151
|
Gonzalez-Munoz AL, Minter RR, Rust SJ. Phenotypic screening: the future of antibody discovery. Drug Discov Today 2015; 21:150-156. [PMID: 26440132 DOI: 10.1016/j.drudis.2015.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
Abstract
Most antibody therapeutics have been isolated from high throughput target-based screening. However, as the number of validated targets diminishes and the target space becomes increasingly competitive, alternative strategies, such as phenotypic screening, are gaining momentum. Here, we review successful phenotypic screens, including those used to isolate antibodies against cancer and infectious agents. We also consider exciting advances in the expression and phenotypic screening of antibody repertoires in single cell autocrine systems. As technologies continue to develop, we believe that antibody phenotypic screening will increase further in popularity and has the potential to provide the next generation of therapeutic antibodies.
Collapse
Affiliation(s)
- Andrea L Gonzalez-Munoz
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Ralph R Minter
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK
| | - Steven J Rust
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, UK.
| |
Collapse
|
152
|
Ferrara F, Kim CY, Naranjo LA, Bradbury ARM. Large scale production of phage antibody libraries using a bioreactor. MAbs 2015; 7:26-31. [PMID: 25524379 DOI: 10.4161/19420862.2015.989034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
One of the limitations of the use of phage antibody libraries in high throughput selections is the production of sufficient phage antibody library at the appropriate quality. Here, we successfully adapt a bioreactor-based protocol for the production of phage peptide libraries to the production of phage antibody libraries. The titers obtained in the stirred-tank bioreactor are 4 to 5 times higher than in a standard shake flask procedure, and the quality of the phage antibody library produced is indistinguishable to that produced using standard procedures as assessed by Western blotting and functional selections. Availability of this protocol will facilitate the use of phage antibody libraries in high-throughput scale selections.
Collapse
|
153
|
Woldring DR, Holec PV, Zhou H, Hackel BJ. High-Throughput Ligand Discovery Reveals a Sitewise Gradient of Diversity in Broadly Evolved Hydrophilic Fibronectin Domains. PLoS One 2015; 10:e0138956. [PMID: 26383268 PMCID: PMC4575168 DOI: 10.1371/journal.pone.0138956] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/04/2015] [Indexed: 12/25/2022] Open
Abstract
Discovering new binding function via a combinatorial library in small protein scaffolds requires balance between appropriate mutations to introduce favorable intermolecular interactions while maintaining intramolecular integrity. Sitewise constraints exist in a non-spatial gradient from diverse to conserved in evolved antibody repertoires; yet non-antibody scaffolds generally do not implement this strategy in combinatorial libraries. Despite the fact that biased amino acid distributions, typically elevated in tyrosine, serine, and glycine, have gained wider use in synthetic scaffolds, these distributions are still predominantly applied uniformly to diversified sites. While select sites in fibronectin domains and DARPins have shown benefit from sitewise designs, they have not been deeply evaluated. Inspired by this disparity between diversity distributions in natural libraries and synthetic scaffold libraries, we hypothesized that binders resulting from discovery and evolution would exhibit a non-spatial, sitewise gradient of amino acid diversity. To identify sitewise diversities consistent with efficient evolution in the context of a hydrophilic fibronectin domain, >105 binders to six targets were evolved and sequenced. Evolutionarily favorable amino acid distributions at 25 sites reveal Shannon entropies (range: 0.3-3.9; median: 2.1; standard deviation: 1.1) supporting the diversity gradient hypothesis. Sitewise constraints in evolved sequences are consistent with complementarity, stability, and consensus biases. Implementation of sitewise constrained diversity enables direct selection of nanomolar affinity binders validating an efficient strategy to balance inter- and intra-molecular interaction demands at each site.
Collapse
Affiliation(s)
- Daniel R. Woldring
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| | - Patrick V. Holec
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| | - Hong Zhou
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
154
|
Popova B, Schubert S, Bulla I, Buchwald D, Kramer W. A Robust and Versatile Method of Combinatorial Chemical Synthesis of Gene Libraries via Hierarchical Assembly of Partially Randomized Modules. PLoS One 2015; 10:e0136778. [PMID: 26355961 PMCID: PMC4565649 DOI: 10.1371/journal.pone.0136778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/08/2015] [Indexed: 11/19/2022] Open
Abstract
A major challenge in gene library generation is to guarantee a large functional size and diversity that significantly increases the chances of selecting different functional protein variants. The use of trinucleotides mixtures for controlled randomization results in superior library diversity and offers the ability to specify the type and distribution of the amino acids at each position. Here we describe the generation of a high diversity gene library using tHisF of the hyperthermophile Thermotoga maritima as a scaffold. Combining various rational criteria with contingency, we targeted 26 selected codons of the thisF gene sequence for randomization at a controlled level. We have developed a novel method of creating full-length gene libraries by combinatorial assembly of smaller sub-libraries. Full-length libraries of high diversity can easily be assembled on demand from smaller and much less diverse sub-libraries, which circumvent the notoriously troublesome long-term archivation and repeated proliferation of high diversity ensembles of phages or plasmids. We developed a generally applicable software tool for sequence analysis of mutated gene sequences that provides efficient assistance for analysis of library diversity. Finally, practical utility of the library was demonstrated in principle by assessment of the conformational stability of library members and isolating protein variants with HisF activity from it. Our approach integrates a number of features of nucleic acids synthetic chemistry, biochemistry and molecular genetics to a coherent, flexible and robust method of combinatorial gene synthesis.
Collapse
Affiliation(s)
- Blagovesta Popova
- Department Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- Department Molecular Genetics and Preparative Molecular Biology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- * E-mail:
| | - Steffen Schubert
- Department Molecular Genetics and Preparative Molecular Biology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- Department Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
- Information Network of Departments of Dermatology (IVDK), Göttingen, Germany
| | - Ingo Bulla
- Theoretical Biology and Biophysics, Group T-6, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Institute for Mathematics and Informatics, Universität Greifswald, Greifswald, Germany
- Department Bioinformatics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Daniela Buchwald
- Department Bioinformatics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- Neurobiology Laboratory, German Primate Center GmbH, Göttingen, Germany
| | - Wilfried Kramer
- Department Molecular Genetics and Preparative Molecular Biology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- Department Molecular Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
155
|
Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol 2015; 55:489-511. [PMID: 25562645 DOI: 10.1146/annurev-pharmtox-010611-134654] [Citation(s) in RCA: 431] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Designed ankyrin repeat proteins (DARPins) can recognize targets with specificities and affinities that equal or surpass those of antibodies, but because of their robustness and extreme stability, they allow a multitude of more advanced formats and applications. This review highlights recent advances in DARPin design, illustrates their properties, and gives some examples of their use. In research, they have been established as intracellular, real-time sensors of protein conformations and as crystallization chaperones. For future therapies, DARPins have been developed by advanced, structure-based protein engineering to selectively induce apoptosis in tumors by uncoupling surface receptors from their signaling cascades. They have also been used successfully for retargeting viruses. In ongoing clinical trials, DARPins have shown good safety and efficacy in macular degeneration diseases. These developments all ultimately exploit the high stability, solubility, and aggregation resistance of these molecules, permitting a wide range of conjugates and fusions to be produced and purified.
Collapse
Affiliation(s)
- Andreas Plückthun
- Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland;
| |
Collapse
|
156
|
Georgoutsou-Spyridonos M, Ricklin D, Pratsinis H, Perivolioti E, Pirmettis I, Garcia BL, Geisbrecht BV, Foukas PG, Lambris JD, Mastellos DC, Sfyroera G. Attenuation of Staphylococcus aureus-Induced Bacteremia by Human Mini-Antibodies Targeting the Complement Inhibitory Protein Efb. THE JOURNAL OF IMMUNOLOGY 2015; 195:3946-58. [PMID: 26342032 DOI: 10.4049/jimmunol.1500966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/12/2015] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus can cause a broad range of potentially fatal inflammatory complications (e.g., sepsis and endocarditis). Its emerging antibiotic resistance and formidable immune evasion arsenal have emphasized the need for more effective antimicrobial approaches. Complement is an innate immune sensor that rapidly responds to bacterial infection eliciting C3-mediated opsonophagocytic and immunomodulatory responses. Extracellular fibrinogen-binding protein (Efb) is a key immune evasion protein of S. aureus that intercepts complement at the level of C3. To date, Efb has not been explored as a target for mAb-based antimicrobial therapeutics. In this study, we have isolated donor-derived anti-Efb IgGs that attenuate S. aureus survival through enhanced neutrophil killing. A phage library screen yielded mini-Abs that selectively inhibit the interaction of Efb with C3 partly by disrupting contacts essential for complex formation. Surface plasmon resonance-based kinetic analysis enabled the selection of mini-Abs with favorable Efb-binding profiles as therapeutic leads. Mini-Ab-mediated blockade of Efb attenuated S. aureus survival in a whole blood model of bacteremia. This neutralizing effect was associated with enhanced neutrophil-mediated killing of S. aureus, increased C5a release, and modulation of IL-6 secretion. Finally, these mini-Abs afforded protection from S. aureus-induced bacteremia in a murine renal abscess model, attenuating bacterial inflammation in kidneys. Overall, these findings are anticipated to pave the way toward novel Ab-based therapeutics for S. aureus-related diseases.
Collapse
Affiliation(s)
- Maria Georgoutsou-Spyridonos
- Department of Biodiagnostic Sciences and Technologies, I/NRASTES, National Center for Scientific Research "Demokritos," 15310 Athens, Greece
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Haris Pratsinis
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," 15310 Athens, Greece
| | - Eustathia Perivolioti
- Department of Clinical Microbiology, General Hospital "Evangelismos," 10676 Athens, Greece
| | - Ioannis Pirmettis
- Department of Biodiagnostic Sciences and Technologies, I/NRASTES, National Center for Scientific Research "Demokritos," 15310 Athens, Greece
| | - Brandon L Garcia
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506; and
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506; and
| | - Periklis G Foukas
- 2nd Department of Pathology, University of Athens Medical School, Attikon University Hospital, 12462 Chaidari, Greece
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Dimitrios C Mastellos
- Department of Biodiagnostic Sciences and Technologies, I/NRASTES, National Center for Scientific Research "Demokritos," 15310 Athens, Greece
| | - Georgia Sfyroera
- Department of Biodiagnostic Sciences and Technologies, I/NRASTES, National Center for Scientific Research "Demokritos," 15310 Athens, Greece;
| |
Collapse
|
157
|
Chen L, Kutskova YA, Hong F, Memmott JE, Zhong S, Jenkinson MD, Hsieh CM. Preferential germline usage and VH/VL pairing observed in human antibodies selected by mRNA display. Protein Eng Des Sel 2015; 28:427-35. [PMID: 26337062 DOI: 10.1093/protein/gzv042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/31/2015] [Indexed: 11/13/2022] Open
Abstract
Since the invention of phage display, in vitro antibody display technologies have revolutionized the field of antibody discovery. In combination with antibody libraries constructed with sequences of human origin, such technologies enable accelerated therapeutic antibody discovery while bypassing the laborious animal immunization and hybridoma generation processes. Many in vitro display technologies developed since aim to differentiate from phage display by displaying full-length IgG proteins, utilizing eukaryotic translation system and codons, increasing library size or real-time kinetic selection by fluorescent activated cell sorting. We report here the development of an mRNA display technology and an accompanying HCDR3 size spectratyping monitor for human antibody discovery. Importantly, the mRNA display technology maintains a monovalent linkage between the mRNA (genotype) and display binding protein (phenotype), which minimizes avidity effect common in other display systems and allows for a stringent affinity and off-rate selection. The mRNA display technology successfully identified 100 human antibodies in 15 different selections against various targets from naïve human antibody libraries. These antibodies in general have high affinity and diversity. By analyzing the germline usage and combination of antibodies selected by the mRNA display technology, we identified trends and determined the productivity of each germline subgroup in the libraries that could serve as the knowledge base for constructing fully synthetic, next generation antibody libraries.
Collapse
Affiliation(s)
- Lei Chen
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Yuliya A Kutskova
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Feng Hong
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - John E Memmott
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Suju Zhong
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Megan D Jenkinson
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Chung-Ming Hsieh
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| |
Collapse
|
158
|
Jacobs SA, Gibbs AC, Conk M, Yi F, Maguire D, Kane C, O'Neil KT. Fusion to a highly stable consensus albumin binding domain allows for tunable pharmacokinetics. Protein Eng Des Sel 2015; 28:385-93. [PMID: 26275855 DOI: 10.1093/protein/gzv040] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/22/2015] [Indexed: 11/14/2022] Open
Abstract
A number of classes of proteins have been engineered for high stability using consensus sequence design methods. Here we describe the engineering of a novel albumin binding domain (ABD) three-helix bundle protein. The resulting engineered ABD molecule, called ABDCon, is expressed at high levels in the soluble fraction of Escherichia coli and is highly stable, with a melting temperature of 81.5°C. ABDCon binds human, monkey and mouse serum albumins with affinity as high as 61 pM. The solution structure of ABDCon is consistent with the three-helix bundle design and epitope mapping studies enabled a precise definition of the albumin binding interface. Fusion of a 10 kDa scaffold protein to ABDCon results in a long terminal half-life of 60 h in mice and 182 h in cynomolgus monkeys. To explore the link between albumin affinity and in vivo exposure, mutations were designed at the albumin binding interface of ABDCon yielding variants that span an 11 000-fold range in affinity. The PK properties of five such variants were determined in mice in order to demonstrate the tunable nature of serum half-life, exposure and clearance with variations in albumin binding affinity.
Collapse
Affiliation(s)
- Steven A Jacobs
- Janssen Research & Development, L.L.C., 1400 Welsh & McKean Rd., Spring House, Pennsylvania, PA 19454, USA
| | - Alan C Gibbs
- Janssen Research & Development, L.L.C., 1400 Welsh & McKean Rd., Spring House, Pennsylvania, PA 19454, USA
| | - Michelle Conk
- Janssen Research & Development, L.L.C., 1400 Welsh & McKean Rd., Spring House, Pennsylvania, PA 19454, USA
| | - Fang Yi
- Janssen Research & Development, L.L.C., 1400 Welsh & McKean Rd., Spring House, Pennsylvania, PA 19454, USA
| | - Diane Maguire
- Janssen Research & Development, L.L.C., 1400 Welsh & McKean Rd., Spring House, Pennsylvania, PA 19454, USA
| | - Colleen Kane
- Janssen Research & Development, L.L.C., 1400 Welsh & McKean Rd., Spring House, Pennsylvania, PA 19454, USA
| | - Karyn T O'Neil
- Janssen Research & Development, L.L.C., 1400 Welsh & McKean Rd., Spring House, Pennsylvania, PA 19454, USA
| |
Collapse
|
159
|
Villa CH, Pan DC, Zaitsev S, Cines DB, Siegel DL, Muzykantov VR. Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier. Ther Deliv 2015; 6:795-826. [PMID: 26228773 PMCID: PMC4712023 DOI: 10.4155/tde.15.34] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
For several decades, researchers have used erythrocytes for drug delivery of a wide variety of therapeutics in order to improve their pharmacokinetics, biodistribution, controlled release and pharmacodynamics. Approaches include encapsulation of drugs within erythrocytes, as well as coupling of drugs onto the red cell surface. This review focuses on the latter approach, and examines the delivery of red blood cell (RBC)-surface-bound anti-inflammatory, anti-thrombotic and anti-microbial agents, as well as RBC carriage of nanoparticles. Herein, we discuss the progress that has been made in surface loading approaches, and address in depth the issues relevant to surface loading of RBC, including intrinsic features of erythrocyte membranes, immune considerations, potential surface targets and techniques for the production of affinity ligands.
Collapse
Affiliation(s)
- Carlos H Villa
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel C Pan
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergei Zaitsev
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas B Cines
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald L Siegel
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
160
|
Geng S, Chang H, Qin W, Lv M, Li Y, Feng J, Shen B. A novel anti-TNF scFv constructed with human antibody frameworks and antagonistic peptides. Immunol Res 2015; 62:377-85. [PMID: 26059602 DOI: 10.1007/s12026-015-8667-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The introduction of TNF inhibitors has revolutionized the treatment of some chronic inflammatory diseases, e.g., rheumatoid arthritis and Crohn's disease. However, immunogenicity is one of the important mechanisms behind treatment failure, and generally, switching to another TNF inhibitor will be the first choice for patients and doctors, which results in unmet need for novel anti-TNF agents. Small antibody molecules with less number of epitope may be valuable in less immunogenicity. In this study, with the help of computer-guided molecular design, single-chain variable fragment (scFv) TSA2 was designed using consensus frameworks of human antibody variable region as scaffold to display anti-TNF antagonistic peptides. TSA2 showed evidently improved bioactivity over TSA1 (anti-TNF scFv explored before) and almost similar activity as S-Remicade (the scFv form of Remicade, anti-TNF antibody approved by FDA), especially in inhibiting TNF-induced cytotoxicity and NF-κB activation. Human antibody consensus frameworks with less immunogenicity have been used in the designing of VH domain antibody, scFv TSA1 and TSA2. A serial of TNF-related works convinced us that the novel design strategy was feasible and could be used to design inhibitors targeting more other molecules than TNF-α. More importantly, these designed inhibitors derived from computer modeling may form a virtual antibody library whose size depends on the number of candidate antagonistic peptides. It will be molecular-targeted virtual antibody library because of the specific antagonistic peptides and the potential antibodies could be determined by virtual screening and then confirmed by biologic experiments.
Collapse
Affiliation(s)
- Shusheng Geng
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Taiping Road, Beijing, 100850, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
161
|
Myerson JW, Brenner JS, Greineder CF, Muzykantov VR. Systems approaches to design of targeted therapeutic delivery. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:253-65. [PMID: 25946066 PMCID: PMC4713047 DOI: 10.1002/wsbm.1304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023]
Abstract
Targeted drug delivery aims to improve therapeutic effects and enable mechanisms that are not feasible for untargeted agents (e.g., due to impermeable biological barriers). To achieve targeting, a drug or its carrier should possess properties providing specific accumulation from circulation at the desired site. There are several examples of systems-inspired approaches that have been applied to achieve this goal. First, proteomics analysis of plasma membrane fraction of the vascular endothelium has identified a series of target molecules and their ligands (e.g., antibodies) that deliver conjugated cargoes to well-defined vascular cells and subcellular compartments. Second, selection of ligands binding to cells of interest using phage display libraries in vitro and in vivo has provided peptides and polypeptides that bind to normal and pathologically altered cells. Finally, large-scale high-throughput combinatorial synthesis and selection of lipid- and polymer-based nanocarriers varying their chemical components has yielded a series of carriers accumulating in diverse organs and delivering RNA interference agents to diverse cells. Together, these approaches offer a basis for systems-based design and selection of targets, targeting molecules, and targeting vehicles. Current studies focus on expanding the arsenal of these and alternative targeting strategies, devising drug delivery systems capitalizing on these strategies and evaluation of their benefit/risk ratio in adequate animal models of human diseases. These efforts, combined with better understanding of mechanisms and unintended consequences of these targeted interventions, need to be ultimately translated into industrial development and the clinical domain.
Collapse
Affiliation(s)
- Jacob W Myerson
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Pulmonary and Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin F Greineder
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
162
|
Boschert V, Muth EM, Knappik A, Frisch C, Mueller TD. Crystallization and preliminary X-ray crystallographic analysis of the sclerostin-neutralizing Fab AbD09097. Acta Crystallogr F Struct Biol Commun 2015; 71:388-92. [PMID: 25849496 PMCID: PMC4388170 DOI: 10.1107/s2053230x1500360x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/20/2015] [Indexed: 02/02/2023] Open
Abstract
The secreted cystine-knot protein sclerostin was first identified from genetic screening of patients suffering from the rare bone-overgrowth diseases sclerosteosis and van Buchem disease. Sclerostin acts a negative regulator of bone growth through inhibiting the canonical Wnt signalling cascade by binding to and blocking the Wnt co-receptor LRP5/6. Its function in blocking osteoblastogenesis makes it an important target for osteoanabolic therapy approaches to treat osteoporosis, which is characterized by a progressive decrease in bone mass and density. In this work, the production, crystallization and preliminary X-ray diffraction data analysis of a sclerostin-neutralizing human Fab antibody fragment, AbD09097, obtained from a naive antibody library are reported. Crystals of the Fab AbD09097 belonged to space group P21, with unit-cell parameters a = 45.19, b = 78.49, c = 59.20 Å, β = 95.71° and diffracted X-rays to a resolution of 1.8 Å.
Collapse
Affiliation(s)
- Verena Boschert
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs Platz 2, 97082 Wuerzburg, Germany
| | - Eva-Maria Muth
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs Platz 2, 97082 Wuerzburg, Germany
| | - Achim Knappik
- Life Science Group, Bio-Rad AbD Serotec, Zeppelinstrasse 4, 82178 Puchheim, Germany
| | - Christian Frisch
- Life Science Group, Bio-Rad AbD Serotec, Zeppelinstrasse 4, 82178 Puchheim, Germany
| | - Thomas D. Mueller
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs Platz 2, 97082 Wuerzburg, Germany
| |
Collapse
|
163
|
Kuai J, Mosyak L, Brooks J, Cain M, Carven GJ, Ogawa S, Ishino T, Tam M, Lavallie ER, Yang Z, Ponsel D, Rauchenberger R, Arch R, Pullen N. Characterization of binding mode of action of a blocking anti-platelet-derived growth factor (PDGF)-B monoclonal antibody, MOR8457, reveals conformational flexibility and avidity needed for PDGF-BB to bind PDGF receptor-β. Biochemistry 2015; 54:1918-29. [PMID: 25707433 DOI: 10.1021/bi5015425] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Platelet derived growth factor-BB (PDGF-BB) is an important mitogen and cell survival factor during development. PDGF-BB binds PDGF receptor-β (PDGFRβ) to trigger receptor dimerization and tyrosine kinase activation. We present the pharmacological and biophysical characterization of a blocking PDGF-BB monoclonal antibody, MOR8457, and contrast this to PDGFRβ. MOR8457 binds to PDGF-BB with high affinity and selectivity, and prevents PDGF-BB induced cell proliferation competitively and with high potency. The structural characterization of the MOR8457-PDGF-BB complex indicates that MOR8457 binds with a 2:1 stoichiometry, but that binding of a single MOR8457 moiety is sufficient to prevent binding to PDGFRβ. Comparison of the MOR8457-PDGF-BB structure with that of the PDGFRβ-PDGF-BB complex suggested the potential reason for this was a substantial bending and twisting of PDGF-BB in the MOR8457 structure, relative to the structures of PDGF-BB alone, bound to a PDGF-BB aptamer or PDGFRβ, which makes it nonpermissive for PDGFRβ binding. These biochemical and structural data offer insights into the permissive structure of PDGF-BB needed for agonism as well as strategies for developing specific PDGF ligand antagonists.
Collapse
Affiliation(s)
| | | | | | | | - Gregory J Carven
- ‡Scholar Rock LLC, 300 Technology Square, Cambridge, Massachusetts 02142, United States
| | - Shinji Ogawa
- §Pfizer Japan Inc., 3-22-7 Yoyogi, Shibuya, Tokyo 151-8589, Japan
| | | | | | | | | | - Dirk Ponsel
- ∥Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | | | - Robert Arch
- ¶Takeda Pharmaceuticals International Inc., One Takeda Parkway, Deerfield, Illinois 60015, United States
| | | |
Collapse
|
164
|
Rouet R, Dudgeon K, Christie M, Langley D, Christ D. Fully Human VH Single Domains That Rival the Stability and Cleft Recognition of Camelid Antibodies. J Biol Chem 2015; 290:11905-17. [PMID: 25737448 DOI: 10.1074/jbc.m114.614842] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Indexed: 01/01/2023] Open
Abstract
Human VH single domains represent a promising class of antibody fragments with applications as therapeutic modalities. Unfortunately, isolated human VH domains also generally display poor biophysical properties and a propensity to aggregate. This has encouraged the development of non-human antibody domains as alternative means of antigen recognition and, in particular, camelid (VHH) domains. Naturally devoid of light chain partners, these domains are characterized by favorable biophysical properties and propensity for cleft binding, a highly desirable characteristic, allowing the targeting of cryptic epitopes. In contrast, previously reported structures of human VH single domains had failed to recapitulate this property. Here we report the engineering and characterization of phage display libraries of stable human VH domains and the selection of binders against a diverse set of antigens. Unlike "camelized" human domains, the domains do not rely on potentially immunogenic framework mutations and maintain the structure of the VH/VL interface. Structure determination in complex with hen egg white lysozyme revealed an extended VH binding interface, with complementarity-determining region 3 deeply penetrating into the active site cleft, highly reminiscent of what has been observed for camelid domains. Taken together, our results demonstrate that fully human VH domains can be constructed that are not only stable and well expressed but also rival the cleft binding properties of camelid antibodies.
Collapse
Affiliation(s)
- Romain Rouet
- From the Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia and
| | - Kip Dudgeon
- From the Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia and
| | - Mary Christie
- From the Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia and the Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - David Langley
- From the Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia and
| | - Daniel Christ
- From the Department of Immunology, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia and the Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, New South Wales 2010, Australia
| |
Collapse
|
165
|
Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nat Commun 2015; 6:6113. [PMID: 25672245 PMCID: PMC4339886 DOI: 10.1038/ncomms7113] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/15/2014] [Indexed: 12/23/2022] Open
Abstract
Bispecific antibodies enable unique therapeutic approaches but it remains a challenge to produce them at the industrial scale, and the modifications introduced to achieve bispecificity often have an impact on stability and risk of immunogenicity. Here we describe a fully human bispecific IgG devoid of any modification, which can be produced at the industrial scale, using a platform process. This format, referred to as a κλ-body, is assembled by co-expressing one heavy chain and two different light chains, one κ and one λ. Using ten different targets, we demonstrate that light chains can play a dominant role in mediating specificity and high affinity. The κλ-bodies support multiple modes of action, and their stability and pharmacokinetic properties are indistinguishable from therapeutic antibodies. Thus, the κλ-body represents a unique, fully human format that exploits light-chain variable domains for antigen binding and light-chain constant domains for robust downstream processing, to realize the potential of bispecific antibodies. Bispecific antibodies allow for novel therapeutic approaches but industrial-scale production and immunogenicity represent significant challenges. Here Fischer et al. describe a unique human bispecific antibody format that exploits differing light chains to overcome these obstacles.
Collapse
|
166
|
Chin SE, Ferraro F, Groves M, Liang M, Vaughan TJ, Dobson CL. Isolation of high-affinity, neutralizing anti-idiotype antibodies by phage and ribosome display for application in immunogenicity and pharmacokinetic analyses. J Immunol Methods 2015; 416:49-58. [DOI: 10.1016/j.jim.2014.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 10/24/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
|
167
|
Zhao A, Tohidkia MR, Siegel DL, Coukos G, Omidi Y. Phage antibody display libraries: a powerful antibody discovery platform for immunotherapy. Crit Rev Biotechnol 2014; 36:276-89. [PMID: 25394539 DOI: 10.3109/07388551.2014.958978] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phage display technology (PDT), a combinatorial screening approach, provides a molecular diversity tool for creating libraries of peptides/proteins and discovery of new recombinant therapeutics. Expression of proteins such as monoclonal antibodies (mAbs) on the surface of filamentous phage can permit the selection of high affinity and specificity therapeutic mAbs against virtually any target antigen. Using a number of diverse selection platforms (e.g. solid phase, solution phase, whole cell and in vivo biopannings), phage antibody libraries (PALs) from the start point provides great potential for the isolation of functional mAb fragments with diagnostic and/or therapeutic purposes. Given the pivotal role of PDT in the discovery of novel therapeutic/diagnostic mAbs, in the current review, we provide an overview on PALs and discuss their impact in the advancement of engineered mAbs.
Collapse
Affiliation(s)
- Aizhi Zhao
- a Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| | - Mohammad R Tohidkia
- b Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Donald L Siegel
- c Division of Transfusion Medicine, Department of Pathology & Laboratory Medicine , University of Pennsylvania School of Medicine , Philadelphia , PA , USA , and
| | - George Coukos
- a Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA .,d Ludwig Center for Cancer Research, University of Lausanne , Lausanne , Switzerland
| | - Yadollah Omidi
- a Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA .,b Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
168
|
Kim DY, To R, Kandalaft H, Ding W, van Faassen H, Luo Y, Schrag JD, St-Amant N, Hefford M, Hirama T, Kelly JF, MacKenzie R, Tanha J. Antibody light chain variable domains and their biophysically improved versions for human immunotherapy. MAbs 2014; 6:219-35. [PMID: 24423624 PMCID: PMC3929445 DOI: 10.4161/mabs.26844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We set out to gain deeper insight into the potential of antibody light chain variable domains (VLs) as immunotherapeutics. To this end, we generated a naïve human VL phage display library and, by using a method previously shown to select for non-aggregating antibody heavy chain variable domains (VHs), we isolated a diversity of VL domains by panning the library against B cell super-antigen protein L. Eight domains representing different germline origins were shown to be non-aggregating at concentrations as high as 450 µM, indicating VL repertoires are a rich source of non-aggregating domains. In addition, the VLs demonstrated high expression yields in E. coli, protein L binding and high reversibility of thermal unfolding. A side-by-side comparison with a set of non-aggregating human VHs revealed that the VLs had similar overall profiles with respect to melting temperature (Tm), reversibility of thermal unfolding and resistance to gastrointestinal proteases. Successful engineering of a non-canonical disulfide linkage in the core of VLs did not compromise the non-aggregation state or protein L binding properties. Furthermore, the introduced disulfide bond significantly increased their Tms, by 5.5–17.5 °C, and pepsin resistance, although it somewhat reduced expression yields and subtly changed the structure of VLs. Human VLs and engineered versions may make suitable therapeutics due to their desirable biophysical features. The disulfide linkage-engineered VLs may be the preferred therapeutic format because of their higher stability, especially for oral therapy applications that necessitate high resistance to the stomach’s acidic pH and pepsin.
Collapse
Affiliation(s)
- Dae Young Kim
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Rebecca To
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Hiba Kandalaft
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Wen Ding
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Henk van Faassen
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Yan Luo
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Joseph D Schrag
- Human Health Therapeutics; National Research Council Canada; Montréal, QC Canada
| | - Nadereh St-Amant
- Centre for Vaccine Evaluation; Biologics and Genetic Therapies Directorate;, Health Canada; Ottawa, ON Canada
| | - Mary Hefford
- Centre for Vaccine Evaluation; Biologics and Genetic Therapies Directorate;, Health Canada; Ottawa, ON Canada
| | - Tomoko Hirama
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - John F Kelly
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada
| | - Roger MacKenzie
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada; School of Environmental Sciences; Ontario Agricultural College; University of Guelph; Guelph, ON Canada
| | - Jamshid Tanha
- Human Health Therapeutics; National Research Council Canada; Ottawa, ON Canada; School of Environmental Sciences; Ontario Agricultural College; University of Guelph; Guelph, ON Canada; Department of Biochemistry, Microbiology, and Immunology; University of Ottawa; Ottawa, ON Canada
| |
Collapse
|
169
|
Diebolder P, Keller A, Haase S, Schlegelmilch A, Kiefer JD, Karimi T, Weber T, Moldenhauer G, Kehm R, Eis-Hübinger AM, Jäger D, Federspil PA, Herold-Mende C, Dyckhoff G, Kontermann RE, Arndt MAE, Krauss J. Generation of “LYmph Node Derived Antibody Libraries” (LYNDAL) for selecting fully human antibody fragments with therapeutic potential. MAbs 2014; 6:130-42. [PMID: 24256717 PMCID: PMC3929437 DOI: 10.4161/mabs.27236] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The development of efficient strategies for generating fully human monoclonal antibodies with unique functional properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro,the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful for recovering fully human antibodies with therapeutic potential.
Collapse
|
170
|
Nixon AE, Sexton DJ, Ladner RC. Drugs derived from phage display: from candidate identification to clinical practice. MAbs 2014; 6:73-85. [PMID: 24262785 DOI: 10.4161/mabs.27240] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phage display, one of today’s fundamental drug discovery technologies, allows identification of a broad range of biological drugs, including peptides, antibodies and other proteins, with the ability to tailor critical characteristics such as potency, specificity and cross-species binding. Further, unlike in vivo technologies, generating phage display-derived antibodies is not restricted by immunological tolerance. Although more than 20 phage display-derived antibody and peptides are currently in late-stage clinical trials or approved, there is little literature addressing the specific challenges and successes in the clinical development of phage-derived drugs. This review uses case studies, from candidate identification through clinical development, to illustrate the utility of phage display as a drug discovery tool, and offers a perspective for future developments of phage display technology.
Collapse
|
171
|
Yim SS, Bang HB, Kim YH, Lee YJ, Jeong GM, Jeong KJ. Rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS). PLoS One 2014; 9:e108225. [PMID: 25303314 PMCID: PMC4193741 DOI: 10.1371/journal.pone.0108225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 08/27/2014] [Indexed: 11/19/2022] Open
Abstract
Antibodies and their derivatives are the most important agents in therapeutics and diagnostics. Even after the significant progress in the technology for antibody screening from huge libraries, it takes a long time to isolate an antibody, which prevents a prompt action against the spread of a disease. Here, we report a new strategy for isolating desired antibodies from a combinatorial library in one day by repeated fluorescence-activated cell sorting (FACS). First, we constructed a library of synthetic human antibody in which single-chain variable fragment (scFv) was expressed in the periplasm of Escherichia coli. After labeling the cells with fluorescent antigen probes, the highly fluorescent cells were sorted by using a high-speed cell sorter, and these cells were reused without regeneration in the next round of sorting. After repeating this sorting, the positive clones were completely enriched in several hours. Thus, we screened the library against three viral antigens, including the H1N1 influenza virus, Hepatitis B virus, and Foot-and-mouth disease virus. Finally, the potential antibody candidates, which show KD values between 10 and 100 nM against the target antigens, could be successfully isolated even though the library was relatively small (∼106). These results show that repeated FACS screening without regeneration of the sorted cells can be a powerful method when a rapid response to a spreading disease is required.
Collapse
Affiliation(s)
- Sung Sun Yim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
| | - Hyun Bae Bang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
| | - Young Hwan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
| | - Yong Jae Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
| | - Gu Min Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
- Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
172
|
Molecular design of recombinant scFv antibodies for site-specific photocoupling to β-cyclodextrin in solution and onto solid support. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2164-73. [PMID: 25172394 DOI: 10.1016/j.bbapap.2014.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 12/14/2022]
Abstract
The ability to design and tailor-make antibodies to meet the biophysical demands required by the vast range of current and future antibody-based applications within biotechnology and biomedicine will be essential. In this proof-of-concept study, we have for the first time tailored human recombinant scFv antibodies for site-specific photocoupling through the use of an unnatural amino acid (UAA) and the dock'n'flash technology. In more detail, we have successfully explored the possibility to expand the genetic code of E. coli and introduced the photoreactive UAA p-benzoyl-L-phenylalanine (pBpa), and showed that the mutated scFv antibody could be expressed in E. coli with retained structural and functional properties, as well as binding affinity. The pBpa group was then used for affinity capture of the mutated antibody by β-cyclodextrin (β-CD), which provided the hydrogen atoms to be abstracted in the subsequent photocoupling process upon irradiation at 365nm. The results showed that the pBpa mutated antibody could be site-specifically photocoupled to free and surface (array) immobilized β-CD. Taken together, this paves the way for novel means of tailoring recombinant scFv antibodies for site-specific photochemical-based tagging, functionalization and immobilization in numerous applications.
Collapse
|
173
|
Chan CEZ, Lim APC, MacAry PA, Hanson BJ. The role of phage display in therapeutic antibody discovery. Int Immunol 2014; 26:649-57. [PMID: 25135889 PMCID: PMC7185696 DOI: 10.1093/intimm/dxu082] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phage display involves the expression of selected proteins on the surface of filamentous phage through fusion with phage coat protein, with the genetic sequence packaged within, linking phenotype to genotype selection. When combined with antibody libraries, phage display allows for rapid in vitro selection of antigen-specific antibodies and recovery of their corresponding coding sequence. Large non-immune and synthetic human libraries have been constructed as well as smaller immune libraries based on capturing a single individual’s immune repertoire. This completely in vitro process allows for isolation of antibodies against poorly immunogenic targets as well as those that cannot be obtained by animal immunization, thus further expanding the utility of the approach. Phage antibody display represents the first developed methodology for high throughput screening for human therapeutic antibody candidates. Recently, other methods have been developed for generation of fully human therapeutic antibodies, such as single B-cell screening, next-generation genome sequencing and transgenic mice with human germline B-cell genes. While each of these have their particular advantages, phage display has remained a key methodology for human antibody discovery due its in vitro process. Here, we review the continuing role of this technique alongside other developing technologies for therapeutic antibody discovery.
Collapse
Affiliation(s)
- Conrad E Z Chan
- Biological Defence Program, Defense Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore
| | - Angeline P C Lim
- Biological Defence Program, Defense Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore
| | - Paul A MacAry
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore Immunology Program, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Brendon J Hanson
- Biological Defence Program, Defense Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
| |
Collapse
|
174
|
Louis JM, Aniana A, Lohith K, Sayer JM, Roche J, Bewley CA, Clore GM. Binding of HIV-1 gp41-directed neutralizing and non-neutralizing fragment antibody binding domain (Fab) and single chain variable fragment (ScFv) antibodies to the ectodomain of gp41 in the pre-hairpin and six-helix bundle conformations. PLoS One 2014; 9:e104683. [PMID: 25105806 PMCID: PMC4126735 DOI: 10.1371/journal.pone.0104683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/16/2014] [Indexed: 11/25/2022] Open
Abstract
We previously reported a series of antibodies, in fragment antigen binding domain (Fab) formats, selected from a human non-immune phage library, directed against the internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41. Broadly neutralizing antibodies from that series bind to both the fully exposed N-HR trimer, representing the pre-hairpin intermediate state of gp41, and to partially-exposed N-HR helices within the context of the gp41 six-helix bundle. While the affinities of the Fabs for pre-hairpin intermediate mimetics vary by only 2 to 20-fold between neutralizing and non-neutralizing antibodies, differences in inhibition of viral entry exceed three orders of magnitude. Here we compare the binding of neutralizing (8066) and non-neutralizing (8062) antibodies, differing in only four positions within the CDR-H2 binding loop, in Fab and single chain variable fragment (ScFv) formats, to several pre-hairpin intermediate and six-helix bundle constructs of gp41. Residues 56 and 58 of the mini-antibodies are shown to be crucial for neutralization activity. There is a large differential (≥150-fold) in binding affinity between neutralizing and non-neutralizing antibodies to the six-helix bundle of gp41 and binding to the six-helix bundle does not involve displacement of the outer C-terminal helices of the bundle. The binding stoichiometry is one six-helix bundle to one Fab or three ScFvs. We postulate that neutralization by the 8066 antibody is achieved by binding to a continuum of states along the fusion pathway from the pre-hairpin intermediate all the way to the formation of the six-helix bundle, but prior to irreversible fusion between viral and cellular membranes.
Collapse
Affiliation(s)
- John M. Louis
- Laboratories of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JML); (GMC)
| | - Annie Aniana
- Laboratories of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katheryn Lohith
- Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jane M. Sayer
- Laboratories of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julien Roche
- Laboratories of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Carole A. Bewley
- Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - G. Marius Clore
- Laboratories of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JML); (GMC)
| |
Collapse
|
175
|
Farajnia S, Ahmadzadeh V, Tanomand A, Veisi K, Khosroshahi SA, Rahbarnia L. Development trends for generation of single-chain antibody fragments. Immunopharmacol Immunotoxicol 2014; 36:297-308. [DOI: 10.3109/08923973.2014.945126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
176
|
Putelli A, Kiefer JD, Zadory M, Matasci M, Neri D. A fibrin-specific monoclonal antibody from a designed phage display library inhibits clot formation and localizes to tumors in vivo. J Mol Biol 2014; 426:3606-18. [PMID: 25073100 DOI: 10.1016/j.jmb.2014.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/02/2014] [Accepted: 07/16/2014] [Indexed: 11/28/2022]
Abstract
Fibrin formation from fibrinogen is a rare process in the healthy organism but is a pathological feature of thrombotic events, cancer and a wide range of inflammatory conditions. We have designed and constructed an antibody phage display library (containing 13 billion clones) for the selective recognition of the N-terminal peptide of fibrin alpha chain. The key structural feature for selective fibrin binding was a K94E mutation in the VH domain. From this library, an antibody was isolated (termed AP2), which recognizes the five N-terminal amino acids of fibrin with high affinity (Kd=44nM), but does not bind to fibrinogen. The AP2 antibody could be expressed in various formats (scFv, small immune protein and IgG) and inhibited fibrin clot formation in a concentration-dependent manner. Moreover, the AP2 antibody stained the fibrin-rich provisional stroma in solid tumors but did not exhibit any detectable staining toward normal tissues. Using a radioiodinated antibody preparation and quantitative biodistribution studies in tumor-bearing mice, AP2 was shown to selectively localize to fibrin-rich F9 murine teratocarcinomas, but not to SKRC-52 human kidney cancer xenografts. Collectively, the experiments indicate that the AP2 antibody recognizes fibrin in vitro and in vivo. The antibody may facilitate the development of fibrin-specific therapeutic agents.
Collapse
Affiliation(s)
- Alessia Putelli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Jonathan D Kiefer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Matthias Zadory
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| | - Mattia Matasci
- Philochem AG, Libernstrasse 3, CH-8112 Otelfingen, Switzerland.
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
| |
Collapse
|
177
|
Swift J, Saing S, Rouet R, Dudgeon K, Schofield P, Sewell W, Christ D. Identification of aggregation inhibitors of the human antibody light chain repertoire by phage display. Protein Eng Des Sel 2014; 27:405-9. [DOI: 10.1093/protein/gzu026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
178
|
Fuchs M, Kämpfer S, Helmsing S, Spallek R, Oehlmann W, Prilop W, Frank R, Dübel S, Singh M, Hust M. Novel human recombinant antibodies against Mycobacterium tuberculosis antigen 85B. BMC Biotechnol 2014; 14:68. [PMID: 25033887 PMCID: PMC4119940 DOI: 10.1186/1472-6750-14-68] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/01/2014] [Indexed: 11/10/2022] Open
Abstract
Background Tuberculosis is the leading cause of death due to bacterial infections worldwide, mainly caused by Mycobacterium tuberculosis. The antigen 85 complex comprises a set of major secreted proteins of M. tuberculosis, which are potential biomarkers for diagnostic. Results In this work, the first human single chain fragment variable (scFv) antibodies specific for the tuberculosis biomarker 85 B were selected by phage display from naïve antibody gene libraries (HAL7/8). Produced as scFv-Fc in mammalian cells, these antibodies were further characterized and analysed for specificity and applicability in different tuberculosis antigen detection assays. Sandwich detection of recombinant 85 B was successful in enzyme linked immunosorbent assay (ELISA), lateral flow immunoassay and immunoblot. Whereas detection of M. tuberculosis cell extracts and culture filtrates was only possible in direct ELISA and immunoblot assays. It was found that the conformation of 85 B, depending on sample treatment, influenced antigen detection. Conclusions Recombinant antibodies, selected by phage display, may be applicable for 85 B detection in various assays. These antibodies are candidates for the development of future point of care tuberculosis diagnostic kits. Using 85 B as a biomarker, the antigen conformation influenced by sample treatment is important.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Spielmannstr,7, 38106 Braunschweig, Germany.
| |
Collapse
|
179
|
Shi B, Ma L, He X, Wang X, Wang P, Zhou L, Yao X. Comparative analysis of human and mouse immunoglobulin variable heavy regions from IMGT/LIGM-DB with IMGT/HighV-QUEST. Theor Biol Med Model 2014; 11:30. [PMID: 24992938 PMCID: PMC4085081 DOI: 10.1186/1742-4682-11-30] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 06/26/2014] [Indexed: 11/18/2022] Open
Abstract
Background Immunoglobulin (IG) complementarity determining region (CDR) includes VH CDR1, VH CDR2, VH CDR3, VL CDR1, VL CDR2 and VL CDR3. Of these, VH CDR3 plays a dominant role in recognizing and binding antigens. Three major mechanisms are involved in the formation of the VH repertoire: germline gene rearrangement, junctional diversity and somatic hypermutation. Features of the generation mechanisms of VH repertoire in humans and mice share similarities while VH CDR3 amino acid (AA) composition differs. Previous studies have mainly focused on germline gene rearrangement and the composition and structure of the CDR3 AA in humans and mice. However the number of AA changes due to somatic hypermutation and analysis of the junctional mechanism have been ignored. Methods Here we analyzed 9,340 human and 6,657 murine unique productive sequences of immunoglobulin (IG) variable heavy (VH) domains derived from IMGT/LIGM-DB database to understand how VH CDR3 AA compositions significantly differed between human and mouse. These sequences were identified and analyzed by IMGT/HighV-QUEST (http://www.imgt.org), including gene usage, number of AA changes due to somatic hypermutation, AA length distribution of VH CDR3, AA composition, and junctional diversity. Results Analyses of human and murine IG repertoires showed significant differences. A higher number of AA changes due to somatic hypermutation and more abundant N-region addition were found in human compared to mouse, which might be an important factor leading to differences in VH CDR3 amino acid composition. Conclusions These findings are a benchmark for understanding VH repertoires and can be used to characterize the VH repertoire during immune responses. The study will allow standardized comparison for high throughput results obtained by IMGT/HighV-QUEST, the reference portal for NGS repertoire.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xinsheng Yao
- Department of Immunology, Research Center for Medicine & Biology, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
180
|
Shukra AM, Sridevi NV, Dev Chandran, Kapil Maithal. Production of recombinant antibodies using bacteriophages. Eur J Microbiol Immunol (Bp) 2014; 4:91-8. [PMID: 24883194 DOI: 10.1556/eujmi.4.2014.2.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/10/2014] [Indexed: 11/19/2022] Open
Abstract
Recombinant antibody fragments such as Fab, scFv, diabodies, triabodies, single domain antibodies and minibodies have recently emerged as potential alternatives to monoclonal antibodies, which can be engineered using phage display technology. These antibodies match the strengths of conventionally produced monoclonal antibodies and offer advantages for the development of immunodiagnostic kits and assays. These fragments not only retain the specificity of the whole monoclonal antibodies but also easy to express and produce in prokaryotic expression system. Further, these antibody fragments are genetically stable, less expensive, easy to modify in response to viral mutations and safer than monoclonal antibodies for use in diagnostic and therapeutic applications. This review describes the potential of antibody fragments generated using phage display and their use as diagnostic reagents.
Collapse
Affiliation(s)
- A M Shukra
- Indian Immunologicals Limited Rakshapuram, Gachibowli, Hyderabad, Andhra Pradesh India
| | - N V Sridevi
- Indian Immunologicals Limited Rakshapuram, Gachibowli, Hyderabad, Andhra Pradesh India
| | - Dev Chandran
- Indian Immunologicals Limited Rakshapuram, Gachibowli, Hyderabad, Andhra Pradesh India
| | - Kapil Maithal
- Indian Immunologicals Limited Rakshapuram, Gachibowli, Hyderabad, Andhra Pradesh India
| |
Collapse
|
181
|
Neuber T, Frese K, Jaehrling J, Jäger S, Daubert D, Felderer K, Linnemann M, Höhne A, Kaden S, Kölln J, Tiller T, Brocks B, Ostendorp R, Pabst S. Characterization and screening of IgG binding to the neonatal Fc receptor. MAbs 2014; 6:928-42. [PMID: 24802048 DOI: 10.4161/mabs.28744] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The neonatal Fc receptor (FcRn) protects immunoglobulin G (IgG) from degradation and increases the serum half-life of IgG, thereby contributing to a higher concentration of IgG in the serum. Because altered FcRn binding may result in a reduced or prolonged half-life of IgG molecules, it is advisable to characterize Fc receptor binding of therapeutic antibody lead candidates prior to the start of pre-clinical and clinical studies. In this study, we characterized the interactions between FcRn of different species (human, cynomolgus monkey, mouse and rat) and nine IgG molecules from different species and isotypes with common variable heavy (VH) and variable light chain (VL) domains. Binding was analyzed at acidic and neutral pH using surface plasmon resonance (SPR) and biolayer interferometry (BLI). Furthermore, we transferred the well-accepted, but low throughput SPR-based method for FcRn binding characterization to the BLI-based Octet platform to enable a higher sample throughput allowing the characterization of FcRn binding already during early drug discovery phase. We showed that the BLI-based approach is fit-for-purpose and capable of discriminating between IgG molecules with significant differences in FcRn binding affinities. Using this high-throughput approach we investigated FcRn binding of 36 IgG molecules that represented all VH/VL region combinations available in the fully human, recombinant antibody library Ylanthia®. Our results clearly showed normal FcRn binding profiles for all samples. Hence, the variations among the framework parts, complementarity-determining region (CDR) 1 and CDR2 of the fragment antigen binding (Fab) domain did not significantly change FcRn binding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anne Höhne
- MorphoSys AG; Martinsried/Planegg, Germany
| | | | | | | | | | | | | |
Collapse
|
182
|
Tiede C, Tang AAS, Deacon SE, Mandal U, Nettleship JE, Owen RL, George SE, Harrison DJ, Owens RJ, Tomlinson DC, McPherson MJ. Adhiron: a stable and versatile peptide display scaffold for molecular recognition applications. Protein Eng Des Sel 2014; 27:145-55. [PMID: 24668773 PMCID: PMC4000234 DOI: 10.1093/protein/gzu007] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have designed a novel non-antibody scaffold protein, termed Adhiron, based on a phytocystatin consensus sequence. The Adhiron scaffold shows high thermal stability (Tm ca. 101°C), and is expressed well in Escherichia coli. We have determined the X-ray crystal structure of the Adhiron scaffold to 1.75 Å resolution revealing a compact cystatin-like fold. We have constructed a phage-display library in this scaffold by insertion of two variable peptide regions. The library is of high quality and complexity comprising 1.3 × 1010 clones. To demonstrate library efficacy, we screened against the yeast Small Ubiquitin-like Modifier (SUMO). In selected clones, variable region 1 often contained sequences homologous to the known SUMO interactive motif (V/I-X-V/I-V/I). Four Adhirons were further characterised and displayed low nanomolar affinities and high specificity for yeast SUMO with essentially no cross-reactivity to human SUMO protein isoforms. We have identified binders against >100 target molecules to date including as examples, a fibroblast growth factor (FGF1), platelet endothelial cell adhesion molecule (PECAM-1; CD31), the SH2 domain Grb2 and a 12-aa peptide. Adhirons are highly stable and well expressed allowing highly specific binding reagents to be selected for use in molecular recognition applications.
Collapse
Affiliation(s)
- Christian Tiede
- Biomedical Health Research Centre, BioScreening Technology Group, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Pointer KB, Clark PA, Zorniak M, Alrfaei BM, Kuo JS. Glioblastoma cancer stem cells: Biomarker and therapeutic advances. Neurochem Int 2014; 71:1-7. [PMID: 24657832 DOI: 10.1016/j.neuint.2014.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/28/2014] [Accepted: 03/08/2014] [Indexed: 02/08/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in humans. It accounts for fifty-two percent of primary brain malignancies in the United States and twenty percent of all primary intracranial tumors. Despite the current standard therapies of maximal safe surgical resection followed by temozolomide and radiotherapy, the median patient survival is still less than 2 years due to inevitable tumor recurrence. Glioblastoma cancer stem cells (GSCs) are a subgroup of tumor cells that are radiation and chemotherapy resistant and likely contribute to rapid tumor recurrence. In order to gain a better understanding of the many GBM-associated mutations, analysis of the GBM cancer genome is on-going; however, innovative strategies to target GSCs and overcome tumor resistance are needed to improve patient survival. Cancer stem cell biology studies reveal basic understandings of GSC resistance patterns and therapeutic responses. Membrane proteomics using phage and yeast display libraries provides a method to identify novel antibodies and surface antigens to better recognize, isolate, and target GSCs. Altogether, basic GBM and GSC genetics and proteomics studies combined with strategies to discover GSC-targeting agents could lead to novel treatments that significantly improve patient survival and quality of life.
Collapse
Affiliation(s)
- Kelli B Pointer
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Neurological Surgery, Madison, WI, United States; Cellular and Molecular Biology, Madison, WI, United States
| | - Paul A Clark
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Neurological Surgery, Madison, WI, United States
| | - Michael Zorniak
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Neurological Surgery, Madison, WI, United States; Neuroscience Training Program, Madison, WI, United States
| | - Bahauddeen M Alrfaei
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Neurological Surgery, Madison, WI, United States; Cellular and Molecular Pathology Training Program, Madison, WI, United States; Human Oncology, Madison, WI, United States
| | - John S Kuo
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Neurological Surgery, Madison, WI, United States; Cellular and Molecular Biology, Madison, WI, United States; Neuroscience Training Program, Madison, WI, United States; Cellular and Molecular Pathology Training Program, Madison, WI, United States; Human Oncology, Madison, WI, United States; Carbone Cancer Center, Madison, WI, United States.
| |
Collapse
|
184
|
Modular peptide binding: From a comparison of natural binders to designed armadillo repeat proteins. J Struct Biol 2014; 185:147-62. [DOI: 10.1016/j.jsb.2013.07.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 11/23/2022]
|
185
|
Abstract
Antibody-based microarrays are a novel technology that hold great promise in proteomics. Microarrays can be printed with thousands of recombinant antibodies carrying the desired specificities, the biologic sample (e.g., an entire proteome) and any specifically bound analytes detected. The microarray patterns that are generated can then be converted into proteomic maps, or molecular fingerprints, revealing the composition of the proteome. Using this tool, global proteome analysis and protein expression profiling will thus provide new opportunities for biomarker discovery, drug target identification and disease diagnostics, as well as providing insights into disease biology. Intense work is currently underway to develop this novel technology platform into the high-throughput proteomic tool required by the research community.
Collapse
Affiliation(s)
- Christer Wingren
- Department of Immunotechnology, Lund University, PO Box 7031, Lund, Sweden.
| | | |
Collapse
|
186
|
Hust M, Frenzel A, Schirrmann T, Dübel S. Selection of recombinant antibodies from antibody gene libraries. Methods Mol Biol 2014; 1101:305-20. [PMID: 24233787 DOI: 10.1007/978-1-62703-721-1_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antibodies are indispensable detection reagents for research and diagnostics and represent the biggest class of biological therapeutics on the market. In vitro antibody selection systems offer many advantages over animal-based technologies because the whole selection process is independent of the in vivo immune response. In the last two decades antibody phage display has evolved to the most robust and widely used method and has already yielded thousands of antibodies. The selection of binders by phage display is also referred to as "panning" and based on the specific molecular interaction of antibody phage with an immobilized antigen thus allowing the enrichment and isolation of antigen-specific monoclonal binders from very large antibody gene libraries. Here, we give detailed protocols for the selection of recombinant antibody fragments from antibody gene libraries in microtiter plates.
Collapse
Affiliation(s)
- Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | |
Collapse
|
187
|
Frenzel A, Kügler J, Wilke S, Schirrmann T, Hust M. Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol 2014; 1060:215-243. [PMID: 24037844 DOI: 10.1007/978-1-62703-586-6_12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Antibody phage display is the most commonly used in vitro selection technology and has yielded thousands of useful antibodies for research, diagnostics, and therapy.The prerequisite for successful generation and development of human recombinant antibodies using phage display is the construction of a high-quality antibody gene library. Here, we describe the methods for the construction of human immune and naive scFv gene libraries.The success also depends on the panning strategy for the selection of binders from these libraries. In this article, we describe a panning strategy that is high-throughput compatible and allows parallel selection in microtiter plates.
Collapse
Affiliation(s)
- André Frenzel
- Abteilung Biotechnologie Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
188
|
Abstract
Highly functional synthetic antibody libraries can be used to generate antibodies against a multitude of antigens with affinities and specificities that rival or exceed those of natural antibodies. Current design and generation of synthetic antibody libraries are dependent on our insights from previous studies of simplified synthetic antibody libraries, in addition to our knowledge of antibody structure and function and sequence diversity of natural antibody repertoires. We describe a detailed protocol for the design and generation of phage-displayed synthetic antibody libraries built on a single framework with diversity restricted to four complementarity-determining regions by using precisely designed degenerate oligonucleotides. This general methodology could be applied to generation of large, functional synthetic antibody libraries using standard supplies, equipment, and molecular biology techniques.
Collapse
Affiliation(s)
- Gang Chen
- University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
189
|
Understanding the role of cross-arm binding efficiency in the activity of monoclonal and multispecific therapeutic antibodies. Methods 2014; 65:95-104. [DOI: 10.1016/j.ymeth.2013.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 01/09/2023] Open
|
190
|
Friedbichler K, Hofmann MH, Kroez M, Ostermann E, Lamche HR, Koessl C, Borges E, Pollak MN, Adolf G, Adam PJ. Pharmacodynamic and antineoplastic activity of BI 836845, a fully human IGF ligand-neutralizing antibody, and mechanistic rationale for combination with rapamycin. Mol Cancer Ther 2013; 13:399-409. [PMID: 24296829 DOI: 10.1158/1535-7163.mct-13-0598] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin-like growth factor (IGF) signaling is thought to play a role in the development and progression of multiple cancer types. To date, therapeutic strategies aimed at disrupting IGF signaling have largely focused on antibodies that target the IGF-I receptor (IGF-IR). Here, we describe the pharmacologic profile of BI 836845, a fully human monoclonal antibody that utilizes an alternative approach to IGF signaling inhibition by selectively neutralizing the bioactivity of IGF ligands. Biochemical analyses of BI 836845 demonstrated high affinity to human IGF-I and IGF-II, resulting in effective inhibition of IGF-induced activation of both IGF-IR and IR-A in vitro. Cross-reactivity to rodent IGFs has enabled rigorous assessment of the pharmacologic activity of BI 836845 in preclinical models. Pharmacodynamic studies in rats showed potent reduction of serum IGF bioactivity in the absence of metabolic adverse effects, leading to growth inhibition as evidenced by reduced body weight gain and tail length. Moreover, BI 836845 reduced the proliferation of human cell lines derived from different cancer types and enhanced the antitumor efficacy of rapamycin by blocking a rapamycin-induced increase in upstream signaling in vitro as well as in human tumor xenograft models in nude mice. Our data suggest that BI 836845 represents a potentially more effective and tolerable approach to the inhibition of IGF signaling compared with agents that target the IGF-I receptor directly, with potential for rational combinations with other targeted agents in clinical studies.
Collapse
Affiliation(s)
- Katrin Friedbichler
- Corresponding Author: Paul J. Adam, Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer Gasse 5-11, A-1121, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Rouet R, Lowe D, Christ D. Stability engineering of the human antibody repertoire. FEBS Lett 2013; 588:269-77. [PMID: 24291820 DOI: 10.1016/j.febslet.2013.11.029] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 10/26/2022]
Abstract
Human monoclonal antibodies often display limited thermodynamic and colloidal stabilities. This behavior hinders their production, and places limitations on the development of novel formulation conditions and therapeutic applications. Antibodies are highly diverse molecules, with much of the sequence variation observed within variable domain families and, in particular, their complementarity determining regions. This has complicated the development of comprehensive strategies for the stability engineering of the human antibody repertoire. Here we provide an overview of the field, and discuss recent advances in the development of robust and aggregation resistant antibody therapeutics.
Collapse
Affiliation(s)
- Romain Rouet
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | - David Lowe
- MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The University of New South Wales, Faculty of Medicine, St Vincent's Clinical School, Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
192
|
Chen CG, Fabri LJ, Wilson MJ, Panousis C. One-step zero-background IgG reformatting of phage-displayed antibody fragments enabling rapid and high-throughput lead identification. Nucleic Acids Res 2013; 42:e26. [PMID: 24253301 PMCID: PMC3936716 DOI: 10.1093/nar/gkt1142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We describe a novel cloning method, referred to as insert-tagged (InTag) positive selection, for the rapid one-step reformatting of phage-displayed antibody fragments to full-length immunoglobulin Gs (IgGs). InTag positive selection enables recombinant clones of interest to be directly selected without cloning background, bypassing the laborious process of plating out cultures and colony screening and enabling the cloning procedure to be automated and performed in a high-throughput format. This removes a significant bottleneck in the functional screening of phage-derived antibody candidates and enables a large number of clones to be directly reformatted into IgG without the intermediate step of Escherichia coli expression and testing of soluble antibody fragments. The use of InTag positive selection with the Dyax Fab-on-phage antibody library is demonstrated, and optimized methods for the small-scale transient expression of IgGs at high levels are described. InTag positive selection cloning has the potential for wide application in high-throughput DNA cloning involving multiple inserts, markedly improving the speed and quality of selections from protein libraries.
Collapse
Affiliation(s)
- Chao-Guang Chen
- Research and Development, CSL Limited, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
193
|
Mandrup OA, Friis NA, Lykkemark S, Just J, Kristensen P. A novel heavy domain antibody library with functionally optimized complementarity determining regions. PLoS One 2013; 8:e76834. [PMID: 24116173 PMCID: PMC3792991 DOI: 10.1371/journal.pone.0076834] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 08/30/2013] [Indexed: 11/29/2022] Open
Abstract
Today a number of synthetic antibody libraries of different formats have been created and used for the selection of a large number of recombinant antibodies. One of the determining factors for successful isolation of recombinant antibodies from libraries lies in the quality of the libraries i.e. the number of correctly folded, functional antibodies contained in the library. Here, we describe the construction of a novel, high quality, synthetic single domain antibody library dubbed Predator. The library is based on the HEL4 domain antibody with the addition of recently reported mutations concerning the amino acid composition at positions critical for the folding characteristics and aggregation propensities of domain antibodies. As a unique feature, the CDR3 of the library was designed to mimic the natural human immune response by designating amino acids known to be prevalent in functional antibodies to the diversity in CDR3. CDR randomizations were performed using trinucleotide synthesis to avoid the presence of stop codons. Furthermore a novel cycle free elongation method was used for the conversion of the synthesized single stranded DNA containing the randomized CDRs into double stranded DNA of the library. In addition a modular approach has been adopted for the scaffold in which each CDR region is flanked by unique restrictions sites, allowing easy affinity maturation of selected clones by CDR shuffling. To validate the quality of the library, one round phage display selections were performed on purified antigens and highly complex antigen mixtures such as cultured eukaryotic cells resulting in several specific binders. The further characterization of some of the selected clones, however, indicates a reduction in thermodynamic stability caused by the inclusion the additional mutations to the HEL4 scaffold.
Collapse
Affiliation(s)
| | - Niels Anton Friis
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Simon Lykkemark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Sino-Danish Centre for Education and Research, Aarhus, Denmark
| | - Jesper Just
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Peter Kristensen
- Department of Engineering, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
194
|
Off-rate screening for selection of high-affinity anti-drug antibodies. Anal Biochem 2013; 441:208-13. [DOI: 10.1016/j.ab.2013.07.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 11/19/2022]
|
195
|
Catch and measure-mass spectrometry-based immunoassays in biomarker research. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:927-32. [PMID: 24060810 DOI: 10.1016/j.bbapap.2013.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/28/2013] [Accepted: 09/16/2013] [Indexed: 12/21/2022]
Abstract
Mass spectrometry-based (MS) methods are effective tools for discovering protein biomarker candidates that can differentiate between physiological and pathophysiological states. Promising candidates are validated in studies comprising large patient cohorts. Here, targeted protein analytics are used to increase sample throughput. Methods involving antibodies, such as sandwich immunoassays or Western blots, are commonly applied at this stage. Highly-specific and sensitive mass spectrometry-based immunoassays that have been established in recent years offer a suitable alternative to sandwich immunoassays for quantifying proteins. Mass Spectrometric ImmunoAssays (MSIA) and Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA/iMALDI) are two prominent types of MS-based immunoassays in which the capture is done either at the protein or the peptide level. We present an overview of these emerging types of immunoassays and discuss their suitability for the discovery and validation of protein biomarkers. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Collapse
|
196
|
Huovinen T, Syrjanpaa M, Sanmark H, Brockmann EC, Azhayev A, Wang Q, Vehniainen M, Lamminmaki U. Two ScFv antibody libraries derived from identical VL-VH framework with different binding site designs display distinct binding profiles. Protein Eng Des Sel 2013; 26:683-93. [DOI: 10.1093/protein/gzt037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
197
|
Selection of potential therapeutic human single-chain Fv antibodies against cholecystokinin-B/gastrin receptor by phage display technology. BioDrugs 2013; 27:55-67. [PMID: 23344946 DOI: 10.1007/s40259-012-0007-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND OBJECTIVE Gastric/gastrointestinal cancers are associated with high mortality worldwide. G-protein coupled receptor (GPCR) superfamily members such as gastrin/cholecystokinin-B receptor (CCK-BR) are involved in progression of gastric tumors, thus CCK-BR is considered as a potential target for immunotherapy. However, production of functional monoclonal antibodies (mAbs) against GPCR seems to be very challenging, in part due to its integration in cell membranes and inaccessibility for selection. To tackle this problem, we implemented phage display technology and a solution-phase biopanning (SPB) scheme for production of mAbs specific to the native conformation of CCK-BR. METHODS To perform the SPB process, we utilized a synthetic biotinylated peptide corresponding to the second extracellular loop (ECL2) of CCK-BR and a semi-synthetic phage antibody library. After enzyme-linked immunosorbent assay (ELISA) screening, the CCK-BR specificity of the selected single-chain variable fragments (scFvs) were further examined using immunoblotting, whole-cell ELISA, and flow cytometry assays. RESULTS After performing four rounds of selection, we identified nine antibody clones which showed positive reactivity with the CCK-BR peptide in an ELISA assay. Of these, eight clones were unique scFv antibodies and one was a V(L) single domain antibody. Specificity analysis of the selected scFvs revealed that five of the selected scFvs recognized a denatured form of CCK-BR, while the majority of the selected scFvs were able to recognize the native conformation of CCK-BR on the surface of human gastric adenocarcinoma cells and cervical carcinoma HeLa cells. CONCLUSION For the first time, we report on the establishment of a diverse panel of scFv antibody fragments that are specific to the native conformation of CCK-BR. Based on these results, we suggest the selected scFv antibody fragments as potential agents for diagnosis, imaging, targeting, and/or immunotherapy of cancers that overexpress CCK-BR.
Collapse
|
198
|
Gao SH, Huang K, Tu H, Adler AS. Monoclonal antibody humanness score and its applications. BMC Biotechnol 2013; 13:55. [PMID: 23826749 PMCID: PMC3729710 DOI: 10.1186/1472-6750-13-55] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/20/2013] [Indexed: 01/27/2023] Open
Abstract
Background Monoclonal antibody therapeutics are rapidly gaining in popularity for the treatment of a myriad of diseases, ranging from cancer to autoimmune diseases and neurological diseases. Multiple forms of antibody therapeutics are in use today that differ in the amount of human sequence present in both the constant and variable regions, where antibodies that are more human-like usually have reduced immunogenicity in clinical trials. Results Here we present a method to quantify the humanness of the variable region of monoclonal antibodies and show that this method is able to clearly distinguish human and non-human antibodies with excellent specificity. After creating and analyzing a database of human antibody sequences, we conducted an in-depth analysis of the humanness of therapeutic antibodies, and found that increased humanness score is correlated with decreased immunogenicity of antibodies. We further discovered a surprisingly similarity in the immunogenicity of fully human antibodies and humanized antibodies that are more human-like based on their humanness score. Conclusions Our results reveal that in most cases humanizing an antibody and confirming the humanness of the final form may be sufficient to eliminate immunogenicity issues to the same extent as using fully human antibodies. We created a public website to calculate the humanness score of any input antibody sequence based on our human antibody database. This tool will be of great value during the preclinical drug development process for new monoclonal antibody therapeutics.
Collapse
Affiliation(s)
- Sean H Gao
- LakePharma, Inc,, 530 Harbor Boulevard, Belmont, CA 94002, USA
| | | | | | | |
Collapse
|
199
|
Bowers PM, Horlick RA, Kehry MR, Neben TY, Tomlinson GL, Altobell L, Zhang X, Macomber JL, Krapf IP, Wu BF, McConnell AD, Chau B, Berkebile AD, Hare E, Verdino P, King DJ. Mammalian cell display for the discovery and optimization of antibody therapeutics. Methods 2013; 65:44-56. [PMID: 23792919 DOI: 10.1016/j.ymeth.2013.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 11/15/2022] Open
Abstract
Recent advances are described for the isolation and affinity maturation of antibodies that couple in vitro somatic hypermutation (SHM) with mammalian cell display, replicating key aspects of the adaptive immune system. SHM is dependent on the action of the B cell specific enzyme, activation-induced cytidine deaminase (AID). AID-directed SHM in vitro in non-B cells, combined with mammalian display of a library of human antibodies, initially naïve to SHM, can be used to isolate and affinity mature antibodies via iterative cycles of fluorescence-activated cell sorting (FACS) under increasingly stringent sort conditions. SHM observed in vitro closely resembles SHM observed in human antibodies in vivo in both mutation type and positioning in the antibody variable region. In addition, existing antibodies originating from mouse immunization, in vivo based libraries, or alternative display technologies such as phage can also be affinity matured in a similar manner. The display system has been developed to enable simultaneous high-level cell surface expression and secretion of the same protein through alternate splicing, where the displayed protein phenotype remains linked to genotype, allowing soluble secreted antibody to be simultaneously characterized in biophysical and cell-based functional assays. This approach overcomes many of the previous limitations of mammalian cell display, enabling direct selection and maturation of antibodies as full-length, glycosylated IgGs.
Collapse
Affiliation(s)
- Peter M Bowers
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - Robert A Horlick
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - Marilyn R Kehry
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - Tamlyn Y Neben
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | | | - Larry Altobell
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - Xue Zhang
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - John L Macomber
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - Irina P Krapf
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - Betty F Wu
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | | | - Betty Chau
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | | | - Eric Hare
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - Petra Verdino
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA
| | - David J King
- AnaptysBio Inc., 10421 Pacific Center Court, San Diego, CA 92121, USA.
| |
Collapse
|
200
|
Qiao C, Lv M, Li X, Geng J, Li Y, Zhang J, Lin Z, Feng J, Shen B. Affinity maturation of antiHER2 monoclonal antibody MIL5 using an epitope-specific synthetic phage library by computational design. J Biomol Struct Dyn 2013; 31:511-21. [DOI: 10.1080/07391102.2012.706073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|