151
|
Vanhee M, Costers S, Van Breedam W, Geldhof MF, Van Doorsselaere J, Nauwynck HJ. A variable region in GP4 of European-type porcine reproductive and respiratory syndrome virus induces neutralizing antibodies against homologous but not heterologous virus strains. Viral Immunol 2011; 23:403-13. [PMID: 20712485 DOI: 10.1089/vim.2010.0025] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) can induce severe reproductive failure in sows, and is involved in the porcine respiratory disease complex. The glycoprotein GP4 of the European prototype PRRSV strain Lelystad virus (LV) contains a linear neutralizing epitope that is located in a highly variable region. The current study aimed to evaluate the antibody response against this and other epitopes on GP4 to infection of pigs with European-type PRRSV. It was shown that three virus strains, differing in the region that corresponds to the neutralizing epitope on GP4 of LV, strongly induce antibodies against this area. Antibodies against the epitopes of the different virus strains were purified from polyclonal swine sera, and used in virus-neutralization tests on primary alveolar macrophages. This revealed that antibodies against the variable region in GP4 of different virus strains are able to neutralize infection with homologous but not heterologous virus strains.
Collapse
Affiliation(s)
- Merijn Vanhee
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | | | | | | |
Collapse
|
152
|
Tian D, Zheng H, Zhang R, Zhuang J, Yuan S. Chimeric porcine reproductive and respiratory syndrome viruses reveal full function of genotype 1 envelope proteins in the backbone of genotype 2. Virology 2011; 412:1-8. [PMID: 21255814 DOI: 10.1016/j.virol.2010.12.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/01/2010] [Accepted: 12/27/2010] [Indexed: 10/18/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is classified into two genotypes, type 1 and type 2, which share only about 60% genetic identity. Here, we report viable chimeric viruses in which the envelope protein genes from ORF2a to ORF5 of vSHE (type 1) were swapped into the genetic backbone of vAPRRS (type 2). We found that the envelope proteins of genotype 1 were fully functional in genotype 2 PRRSV, and the rescued chimeric progeny viruses showed robust genetic stability and similar replication properties to the parental strains in vitro. To our knowledge, this is the first study to report the substitution of complete ORFs between different genotypes of porcine arterivirus. These findings pave the way to further elucidate the structure-function relationship of PRRSV envelope proteins, and may enable the development of novel marker vaccines that can be used to differentiate vaccinated from infected animals.
Collapse
Affiliation(s)
- Debin Tian
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Shanghai, PR China
| | | | | | | | | |
Collapse
|
153
|
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped, positive-sense single-stranded RNA virus belonging to the Arteriviridae family. Arteriviruses and coronaviruses are grouped together in the order Nidovirales, based on similarities in genome organization and expression strategy. Over the past decade, crystal structures of several viral proteins, electron microscopic studies of the virion, as well as biochemical and in vivo studies on protein-protein interactions have led to a greatly increased understanding of PRRSV structural biology. At this point, crystal structures are available for the viral proteases NSP1α, NSP1β and NSP4 and the nucleocapsid protein, N. The NSP1α and NSP1β structures have revealed additional non-protease domains that may be involved in modulation of host functions. The N protein forms a dimer with a novel fold so far only seen in PRRSV and other nidoviruses. Cryo-electron tomographic studies have shown the three-dimensional organization of the PRRSV virion and suggest that the viral nucleocapsid has an asymmetric, linear arrangement, rather than the isometric core previously described. Together, these studies have revealed a closer structural relationship between arteri- and coronaviruses than previously anticipated.
Collapse
Affiliation(s)
- Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
154
|
Lunney JK. Porcine reproductive and respiratory syndrome virus: an update on an emerging and re-emerging viral disease of swine. Virus Res 2010; 154:1-6. [PMID: 20951175 PMCID: PMC7172856 DOI: 10.1016/j.virusres.2010.10.009] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recognized in the late 1980s in North America and Europe the syndrome that caused reproductive and respiratory problems in swine was initially called "mystery swine disease" and is now termed "porcine reproductive and respiratory syndrome (PRRS)". In the early 1990 s an arterivirus, referred to as PRRS virus (PRRSV), was determined to be the etiologic agent of this disease. Since then research has progressed substantially. Most recently "porcine high fever disease" was reported in China starting in 2006 with PRRSV being a critical virus associated with high morbidity and mortality (20%) associated with this syndrome which in 2010 is still causing severe pathology in pigs in China, with spread to Vietnam and Cambodia. This volume contains a series of reviews that highlight the virus, its pathogenesis, epidemiology, immunology, vaccinology and host genetic control. This paper provides a brief historical review of PRRS and the associated PRRSV. It presents areas of research gaps that inhibit current progress towards PRRS elimination through production of effective vaccines and current plans for PRRS elimination or eradication programs. It is hoped that this discussion will stimulate further collaboration between researchers and swine veterinarians throughout the world to provide answers that enhance our understanding of PRRS and PRRSV in an effort to eliminate this economically important disease.
Collapse
Affiliation(s)
- Joan K. Lunney
- Animal Parasitic Diseases Laboratory, ANRI, ARS, USDA, Building 1040, Room 103, BARC-East, Beltsville, MD 20705, USA
| |
Collapse
|
155
|
An TQ, Tian ZJ, Zhou YJ, Xiao Y, Peng JM, Chen J, Jiang YF, Hao XF, Tong GZ. Comparative genomic analysis of five pairs of virulent parental/attenuated vaccine strains of PRRSV. Vet Microbiol 2010; 149:104-12. [PMID: 21111544 DOI: 10.1016/j.vetmic.2010.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 10/16/2010] [Accepted: 11/01/2010] [Indexed: 11/19/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), the causative agent of porcine reproductive and respiratory syndrome, is responsible for serious disease in pigs resulting in substantial economic losses in the porcine industry. An attenuated vaccine strain, HuN4-F112, was obtained by passaging virulent PRRSV strain HuN4 on Marc-145 cells (for 112 passages), and the full-genomic sequence was determined. To understand the molecular basis of attenuation of PRRSV, we compared and analyzed the genomic sequences of HuN4/HuN4-F112, together with those of other four virulent parental/attenuated vaccine strains. Among the 19 PRRSV proteins, two (NSP6 and NSP8) were highly conserved, without any mutations and considered irrelative to attenuation. The mutation rates of envelope-associated structural proteins were obviously higher than those of most non-structural proteins. It is interesting that the gene of the smallest structural protein, E protein, had the highest mutation rate among all of the structural genes analyzed, and also harbored a highly variable region. Our results indicate that determinants of PRRSV attenuation are multigenic products of both non-structural and structural genes. To our knowledge, this is the first report showing that the envelope-associated structural proteins (including E and GP2-GP5 proteins) may play a significant role. These findings contribute towards our understanding of PRRSV attenuation and will provide an important clue for further study.
Collapse
Affiliation(s)
- Tong-Qing An
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Zhang C, Xue C, Li Y, Kong Q, Ren X, Li X, Shu D, Bi Y, Cao Y. Profiling of cellular proteins in porcine reproductive and respiratory syndrome virus virions by proteomics analysis. Virol J 2010; 7:242. [PMID: 20849641 PMCID: PMC2949843 DOI: 10.1186/1743-422x-7-242] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/18/2010] [Indexed: 11/14/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped virus, bearing severe economic consequences to the swine industry worldwide. Previous studies on enveloped viruses have shown that many incorporated cellular proteins associated with the virion's membranes that might play important roles in viral infectivity. In this study, we sought to proteomically profile the cellular proteins incorporated into or associated with the virions of a highly virulent PRRSV strain GDBY1, and to provide foundation for further investigations on the roles of incorporated/associated cellular proteins on PRRSV's infectivity. Results In our experiment, sixty one cellular proteins were identified in highly purified PRRSV virions by two-dimensional gel electrophoresis coupled with mass spectrometric approaches. The identified cellular proteins could be grouped into eight functional categories including cytoskeletal proteins, chaperones, macromolecular biosynthesis proteins, metabolism-associated proteins, calcium-dependent membrane-binding proteins and other functional proteins. Among the identified proteins, four have not yet been reported in other studied envelope viruses, namely, guanine nucleotide-binding proteins, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase, peroxiredoxin 1 and galectin-1 protein. The presence of five selected cellular proteins (i.e., β-actin, Tubulin, Annexin A2, heat shock protein Hsp27, and calcium binding proteins S100) in the highly purified PRRSV virions was validated by Western blot and immunogold labeling assays. Conclusions Taken together, the present study has demonstrated the incorporation of cellular proteins in PRRSV virions, which provides valuable information for the further investigations for the effects of individual cellular proteins on the viral replication, assembly, and pathogenesis.
Collapse
Affiliation(s)
- Chengwen Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Molecular epidemiology of PRRSV: a phylogenetic perspective. Virus Res 2010; 154:7-17. [PMID: 20837072 DOI: 10.1016/j.virusres.2010.08.014] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 12/17/2022]
Abstract
Since its first discovery two decades ago, porcine reproductive and respiratory syndrome virus (PRRSV) has been the subject of intensive research due to its huge impact on the worldwide swine industry. Thanks to the phylogenetic analyses, much has been learned concerning the genetic diversity and evolution history of the virus. In this review, we focused on the evolutionary and epidemiological aspects of PRRSV from a phylogenetic perspective. We first described the diversity and transmission dynamics of Type 1 and 2 PRRSV, respectively. Then, we focused on the more ancient evolutionary history of PRRSV: the time of onset of all existing PRRSV and an origin hypothesis were discussed. Finally, we summarized the results from previous recombination studies to assess the potential impact of recombination on the virus epidemiology.
Collapse
|
158
|
Costers S, Vanhee M, Van Breedam W, Van Doorsselaere J, Geldhof M, Nauwynck HJ. GP4-specific neutralizing antibodies might be a driving force in PRRSV evolution. Virus Res 2010; 154:104-13. [PMID: 20837070 DOI: 10.1016/j.virusres.2010.08.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 08/27/2010] [Accepted: 08/27/2010] [Indexed: 12/31/2022]
Abstract
The structural envelope glycoprotein GP4 of European porcine reproductive and respiratory syndrome virus (PRRSV) strains contains a highly variable neutralizing epitope that is susceptible to neutralizing antibody-mediated selective pressure in vitro. In this study, it was analyzed what happens with this neutralizing epitope during infection in vivo in the presence of neutralizing antibodies. A neutralizing antibody-mediated selective pressure was created in 30 pigs by vaccination prior to inoculation with infectious Lelystad virus (LV). Nine viable neutralizing antibody-escape variants were isolated from 9 of these pigs and their neutralizing antibody-escape mutant-identity was confirmed by the acquired resistance to neutralization by autologous neutralizing sera. Six out of 9 neutralizing antibody-escape variants contained aa substitutions in the GP4 neutralizing epitope and had become resistant to neutralization by a monoclonal antibody (mAb) against this epitope. In addition, in all 6 corresponding pigs, antibodies against this epitope were detected early in infection. In contrast to these 6 virus variants, the 3 other antibody-escape variants did not contain aa substitutions in the GP4 neutralizing epitope and were still sensitive to neutralization by the GP4-specific mAb. These antibody-escape variants were isolated from pigs that did not contain antibodies against this epitope early in infection. All these findings together strongly indicate that aa substitutions in the GP4 neutralizing epitope can abrogate antibody recognition, and that neutralizing antibodies might be responsible for the selection of neutralizing antibody-resistant variants with aa substitutions in the neutralizing epitope on GP4. In conclusion, this study indicates that neutralizing antibodies in pigs might be a driving force in the rapid evolution of the neutralizing epitope on GP4 of European PRRSV strains.
Collapse
Affiliation(s)
- Sarah Costers
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | | | | | |
Collapse
|
159
|
Yu M, Liu X, Sun L, Chen C, Ma G, Kitamura Y, Gao GF, Liu W. Subcellular localization and topology of porcine reproductive and respiratory syndrome virus E protein. Virus Res 2010; 152:104-14. [DOI: 10.1016/j.virusres.2010.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/10/2010] [Accepted: 06/10/2010] [Indexed: 12/23/2022]
|
160
|
Sun Z, Chen Z, Lawson SR, Fang Y. The cysteine protease domain of porcine reproductive and respiratory syndrome virus nonstructural protein 2 possesses deubiquitinating and interferon antagonism functions. J Virol 2010; 84:7832-46. [PMID: 20504922 PMCID: PMC2897636 DOI: 10.1128/jvi.00217-10] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus nonstructural protein 2 (nsp2) contains a cysteine protease domain at its N terminus, which belongs to the ovarian tumor (OTU) protease family. In this study, we demonstrated that the PRRSV nsp2 OTU domain antagonizes the type I interferon induction by interfering with the NF-kappaB signaling pathway. Further analysis revealed that the nsp2 OTU domain possesses ubiquitin-deconjugating activity. This domain has the ability to inhibit NF-kappaB activation by interfering with the polyubiquitination process of IkappaBalpha, which subsequently prevents IkappaBalpha degradation. To determine whether the nsp2 protein antagonist function can be ablated from the virus, we introduced point mutations into the OTU domain region by use of reverse genetics. The D458A, S462A, and D465A mutations targeting on a B-cell epitope in the OTU domain region generated the viable recombinant viruses, and the S462A and D465A mutants were attenuated for growth in cell culture. The OTU domain mutants were examined to determine whether mutations in the nsp2 OTU domain region altered virus ability to inhibit NF-kappaB activation. The result showed that certain mutations lethal to virus replication impaired the ability of nsp2 to inhibit NF-kappaB activation but that the viable recombinant viruses, vSD-S462A and vSD-D465A, were unable to inhibit NF-kappaB activation as effectively as the wild-type virus. This study represents a fundamental step in elucidating the role of nsp2 in PRRS pathogenesis and provides an important insight in future modified live-virus vaccine development.
Collapse
Affiliation(s)
- Zhi Sun
- Department of Veterinary and Biomedical Science, Department of Biology/Microbiology, South Dakota State University, Brookings, South Dakota 57007
| | - Zhenhai Chen
- Department of Veterinary and Biomedical Science, Department of Biology/Microbiology, South Dakota State University, Brookings, South Dakota 57007
| | - Steven R. Lawson
- Department of Veterinary and Biomedical Science, Department of Biology/Microbiology, South Dakota State University, Brookings, South Dakota 57007
| | - Ying Fang
- Department of Veterinary and Biomedical Science, Department of Biology/Microbiology, South Dakota State University, Brookings, South Dakota 57007
- Corresponding author. Mailing address: Department of Veterinary and Biomedical Science, Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007-1396. Phone: (605) 688-6647. Fax: (605) 688-6003. E-mail:
| |
Collapse
|
161
|
N-acetylpenicillamine inhibits the replication of porcine reproductive and respiratory syndrome virus in vitro. Vet Res Commun 2010; 34:607-17. [PMID: 20676761 PMCID: PMC7089432 DOI: 10.1007/s11259-010-9435-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2010] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) was proposed to be an important molecule against some microorganisms. In this study, we investigated the inhibitory effect of NO on the infection by porcine reproductive and respiratory syndrome virus (PRRSV) in vitro and the role of NO in the defense against PRRSV. Our results indicated that exogenous NO did not inhibit PRRSV infection. Unexpectedly, N-acetylpenicillamine (NAP), a commonly used compound as negative control for NO-producing reagents, inhibited PRRSV replication. Thus, the inhibition effect of NAP on PRRSV replication was further explored. We found that the maximal inhibition effect of NAP on PRRSV replication was achieved upon treatment 1 h after virus infection and the virus yield was reduced by approximately 50 fold in the presence of 400 μM NAP. An obvious inhibitory effect on viral RNA and protein synthesis was also observed. However, the inhibitory effect was only achieved at early phase of virus infection. The normal virus yield could be restored upon the removal of NAP treatment. The inhibitory effect might be caused by sulfhydryl-reducing capacity and metal chelating properties of NAP. These studies suggested that (i) NO production or NO synthase (NOS) expression profiling may not be a reliable index for the immune response to PRRSV; (ii) NAP could inhibit the replication of PRRSV.
Collapse
|
162
|
Song J, Shen D, Cui J, Zhao B. Accelerated evolution of PRRSV during recent outbreaks in China. Virus Genes 2010; 41:241-5. [PMID: 20652733 DOI: 10.1007/s11262-010-0507-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 06/19/2010] [Indexed: 11/25/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is reported to have evolved at a higher evolutionary rate than other RNA viruses. However, whether this virus is capable of evolutionary acceleration during outbreaks remains unknown. In this study, we analyze the data based on ORFs of eight newly obtained epidemic PRRSVs from Hebei province with other viral genomes from GenBank. Phylogenetic analysis suggested that all isolates during recent outbreaks (2006-2008) are grouped together. We also find that ORF5 genes of this viral group are positively selected, suggesting their higher evolutionary rates and coinciding with that period of large-scale outbreaks in China. The evolutionary rate of 3.29 x 10(-3) substitutions per nucleotide site per year also suggests the higher evolutionary rate of these viruses. We concluded that PRRSVs isolated during 2006-2008 in China underwent accelerated evolution, and predicted that this accelerated evolution equip these viruses more adapted to their primary hosts.
Collapse
Affiliation(s)
- Jie Song
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | | | | | | |
Collapse
|
163
|
Wang C, Wu B, Amer S, Luo J, Zhang H, Guo Y, Dong G, Zhao B, He H. Phylogenetic analysis and molecular characteristics of seven variant Chinese field isolates of PRRSV. BMC Microbiol 2010; 10:146. [PMID: 20482897 PMCID: PMC2889949 DOI: 10.1186/1471-2180-10-146] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 05/20/2010] [Indexed: 01/22/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome (PRRS) has now been widely recognized as an economically important disease. The objective of this study was to compare the molecular and biological characteristics of porcine reproductive and respiratory syndrome virus (PRRSV) field isolates in China to those of the modified live virus (MLV) PRRS vaccine and its parent strain (ATCC VR2332). Results Five genes (GP2, GP3, GP4, GP5 and NSP2) of seven isolates of PRRSV from China, designated LS-4, HM-1, HQ-5, HQ-6, GC-2, GCH-3 and ST-7/2008, were sequenced and analyzed. Phylogenetic analyses based on the nucleotide sequence of the ORF2-5 and NSP2 showed that the seven Chinese isolates belonged to the same genetic subgroup and were related to the North American PRRSV genotype. Comparative analysis with the relevant sequences of another Chinese isolate (BJ-4) and North American (VR2332 and MLV) viruses revealed that these isolates have 80.8-92.9% homology with VR-2332, and 81.3-98.8% identity with MLV and 80.7-92.9% with BJ-4. All Nsp2 nonstructural protein of these seven isolates exhibited variations (a 29 amino acids deletion) in comparison with other North American PRRSV isolates. Therefore, these isolates were novel strain with unique amino acid composition. However, they all share more than 97% identity with other highly pathogenic Chinese PRRSV strains. Additionally, there are extensive amino acid (aa) mutations in the GP5 protein and the Nsp2 protein when compared with the previous isolates. Conclusions These results might be useful to study the genetic diversity of PRRSV in China and to track the infection sources as well as for vaccines development.
Collapse
Affiliation(s)
- Chengmin Wang
- National Research Center for Wildlife Born Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Van Breedam W, Delputte PL, Van Gorp H, Misinzo G, Vanderheijden N, Duan X, Nauwynck HJ. Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage. J Gen Virol 2010; 91:1659-67. [PMID: 20410315 DOI: 10.1099/vir.0.020503-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) emerged in the late 1980s and rapidly became one of the most significant viral pathogens in the swine industry. In vivo, the virus shows a very narrow cell tropism and targets specific subsets of porcine macrophages. The entry of PRRSV into its host cell is the first crucial step in infection and has been the focus of many fundamental studies. This review provides a comprehensive overview of the current knowledge on PRRSV entry into the porcine macrophage, covering virus binding, internalization and genome release, and integrates these findings into a general model of the entry process.
Collapse
Affiliation(s)
- Wander Van Breedam
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | | | | | | | | |
Collapse
|
165
|
The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis. Anim Health Res Rev 2010; 11:135-63. [DOI: 10.1017/s1466252310000034] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractPorcine reproductive and respiratory syndrome (PRRS) is an economically devastating viral disease affecting the swine industry worldwide. The etiological agent, PRRS virus (PRRSV), possesses a RNA viral genome with nine open reading frames (ORFs). The ORF1a and ORF1b replicase-associated genes encode the polyproteins pp1a and pp1ab, respectively. The pp1a is processed in nine non-structural proteins (nsps): nsp1α, nsp1β, and nsp2 to nsp8. Proteolytic cleavage of pp1ab generates products nsp9 to nsp12. The proteolytic pp1a cleavage products process and cleave pp1a and pp1ab into nsp products. The nsp9 to nsp12 are involved in virus genome transcription and replication. The 3′ end of the viral genome encodes four minor and three major structural proteins. The GP2a, GP3and GP4(encoded by ORF2a, 3 and 4), are glycosylated membrane associated minor structural proteins. The fourth minor structural protein, the E protein (encoded by ORF2b), is an unglycosylated membrane associated protein. The viral envelope contains two major structural proteins: a glycosylated major envelope protein GP5(encoded by ORF5) and an unglycosylated membrane M protein (encoded by ORF6). The third major structural protein is the nucleocapsid N protein (encoded by ORF7). All PRRSV non-structural and structural proteins are essential for virus replication, and PRRSV infectivity is relatively intolerant to subtle changes within the structural proteins. PRRSV virulence is multigenic and resides in both the non-structural and structural viral proteins. This review discusses the molecular characteristics, biological and immunological functions of the PRRSV structural and nsps and their involvement in the virus pathogenesis.
Collapse
|
166
|
Zhou JX, Xue JD, Yu T, Zhang JB, Liu Y, Jiang N, Li YL, Hu RL. Immune responses in pigs induced by recombinant canine adenovirus 2 expressing the glycoprotein 5 of porcine reproductive and respiratory syndrome virus. Vet Res Commun 2010; 34:371-80. [PMID: 20432066 DOI: 10.1007/s11259-010-9364-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2010] [Indexed: 01/11/2023]
Abstract
To develop a new type vaccine for porcine reproductive and respiratory syndrome (PRRS) prevention by using canine adenovirus 2(CAV-2) as vector, the Glycoprotein 5(GP5) gene from PRRSV strain JL was amplified by RT-PCR, and the expression cassette of GP5 was constructed using the human cytomegalovirus (HCMV) promoter and the simian virus 40 (SV40) early mRNA polyadenylation signal. The expression cassette of Glycoprotein 5 was cloned into the CAV-2 genome in which E3 region had been partly deleted, and the recombinant virus (CAV-2-GP5) was obtained by transfecting the recombinant CAV-2-GP5 genome into MDCK cells together with Lipofectamine 2000. Immunization trial in pigs with the recombinant virus CAV-2-GP5 showed that CAV-2-GP5 could stimulate a specific immune response to PRRSV. Immune response to the GP5 and PRRSV was confirmed by ELISA, neutralization test and lymphocyte proliferative responses, and western blotting confirmed expression of GP5 by the vector in cells. These results indicated that CAV-2 may serve as a vector for development of PRRSV vaccine in pigs, and the CAV-2-GP5 might be a candidate vaccine to be tested for preventing PRRSV infection.
Collapse
Affiliation(s)
- J-X Zhou
- Laboratory of Epidemiology, Veterinary Research Institute, Academy of Military Medical Science, 1068 Qinglong Road, Changchun, Jilin, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Chen Z, Lawson S, Sun Z, Zhou X, Guan X, Christopher-Hennings J, Nelson E, Fang Y. Identification of two auto-cleavage products of nonstructural protein 1 (nsp1) in porcine reproductive and respiratory syndrome virus infected cells: nsp1 function as interferon antagonist. Virology 2010; 398:87-97. [PMID: 20006994 PMCID: PMC7111964 DOI: 10.1016/j.virol.2009.11.033] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/01/2009] [Accepted: 11/19/2009] [Indexed: 12/13/2022]
Abstract
The porcine reproductive and respiratory syndrome virus nsp1 is predicted to be auto-cleaved from the replicase polyprotein into nsp1alpha and nsp1beta subunits. In infected cells, we detected the actual existence of nsp1alpha and nsp1beta. Cleavage sites between nsp1alpha/nsp1beta and nsp1beta/nsp2 were identified by protein microsequencing analysis. Time course study showed that nsp1alpha and nsp1beta mainly localize into the cell nucleus after 10 h post infection. Further analysis revealed that both proteins dramatically inhibited IFN-beta expression. The nsp1beta was observed to significantly inhibit expression from an interferon-stimulated response element promoter after Sendai virus infection or interferon treatment. It was further determined to inhibit nuclear translocation of STAT1 in the JAK-STAT signaling pathway. These results demonstrated that nsp1beta has ability to inhibit both interferon synthesis and signaling, while nsp1alpha alone strongly inhibits interferon synthesis. These findings provide important insights into mechanisms of nsp1 in PRRSV pathogenesis and its impact in vaccine development.
Collapse
Affiliation(s)
- Z. Chen
- Department of Veterinary Science, South Dakota State University, Brookings, SD 57007, USA
| | - S. Lawson
- Department of Veterinary Science, South Dakota State University, Brookings, SD 57007, USA
| | - Z. Sun
- Department of Veterinary Science, South Dakota State University, Brookings, SD 57007, USA
| | - X. Zhou
- Department of Veterinary Science, South Dakota State University, Brookings, SD 57007, USA
| | - X. Guan
- Department of Pharmaceutical Science, South Dakota State University, Brookings, SD 57007, USA
| | | | - E.A. Nelson
- Department of Veterinary Science, South Dakota State University, Brookings, SD 57007, USA
| | - Y. Fang
- Department of Veterinary Science, South Dakota State University, Brookings, SD 57007, USA
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
168
|
The M/GP(5) glycoprotein complex of porcine reproductive and respiratory syndrome virus binds the sialoadhesin receptor in a sialic acid-dependent manner. PLoS Pathog 2010; 6:e1000730. [PMID: 20084110 PMCID: PMC2799551 DOI: 10.1371/journal.ppat.1000730] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 12/16/2009] [Indexed: 11/19/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to swine health worldwide and is considered the most significant viral disease in the swine industry today. In past years, studies on the entry of the virus into its host cell have led to the identification of a number of essential virus receptors and entry mediators. However, viral counterparts for these molecules have remained elusive and this has made rational development of new generation vaccines impossible. The main objective of this study was to identify the viral counterparts for sialoadhesin, a crucial PRRSV receptor on macrophages. For this purpose, a soluble form of sialoadhesin was constructed and validated. The soluble sialoadhesin could bind PRRSV in a sialic acid-dependent manner and could neutralize PRRSV infection of macrophages, thereby confirming the role of sialoadhesin as an essential PRRSV receptor on macrophages. Although sialic acids are present on the GP3, GP4 and GP5 envelope glycoproteins, only the M/GP5 glycoprotein complex of PRRSV was identified as a ligand for sialoadhesin. The interaction was found to be dependent on the sialic acid binding capacity of sialoadhesin and on the presence of sialic acids on GP5. These findings not only contribute to a better understanding of PRRSV biology, but the knowledge and tools generated in this study also hold the key to the development of a new generation of PRRSV vaccines. The porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to swine health worldwide. The virus specifically targets subpopulations of macrophages, central players in the immune system, and can persist in animals for extended periods of time due to a hampered immunity. At present, no vaccines are available that are both safe and effective and it is clear that a more rational vaccine design is needed to solve this problem. Therefore, advancing our fundamental understanding of PRRSV biology is crucial. The macrophage-specific lectin sialoadhesin is a crucial viral receptor on macrophages and although its role in PRRSV infection is well documented, its viral counterparts have remained unknown. Using a soluble form of sialoadhesin, we identified the M/GP5 glycoprotein complex of PRRSV as the ligand for sialoadhesin and found this ligand-receptor interaction to be critically dependent on the lectin activity of sialoadhesin and on sialic acids on the GP5 glycoprotein. These data represent a major breakthrough in the understanding of the role of PRRSV proteins in viral entry and pave the way for the development of a new generation of PRRSV vaccines capable of inducing an immunity that specifically blocks the interaction between viral M/GP5 and sialoadhesin.
Collapse
|
169
|
GP4 of porcine reproductive and respiratory syndrome virus contains a neutralizing epitope that is susceptible to immunoselection in vitro. Arch Virol 2010; 155:371-8. [DOI: 10.1007/s00705-009-0582-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
|
170
|
Du Y, Zuckermann FA, Yoo D. Myristoylation of the small envelope protein of porcine reproductive and respiratory syndrome virus is non-essential for virus infectivity but promotes its growth. Virus Res 2009; 147:294-9. [PMID: 19951726 PMCID: PMC7114369 DOI: 10.1016/j.virusres.2009.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/23/2009] [Accepted: 11/25/2009] [Indexed: 11/26/2022]
Abstract
The small envelope (E) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is known to possess the properties of an ion-channel protein, and in the present study we show that the PRRSV E protein is N-terminal myristoylated. The PRRSV E protein contains the consensus motif of 1MGxxxS6 for myristoylation, and in the presence of 2-hydroxymyristic acid, the virus titer decreased by 2.5 log TCID50 and the level of viral RNA was reduced significantly. When the glycine at position 2 was mutated to alanine (G2A) using an infectious cDNA clone, a viable virus was recoverable and a mutant PRRSV was obtained. The titers of G2A mutant virus were 2.0 × 104 and 1.0 × 106 TCID50/ml for ‘passage-2’ and ‘passage-3’ viruses, respectively, in PAM cells, and these titers were significantly lower than those of wild-type PRRSV. When treated with the myristoylation inhibitor, the G2A mutant virus was resistant to the drug. The data show that the PRRSV E protein myristoylation is non-essential for PRRSV infectivity but promotes the growth of the virus.
Collapse
Affiliation(s)
- Yijun Du
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802, USA
| | | | | |
Collapse
|
171
|
Chen Z, Zhou X, Lunney JK, Lawson S, Sun Z, Brown E, Christopher-Hennings J, Knudsen D, Nelson E, Fang Y. Immunodominant epitopes in nsp2 of porcine reproductive and respiratory syndrome virus are dispensable for replication, but play an important role in modulation of the host immune response. J Gen Virol 2009; 91:1047-57. [PMID: 19923257 DOI: 10.1099/vir.0.016212-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Non-structural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) is the largest protein of this virus. In addition to its crucial role in virus replication, recent studies have indicated its involvement in modulating host immunity. In this study, each of the six identified immunodominant nsp2 B-cell epitopes (ES2-ES7) was deleted using a type I PRRSV cDNA infectious clone. Deletion of ES3, ES4 or ES7 allowed the generation of viable virus. In comparison with the parental virus, the DeltaES3 mutant showed increased cytolytic activity and more vigorous growth kinetics, whilst the DeltaES4 and DeltaES7 mutants displayed decreased cytolytic activity and slower growth kinetics in MARC-145 cells. These nsp2 mutants were characterized further in a nursery pig disease model. The results showed that the DeltaES4 and DeltaES7 mutants exhibited attenuated phenotypes, whereas the DeltaES3 mutant produced a higher peak viral load in pigs. The antibody response reached similar levels, as measured by IDEXX ELISA at 21 days post-infection, and slightly higher levels of mean virus neutralizing titres were observed from pigs infected by the DeltaES4 and DeltaES7 mutants. The expression of innate and T-helper 1 cytokines was measured in peripheral blood mononuclear cells or virus-infected macrophages. The results consistently showed that interleukin-1beta and tumour necrosis factor alpha expression levels were downregulated in cells that were stimulated (or infected) with the DeltaES3 mutant compared with parental virus and the other nsp2 deletion mutants. These results suggest that certain regions in nsp2 are non-essential for PRRSV replication but may play an important role in modulation of host immunity in vivo.
Collapse
Affiliation(s)
- Zhenhai Chen
- Veterinary Science Department, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Díaz I, Pujols J, Ganges L, Gimeno M, Darwich L, Domingo M, Mateu E. In silico prediction and ex vivo evaluation of potential T-cell epitopes in glycoproteins 4 and 5 and nucleocapsid protein of genotype-I (European) of porcine reproductive and respiratory syndrome virus. Vaccine 2009; 27:5603-11. [DOI: 10.1016/j.vaccine.2009.07.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 07/03/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
|
173
|
Vanhee M, Delputte PL, Delrue I, Geldhof MF, Nauwynck HJ. Development of an experimental inactivated PRRSV vaccine that induces virus-neutralizing antibodies. Vet Res 2009; 40:63. [DOI: 10.1051/vetres/2009046] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 08/11/2009] [Indexed: 11/14/2022] Open
|
174
|
GP3 is a structural component of the PRRSV type II (US) virion. Virology 2009; 390:31-6. [DOI: 10.1016/j.virol.2009.04.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/23/2009] [Accepted: 04/22/2009] [Indexed: 11/18/2022]
|
175
|
Zhou L, Chen S, Zhang J, Zeng J, Guo X, Ge X, Zhang D, Yang H. Molecular variation analysis of porcine reproductive and respiratory syndrome virus in China. Virus Res 2009; 145:97-105. [PMID: 19559739 DOI: 10.1016/j.virusres.2009.06.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 11/16/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is characteristic of genetically extensive variation. The objective of the present study was to analyze the molecular variation and evolution of porcine reproductive and respiratory syndrome virus in China based on the complete genomic sequences of three highly pathogenic Chinese PRRSV strains isolated in 2006 and the sequences of the amplified Nsp2, ORF5 and ORF7 genes from clinical specimens during 2006-2008. Full-length genome sequencing and phylogenetic analysis showed that the three strains (JXwn06, BJsy06 and NX06) had a unique 30-amino-acid discontinuous deletion in Nsp2, and were classified into the same subgroup that consisted of the most Chinese strains isolated during 2006-2007, the pandemic period of atypical PRRS. The evolution analysis suggested that the emergence of the highly pathogenic PRRSV in China experienced a gradual variation and evolution accumulation progress from Chinese domestic virus. The variation analysis of the amplified 41 Nsp2, 59 ORF5 and 59 ORF7 genes indicated that the diversity of PRRSV strain existed in the field, and the highly pathogenic PRRSV strain with the 30-amino-acid deletion in Nsp2 was the dominating virus in China in recent years. Our data contribute to the understanding of molecular variation and epidemiology surveillance of PRRSV in China.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Brown E, Lawson S, Welbon C, Gnanandarajah J, Li J, Murtaugh MP, Nelson EA, Molina RM, Zimmerman JJ, Rowland RRR, Fang Y. Antibody response to porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural proteins and implications for diagnostic detection and differentiation of PRRSV types I and II. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:628-35. [PMID: 19261778 PMCID: PMC2681581 DOI: 10.1128/cvi.00483-08] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/20/2009] [Accepted: 02/24/2009] [Indexed: 01/09/2023]
Abstract
To further characterize the humoral immune response of pigs to porcine reproductive and respiratory syndrome virus (PRRSV), direct enzyme-linked immunosorbent assays (ELISA) were used to study the kinetics of antibody responses directed against PRRSV nonstructural proteins in pigs experimentally exposed to the virus. The highest immunoreactivities were against nsp1, nsp2, and nsp7. Using the recombinant nsp7 as an antigen, we validated a dual ELISA for the simultaneous detection and differentiation of serum antibodies against type I and type II PRRSV. Receiver operating characteristic analysis based on 1,334 known-positive and 1,357 known-negative samples showed good specificity (98.3% to type I and 99.3% to type II) and sensitivity (97.4% for type I and 99.8% for type II). To differentiate type I and type II PRRSV, 470 sera originating from experimentally inoculated pigs were tested, and positive sera were correctly differentiated in 469 of 470 samples. The capability of the nsp7 dual ELISA to detect serum antibody responses from pigs infected with various genetically different field strains was determined. The nsp7 dual ELISA possessed 97.6% agreement with the Idexx HerdChek PRRS 2XR ELISA. In further testing of Idexx ELISA suspected false-positive samples, the nsp7 dual ELISA resolved 98% of the samples as negative. Taken together, these results indicate that the nsp7 dual ELISA can be used as a differential test for PRRSV serology with high levels of sensitivity and specificity. This ELISA offers an additional tool for routine or follow-up diagnostics, as well as having substantial value in epidemiological surveys and outbreak investigations.
Collapse
Affiliation(s)
- Elizabeth Brown
- Department of Veterinary Science, Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007-1396, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Spilman MS, Welbon C, Nelson E, Dokland T. Cryo-electron tomography of porcine reproductive and respiratory syndrome virus: organization of the nucleocapsid. J Gen Virol 2009; 90:527-535. [PMID: 19218197 DOI: 10.1099/vir.0.007674-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Porcine reproductive and respiratory virus (PRRSV) is an enveloped positive-sense RNA virus of the family Arteriviridae that causes severe and persistent disease in pigs worldwide. The PRRSV virion consists of a lipid envelope that contains several envelope proteins surrounding a nucleocapsid core that encapsidates the RNA genome. To provide a better understanding of the structure and assembly of PRRSV, we have carried out cryo-electron microscopy and tomographic reconstruction of virions grown in MARC-145 cells. The virions are pleomorphic, round to egg-shaped particles with an average diameter of 58 nm. The particles display a smooth outer surface with only a few protruding features, presumably corresponding to the envelope protein complexes. The virions contain a double-layered, hollow core with an average diameter of 39 nm, which is separated from the envelope by a 2-3 nm gap. Analysis of the three-dimensional structure suggests that the core is composed of a double-layered chain of nucleocapsid proteins bundled into a hollow ball.
Collapse
Affiliation(s)
- Michael S Spilman
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Craig Welbon
- Department of Veterinary Science, South Dakota State University, Brookings, SD 57007, USA
| | - Eric Nelson
- Department of Veterinary Science, South Dakota State University, Brookings, SD 57007, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
178
|
Nam E, Park CK, Kim SH, Joo YS, Yeo SG, Lee C. Complete genomic characterization of a European type 1 porcine reproductive and respiratory syndrome virus isolate in Korea. Arch Virol 2009; 154:629-38. [PMID: 19296201 DOI: 10.1007/s00705-009-0347-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 02/12/2009] [Indexed: 11/24/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) isolates belonging to the European genotype 1 have recently emerged in South Korea, suggesting potential problems for disease control. In the present study, we attempted to determine the complete nucleotide sequence of the first Korean type 1 PRRSV isolate, designated KNU-07. The full-length genome of KNU-07 was found to be 15,038 nucleotides in length, which was 60 nucleotides shorter than the type 1 prototype strain Lelystad due to a notable 60-bp deletion within the nonstructural protein 2 (NSP2). The KNU-07 genome was shown to consist of a 221-nucleotide (nt) 5' untranslated region (UTR), a 14,703-nt protein-coding region, and a 114-nt 3' UTR, followed by a 42-73-bp poly(A) tail. A nucleotide sequence comparison of the KNU-07 genome with 20 complete PRRSV genomes revealed a 10.5-13.3% and 39.5-40.3% divergence from type 1 and type 2 strains, respectively, at the genome level, indicating a high similarity to the virus strains commonly identified as the European genotype. In order to investigate genetic variation and to understand the molecular evolution of the type 1 isolate in Korea, extensive phylogenetic analyses were performed using the ORF5 and ORF7 nucleotide sequences of published type 1 PRRSV isolates. The data further indicated that the newly emerging type 1 isolate KNU-07 belongs to the recently proposed pan-European subtype 1. Taken together, the results of this study describe the genomic characterization of the type 1 PRRSV isolated in South Korea, suggesting a recent introduction of the virus typical for this genotype that has commonly appeared worldwide.
Collapse
Affiliation(s)
- Eeuri Nam
- Department of Microbiology, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
179
|
Li G, Jiang P, Li Y, Wang X, Huang J, Bai J, Cao J, Wu B, Chen N, Zeshan B. Inhibition of porcine reproductive and respiratory syndrome virus replication by adenovirus-mediated RNA interference both in porcine alveolar macrophages and swine. Antiviral Res 2009; 82:157-65. [PMID: 19428607 DOI: 10.1016/j.antiviral.2009.02.202] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 02/02/2009] [Accepted: 02/26/2009] [Indexed: 01/18/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been mainly responsible for the heavy economic losses in many swine-producing regions. Current vaccination strategies and antiviral drugs provide only limited protection. Consequently, there is a need to develop a new antiviral strategy. In this study, two recombinant adenoviruses expressing short-hairpin RNAs (shRNAs) directed against ORF1b of PRRSV S1 strain were constructed and the inhibition of PRRSV replication was determined. The results showed that pretreatment with these shRNAs delivered by recombinant adenovirus could induce a significant inhibition of viral RNA and protein level in Marc-145 cells infected with PRRSV S1 strains. One recombinant adenovirus (rAd-P2) was found to be also effective in inhibiting the replication of highly virulent PRRSV SY0608 strain in Marc-145 cells and porcine alveolar macrophages at both the protein and ORF1b mRNA level. The antiviral effect was dose-dependent and sustained for at least 96h. Twenty 6-week old piglets were assigned to four groups each with five piglets. Groups 1 and 2 were inoculated intramuscularly with rAd-P2 and mock construct rAd-mP2 individually. After 24h, groups 1, 2 and 3 were challenged intramuscularly with the SY0608 strain. Group 4 remained unchallenged but with PBS as mock. The results showed that the viral load of PRRSV in serum and lung tissue of swine was suppressed effectively by rAd-P2. The clinical signs and pathological lesions in the pigs inoculated with rAd-P2 were milder than those in rAd-mP2 negative and PRRSV control. These results indicated that shRNAs mediated by the adenovirus could inhibit PRRSV infection sufficiently in vitro as well as in vivo. RNAi mediated by recombinant adenovirus might be a potential new tool for controlling PRRSV infection. Of course, the protective efficiency of rAd-P2 should be made by using a large number of pigs in future.
Collapse
Affiliation(s)
- Guangming Li
- Ministry of Agriculture, Nanjing Agriculture University, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Balka G, Hornyák A, Bálint A, Benyeda Z, Rusvai M. Development of a one-step real-time quantitative PCR assay based on primer-probe energy transfer for the detection of porcine reproductive and respiratory syndrome virus. J Virol Methods 2009; 158:41-5. [PMID: 19200443 PMCID: PMC7112897 DOI: 10.1016/j.jviromet.2009.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/28/2008] [Accepted: 01/14/2009] [Indexed: 11/15/2022]
Abstract
A one-step real-time RT-PCR method has been developed for the simultaneous detection of both genotypes of porcine reproductive and respiratory syndrome virus (PRRSV). The assay is based on primer-probe energy transfer, and the most important advantage of this is the relative tolerance towards mutations in the target-probe region. The primers and the probe were designed using an alignment of 235 Type 1 (including all subtypes) and Type 2 PRRSV strains. According to the alignment, multiple degenerations were included in the forward and reverse primers to enable the detection of all PRRSV strains deposited in the GenBank. Specificity was tested using 37 different PRRSV strains and eight other swine pathogen viruses. The detection limit was approximately 10 copies of RNA prepared from the Lelystad virus, a European Subtype 3 virus (Belarus strain Soz-8), and an American vaccine virus (Ingelvac MLV®). One TCID50 was the detection limit in the case of the cell cultured Lelystad virus and an American wild type isolate, respectively. The melting point analysis revealed melting point decrease, but no significant sensitivity and signal loss in the presence of numerous (up to five) target-probe mismatches, indicating the capability of tolerating even more mutations. The method was suitable for the detection and quantitation of phylogenetically divergent strains and can serve as a robust, high throughput tool for molecular diagnosis of the PRRSV.
Collapse
Affiliation(s)
- Gyula Balka
- Department of Pathology and Forensic Veterinary Medicine, Faculty of Veterinary Science, Szent István University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
181
|
Molecular characterization of a highly pathogenetic porcine reproductive and respiratory syndrome virus variant in Hubei, China. Virol Sin 2009. [DOI: 10.1007/s12250-009-3012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
182
|
HSP70 fused with GP3 and GP5 of porcine reproductive and respiratory syndrome virus enhanced the immune responses and protective efficacy against virulent PRRSV challenge in pigs. Vaccine 2009; 27:825-32. [DOI: 10.1016/j.vaccine.2008.11.088] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/19/2008] [Accepted: 11/22/2008] [Indexed: 11/18/2022]
|
183
|
Li G, Jiang P, Li Y, Wang X, Huang J, Du Y, Zeshan B. Effective suppression of replication of porcine reproductive and respiratory syndrome virus by adenovirus-mediated small interfering RNAs targeting ORF1b, 5 and 7 genes. J Virol Methods 2009; 157:40-6. [PMID: 19118577 DOI: 10.1016/j.jviromet.2008.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/27/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
Abstract
Porcine reproductive and respiratory syndrome virus has caused hundreds of thousands of deaths in pig farms in many swine-producing areas in the world in recent years. However, at present there is no effective method to prevent and control the disease, and there is a need to develop new antiviral strategies. In this study, four recombinant adenoviruses expressing shRNAs targeting ORF1b, ORF5 and ORF7 were constructed, and it was found that they could down-regulate effectively specific gene expression and inhibit viral replication in MARC-145 cells when compared to the controls. They could also inhibit effectively PRRSV replication in porcine alveolar macrophages. The inhibition effect was dose-dependent and could be sustained for at least 96h in macrophages. In addition, PRRSV replication could be suppressed significantly by shRNA in cells infected previously or simultaneously with PRRSV. The results indicated that the shRNA-expressing rAd5 targeting to various gene regions of PRRSV might be a potential anti-PRRSV strategy.
Collapse
Affiliation(s)
- Guangming Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agriculture University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
184
|
Fang Y, Christopher-Hennings J, Brown E, Liu H, Chen Z, Lawson SR, Breen R, Clement T, Gao X, Bao J, Knudsen D, Daly R, Nelson E. Development of genetic markers in the non-structural protein 2 region of a US type 1 porcine reproductive and respiratory syndrome virus: implications for future recombinant marker vaccine development. J Gen Virol 2009; 89:3086-3096. [PMID: 19008397 DOI: 10.1099/vir.0.2008/003426-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a major problem in the pork industry worldwide. The limitations of current PRRSV vaccines require the development of a new generation of vaccines. One of the key steps in future vaccine development is to include markers for diagnostic differentiation of vaccinated animals from those naturally infected with wild-type virus. Using a cDNA infectious clone of type 1 PRRSV, this study constructed a recombinant green fluorescent protein (GFP)-tagged PRRSV containing a deletion of an immunogenic epitope, ES4, in the nsp2 region. In a nursery pig disease model, the recombinant virus was attenuated with a lower level of viraemia in comparison with that of the parental virus. To complement the marker identification, GFP and ES4 epitope-based ELISAs were developed. Pigs immunized with the recombinant virus lacked antibodies directed against the corresponding deleted epitope, but generated a high-level antibody response to GFP by 14 days post-infection. These results demonstrated that this recombinant marker virus, in conjunction with the diagnostic tests, enables serological differentiation between marker virus-infected animals and those infected with the wild-type virus. This rationally designed marker virus will provide a basis for further development of PRRSV marker vaccines to assist with the control of PRRS.
Collapse
Affiliation(s)
- Ying Fang
- Center for Infectious Disease Research and Vaccinology, Veterinary Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Jane Christopher-Hennings
- Center for Infectious Disease Research and Vaccinology, Veterinary Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Elizabeth Brown
- Center for Infectious Disease Research and Vaccinology, Veterinary Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Haixia Liu
- Center for Infectious Disease Research and Vaccinology, Veterinary Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Zhenhai Chen
- Center for Infectious Disease Research and Vaccinology, Veterinary Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Steven R Lawson
- Center for Infectious Disease Research and Vaccinology, Veterinary Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Rachael Breen
- Center for Infectious Disease Research and Vaccinology, Veterinary Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Travis Clement
- Center for Infectious Disease Research and Vaccinology, Veterinary Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Xiaofei Gao
- Center for Infectious Disease Research and Vaccinology, Veterinary Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Jingjing Bao
- Center for Infectious Disease Research and Vaccinology, Veterinary Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - David Knudsen
- Center for Infectious Disease Research and Vaccinology, Veterinary Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Russell Daly
- Center for Infectious Disease Research and Vaccinology, Veterinary Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Eric Nelson
- Center for Infectious Disease Research and Vaccinology, Veterinary Science Department, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
185
|
Modulation of CD163 receptor expression and replication of porcine reproductive and respiratory syndrome virus in porcine macrophages. Virus Res 2009; 140:161-71. [PMID: 19111584 DOI: 10.1016/j.virusres.2008.12.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 11/26/2008] [Accepted: 12/02/2008] [Indexed: 02/03/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has a specific cell tropism for differentiated macrophages, such as porcine alveolar macrophages (PAMs). We analyzed the expression of CD163 on PAMs and macrophages derived from CD14 positive blood monocytes (MDMs), in correlation with PRRSV replication. By flow cytometry analysis, we showed that the levels of CD163 expression correlated well with the overall level of PRRSV replication. We further examined the effects of modulators of macrophage function, including 12-O-tetradecanoylphorbol-13-acetate (TPA), lipopolysaccharide (LPS), and interleukin (IL)-10 on the expression of CD163 and PRRSV replication. Pre-treatment of PAMs or MDMs with TPA or LPS resulted in decreased expression of CD163 and reduction in PRRSV replication. On the contrary, the incubation of CD14 positive monocytes with IL-10 during differentiation into MDMs resulted in up-regulated expression of CD163 with a corresponding increase in PRRSV infection. These data indicate that the expression of CD163 on macrophages in different microenvironments, in vivo, may determine the replication efficiency and subsequent pathogenecity of PRRSV.
Collapse
|
186
|
Molina RM, Chittick W, Nelson EA, Christopher-Hennings J, Rowland RRR, Zimmerman JJ. Diagnostic Performance of Assays for the Detection of Anti-Porcine Reproductive and Respiratory Syndrome Virus Antibodies in Serum and Muscle Transudate (“Meat Juice”) Based on Samples Collected under Experimental Conditions. J Vet Diagn Invest 2008; 20:735-43. [DOI: 10.1177/104063870802000604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Three assays were evaluated for their ability to detect antibodies against Porcine reproductive and respiratory syndrome virus (PRRSV) in porcine muscle transudate (“meat juice”) samples. Samples were derived from 91 pigs inoculated with PRRSV isolate VR-2332 and 46 age-matched controls. Serum and muscle ( Musculus longissimus dorsi) samples were collected from randomly selected animals euthanized at ∼14-day intervals from 28 to 202 days postinoculation. Serum samples were assayed at a dilution of 1:40, and muscle transudate samples were assayed at 5 dilutions (1:2, 1:5, 1:10, 1:20, 1:40) using a commercial PRRSV antibody enzyme-linked immunosorbent assay (ELISA). In addition, muscle transudate samples were tested using an indirect fluorescent antibody test (IFAT) at 5 dilutions (1:2, 1:5, 1:10, 1:20, 1:40). Attempts to assay muscle transudate samples for neutralizing antibodies using a modified fluorescent focus neutralization assay were unsuccessful. Receiver operator characteristic (ROC) curve analyses were used to estimate cutoff thresholds and the associated diagnostic sensitivities and specificities for ELISA and IFAT at each dilution. For ELISA, muscle transudate samples at the ROC-optimized cutoffs were >95% sensitive and 100% specific at each dilution. At a cutoff dilution of ≥1:5, the IFAT diagnostic sensitivity and specificity of muscle transudate was estimated at 63.3% and 100%, respectively. These findings validated the use of muscle transudate samples in PRRSV surveillance programs based on ELISA antibody testing.
Collapse
Affiliation(s)
- Ramon M. Molina
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Wayne Chittick
- Boehringer Ingelheim Vetmedica, Inc., Health Management Center, Ames, IA
| | - Eric A. Nelson
- Department of Veterinary Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD
| | - Jane Christopher-Hennings
- Department of Veterinary Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD
| | - Raymond R. R. Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Jeffrey J. Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| |
Collapse
|
187
|
Kim WI, Yoon KJ. Molecular assessment of the role of envelope-associated structural proteins in cross neutralization among different PRRS viruses. Virus Genes 2008; 37:380-91. [PMID: 18770017 DOI: 10.1007/s11262-008-0278-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 08/14/2008] [Indexed: 11/30/2022]
Abstract
To assess the role of each envelope-associated protein (i.e., ORFs 2-6 products) of type 2 PRRSV in cross neutralization mediated by antibody, chimeric mutants were generated by replacing ORFs of a VR2332-based infectious clone with those of JA142, SDSU73, PRRS124, or 2M11715 that are genetically and antigenically distinct from VR2332 and two-way neutralization assays were performed on those mutants using VR2332, JA142, SDSU73, or PRRS124 antisera. All ORF 5-replaced mutants showed increased susceptibility or resistance against homologous or heterologous antisera, respectively, in comparison to that of the donor strains, but failed to achieve a complete reversion of cross neutralization. In contrast, substitution of ORFs 3-6 completely reversed the susceptibility of the virus to neutralization by antibody. Changes in ORFs 3, 5, and 6 were additively responsible for reversion of the susceptibility, suggesting that the genetic similarity of these ORFs should be considered for better cross neutralization between two different type 2 PRRS viruses.
Collapse
Affiliation(s)
- Won-Il Kim
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1600 South 16th Street, Ames, IA 50011, USA
| | | |
Collapse
|
188
|
Identification of virulence determinants of porcine reproductive and respiratory syndrome virus through construction of chimeric clones. Virology 2008; 380:371-8. [PMID: 18768197 DOI: 10.1016/j.virol.2008.07.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/25/2008] [Accepted: 07/26/2008] [Indexed: 11/23/2022]
Abstract
In order to determine virulence associated genes in porcine reproductive and respiratory syndrome virus (PRRSV), a series of chimeric viruses were generated where specific genomic regions of a highly virulent PRRSV infectious clone (FL12) were replaced with their counterparts of an attenuated vaccine strain (Prime Pac). Initial genome-wide scanning using a sow reproductive failure model indicated that non-structural (ORF 1a and 1b) and structural (ORF2-7) genomic regions appear to be sites where virulence determinants of PRRSV may reside. These results thus confirm the multigenic character of PRRSV virulence. Additional chimeras containing each individual structural ORFs (2 through 7) of Prime Pac and ORF5 of Neb-1 (parental strain of Prime Pac) within the FL12 backbone were generated and tested individually for further mapping of virulence determinants. Our results allow to conclude that NSP3-8 and ORF5 are the location of major virulence determinants, while other virulence determinants may also be contained in NSP1-3, NSP10-12 and ORF2.
Collapse
|
189
|
Molina RM, Cha SH, Chittick W, Lawson S, Murtaugh MP, Nelson EA, Christopher-Hennings J, Yoon KJ, Evans R, Rowland RRR, Wu WH, Zimmerman JJ. Immune response against porcine reproductive and respiratory syndrome virus during acute and chronic infection. Vet Immunol Immunopathol 2008; 126:283-92. [PMID: 18835044 DOI: 10.1016/j.vetimm.2008.08.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/25/2008] [Accepted: 08/13/2008] [Indexed: 11/25/2022]
Abstract
A significant obstacle to the prevention and control of porcine reproductive and respiratory syndrome virus (PRRSV) is the inability of current diagnostic tests to provide information concerning the stage of PRRSV infection. To explore possible prognostic combinations of cell-mediated and humoral immune responses, 3-week-old pigs (n=10) were intramuscularly (IM) inoculated with PRRSV isolate VR-2332 and followed for 193 days post-inoculation (DPI). Negative control pigs (n=10) were IM inoculated with minimum essential medium (MEM). At approximately 2-week intervals, blood samples were collected from all animals and tested for the number of interferon (IFN)-gamma-secreting peripheral blood mononuclear cells (enzyme-linked immunosorbent spot, Elispot), PRRSV viremia (quantitative reverse-transcriptase polymerase chain reaction, qRT-PCR), and serum antibodies using PRRSV protein ELISAs (N, GP5 3', GP5 5', M 5', M 3', GP5-M, and nsp2p) and a commercial PRRSV ELISA (IDEXX Laboratories Inc.). All pigs were viremic by 7 days post-inoculation, with 50% of the pigs resolving viremia by 56 DPI. A PRRSV-specific IFN-gamma response was detected at DPI 28, reached a plateau at 42 DPI, declined slightly, and remained relatively stable from 56 to 193 DPI. On the basis of ROC area under the curve (AUC) analysis, the ELISAs that most reliably differentiated PRRSV-inoculated pigs from negative control pigs were the commercial ELISA (AUC=0.97), the N ELISA (AUC=0.96), and the M 3' ELISA (AUC=0.93). Multivariate analyses were performed to evaluate the relationship between the immune response and the duration and level of viremia. With all antibody assays and Elispot included in the models, the analysis determined that the serum-virus neutralizing antibody response was the best predictor of both level and duration of viremia. It was concluded that humoral antibody responses, particularly the commercial ELISA, N ELISA, and M 3' ELISA were good predictors of prior exposure to PRRSV, but provided little information regarding the ontogeny of the protective immune response. Likewise, cell-mediated immunity based on the number of IFN-gamma-secreting lymphocytes was a poor prognosticator of PRRSV infection status.
Collapse
Affiliation(s)
- R M Molina
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Vashisht K, Erlandson KR, Firkins LD, Zuckermann FA, Goldberg TL. Evaluation of contact exposure as a method for acclimatizing growing pigs to porcine reproductive and respiratory syndrome virus. J Am Vet Med Assoc 2008; 232:1530-5. [PMID: 18479244 DOI: 10.2460/javma.232.10.1530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether 6.5-week-old gilts that have not previously been exposed to porcine reproductive and respiratory syndrome (PRRS) virus can be acclimatized to an endemic strain of the virus by commingling with age-matched gilts inoculated with the endemic PRRS virus strain and whether 10.5-week-old gilts can be acclimatized by commingling with age-matched inoculated or contact-exposed animals. DESIGN Randomized controlled longitudinal study. ANIMALS 80 gilts seronegative for PRRS on a farm in the Midwestern United States with a history of PRRS. PROCEDURES 20 gilts were inoculated with the endemic PRRS virus strain at 6.5 weeks of age (group 1) and were commingled with 20 gilts that were not inoculated (group 2). Four weeks later, the remaining 40 gilts (group 3) were commingled with gilts in groups 1 and 2. Presence of viral RNA in the tonsils, seroconversion rate, serum neutralizing antibody titers, interferon-gamma-mediated cellular immunity, and reproductive outcomes were analyzed. RESULTS Acclimatization of PRRS virus-naïve pigs was achieved by means of contact exposure at both 6.5 and 10.5 weeks of age. No differences were observed among the 3 groups with respect to development of anti-PRRS virus-specific immune responses or reproductive outcomes. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that contact exposure of 6.5- to 10.5-week-old pigs that had not previously been exposed to PRRS virus to pigs inoculated with endemic PRRS virus may be an efficient acclimatization strategy for controlling outbreaks on commercial farms on which PRRS is endemic.
Collapse
|
191
|
Yoshii M, Okinaga T, Miyazaki A, Kato K, Ikeda H, Tsunemitsu H. Genetic polymorphism of the nsp2 gene in North American type--porcine reproductive and respiratory syndrome virus. Arch Virol 2008; 153:1323-34. [PMID: 18543060 DOI: 10.1007/s00705-008-0098-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 03/23/2008] [Indexed: 10/22/2022]
Abstract
We determined the complete nucleotide sequence of EDRD-1, a Japanese strain of the North American type-Porcine reproductive and respiratory syndrome virus (PRRSV), and identified a novel 117-base deletion and 108-base insertion previously reported in the nsp2 gene of the SP strain, which contains the largest genome among PRRSV strains. Based on genetic analysis of the partial nsp2 gene in 30 additional Japanese isolates and 50 strains from various countries, we classified North American-type PRRSVs into three nsp2-types, represented by EDRD-1, which contains the 117-base deletion and 108-base insertion; prototypic VR-2332, which does not contain the deletion and insertion; and SP, which contains only the 108-base insertion. The three nsp2-types were phylogenetically separated, suggesting that these structural changes only occurred at earlier stages of viral evolution. In the nsp2 genes, we identified an additional 19 deletions ranging from 3 to 378 bases and 2 insertions of 3 and 21 bases which were not common within each nsp2-type, suggesting that these changes occurred at later stages of viral evolution. In addition, our results suggest that the three nsp2-types can be rapidly differentiated by RT-PCR using their polymorphisms as natural tags.
Collapse
Affiliation(s)
- Masaaki Yoshii
- Research Team for Viral Diseases, National Institute of Animal Health, Tsukuba, Ibaraki 305-0856, Japan.
| | | | | | | | | | | |
Collapse
|
192
|
Jiang W, Jiang P, Wang X, Li Y, Du Y, Wang X. Enhanced immune responses of mice inoculated recombinant adenoviruses expressing GP5 by fusion with GP3 and/or GP4 of PRRS virus. Virus Res 2008; 136:50-7. [PMID: 18538882 DOI: 10.1016/j.virusres.2008.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 04/07/2008] [Accepted: 04/18/2008] [Indexed: 01/11/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most important causes of economic losses of the swine industry. PRRS virus (PRRSV) infection poses a challenge to current vaccination strategies. In this study, three replication-defective adenovirus recombinants expressing fusion protein GP3-GP5, GP4-GP5, or GP3-GP4-GP5 were developed as potential vaccine against PRRSV in a mouse model. Six groups of BALB/c mice (24mice per group) were inoculated subcutaneously twice at 2-week intervals with above mentioned recombinants and other adenoviruses expressing single GP3, GP4, or GP5 protein. The results showed that the mice inoculated with recombinant adenoviruses developed PRRSV-specific antibodies, cellular immune response by 2 weeks post-boost-immunization. However, mice immunized with recombinant adenoviruses rAd-GP3-GP5, rAd-GP4-GP5, and rAd-GP3-GP4-GP5 developed significantly higher titers of neutralizing antibodies to PRRSV and produced stronger lymphocyte proliferation responses compared to mice immunized with rAd-GP3, rAd-GP4 or rAd-GP5 alone. It was also found that mice immunized with rAd-GP3-GP5 and rAd-GP3-GP4-GP5 were primed for significant higher levels of anti-PRRSV CTL responses than mice immunized with rAd-GP3 and rAd-GP5. These findings suggested that the recombinant adenoviruses expressing fusion proteins GP3-GP5 or GP3-GP4-GP5 might be an attractive candidate vaccine for preventing PRRSV infection.
Collapse
Affiliation(s)
- Wenming Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
193
|
Different biological characteristics of wild-type porcine reproductive and respiratory syndrome viruses and vaccine viruses and identification of the corresponding genetic determinants. J Clin Microbiol 2008; 46:1758-68. [PMID: 18272711 DOI: 10.1128/jcm.01927-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two attenuated vaccines, Ingelvac PRRS MLV and Ingelvac PRRS ATP, derived from VR2332 and JA142, respectively, have been used to control porcine reproductive and respiratory syndrome (PRRS) virus. However, there have been several field reports concerning the reversion of the vaccine virus to virulence. Furthermore, viruses genetically indistinguishable from the vaccines and wild-type parental viruses have been detected in clinical PRRS cases, raising the need for a better differential tool. As the vaccine viruses replicated better and produced bigger plaques in MARC-145 cells than did the wild-type parental strains, the following study was conducted to determine if the growth difference in MARC-145 cells can be utilized to differentiate a vaccine-like virus (VLV) from a wild-type virus and to identify genetic markers corresponding to such phenotype of the vaccine viruses. The relatedness of 83 field isolates collected between 1996 and 2005 to VR2332 and JA142 was classified genetically and antigenically. Thirteen of 25 VR2332-related viruses and 9 of 10 JA142-related viruses were determined as VLVs, since those viruses produced plaques similar to those by the vaccine viruses. Four unique amino acids each were identified throughout structural genes for MLV and ATP. Among those, F(10) in open reading frame 2 (ORF2) of MLV and E(85) and Y(165) in ORF3 of ATP were stable during pig passages. When the sequences unique for MLV were incorporated into an infectious clone constructed based on VR2332, the virus growth and resultant plaque size in MARC-145 cells were increased, suggesting that these sequences can be used as genetic markers for VLVs.
Collapse
|
194
|
Balka G, Hornyák A, Bálint A, Kiss I, Kecskeméti S, Bakonyi T, Rusvai M. Genetic diversity of porcine reproductive and respiratory syndrome virus strains circulating in Hungarian swine herds. Vet Microbiol 2008; 127:128-35. [PMID: 17869032 DOI: 10.1016/j.vetmic.2007.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/24/2007] [Accepted: 08/02/2007] [Indexed: 10/23/2022]
Abstract
Analysis of 37 ORF5 sequences of Hungarian porcine reproductive and respiratory syndrome virus (PRRSV) strains revealed that most of them (35) belonged to the European genotype, forming distinct subgroups, reflecting the exceptional diversity of Eastern European strains. Twelve vaccine-like strains were also found in non-vaccinated animals. Two strains belonged to the American genotype showing 90-91% nucleotide identity to the "Quebec" Canadian reference strain. The analysis of the putative ectodomains and their N-linked glycosylation sites of the vaccine strain and its variants suggested selective pressure on the first ectodomain, by a consistent amino acid change on epitope B and by loosing a glycosylation site in the otherwise conserved N-46 position.
Collapse
Affiliation(s)
- Gyula Balka
- Department of Pathology and Forensic Veterinary Medicine, Faculty of Veterinary Science, Szent István University, István u. 2, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
195
|
Wang S, Fang L, Fan H, Jiang Y, Pan Y, Luo R, Zhao Q, Chen H, Xiao S. Construction and immunogenicity of pseudotype baculovirus expressing GP5 and M protein of porcine reproductive and respiratory syndrome virus. Vaccine 2007; 25:8220-7. [DOI: 10.1016/j.vaccine.2007.09.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/19/2007] [Accepted: 09/25/2007] [Indexed: 12/27/2022]
|
196
|
Wang Y, Liang Y, Han J, Burkhart KM, Vaughn EM, Roof MB, Faaberg KS. Attenuation of porcine reproductive and respiratory syndrome virus strain MN184 using chimeric construction with vaccine sequence. Virology 2007; 371:418-29. [PMID: 17976680 DOI: 10.1016/j.virol.2007.09.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/13/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
Abstract
Two genetically distinct infectious recombinant virus clones (pMLV, constructed from Ingelvac PRRS MLV and pMN184, constructed from virulent strain MN184) were developed to study attenuation of contemporary porcine reproductive and respiratory syndrome virus (PRRSV) strain MN184. Two reciprocal chimeric clones (pMLVORF1/MN184 and pMN184ORF1/MLV) were then constructed, such that the 5'UTR/ORF1 of one genotype was linked to ORF2-7/3'UTR from the other genotype. In vitro studies demonstrated that the rescued chimeric viruses possessed intermediate growth properties compared to recombinant rMLV and rMN184. Swine inoculation with rMN184 and rMLV verified that these viruses fully mimicked the respective parent virus. In addition, earlier and higher antibody responses were detected in animals infected with rMN184 in contrast to those infected with rMLV. Chimeric virus treatment groups showed similar antibody responses as seen with these parent viruses, but much less severe pathogenesis when compared to the rMN184 group. These data suggested that genetic aspects of Ingelvac PRRS MLV 5'UTR/ORF1 replicase region and/or the structural proteins/3'UTR can serve to attenuate virulent strain MN184. The data also indicated that designed PRRSV vaccines could be developed, keeping the known 5'UTR/replicase region of an early vaccine strain such as Ingelvac PRRS MLV intact, but replacing the structural protein/3'UTR domain with that of an emerging virulent virus.
Collapse
Affiliation(s)
- Yue Wang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|
197
|
Jiang W, Jiang P, Wang X, Li Y, Wang X, Du Y. Influence of porcine reproductive and respiratory syndrome virus GP5 glycoprotein N-linked glycans on immune responses in mice. Virus Genes 2007; 35:663-71. [PMID: 17671839 DOI: 10.1007/s11262-007-0131-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically significant viral diseases in the swine industry. Infection with PRRSV following vaccination is common, since protection is incomplete. Persistent infection may be one of the biggest obstacles to control of the disease. "Glycan shielding" was postulated to be a primary mechanism to explain evasion from neutralizing immune response, ensuring in vivo persistence of virus, such as HIV, SIV, and HBV. The objective of this study was to construct recombinant adenoviruses expressing single or multiple N-linked glycosylation site (NGS) mutant GP5 of PRRSV, and evaluate the expression in cell culture, and potential to induce immune responses in BALB/c mice. Six recombinant adenoviruses were constructed each expressing wild-type GP5 and 1-4 NGS mutants: N44S, N44/51S, N30/44/51S, N30/33/44/51S and N30/33S. Inoculation of BALB/c mice with all five recombinants expressing NGS mutant GP5 resulted in a significant neutralizing antibody responses which were significantly higher than that of recombinant adenovirus expressing wild-type GP5. But there were no significant difference in lymphocyte proliferation responses induced by wild type and NGS mutant GP5. It indicated that glycosylations of GP5 at residues N30, N33, N44 and N51 are critical for induction of neutralizing antibodies. These NGS mutant PRRSV GP5 will be useful to characterize the effects of glycosylation on immunogenicity in the natural host, and may lead to a new approach for the generation of PRRSV vaccines.
Collapse
Affiliation(s)
- Wenming Jiang
- Key Laboratory of Animal Disease Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
198
|
Li G, Huang J, Jiang P, Li Y, Jiang W, Wang X. Suppression of porcine reproductive and respiratory syndrome virus replication in MARC-145 cells by shRNA targeting ORF1 region. Virus Genes 2007; 35:673-9. [PMID: 17671836 DOI: 10.1007/s11262-007-0134-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 06/26/2007] [Indexed: 01/08/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important disease in swine producing area. The current vaccine strategies cannot provide complete protection against PRRSV. The objective of this study was to determine if specific short-hairpin RNA (shRNA) directed against different genomic regions of ORF1b of PRRSV could be utilized to inhibit virus replication in MARC-145 cells. Two shRNA expression vectors targeting ORF1b gene of PRRSV were constructed and delivered into MARC-145 cells, and then infected with PRRSV. The results showed that PRRSV-specific cytopathic effect (CPE) could be inhibited in the cells transfected with pSUPER-P2 and pSUPER-P3, and the virus titers in the cells transfected with pSUPER-P2 and pSUPER-P3 were lower than those control cells by approximately 100 fold. Moreover, the expression of ORF1 of PRRSV in the cells was reduced both at RNA and protein levels comparing to the controls. It indicated that vector-based shRNA targeting ORF1 region could effectively inhibit PRRSV replication in MARC-145 cells.
Collapse
Affiliation(s)
- Guanming Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agriculture University, Nanjing 210095, PR China
| | | | | | | | | | | |
Collapse
|
199
|
Jiang W, Jiang P, Li Y, Wang X, Du Y. Analysis of immunogenicity of minor envelope protein GP3 of porcine reproductive and respiratory syndrome virus in mice. Virus Genes 2007; 35:695-704. [PMID: 17671834 DOI: 10.1007/s11262-007-0143-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically significant viral diseases in swine industry. Though the minor envelope protein GP3 is associated with protective immunity, its immunogenicity and protective mechanism are poorly known. In this study, two recombinant adenoviruses, rAd-GP3 expressing complete GP3 and rAd-tGP3 expressing truncated GP3 in which aa2-64 were deleted, were constructed and the immunogenicity were tested in a mouse model. Four groups of BALB/c mice were immunized subcutaneously twice at 2-week internals with the recombinants rAd-GP3 and rAd-tGP3 or with wild type adenovirus (wtAd) and PBS as control. The results showed that the mice immunized with recombinant adenoviruses developed PRRSV-specific neutralizing antibodies and cellular immune response, including T-cell proliferation responses and cytotoxic T responses, by 2 weeks post-primary immunization. Moreover, the levels of immune responses of mice immunized with rAd-tGP3 were significantly higher than that of mice with rAd-GP3. It indicated that the first 64aa fragment of GP3 might affect the conformation of the antigen structures of GP3 protein. GP3 protein should be one of candidate molecules for developing a new safer effective vaccine.
Collapse
Affiliation(s)
- Wenming Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Ministry of Agriculture, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
200
|
Lopez OJ, Oliveira MF, Garcia EA, Kwon BJ, Doster A, Osorio FA. Protection against porcine reproductive and respiratory syndrome virus (PRRSV) infection through passive transfer of PRRSV-neutralizing antibodies is dose dependent. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:269-75. [PMID: 17215336 PMCID: PMC1828847 DOI: 10.1128/cvi.00304-06] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous work in our laboratory demonstrated that passive transfer of porcine reproductive and respiratory syndrome virus (PRRSV)-neutralizing antibodies (NA) protected pregnant sows against reproductive failure and conferred sterilizing immunity in sows and offspring. We report here on the dose requirement for protection by passive transfer with NA in young weaned pigs. The presence of a 1:8 titer of PRRSV-NA in serum consistently protected pigs against viremia. Nevertheless, their lungs, tonsils, buffy coat cells, and peripheral lymph nodes contained replicating PRRSV similar to the infected control group. Likewise, these animals excreted infectious virus to sentinels similar to the infectivity control animals. In an attempt to reach complete protective immunity equivalent to that previously observed in sows, the pigs were transferred with a higher titer of PRRSV-NA (1:32), and even then apparent sterilizing immunity was attained in only 50% of the animals. In conclusion, the presence of anti-PRRSV-NA in serum with a titer of 1:8 is enough to block viremia but not peripheral tissue seeding and transmission to contact animals. While a relatively low level of NA in blood is capable of conferring sterilizing immunity against PRRSV in sows, the amount of NA necessary to obtain full protection of a young weaned pig would be significantly higher, suggesting that differences exist in the PRRSV pathogenesis between both age groups. In addition, the titer of NA could be a helpful parameter of protection in the assessment of PRRSV vaccines.
Collapse
Affiliation(s)
- O J Lopez
- Department of Veterinary and Biomedical Sciences, University of Nebraska, 141 VBS, East Campus, Lincoln, NE 68583-0905, USA
| | | | | | | | | | | |
Collapse
|