWCNT is an excellent candidate material for electrode coating for neural prostheses applications.
Collapse
|
197
|
Ultrasonic alignment of bio-functionalized magnetic beads and live cells in PDMS micro-fluidic channel. Biomed Microdevices 2013; 14:1077-84. [PMID: 22983792 DOI: 10.1007/s10544-012-9703-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this work, we demonstrated the alignment of polystyrene latex microspheres (diameter of 1 ~45 μm), bio-functionalized superparamagnetic beads (diameter 2.8 μm), and live cells (average diameter 1 ~2 μm) using an ultrasonic standing wave (USW) in a PDMS microfluidic channel (330 μm width) attached on a Si substrate for bio-medical applications. To generate a standing wave inside the channel, ultrasound of 2.25 MHz resonance frequency (for the channel width) was applied by two ultrasound transducers installed at both sides of the channel which caused the radiation force to concentrate the micro-particles at the single pressure nodal plane of USW. By increasing the frequency to the next resonance condition of the channel, the particles were concentrated in dual nodal planes. Migration time of the micro-particles towards the single nodal plane was recorded as 108 s, 17 s, and 115 s for polystyrene particles of 2 μm diameter, bio-functionalized magnetic beads, and live cells, respectively. These successful alignments of the bio-functionalized magnetic beads along the desired part of the channel can enhance the performance of a sensor which is applicable for the bio-hybrid system and the alignment of live cells without any damage can be used for sample pre-treatment for the application of lab-on-a-chip type bioassays.
Collapse
|
198
|
Alivisatos AP, Andrews AM, Boyden ES, Chun M, Church GM, Deisseroth K, Donoghue JP, Fraser SE, Lippincott-Schwartz J, Looger LL, Masmanidis S, McEuen PL, Nurmikko AV, Park H, Peterka DS, Reid C, Roukes ML, Scherer A, Schnitzer M, Sejnowski TJ, Shepard KL, Tsao D, Turrigiano G, Weiss PS, Xu C, Yuste R, Zhuang X. Nanotools for neuroscience and brain activity mapping. ACS NANO 2013; 7:1850-66. [PMID: 23514423 PMCID: PMC3665747 DOI: 10.1021/nn4012847] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function.
Collapse
Affiliation(s)
- A. Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, and Lawrence Berkeley Laboratory, Berkeley, California 94720-1460
| | - Anne M. Andrews
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095
- Department of Psychiatry, and Semel Institute for Neuroscience & Human Behavior, Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095
| | - Edward S. Boyden
- Media Laboratory, Department of Biological Engineering, Brain and Cognitive Sciences, and McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, Wyss Institute for Biologically Inspired Engineering and Biophysics Program, Harvard University, Boston, Massachusetts 02115
| | - Karl Deisseroth
- Howard Hughes Medical Institute, Stanford University, Stanford California 94305
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford California 94305
| | - John P. Donoghue
- Department of Neuroscience, Division of Engineering, Department of Computer Science, Brown University, Providence, Rhode Island 02912
| | - Scott E. Fraser
- Departments of Biological Sciences, Biomedical Engineering, Physiology and Biophysics, Stem Cell Biology and Regenerative Medicine, and Pediatrics, Radiology and Ophthalmology, University of Southern California, Los Angeles, California 90089
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Loren L. Looger
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Sotiris Masmanidis
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095
- Department of Neurobiology, University of California, Los Angeles, California 90095
- Address correspondence to , , ,
| | - Paul L. McEuen
- Department of Physics, Laboratory of Atomic and Solid State Physics, and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853
| | - Arto V. Nurmikko
- Department of Physics and Division of Engineering, Brown University, Providence, Rhode Island 02912
| | - Hongkun Park
- Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, Massachusetts 02138
| | - Darcy S. Peterka
- Howard Hughes Medical Institute and Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Clay Reid
- Allen Institute for Brain Science, Seattle, Washington 98103
| | - Michael L. Roukes
- Kavli Nanoscience Institute, California Institute of Technology, MC 149-33, Pasadena, California 91125
- Departments of Physics, Applied Physics, and Bioengineering, California Institute of Technology, MC 149-33, Pasadena, California 91125
| | - Axel Scherer
- Kavli Nanoscience Institute, California Institute of Technology, MC 149-33, Pasadena, California 91125
- Departments of Electrical Engineering, Applied Physics, and Physics, California Institute of Technology, MC 149-33, Pasadena, California 91125
- Address correspondence to , , ,
| | - Mark Schnitzer
- Howard Hughes Medical Institute, Stanford University, Stanford California 94305
- Departments of Applied Physics and Biology, James H. Clark Center, Stanford University, Stanford, California 94305
| | - Terrence J. Sejnowski
- Howard Hughes Medical Institute, Computational Neurobiology Laboratory, Salk Institute, La Jolla, California 92037, and Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, New York, New York 10027
| | - Doris Tsao
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Gina Turrigiano
- Department of Biology and Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02254
| | - Paul S. Weiss
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095
- Department of Chemistry & Biochemistry, Department of Materials Science & Engineering, University of California, Los Angeles, California 90095
- Address correspondence to , , ,
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853
| | - Rafael Yuste
- Howard Hughes Medical Institute and Department of Biological Sciences, Columbia University, New York, New York 10027
- Kavli Institute for Brain Science, Columbia University, New York, New York 10027
- Address correspondence to , , ,
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Departments of Chemistry and Chemical Biology and Physics, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
199
|
Markwardt NT, Stokol J, Rennaker RL. Sub-meninges implantation reduces immune response to neural implants. J Neurosci Methods 2013; 214:119-25. [PMID: 23370311 DOI: 10.1016/j.jneumeth.2013.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
Abstract
Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability.
Collapse
Affiliation(s)
- Neil T Markwardt
- The University of Oklahoma, College of Engineering, Bioengineering Center, 202 W. Boyd St., Carson Eng. Ctr. Rm 107, Norman, OK 73019, United States.
| | | | | |
Collapse
|
200
|
Hascup ER, Hascup KN, Talauliker PM, Price DA, Pomerleau F, Quintero JE, Huettl P, Gratton A, Strömberg I, Gerhardt GA. Sub-Second Measurements of Glutamate and Other Neurotransmitter Signaling Using Enzyme-Based Ceramic Microelectrode Arrays. NEUROMETHODS 2013. [DOI: 10.1007/978-1-62703-370-1_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|