151
|
Perez VA, Sanders DW, Mendoza-Oliva A, Stopschinski BE, Mullapudi V, White CL, Joachimiak LA, Diamond MI. DnaJC7 specifically regulates tau seeding. eLife 2023; 12:e86936. [PMID: 37387473 PMCID: PMC10473839 DOI: 10.7554/elife.86936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023] Open
Abstract
Neurodegenerative tauopathies are caused by accumulation of toxic tau protein assemblies. This appears to involve template-based seeding events, whereby tau monomer changes conformation and is recruited to a growing aggregate. Several large families of chaperone proteins, including Hsp70s and J domain proteins (JDPs), cooperate to regulate the folding of intracellular proteins such as tau, but the factors that coordinate this activity are not well known. The JDP DnaJC7 binds tau and reduces its intracellular aggregation. However, it is unknown whether this is specific to DnaJC7 or if other JDPs might be similarly involved. We used proteomics within a cell model to determine that DnaJC7 co-purified with insoluble tau and colocalized with intracellular aggregates. We individually knocked out every possible JDP and tested the effect on intracellular aggregation and seeding. DnaJC7 knockout decreased aggregate clearance and increased intracellular tau seeding. This depended on the ability of the J domain (JD) of DnaJC7 to stimulate Hsp70 ATPase activity, as JD mutations that block this interaction abrogated the protective activity. Disease-associated mutations in the JD and substrate binding site of DnaJC7 also abolished its protective activity. DnaJC7 thus specifically regulates tau aggregation in cooperation with Hsp70.
Collapse
Affiliation(s)
- Valerie Ann Perez
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - David W Sanders
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Ayde Mendoza-Oliva
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Barbara Elena Stopschinski
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Vishruth Mullapudi
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Charles L White
- Department of Pathology, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biochemistry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Neurology, Peter O’Donnell Jr. Brain Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
152
|
Zhou C, Liu Y, Wei Q, Chen Y, Yang S, Cheng A, Zhang G. HSPA5 Promotes Attachment and Internalization of Porcine Epidemic Diarrhea Virus through Interaction with the Spike Protein and the Endo-/Lysosomal Pathway. J Virol 2023; 97:e0054923. [PMID: 37222617 PMCID: PMC10308931 DOI: 10.1128/jvi.00549-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has caused huge economic losses to the global pig industry. The swine enteric coronavirus spike (S) protein recognizes various cell surface molecules to regulate viral infection. In this study, we identified 211 host membrane proteins related to the S1 protein by pulldown combined with liquid-chromatography tandem mass spectrometry (LC-MS/MS) analysis. Among these, heat shock protein family A member 5 (HSPA5) was identified through screening as having a specific interaction with the PEDV S protein, and positive regulation of PEDV infection was validated by knockdown and overexpression tests. Further studies verified the role of HSPA5 in viral attachment and internalization. In addition, we found that HSPA5 interacts with S proteins through its nucleotide-binding structural domain (NBD) and that polyclonal antibodies can block viral infection. In detail, HSPA5 was found to be involved in viral trafficking via the endo-/lysosomal pathway. Inhibition of HSPA5 activity during internalization would reduce the subcellular colocalization of PEDV with lysosomes in the endo-/lysosomal pathway. Together, these findings show that HSPA5 is a novel PEDV potential target for the creation of therapeutic drugs. IMPORTANCE PEDV infection causes severe piglet mortality and threatens the global pig industry. However, the complex invasion mechanism of PEDV makes its prevention and control difficult. Here, we determined that HSPA5 is a novel target for PEDV which interacts with its S protein and is involved in viral attachment and internalization, influencing its transport via the endo-/lysosomal pathway. Our work extends knowledge about the relationship between the PEDV S and host proteins and provides a new therapeutic target against PEDV infection.
Collapse
Affiliation(s)
- Chuanjie Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Suzhen Yang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Anchun Cheng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
153
|
Lauer SM, Omar MH, Golkowski MG, Kenerson HL, Pascual BC, Forbush K, Smith FD, Gordan J, Ong SE, Yeung RS, Scott JD. Recruitment of BAG2 to DNAJ-PKAc scaffolds promotes cell survival and resistance to drug-induced apoptosis in fibrolamellar carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546958. [PMID: 37425703 PMCID: PMC10327129 DOI: 10.1101/2023.06.28.546958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The DNAJ-PKAc fusion kinase is a defining feature of the adolescent liver cancer fibrolamellar carcinoma (FLC). A single lesion on chromosome 19 generates this mutant kinase by creating a fused gene encoding the chaperonin binding domain of Hsp40 (DNAJ) in frame with the catalytic core of protein kinase A (PKAc). FLC tumors are notoriously resistant to standard chemotherapies. Aberrant kinase activity is assumed to be a contributing factor. Yet recruitment of binding partners, such as the chaperone Hsp70, implies that the scaffolding function of DNAJ- PKAc may also underlie pathogenesis. By combining proximity proteomics with biochemical analyses and photoactivation live-cell imaging we demonstrate that DNAJ-PKAc is not constrained by A-kinase anchoring proteins. Consequently, the fusion kinase phosphorylates a unique array of substrates. One validated DNAJ-PKAc target is the Bcl-2 associated athanogene 2 (BAG2), a co-chaperone recruited to the fusion kinase through association with Hsp70. Immunoblot and immunohistochemical analyses of FLC patient samples correlate increased levels of BAG2 with advanced disease and metastatic recurrences. BAG2 is linked to Bcl-2, an anti-apoptotic factor that delays cell death. Pharmacological approaches tested if the DNAJ- PKAc/Hsp70/BAG2 axis contributes to chemotherapeutic resistance in AML12 DNAJ-PKAc hepatocyte cell lines using the DNA damaging agent etoposide and the Bcl-2 inhibitor navitoclax. Wildtype AML12 cells were susceptible to each drug alone and in combination. In contrast, AML12 DNAJ-PKAc cells were moderately affected by etoposide, resistant to navitoclax, but markedly susceptible to the drug combination. These studies implicate BAG2 as a biomarker for advanced FLC and a chemotherapeutic resistance factor in DNAJ-PKAc signaling scaffolds.
Collapse
|
154
|
Jeffery WR, Li B, Ng M, Li L, Gorički Š, Ma L. Differentially expressed chaperone genes reveal a stress response required for unidirectional regeneration in the basal chordate Ciona. BMC Biol 2023; 21:148. [PMID: 37365564 PMCID: PMC10294541 DOI: 10.1186/s12915-023-01633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Unidirectional regeneration in the basal chordate Ciona intestinalis involves the proliferation of adult stem cells residing in the branchial sac vasculature and the migration of progenitor cells to the site of distal injury. However, after the Ciona body is bisected, regeneration occurs in the proximal but not in the distal fragments, even if the latter include a part of the branchial sac with stem cells. A transcriptome was sequenced and assembled from the isolated branchial sacs of regenerating animals, and the information was used to provide insights into the absence of regeneration in distal body fragments. RESULTS We identified 1149 differentially expressed genes, which were separated into two major modules by weighted gene correlation network analysis, one consisting of mostly upregulated genes correlated with regeneration and the other consisting of only downregulated genes associated with metabolism and homeostatic processes. The hsp70, dnaJb4, and bag3 genes were among the highest upregulated genes and were predicted to interact in an HSP70 chaperone system. The upregulation of HSP70 chaperone genes was verified and their expression confirmed in BS vasculature cells previously identified as stem and progenitor cells. siRNA-mediated gene knockdown showed that hsp70 and dnaJb4, but not bag3, are required for progenitor cell targeting and distal regeneration. However, neither hsp70 nor dnaJb4 were strongly expressed in the branchial sac vasculature of distal fragments, implying the absence of a stress response. Heat shock treatment of distal body fragments activated hsp70 and dnaJb4 expression indicative of a stress response, induced cell proliferation in branchial sac vasculature cells, and promoted distal regeneration. CONCLUSIONS The chaperone system genes hsp70, dnaJb4, and bag3 are significantly upregulated in the branchial sac vasculature following distal injury, defining a stress response that is essential for regeneration. The stress response is absent from distal fragments, but can be induced by a heat shock, which activates cell division in the branchial sac vasculature and promotes distal regeneration. This study demonstrates the importance of a stress response for stem cell activation and regeneration in a basal chordate, which may have implications for understanding the limited regenerative activities in other animals, including vertebrates.
Collapse
Affiliation(s)
- William R Jeffery
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
- Station Biologique, 29680, Roscoff, France.
| | - Bo Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mandy Ng
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Lianwei Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Špela Gorički
- Station Biologique, 29680, Roscoff, France
- Scriptorium Biologorum, 9000, Murska Sobota, Slovenia
| | - Li Ma
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
155
|
Cartwright SL, Schmied J, Karrow N, Mallard BA. Impact of heat stress on dairy cattle and selection strategies for thermotolerance: a review. Front Vet Sci 2023; 10:1198697. [PMID: 37408833 PMCID: PMC10319441 DOI: 10.3389/fvets.2023.1198697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023] Open
Abstract
Climate change is a problem that causes many environmental issues that impact the productivity of livestock species. One of the major issues associated with climate change is an increase of the frequency of hot days and heat waves, which increases the risk of heat stress for livestock species. Dairy cattle have been identified as being susceptible to heat stress due to their high metabolic heat load. Studies have shown heat stress impacts several biological processes that can result in large economic consequences. When heat stress occurs, dairy cattle employ several physiological and cellular mechanisms in order to dissipate heat and protect cells from damage. These mechanisms require an increase and diversion in energy toward protection and away from other biological processes. Therefore, in turn heat stress in dairy cattle can lead numerous issues including reductions in milk production and reproduction as well as increased risk for disease and mortality. This indicates a need to select dairy cattle that would be thermotolerant. Various selection strategies to confer thermotolerance have been discussed in the literature, including selecting for reduced milk production, crossbreeding with thermotolerant breeds, selecting based on physiological traits and most recently selecting for enhanced immune response. This review discusses the various issues associated with heat stress in dairy cattle and the pros and cons to the various selection strategies that have been proposed to select for thermotolerance in dairy cattle.
Collapse
Affiliation(s)
- Shannon L. Cartwright
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Julie Schmied
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Niel Karrow
- Centre of Genetics of Improvement of Livestock, Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Bonnie A. Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre of Genetics of Improvement of Livestock, Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
156
|
Hanson S, Dharan A, P. V. J, Pal S, Nair BG, Kar R, Mishra N. Paraptosis: a unique cell death mode for targeting cancer. Front Pharmacol 2023; 14:1159409. [PMID: 37397502 PMCID: PMC10308048 DOI: 10.3389/fphar.2023.1159409] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Programmed cell death (PCD) is the universal process that maintains cellular homeostasis and regulates all living systems' development, health and disease. Out of all, apoptosis is one of the major PCDs that was found to play a crucial role in many disease conditions, including cancer. The cancer cells acquire the ability to escape apoptotic cell death, thereby increasing their resistance towards current therapies. This issue has led to the need to search for alternate forms of programmed cell death mechanisms. Paraptosis is an alternative cell death pathway characterized by vacuolation and damage to the endoplasmic reticulum and mitochondria. Many natural compounds and metallic complexes have been reported to induce paraptosis in cancer cell lines. Since the morphological and biochemical features of paraptosis are much different from apoptosis and other alternate PCDs, it is crucial to understand the different modulators governing it. In this review, we have highlighted the factors that trigger paraptosis and the role of specific modulators in mediating this alternative cell death pathway. Recent findings include the role of paraptosis in inducing anti-tumour T-cell immunity and other immunogenic responses against cancer. A significant role played by paraptosis in cancer has also scaled its importance in knowing its mechanism. The study of paraptosis in xenograft mice, zebrafish model, 3D cultures, and novel paraptosis-based prognostic model for low-grade glioma patients have led to the broad aspect and its potential involvement in the field of cancer therapy. The co-occurrence of different modes of cell death with photodynamic therapy and other combinatorial treatments in the tumour microenvironment are also summarized here. Finally, the growth, challenges, and future perspectives of paraptosis research in cancer are discussed in this review. Understanding this unique PCD pathway would help to develop potential therapy and combat chemo-resistance in various cancer.
Collapse
Affiliation(s)
- Sweata Hanson
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Aiswarya Dharan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Jinsha P. V.
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Rekha Kar
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, United States
| | - Nandita Mishra
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
157
|
Lagarde H, Lallias D, Patrice P, Dehaullon A, Prchal M, François Y, D'Ambrosio J, Segret E, Acin-Perez A, Cachelou F, Haffray P, Dupont-Nivet M, Phocas F. Genetic architecture of acute hyperthermia resistance in juvenile rainbow trout (Oncorhynchus mykiss) and genetic correlations with production traits. Genet Sel Evol 2023; 55:39. [PMID: 37308823 DOI: 10.1186/s12711-023-00811-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/11/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Selective breeding is a promising solution to reduce the vulnerability of fish farms to heat waves, which are predicted to increase in intensity and frequency. However, limited information about the genetic architecture of acute hyperthermia resistance in fish is available. Two batches of sibs from a rainbow trout commercial line were produced: the first (N = 1382) was phenotyped for acute hyperthermia resistance at nine months of age and the second (N = 1506) was phenotyped for main production traits (growth, body length, muscle fat content and carcass yield) at 20 months of age. Fish were genotyped on a 57 K single nucleotide polymorphism (SNP) array and their genotypes were imputed to high-density based on the parent's genotypes from a 665 K SNP array. RESULTS The heritability estimate of resistance to acute hyperthermia was 0.29 ± 0.05, confirming the potential of selective breeding for this trait. Since genetic correlations of acute hyperthermia resistance with the main production traits near harvest age were all close to zero, selecting for acute hyperthermia resistance should not impact the main production traits, and vice-versa. A genome-wide association study revealed that resistance to acute hyperthermia is a highly polygenic trait, with six quantitative trait loci (QTL) detected, but explaining less than 5% of the genetic variance. Two of these QTL, including the most significant one, may explain differences in acute hyperthermia resistance across INRAE isogenic lines of rainbow trout. Differences in mean acute hyperthermia resistance phenotypes between homozygotes at the most significant SNP was 69% of the phenotypic standard deviation, showing promising potential for marker-assisted selection. We identified 89 candidate genes within the QTL regions, among which the most convincing functional candidates are dnajc7, hsp70b, nkiras2, cdk12, phb, fkbp10, ddx5, cygb1, enpp7, pdhx and acly. CONCLUSIONS This study provides valuable insight into the genetic architecture of acute hyperthermia resistance in juvenile rainbow trout. We show that the selection potential for this trait is substantial and selection for this trait should not be too detrimental to improvement of other traits of interest. Identified functional candidate genes provide new knowledge on the physiological mechanisms involved in acute hyperthermia resistance, such as protein chaperoning, oxidative stress response, homeostasis maintenance and cell survival.
Collapse
Affiliation(s)
- Henri Lagarde
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Delphine Lallias
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Pierre Patrice
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | - Audrey Dehaullon
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Martin Prchal
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Yoannah François
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | - Jonathan D'Ambrosio
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | - Emilien Segret
- Viviers de Sarrance, Pisciculture Labedan, 64490, Sarrance, France
| | - Ana Acin-Perez
- Viviers de Sarrance, Pisciculture Labedan, 64490, Sarrance, France
| | | | - Pierrick Haffray
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | | | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
158
|
Nandanpawar P, Sahoo L, Sahoo B, Murmu K, Chaudhari A, Pavan kumar A, Das P. Identification of differentially expressed genes and SNPs linked to harvest body weight of genetically improved rohu carp, Labeo rohita. Front Genet 2023; 14:1153911. [PMID: 37359361 PMCID: PMC10285081 DOI: 10.3389/fgene.2023.1153911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
In most of the aquaculture selection programs, harvest body weight has been a preferred performance trait for improvement. Molecular interplay of genes linked to higher body weight is not elucidated in major carp species. The genetically improved rohu carp with 18% average genetic gain per generation with respect to harvest body weight is a promising candidate for studying genes' underlying performance traits. In the present study, muscle transcriptome sequencing of two groups of individuals, with significant difference in breeding value, belonging to the tenth generation of rohu carp was performed using the Illumina HiSeq 2000 platform. A total of 178 million paired-end raw reads were generated to give rise to 173 million reads after quality control and trimming. The genome-guided transcriptome assembly and differential gene expression produced 11,86,119 transcripts and 451 upregulated and 181 downregulated differentially expressed genes (DEGs) between high-breeding value and low-breeding value (HB & LB) groups, respectively. Similarly, 39,158 high-quality coding SNPs were identified with the Ts/Tv ratio of 1.23. Out of a total of 17 qPCR-validated transcripts, eight were associated with cellular growth and proliferation and harbored 13 SNPs. The gene expression pattern was observed to be positively correlated with RNA-seq data for genes such as myogenic factor 6, titin isoform X11, IGF-1 like, acetyl-CoA, and thyroid receptor hormone beta. A total of 26 miRNA target interactions were also identified to be associated with significant DETs (p-value < 0.05). Genes such as Myo6, IGF-1-like, and acetyl-CoA linked to higher harvest body weight may serve as candidate genes in marker-assisted breeding and SNP array construction for genome-wide association studies and genomic selection.
Collapse
Affiliation(s)
- P. Nandanpawar
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - L. Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - B. Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - K. Murmu
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - A. Chaudhari
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - A. Pavan kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - P. Das
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| |
Collapse
|
159
|
Ács A, Komáromy A, Kovács AW, Fodor I, Somogyvári D, Győri J, Farkas A. Temperature related toxicity features of acute acetamiprid and thiacloprid exposure in Daphnia magna and implications on reproductive performance. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109601. [PMID: 36906245 DOI: 10.1016/j.cbpc.2023.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
This study investigated the potential for elevated temperature to alter the toxicity of acetamiprid (ACE) and thiacloprid (Thia) in the ecotoxicity model Daphnia magna. The modulation of CYP450 monooxygenases (ECOD), ABC transporter activity (MXR) and incident cellular reactive oxygen species (ROS) overproduction was screened in premature daphnids following acute (48 h) exposure to sublethal concentrations of ACE and Thia (0.1-, 1.0 μM) at standard 21 °C and elevated 26 °C temperatures. Delayed outcomes of acute exposures were further evaluated based on the reproduction performance of daphnids monitored over 14 days of recovery. Exposures to ACE and Thia at 21o C elicited moderate induction of ECOD activity, pronounced inhibition of MXR activity and severe ROS overproduction in daphnids. In the high thermal regime, treatments resulted in significantly lower induction of ECOD activity and inhibition of MXR activity, suggesting a suppressed metabolism of neonicotinoids and less impaired membrane transport activity in daphnids. Elevated temperature on its own, caused a three-fold rise in ROS levels in control daphnids, while ROS overproduction upon neonicotinoid exposure was less accentuated. Acute exposures to ACE and Thia caused significant decreases also in the reproduction of daphnids, indicating delayed outcomes even at environmentally relevant concentrations. Both the cellular alterations in exposed daphnids and decreases in their reproductive output post exposures evidenced closely similar toxicity patterns and potentials for the two neonicotinoids. While elevated temperature elicited only a shift in baseline cellular alterations evoked by neonicotinoids, it significantly worsened the reproductive performance of daphnids following neonicotinoid exposures.
Collapse
Affiliation(s)
- András Ács
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - András Komáromy
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Attila W Kovács
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - István Fodor
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Dávid Somogyvári
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - János Győri
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Anna Farkas
- Balaton Limnological Research Institute, Eötvös Loránd Research Network, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary.
| |
Collapse
|
160
|
Waigi EW, Webb RC, Moss MA, Uline MJ, McCarthy CG, Wenceslau CF. Soluble and insoluble protein aggregates, endoplasmic reticulum stress, and vascular dysfunction in Alzheimer's disease and cardiovascular diseases. GeroScience 2023; 45:1411-1438. [PMID: 36823398 PMCID: PMC10400528 DOI: 10.1007/s11357-023-00748-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023] Open
Abstract
Dementia refers to a particular group of symptoms characterized by difficulties with memory, language, problem-solving, and other thinking skills that affect a person's ability to perform everyday activities. Alzheimer's disease (AD) is the most common form of dementia, affecting about 6.2 million Americans aged 65 years and older. Likewise, cardiovascular diseases (CVDs) are a major cause of disability and premature death, impacting 126.9 million adults in the USA, a number that increases with age. Consequently, CVDs and cardiovascular risk factors are associated with an increased risk of AD and cognitive impairment. They share important age-related cardiometabolic and lifestyle risk factors, that make them among the leading causes of death. Additionally, there are several premises and hypotheses about the mechanisms underlying the association between AD and CVD. Although AD and CVD may be considered deleterious to health, the study of their combination constitutes a clinical challenge, and investigations to understand the mechanistic pathways for the cause-effect and/or shared pathology between these two disease constellations remains an active area of research. AD pathology is propagated by the amyloid β (Aβ) peptides. These peptides give rise to small, toxic, and soluble Aβ oligomers (SPOs) that are nonfibrillar, and it is their levels that show a robust correlation with the extent of cognitive impairment. This review will elucidate the interplay between the effects of accumulating SPOs in AD and CVDs, the resulting ER stress response, and their role in vascular dysfunction. We will also address the potential underlying mechanisms, including the possibility that SPOs are among the causes of vascular injury in CVD associated with cognitive decline. By revealing common mechanistic underpinnings of AD and CVD, we hope that novel experimental therapeutics can be designed to reduce the burden of these devastating diseases. Graphical abstract Alzheimer's disease (AD) pathology leads to the release of Aβ peptides, and their accumulation in the peripheral organs has varying effects on various components of the cardiovascular system including endoplasmic reticulum (ER) stress and vascular damage. Image created with BioRender.com.
Collapse
Affiliation(s)
- Emily W Waigi
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - R Clinton Webb
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Melissa A Moss
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Mark J Uline
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Cameron G McCarthy
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Camilla Ferreira Wenceslau
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA.
| |
Collapse
|
161
|
Dovolou E, Giannoulis T, Nanas I, Amiridis GS. Heat Stress: A Serious Disruptor of the Reproductive Physiology of Dairy Cows. Animals (Basel) 2023; 13:1846. [PMID: 37889768 PMCID: PMC10252019 DOI: 10.3390/ani13111846] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Global warming is a significant threat to the sustainability and profitability of the dairy sector, not only in tropical or subtropical regions but also in temperate zones where extreme summer temperatures have become a new and challenging reality. Prolonged exposure of dairy cows to high temperatures compromises animal welfare, increases morbidity, and suppresses fertility, resulting in devastating economic losses for farmers. To counteract the deleterious effects of heat stress, cattl e employ various adaptive thermoregulatory mechanisms including molecular, endocrine, physiological, and behavioral responses. These adaptations involve the immediate secretion of heat shock proteins and cortisol, followed by a complex network of disrupted secretion of metabolic and reproductive hormones such as prolactin, ghrelin, ovarian steroid, and pituitary gonadotrophins. While the strategic heat stress mitigation measures can restore milk production through modifications of the microclimate and nutritional interventions, the summer fertility records remain at low levels compared to those of the thermoneutral periods of the year. This is because sustainment of high fertility is a multifaceted process that requires appropriate energy balance, undisrupted mode of various hormones secretion to sustain the maturation and fertilizing competence of the oocyte, the normal development of the early embryo and unhampered maternal-embryo crosstalk. In this review, we summarize the major molecular and endocrine responses to elevated temperatures in dairy cows, as well as the impacts on maturing oocytes and early embryos, and discuss the consequences that heat stress brings about in dairy cattle fertility.
Collapse
Affiliation(s)
- Eleni Dovolou
- Laboratory of Reproduction, Faculty of Animal Science, University of Thessaly, 41223 Larissa, Greece;
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Themistoklis Giannoulis
- Laboratory of Genetics, Faculty of Animal Science, University of Thessaly, 41223 Larissa, Greece;
| | - Ioannis Nanas
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Georgios S. Amiridis
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| |
Collapse
|
162
|
Jiang X, Jiang Y, An D, Jiang X, Zhou S, Liu Y, Tian R, Li Z, Zhao X, Xiang T, Ji P, Yang Y. Methylated tumor suppressor gene SCARA5 inhibits the proliferation, migration and invasion of nasopharyngeal carcinoma. Epigenomics 2023; 15:635-650. [PMID: 37554122 DOI: 10.2217/epi-2023-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Background: SCARA5 may play an important role in nasopharyngeal carcinoma. Materials & methods: PCR and immunohistochemistry were used to detect the expression and promoter methylation of SCARA5. Cell proliferation assays, spheroid culture, flow cytometry analysis, Transwell assays and xenotransplantation tests were utilized to determine the functional effects of SCARA5. RNA-sequencing, western blotting, immunofluorescence and dual-luciferase reporter assays were used to assess SCARA5-mediated outcomes. Results: SCARA5 was downregulated by promoter methylation. Overexpression of SCARA5 inhibited cell migration, invasion and proliferation. SCARA5 enhanced nasopharyngeal carcinoma cell sensitivity to chemotherapy with cisplatin and 5-fluorouracil. SCARA5 drives tumor apoptosis by downregulating HSPA2. Conclusion: SCARA5 may be a useful clinical marker in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Xianyao Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yu Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Deqiang An
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaocong Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Shitong Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Otorhinolaryngology Head & Neck Surgery, Chongqing General Hospital, No. 118 Xingguang Avenue, Liangjiang New District, Chongqing, 401147, China
| | - Yijun Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Rui Tian
- Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zhuoqing Li
- Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xunping Zhao
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, No. 7 Shangqingsi Road, Yuzhong District, Chongqing, 400015, China
| | - Yucheng Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
163
|
Li Z, Zheng M, He Z, Qin Y, Chen M. Morphogenesis and functional organization of viral inclusion bodies. CELL INSIGHT 2023; 2:100103. [PMID: 37193093 PMCID: PMC10164783 DOI: 10.1016/j.cellin.2023.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/18/2023]
Abstract
Eukaryotic viruses are obligate intracellular parasites that rely on the host cell machinery to carry out their replication cycle. This complex process involves a series of steps, starting with virus entry, followed by genome replication, and ending with virion assembly and release. Negative strand RNA and some DNA viruses have evolved to alter the organization of the host cell interior to create a specialized environment for genome replication, known as IBs, which are precisely orchestrated to ensure efficient viral replication. The biogenesis of IBs requires the cooperation of both viral and host factors. These structures serve multiple functions during infection, including sequestering viral nucleic acids and proteins from innate immune responses, increasing the local concentration of viral and host factors, and spatially coordinating consecutive replication cycle steps. While ultrastructural and functional studies have improved our understanding of IBs, much remains to be learned about the precise mechanisms of IB formation and function. This review aims to summarize the current understanding of how IBs are formed, describe the morphology of these structures, and highlight the mechanism of their functions. Given that the formation of IBs involves complex interactions between the virus and the host cell, the role of both viral and cellular organelles in this process is also discussed.
Collapse
Affiliation(s)
- Zhifei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Miaomiao Zheng
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Zhicheng He
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| |
Collapse
|
164
|
Abubakar JO, Temidayo DO, Ololade OAH, Abosede OO. Herbal supplements suppress pro-inflammatory cytokines, boost humoral immunity, and modulate adipokines to enhance the productivity traits of rabbit bucks in hot climatic conditions. Trop Anim Health Prod 2023; 55:227. [PMID: 37227575 DOI: 10.1007/s11250-023-03640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
Thermal stress is the main stressor accounting for reduced productivity, compromised immunity, and collapse of thermoregulatory measures in rabbits in the tropics. The current climate change depicts worsening assault of heat stress in the time ahead; hence, the need to develop combative measures for animal productivity. This research investigates the influence of herbal supplements of three tropical herbs Viscum album (mistletoe), Moringa oleifera (Moringa), and Phyllanthus amarus (Phyllanthus) on immune response, oxidative status, adipokines, and growth of eighty weaned rabbits during heat stress in tropical climate. The bucks were fed with four standard diets; a control and others supplemented with each of Moringa, Phyllanthus, and mistletoe for an eight-week feed trial. Performance indicators were monitored and blood were sampled and assayed for hematology, pro-inflammatory cytokines, adipokines, and oxidative status. The result shows that the performance of bucks fed with Phyllanthus and mistletoe supplements was superior to other groups. The neutrophil/lymphocyte ratio was significantly (p < 0.05) lower in the bucks fed with Moringa supplement, with significantly (p < 0.05) highest values obtained in the control group. Total antioxidant activity of the bucks fed with supplements was significantly (p < 0.05) higher than those on control, with the significantly (p < 0.05) highest value recorded in bucks fed with Phyllanthus. Serum lipid peroxidation of the bucks on control was significantly (p < 0.05) highest and significantly (p < 0.05) least value was obtained in bucks on mistletoe. Heat shock protein 70, adiponectin, and leptin of the bucks on control were significantly (p < 0.05) higher than bucks on herbal supplements. Interleukin 6, interleukin β, and tumor necrosis factor α of bucks on control were significantly (p < 0.05) higher than bucks fed on herbal supplements. In conclusion, the inclusion of herbal supplements Moringa, Phyllanthus, or mistletoe suppressed pro-inflammatory cytokines, boost humoral immunity, enhance the anti-oxidative status, and promote the growth of rabbit bucks during thermal discomfort.
Collapse
Affiliation(s)
- Jimoh Olatunji Abubakar
- Department of Agricultural Technology, The Federal Polytechnic Ado-Ekiti, Ado-Ekiti, Ekiti State, Nigeria.
| | | | | | - Ojo Olayinka Abosede
- Department of Animal Production, Fisheries and Aquaculture, Kwara State University, Molete, Kwara State, Nigeria
| |
Collapse
|
165
|
Jaskolowski M, Jomaa A, Gamerdinger M, Shrestha S, Leibundgut M, Deuerling E, Ban N. Molecular basis of the TRAP complex function in ER protein biogenesis. Nat Struct Mol Biol 2023:10.1038/s41594-023-00990-0. [PMID: 37170030 DOI: 10.1038/s41594-023-00990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
The translocon-associated protein (TRAP) complex resides in the endoplasmic reticulum (ER) membrane and interacts with the Sec translocon and the ribosome to facilitate biogenesis of secretory and membrane proteins. TRAP plays a key role in the secretion of many hormones, including insulin. Here we reveal the molecular architecture of the mammalian TRAP complex and how it engages the translating ribosome associated with Sec61 translocon on the ER membrane. The TRAP complex is anchored to the ribosome via a long tether and its position is further stabilized by a finger-like loop. This positions a cradle-like lumenal domain of TRAP below the translocon for interactions with translocated nascent chains. Our structure-guided TRAP mutations in Caenorhabditis elegans lead to growth deficits associated with increased ER stress and defects in protein hormone secretion. These findings elucidate the molecular basis of the TRAP complex in the biogenesis and translocation of proteins at the ER.
Collapse
Affiliation(s)
- Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
- Department of Molecular Physiology and Biological Physics and the Center for Cell and Membrane Physiology, University of Virginia, Charlottesville, VA, USA.
| | - Martin Gamerdinger
- Department of Biology, Molecular Microbiology, University of Konstanz, Konstanz, Germany
| | - Sandeep Shrestha
- Department of Biology, Molecular Microbiology, University of Konstanz, Konstanz, Germany
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Elke Deuerling
- Department of Biology, Molecular Microbiology, University of Konstanz, Konstanz, Germany.
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
166
|
Sheraz A, Zhu H, Dong Q, Wang T, Zong S, Wang H, Ge L, Wu T. The superoxide dismutase (SOD) genes family mediates the response of Nilaparvata lugens to jinggangmycin and sugar. Front Physiol 2023; 14:1197395. [PMID: 37260593 PMCID: PMC10228653 DOI: 10.3389/fphys.2023.1197395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction: Brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae), is a major rice pest causing significant damage to rice throughout the world. Intensive pesticide usage often causes resistance in these seasonal pests, mainly through the modulation of antioxidant machinery. The superoxide dismutase (SOD) gene family is known for regulating BPH response to pesticides. Methods: In the present study, we identified eight NlSOD genes from the NCBI using the BLASTP program. The bioinformatics analysis includes a phylogenetic tree, conserved domain, motifs, gene ontology (GO) analysis, Kyoto encyclopedia of genes and genomes (KEGG) pathways, and protein-protein interaction, highlighting the distinctive functional elements of NlSOD genes. Results and discussion: Additionally, the NlSOD genes showed expression in all developmental stages of BPH. Under three sugars (glucose, sucrose, and trehalose) treatment, the respective upregulation of NlSOD8, NlSOD6, and NlSOD2 was noted. The NlSOD1 induced significantly under jinggamycin (JGM) deduced its potential as a key regulator of BPH response to the pesticide. Our study has provided detailed knowledge of the NlSOD gene family in-silico analysis and the defensive response to insecticide and high sugar of BPH. We hope the results of this research will help to shed light on the resistance of BPH towards insecticide toxicity and high sugar and help to control it more efficiently.
Collapse
Affiliation(s)
- Ahmad Sheraz
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Haowen Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Qiaoqiao Dong
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Tingting Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Suman Zong
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Huaiqi Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Linquan Ge
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Tao Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| |
Collapse
|
167
|
Mangano S, Muñoz A, Fernández-Calvino L, Castellano MM. HOP co-chaperones contribute to GA signaling by promoting the accumulation of the F-box protein SNE in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100517. [PMID: 36597357 PMCID: PMC10203442 DOI: 10.1016/j.xplc.2023.100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/11/2022] [Accepted: 12/31/2022] [Indexed: 05/11/2023]
Abstract
Gibberellins (GAs) play important roles in multiple developmental processes and in plant response to the environment. Within the GA pathway, a central regulatory step relies on GA-dependent degradation of the DELLA transcriptional regulators. Nevertheless, the relevance of the stability of other key proteins in this pathway, such as SLY1 and SNE (the F-box proteins involved in DELLA degradation), remains unknown. Here, we take advantage of mutants in the HSP70-HSP90 organizing protein (HOP) co-chaperones and reveal that these proteins contribute to the accumulation of SNE in Arabidopsis. Indeed, HOP proteins, along with HSP90 and HSP70, interact in vivo with SNE, and SNE accumulation is significantly reduced in the hop mutants. Concomitantly, greater accumulation of the DELLA protein RGA is observed in these plants. In agreement with these molecular phenotypes, hop mutants show a hypersensitive response to the GA inhibitor paclobutrazol and display a partial response to the ectopic addition of GA when GA-regulated processes are assayed. These mutants also display different phenotypes associated with alterations in the GA pathway, such as reduced germination rate, delayed bolting, and reduced hypocotyl elongation in response to warm temperatures. Remarkably, ectopic overexpression of SNE reverts the delay in germination and the thermally dependent hypocotyl elongation defect of the hop1 hop2 hop3 mutant, revealing that SNE accumulation is the key aspect of the hop mutant phenotypes. Together, these data reveal a pivotal role for HOP in SNE accumulation and GA signaling.
Collapse
Affiliation(s)
- Silvina Mangano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain; Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBA, CONICET), Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Alfonso Muñoz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain; Departamento de Botánica, Ecología y Fisiología Vegetal, Campus de Rabanales, Edificio Severo Ochoa, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Lourdes Fernández-Calvino
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón (Madrid), Spain.
| |
Collapse
|
168
|
Gibertini S, Ruggieri A, Cheli M, Maggi L. Protein Aggregates and Aggrephagy in Myopathies. Int J Mol Sci 2023; 24:ijms24098456. [PMID: 37176163 PMCID: PMC10179229 DOI: 10.3390/ijms24098456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
A number of muscular disorders are hallmarked by the aggregation of misfolded proteins within muscle fibers. A specialized form of macroautophagy, termed aggrephagy, is designated to remove and degrade protein aggregates. This review aims to summarize what has been studied so far about the direct involvement of aggrephagy and the activation of the key players, among others, p62, NBR1, Alfy, Tollip, Optineurin, TAX1BP1 and CCT2 in muscular diseases. In the first part of the review, we describe the aggrephagy pathway with the involved proteins; then, we illustrate the muscular disorder histologically characterized by protein aggregates, highlighting the role of aggrephagy pathway abnormalities in these muscular disorders.
Collapse
Affiliation(s)
- Sara Gibertini
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Alessandra Ruggieri
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Marta Cheli
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", 20133 Milan, Italy
| |
Collapse
|
169
|
Tan FHP, Azzam G, Najimudin N, Shamsuddin S, Zainuddin A. Behavioural Effects and RNA-seq Analysis of Aβ42-Mediated Toxicity in a Drosophila Alzheimer's Disease Model. Mol Neurobiol 2023:10.1007/s12035-023-03368-x. [PMID: 37145377 DOI: 10.1007/s12035-023-03368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
Alzheimer's disease (AD) is the most common neurological ailment worldwide. Its process comprises the unique aggregation of extracellular senile plaques composed of amyloid-beta (Aβ) in the brain. Aβ42 is the most neurotoxic and aggressive of the Aβ42 isomers released in the brain. Despite much research on AD, the complete pathophysiology of this disease remains unknown. Technical and ethical constraints place limits on experiments utilizing human subjects. Thus, animal models were used to replicate human diseases. The Drosophila melanogaster is an excellent model for studying both physiological and behavioural aspects of human neurodegenerative illnesses. Here, the negative effects of Aβ42-expression on a Drosophila AD model were investigated through three behavioural assays followed by RNA-seq. The RNA-seq data was verified using qPCR. AD Drosophila expressing human Aβ42 exhibited degenerated eye structures, shortened lifespan, and declined mobility function compared to the wild-type Control. RNA-seq revealed 1496 genes that were differentially expressed from the Aβ42-expressing samples against the control. Among the pathways that were identified from the differentially expressed genes include carbon metabolism, oxidative phosphorylation, antimicrobial peptides, and longevity-regulating pathways. While AD is a complicated neurological condition whose aetiology is influenced by a number of factors, it is hoped that the current data will be sufficient to give a general picture of how Aβ42 influences the disease pathology. The discovery of molecular connections from the current Drosophila AD model offers fresh perspectives on the usage of this Drosophila which could aid in the discovery of new anti-AD medications.
Collapse
Affiliation(s)
- Florence Hui Ping Tan
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
- USM-RIKEN Interdisciplinary Centre for Advanced Sciences (URICAS), Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Ghows Azzam
- USM-RIKEN Interdisciplinary Centre for Advanced Sciences (URICAS), Universiti Sains Malaysia, 11800, Penang, Malaysia.
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Malaysia Genome and Vaccine Institute (MGVI), National Institutes of Biotechnology Malaysia (NIBM), Jalan Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Nazalan Najimudin
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- USM-RIKEN Interdisciplinary Centre for Advanced Sciences (URICAS), Universiti Sains Malaysia, 11800, Penang, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Azalina Zainuddin
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
170
|
Paul GV, Sihite AC, Hsu T. Susceptibility of DNA damage recognition activities linked to nucleotide excision and mismatch repair in zebrafish (Danio rerio) early and mid-early embryos to 2.5 to 4.5 °C heat stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:515-527. [PMID: 37133645 DOI: 10.1007/s10695-023-01198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
Fish at early life stages are sensitive to temperature change because of their narrower temperature tolerance ranges. Initiated by damage detection, DNA mismatch repair (MMR) and nucleotide excision repair (NER) maintain genome integrity respectively by eliminating mismatched nucleotides and helix-distorting DNA lesions. As discharge of heated effluent from power plants may elevate water temperatures to only 2 to 6 °C higher than ambient, this study explored if temperatures within this range affected MMR and NER-linked damage detection activities in fish embryos using zebrafish (Danio rerio) embryo as a model organism. Exposure of early embryos at 10 h post fertilization (hpf) to a warmer temperature at + 4.5 °C for 30 min enhanced damage recognition activities targeting UV-induced cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts (6-4PPs) that distorted helical structures. Conversely, photolesions sensing activities were inhibited in 24 hpf mid-early embryos under the same stress conditions. A much higher temperature at + 8.5 °C imposed similar effects on UV damage detection. A mild heat stress at + 2.5 °C for 30 min, however, repressed both CPD and 6-4PP binding activities in 10 and 24 hpf embryos. Inhibition of damage recognition under mild heat stress impeded the overall NER capacity evidenced by a transcription-based repair assay. Warmer water temperatures at + 2.5 and + 4.5 °C also inhibited G-T mismatch binding activities in 10 and 24 hpf embryos, but G-T recognition was more sensitive to + 4.5 °C stress. Inhibition of G-T binding partially correlated with a downregulation of Sp1 transcription factor activity. Our results showed the potential of water temperature elevation within 2 to 4.5 °C to disturb DNA damage repair in fish at embryonic stages.
Collapse
Affiliation(s)
- Ganjai Vikram Paul
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Agatha Cecilia Sihite
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Todd Hsu
- Department of Bioscience and Biotechnology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan.
| |
Collapse
|
171
|
Kinger S, Dubey AR, Kumar P, Jagtap YA, Choudhary A, Kumar A, Prajapati VK, Dhiman R, Mishra A. Molecular Chaperones' Potential against Defective Proteostasis of Amyotrophic Lateral Sclerosis. Cells 2023; 12:cells12091302. [PMID: 37174703 PMCID: PMC10177248 DOI: 10.3390/cells12091302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neuronal degenerative condition identified via a build-up of mutant aberrantly folded proteins. The native folding of polypeptides is mediated by molecular chaperones, preventing their pathogenic aggregation. The mutant protein expression in ALS is linked with the entrapment and depletion of chaperone capacity. The lack of a thorough understanding of chaperones' involvement in ALS pathogenesis presents a significant challenge in its treatment. Here, we review how the accumulation of the ALS-linked mutant FUS, TDP-43, SOD1, and C9orf72 proteins damage cellular homeostasis mechanisms leading to neuronal loss. Further, we discuss how the HSP70 and DNAJ family co-chaperones can act as potential targets for reducing misfolded protein accumulation in ALS. Moreover, small HSPB1 and HSPB8 chaperones can facilitate neuroprotection and prevent stress-associated misfolded protein apoptosis. Designing therapeutic strategies by pharmacologically enhancing cellular chaperone capacity to reduce mutant protein proteotoxic effects on ALS pathomechanisms can be a considerable advancement. Chaperones, apart from directly interacting with misfolded proteins for protein quality control, can also filter their toxicity by initiating strong stress-response pathways, modulating transcriptional expression profiles, and promoting anti-apoptotic functions. Overall, these properties of chaperones make them an attractive target for gaining fundamental insights into misfolded protein disorders and designing more effective therapies against ALS.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| |
Collapse
|
172
|
Ramatsui L, Dongola TH, Zininga T, Multhoff G, Shonhai A. Human granzyme B binds Plasmodium falciparum Hsp70-x and mediates antiplasmodial activity in vitro. Cell Stress Chaperones 2023; 28:321-331. [PMID: 37074531 PMCID: PMC10167072 DOI: 10.1007/s12192-023-01339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/20/2023] Open
Abstract
Cell surface-bound human Hsp70 (hHsp70) sensitises tumour cells to the cytolytic attack of natural killer (NK) cells through the mediation of apoptosis-inducing serine protease, granzyme B (GrB). hHsp70 is thought to recruit NK cells to the immunological synapse via the extracellularly exposed 14 amino acid sequence, TKDNNLLGRFELSG, known as the TKD motif of Hsp70. Plasmodium falciparum-infected red blood cells (RBCs) habour both hHsp70 and an exported parasite Hsp70 termed PfHsp70-x. Both PfHsp70-x and hHsp70 share conserved TKD motifs. The role of PfHsp70-x in facilitating GrB uptake in malaria parasite-infected RBCs remains unknown, but hHsp70 enables a perforin-independent uptake of GrB into tumour cells. In the current study, we comparatively investigated the direct binding of GrB to either PfHsp70-x or hHsp70 in vitro. Using ELISA, slot blot assay and surface plasmon resonance (SPR) analysis, we demonstrated a direct interaction of GrB with hHsp70 and PfHsp70-x. SPR analysis revealed a higher affinity of GrB for PfHsp70-x than hHsp70. In addition, we established that the TKD motif of PfHsp70-x directly interacts with GrB. The data further suggest that the C-terminal EEVN motif of PfHsp70-x augments the affinity of PfHsp70-x for GrB but is not a prerequisite for the binding. A potent antiplasmodial activity (IC50 of 0.5 µM) of GrB could be demonstrated. These findings suggest that the uptake of GrB by parasite-infected RBCs might be mediated by both hHsp70 and PfHsp70-x. The combined activity of both proteins could account for the antiplasmodial activity of GrB at the blood stage.
Collapse
Affiliation(s)
- Lebogang Ramatsui
- Department of Biochemistry and Microbiology, Faculty of Science, University of Venda, Engineering & Agriculture, Thohoyandou, 0950, Limpopo, South Africa
| | - Tendamudzimu Harmfree Dongola
- Department of Biochemistry and Microbiology, Faculty of Science, University of Venda, Engineering & Agriculture, Thohoyandou, 0950, Limpopo, South Africa
| | - Tawanda Zininga
- Department of Biochemistry and Microbiology, Faculty of Science, University of Venda, Engineering & Agriculture, Thohoyandou, 0950, Limpopo, South Africa
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Gabriele Multhoff
- Klinik Und Poliklinik Für Strahlentherapie Und Radiologische Onkologie, Klinikum Rechts Der Isar and Central Institute for Translational Cancer Research TU München, TranslaTUM) Einsteinstr. 25, 81675, Munich, Germany
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, Faculty of Science, University of Venda, Engineering & Agriculture, Thohoyandou, 0950, Limpopo, South Africa.
| |
Collapse
|
173
|
Zuñiga-Hernandez J, Meneses C, Bastias M, Allende ML, Glavic A. Drosophila DAxud1 Has a Repressive Transcription Activity on Hsp70 and Other Heat Shock Genes. Int J Mol Sci 2023; 24:ijms24087485. [PMID: 37108646 PMCID: PMC10138878 DOI: 10.3390/ijms24087485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Drosophila melanogaster DAxud1 is a transcription factor that belongs to the Cysteine Serine Rich Nuclear Protein (CSRNP) family, conserved in metazoans, with a transcriptional transactivation activity. According to previous studies, this protein promotes apoptosis and Wnt signaling-mediated neural crest differentiation in vertebrates. However, no analysis has been conducted to determine what other genes it might control, especially in connection with cell survival and apoptosis. To partly answer this question, this work analyzes the role of Drosophila DAxud1 using Targeted-DamID-seq (TaDa-seq), which allows whole genome screening to determine in which regions it is most frequently found. This analysis confirmed the presence of DAxud1 in groups of pro-apoptotic and Wnt pathway genes, as previously described; furthermore, stress resistance genes that coding heat shock protein (HSP) family genes were found as hsp70, hsp67, and hsp26. The enrichment of DAxud1 also identified a DNA-binding motif (AYATACATAYATA) that is frequently found in the promoters of these genes. Surprisingly, the following analyses demonstrated that DAxud1 exerts a repressive role on these genes, which are necessary for cell survival. This is coupled with the pro-apoptotic and cell cycle arrest roles of DAxud1, in which repression of hsp70 complements the maintenance of tissue homeostasis through cell survival modulation.
Collapse
Affiliation(s)
- Jorge Zuñiga-Hernandez
- Millennium Institute Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile
| | - Claudio Meneses
- Millennium Institute Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile
- Millennium Nucleus Development of Super Adaptable Plants (MN-SAP), Santiago 8331150, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Macarena Bastias
- Centro de Biotecnología vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile
| | - Miguel L Allende
- Millennium Institute Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile
| | - Alvaro Glavic
- Millennium Institute Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800003, Chile
| |
Collapse
|
174
|
Maximo MF, Fill TP, Rodrigues ML. A Close Look into the Composition and Functions of Fungal Extracellular Vesicles Produced by Phytopathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:228-234. [PMID: 36847651 DOI: 10.1094/mpmi-09-22-0184-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fungal extracellular vesicles (EVs) were first described in human pathogens. In a few years, the field of fungal EVs evolved to include several studies with plant pathogens, in which extracellularly released vesicles play fundamental biological roles. In recent years, solid progress has been made in the determination of the composition of EVs produced by phytopathogens. In addition, EV biomarkers are now known in fungal plant pathogens, and the production of EVs during plant infection has been demonstrated. In this manuscript, we review the recent progress in the field of fungal EVs, with a focus on plant pathogens. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.
Collapse
Affiliation(s)
- Marina F Maximo
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
| | - Taícia P Fill
- Instituto de Química, Universidade de Campinas, São Paulo, Brazil
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
175
|
Shao W, Sun K, Ma T, Jiang H, Hahn M, Ma Z, Jiao C, Yin Y. SUMOylation regulates low-temperature survival and oxidative DNA damage tolerance in Botrytis cinerea. THE NEW PHYTOLOGIST 2023; 238:817-834. [PMID: 36651012 DOI: 10.1111/nph.18748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
SUMOylation as one of the protein post-translational modifications plays crucial roles in multiple biological processes of eukaryotic organisms. Botrytis cinerea is a devastating fungal pathogen and capable of infecting plant hosts at low temperature. However, the molecular mechanisms of low-temperature adaptation are largely unknown in fungi. Combining with biochemical methods and biological analyses, we report that SUMOylation regulates pathogen survival at low temperature and oxidative DNA damage response during infection in B. cinerea. The heat shock protein (Hsp70) BcSsb and E3 ubiquitin ligase BcRad18 were identified as substrates of SUMOylation; moreover, their SUMOylation both requires a single unique SUMO-interacting motif (SIM). SUMOylated BcSsb regulates β-tubulin accumulation, thereby affecting the stability of microtubules and consequently mycelial growth at low temperature. On the contrary, SUMOylated BcRad18 modulates mono-ubiquitination of the sliding clamp protein proliferating cell nuclear antigen (PCNA), which is involved in response to oxidative DNA damage during infection. Our study uncovers the molecular mechanisms of SUMOylation-mediated low-temperature survival and oxidative DNA damage tolerance during infection in a devastating fungal pathogen, which provides novel insights into low-temperature adaptation and pathogenesis for postharvest pathogens as well as new targets for inhibitor invention in disease control.
Collapse
Affiliation(s)
- Wenyong Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kewei Sun
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Tianling Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Huixian Jiang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Matthias Hahn
- Department of Biology, University of Kaiserslautern, PO Box 3049, 67653, Kaiserslautern, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chen Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
176
|
Mouawad N, Capasso G, Ruggeri E, Martinello L, Severin F, Visentin A, Facco M, Trentin L, Frezzato F. Is It Still Possible to Think about HSP70 as a Therapeutic Target in Onco-Hematological Diseases? Biomolecules 2023; 13:biom13040604. [PMID: 37189352 DOI: 10.3390/biom13040604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The search for molecules to be targeted that are involved in apoptosis resistance/increased survival and pathogenesis of onco-hematological malignancies is ongoing since these diseases are still not completely understood. Over the years, a good candidate has been identified in the Heat Shock Protein of 70kDa (HSP70), a molecule defined as “the most cytoprotective protein ever been described”. HSP70 is induced in response to a wide variety of physiological and environmental insults, allowing cells to survive lethal conditions. This molecular chaperone has been detected and studied in almost all the onco-hematological diseases and is also correlated to poor prognosis and resistance to therapy. In this review, we give an overview of the discoveries that have led us to consider HSP70 as a therapeutic target for mono- or combination-therapies in acute and chronic leukemias, multiple myeloma and different types of lymphomas. In this excursus, we will also consider HSP70 partners, such as its transcription factor HSF1 or its co-chaperones whose druggability could indirectly affect HSP70. Finally, we will try to answer the question asked in the title of this review considering that, despite the effort made by research in this field, HSP70 inhibitors never reached the clinic.
Collapse
|
177
|
Zhao K, Zhou G, Liu Y, Zhang J, Chen Y, Liu L, Zhang G. HSP70 Family in Cancer: Signaling Mechanisms and Therapeutic Advances. Biomolecules 2023; 13:601. [PMID: 37189349 PMCID: PMC10136146 DOI: 10.3390/biom13040601] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
The 70 kDa heat shock proteins (HSP70s) are a group of highly conserved and inducible heat shock proteins. One of the main functions of HSP70s is to act as molecular chaperones that are involved in a large variety of cellular protein folding and remodeling processes. HSP70s are found to be over-expressed and may serve as prognostic markers in many types of cancers. HSP70s are also involved in most of the molecular processes of cancer hallmarks as well as the growth and survival of cancer cells. In fact, many effects of HSP70s on cancer cells are not only related to their chaperone activities but rather to their roles in regulating cancer cell signaling. Therefore, a number of drugs directly or indirectly targeting HSP70s, and their co-chaperones have been developed aiming to treat cancer. In this review, we summarized HSP70-related cancer signaling pathways and corresponding key proteins regulated by the family of HSP70s. In addition, we also summarized various treatment approaches and progress of anti-tumor therapy based on targeting HSP70 family proteins.
Collapse
Affiliation(s)
- Kejia Zhao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Guanyu Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong 999077, China
| | - Jian Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Yaohui Chen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong 999077, China
| |
Collapse
|
178
|
Wu S, Zhao Y, Wang D, Chen Z. Mode of Action of Heat Shock Protein (HSP) Inhibitors against Viruses through Host HSP and Virus Interactions. Genes (Basel) 2023; 14:genes14040792. [PMID: 37107550 PMCID: PMC10138296 DOI: 10.3390/genes14040792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Misfolded proteins after stress-induced denaturation can regain their functions through correct re-folding with the aid of molecular chaperones. As a molecular chaperone, heat shock proteins (HSPs) can help client proteins fold correctly. During viral infection, HSPs are involved with replication, movement, assembly, disassembly, subcellular localization, and transport of the virus via the formation of macromolecular protein complexes, such as the viral replicase complex. Recent studies have indicated that HSP inhibitors can inhibit viral replication by interfering with the interaction of the virus with the HSP. In this review, we describe the function and classification of HSPs, the transcriptional mechanism of HSPs promoted by heat shock factors (HSFs), discuss the interaction between HSPs and viruses, and the mode of action of HSP inhibitors at two aspects of inhibiting the expression of HSPs and targeting the HSPs, and elaborate their potential use as antiviral agents.
Collapse
|
179
|
Potential Anti-Candida albicans Mechanism of Trichoderma Acid from Trichoderma spirale. Int J Mol Sci 2023; 24:ijms24065445. [PMID: 36982520 PMCID: PMC10049406 DOI: 10.3390/ijms24065445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Candida albicans is the main causal pathogen of fungal infections in human beings. Although diverse anti-C. albicans drugs have been explored, the drug resistance and side effects of these drugs are intensifying. Thus, it is urgent to explore new anti-C. albicans compounds from natural products. In this study, we identified trichoderma acid (TA), a compound from Trichoderma spirale with a strong inhibitory effect on C. albicans. Transcriptomic and iTRAQ-based proteomic analyses of TA-treated C. albicans in combination with scanning electronic microscopy and reactive oxygen species (ROS) detection were performed to investigate the potential targets of TA. The most significant differentially expressed genes and proteins after TA treatment were verified through Western blot analysis. Our results revealed that mitochondrial membrane potential, endoplasmic reticulum, ribosomes in the mitochondria, and cell walls were disrupted in TA-treated C. albicans, leading to the accumulation of ROS. The impaired enzymatic activities of superoxide dismutase further contributed to the increase in ROS concentration. The high concentration of ROS led to DNA damage and cell skeleton destruction. The expression levels of Rho-related GTP-binding protein RhoE (RND3), asparagine synthetase (ASNS), glutathione S-transferase, and heat shock protein 70 were significantly up-regulated in response to apoptosis and toxin stimulation. These findings suggest that RND3, ASNS, and supereoxide dismutase 5 are the potential targets of TA, as further demonstrated through Western blot analysis. The combination of transcriptomic, proteomic, and cellular analyses would provide clues for the anti-C. albicans mechanism of TA and the defensive response mechanism of C. albicans. TA is thus recognized as a promising new anti-C. albicans leading compound that alleviates the hazard of C. albicans infection in human beings.
Collapse
|
180
|
Lubkowska A, Dudzińska W, Pluta W. Antioxidant Enzyme Activity and Serum HSP70 Concentrations in Relation to Insulin Resistance and Lipid Profile in Lean and Overweight Young Men. Antioxidants (Basel) 2023; 12:antiox12030655. [PMID: 36978903 PMCID: PMC10044875 DOI: 10.3390/antiox12030655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Oxidants are generated by all cells during normal oxidative respiration, and as long as they are under the control of appropriate mechanisms, they act as intracellular signaling molecules participating in complex functions. Oxidative stress can also affect insulin levels in the body. The production of reactive oxygen species by-products can lead to insulin resistance. Heat shock proteins (70 kDa) protect cells from the damaging effects of heat shock but also oxidative stress. The aim of the study was to investigate the serum concentration of HSP70 in young, non-obese but overweight men (BMI ≤ 30 kg/m2) and to assess its association with the insulin resistance, lipid profile and antioxidant system of red blood cells. Fifty-seven young men were examined and divided into two groups: lean men (n = 30) and men overweight (n = 27). A statistically significant difference was observed in the BMI (p < 0.007), HSP70 concentration (p < 0.000), serum insulin concentration (p < 0.000), HOMA-IR (p < 0.0001), superoxide dismutase (p < 0.02) and glutathione peroxidase (p < 0.05) between the studied groups. There was a negative correlation between the concentration of HSP70 with the insulin level (r = −0.50; p < 0.0004) and with the HOMA-IR (r = −0.50; p < 0.0004). These changes were associated with an increase in the activity of antioxidant enzymes. Our findings suggest that measuring the extracellular concentration of HSP70 can be an important indicator in disorders of glucose homeostasis.
Collapse
Affiliation(s)
- Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland
- Correspondence:
| | - Wioleta Dudzińska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | - Waldemar Pluta
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland
| |
Collapse
|
181
|
Mathur S, Gawas C, Ahmad IZ, Wani M, Tabassum H. Neurodegenerative disorders: Assessing the impact of natural vs drug-induced treatment options. Aging Med (Milton) 2023; 6:82-97. [PMID: 36911087 PMCID: PMC10000287 DOI: 10.1002/agm2.12243] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 02/24/2023] Open
Abstract
Neurodegenerative illnesses refer to the gradual, cumulative loss of neural activity. Neurological conditions are considered to be the second leading cause of mortality in the modern world and the two most prevalent ones are Parkinson's disease and Alzheimer's disease. The negative side effects of pharmaceutical use are a major global concern, despite the availability of many different treatments for therapy. We concentrated on different types of neurological problems and their influence on targets, in vitro, in vivo, and in silico methods toward neurological disorders, as well as the molecular approaches influencing the same, in the first half of the review. The bulk of the second half of the review focuses on the many categories of treatment possibilities, including natural and artificial. Nevertheless, herbal treatment solutions are piquing scholarly attention due to their anti-oxidative properties and accessibility. However, more quality investigations and innovations are undoubtedly needed to back up these conclusions.
Collapse
Affiliation(s)
- Sakshi Mathur
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Chaitali Gawas
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | | | - Minal Wani
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Heena Tabassum
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
182
|
Rizvi SF, Hasan A, Parveen S, Mir SS. Untangling the complexity of heat shock protein 27 in cancer and metastasis. Arch Biochem Biophys 2023; 736:109537. [PMID: 36738981 DOI: 10.1016/j.abb.2023.109537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/27/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Heat shock protein 27 is a type of molecular chaperone whose expression gets up-regulated due to reaction towards different stressful triggers including anticancer treatments. It is known to be a major player of resistance development in cancer cells, whereby cells are sheltered against the therapeutics that normally activate apoptosis. Heat shock protein 27 (HSP27) is one of the highly expressed proteins during various cellular insults and is a strong tumor survival factor. HSP27 influences various cellular pathways associated with cancer cell survival and growth such as apoptosis, autophagy, metastasis, angiogenesis, epithelial to mesenchymal transition, etc. HSP27 is molecular machinery which prevents the clumping of numerous substrates or client proteins which get mutated in cancer. It has been reported in several studies that targeting HSP27 is difficult because of its dynamic structure and absence of an ATP-binding site. Here, in this review, we have summarized different modulators of HSP27 and their mechanism of action as well. Effect of deregulated HSP27 in various cancer models, limitations of targeting HSP27, resistance against the conventional drugs generated due to the overexpression of HSP27, and measures to counteract this effect have also been discussed here in detail.
Collapse
Affiliation(s)
- Suroor Fatima Rizvi
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Sana Parveen
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
183
|
Shi D, Zhou L, Shi H, Zhang J, Zhang J, Zhang L, Liu D, Feng T, Zeng M, Chen J, Zhang X, Xue M, Jing Z, Liu J, Ji Z, He H, Guo L, Wu Y, Ma J, Feng L. Autophagy is induced by swine acute diarrhea syndrome coronavirus through the cellular IRE1-JNK-Beclin 1 signaling pathway after an interaction of viral membrane-associated papain-like protease and GRP78. PLoS Pathog 2023; 19:e1011201. [PMID: 36888569 PMCID: PMC9994726 DOI: 10.1371/journal.ppat.1011201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Autophagy plays an important role in the infectious processes of diverse pathogens. For instance, cellular autophagy could be harnessed by viruses to facilitate replication. However, it is still uncertain about the interplay of autophagy and swine acute diarrhea syndrome coronavirus (SADS-CoV) in cells. In this study, we reported that SADS-CoV infection could induce a complete autophagy process both in vitro and in vivo, and an inhibition of autophagy significantly decreased SADS-CoV production, thus suggesting that autophagy facilitated the replication of SADS-CoV. We found that ER stress and its downstream IRE1 pathway were indispensable in the processes of SADS-CoV-induced autophagy. We also demonstrated that IRE1-JNK-Beclin 1 signaling pathway, neither PERK-EIF2S1 nor ATF6 pathways, was essential during SADS-CoV-induced autophagy. Importantly, our work provided the first evidence that expression of SADS-CoV PLP2-TM protein induced autophagy through the IRE1-JNK-Beclin 1 signaling pathway. Furthermore, the interaction of viral PLP2-TMF451-L490 domain and substrate-binding domain of GRP78 was identified to activate the IRE1-JNK-Beclin 1 signaling pathway, and thus resulting in autophagy, and in turn, enhancing SADS-CoV replication. Collectively, these results not only showed that autophagy promoted SADS-CoV replication in cultured cells, but also revealed that the molecular mechanism underlying SADS-CoV-induced autophagy in cells.
Collapse
Affiliation(s)
- Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Ling Zhou
- College of Animal Science, South China Agricultural University, Tianhe District, China
| | - Hongyan Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jiyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jialin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Liaoyuan Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Dakai Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Tingshuai Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Miaomiao Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Mei Xue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Zhaoyang Jing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jianbo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Zhaoyang Ji
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Haojie He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Longjun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Yang Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Tianhe District, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| |
Collapse
|
184
|
Chen D, Liang J, Jiang C, Wu D, Huang B, Teng X, Tang Y. Mitochondrion Participated in Effect Mechanism of Manganese Poisoning on Heat Shock Protein and Ultrastructure of Testes in Chickens. Biol Trace Elem Res 2023; 201:1432-1441. [PMID: 35513734 DOI: 10.1007/s12011-022-03259-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Manganese (Mn) poisoning can happen in the case of environmental pollution and occupational exposure. However, the underlying mechanisms of Mn-induced teste toxicity and whether mitochondrion and heat shock proteins (HSPs) are involved in toxic effect of Mn on chicken testes remain poorly understood. To investigate this, MnCl2·4H2O was administered in the diet (600, 900, and 1800 mg/kg Mn) of chickens for 30, 60, and 90 days. Electron microscopy and qPCR were performed. Results showed that Mn exposure suppressed dose- and time-dependently HSP40 and HSP60 mRNA levels, meanwhile increased does-dependently HSP27, HSP70, and HSP90 mRNA levels at all three time points under three Mn exposure concentrations. Furthermore, Mn treatment damaged myoid cells, spermatocytes, and Sertoli cells through electron microscopic observation, indicating that Mn treatment damaged chicken testes. In addition, abnormal shapes of mitochondria were found, and mitochondria displayed extensive vacuolation. The increase of HSP90 and HSP70 induced by Mn exposure inhibited HSP40 and stimulated HSP27, respectively, in chicken testes, which needs further to be explored. Taken together, our study suggested that there was toxic effect in excess Mn on chickens, and HSPs and mitochondria were involved in the mechanism of dose-dependent injury caused by Mn in chicken testes. This study provided new insights for Mn toxicity identification in animal husbandry production practice.
Collapse
Affiliation(s)
- Dechun Chen
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jiatian Liang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Chunyu Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Di Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Bin Huang
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, China
| | - Xiaohua Teng
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, China.
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - You Tang
- Electrical and Information Engineering College, JiLin Agricultural Science and Technology University, Jilin, 132101, China.
| |
Collapse
|
185
|
Yang L, Zhou Y, Wang S, Xu Y, Ostendorp S, Tomkins M, Kehr J, Morris RJ, Kragler F. Noncell-autonomous HSC70.1 chaperone displays homeostatic feedback regulation by binding its own mRNA. THE NEW PHYTOLOGIST 2023; 237:2404-2421. [PMID: 36564968 DOI: 10.1111/nph.18703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The HSC70/HSP70 family of heat shock proteins are evolutionarily conserved chaperones involved in protein folding, protein transport, and RNA binding. Arabidopsis HSC70 chaperones are thought to act as housekeeping chaperones and as such are involved in many growth-related pathways. Whether Arabidopsis HSC70 binds RNA and whether this interaction is functional has remained an open question. We provide evidence that the HSC70.1 chaperone binds its own mRNA via its C-terminal short variable region (SVR) and inhibits its own translation. The SVR encoding mRNA region is necessary for HSC70.1 transcript mobility to distant tissues and that HSC70.1 transcript and not protein mobility is required to rescue root growth and flowering time of hsc70 mutants. We propose that this negative protein-transcript feedback loop may establish an on-demand chaperone pool that allows for a rapid response to stress. In summary, our data suggest that the Arabidopsis HSC70.1 chaperone can form a complex with its own transcript to regulate its translation and that both protein and transcript can act in a noncell-autonomous manner, potentially maintaining chaperone homeostasis between tissues.
Collapse
Affiliation(s)
- Lei Yang
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Golm, Germany
| | - Yuan Zhou
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Golm, Germany
| | - Shuangfeng Wang
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Golm, Germany
| | - Ying Xu
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Golm, Germany
| | - Steffen Ostendorp
- Institute for Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Melissa Tomkins
- Computational and Systems Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Julia Kehr
- Institute for Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Friedrich Kragler
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Golm, Germany
| |
Collapse
|
186
|
Dong CL, Feng Z, Lu MX, Du YZ. Chilo suppressalis heat shock proteins are regulated by heat shock factor 1 during heat stress. INSECT MOLECULAR BIOLOGY 2023; 32:69-78. [PMID: 36279182 DOI: 10.1111/imb.12814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Heat shock factor 1 (HSF1) functions to maintain cellular and organismal homeostasis by regulating the expression of target genes, including those encoding heat shock proteins (HSPs). In the present study, the gene encoding HSF1 was cloned from the rice pest Chilo suppressalis, and designated Cshsf1. The deduced protein product, CsHSF1, contained conserved domains typical of the HSF1 family, including a DNA-binding domain, two hydrophobic heptad repeat domains, and a C-terminal transactivation domain. Real-time quantitative PCR showed that Cshsf1 was highly expressed in hemocytes. Expression analysis in different developmental stages of C. suppressalis revealed that Cshsf1 was most highly expressed in male adults. RNAi-mediated silencing of Cshsf1 expression reduced C. suppressalis survival at high temperatures. To investigate the regulatory interactions between Cshsf1 and Cshsps, the promoters and expression patterns of 18 identified Cshsps in C. suppressalis were analysed; four types of heat shock elements (HSEs) were identified in promoter regions including canonical, tail-tail, head-head, and step/gap. The expression of Cshsp19.0, Cshsp21.7B, Cshsp60, Cshsp70 and Cshsp90 was positively regulated by Cshsf1; however, Cshsp22.8, Cshsp702, Cshsp705 and Cshsp706 gene expression was not altered. This study provides a foundation for future studies of HSF1 in insects during thermal stress.
Collapse
Affiliation(s)
- Chuan-Lei Dong
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Zhu Feng
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, China
| | - Ming-Xing Lu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
187
|
Wen Z, Zhu H, Wang J, Wu B, Zhang A, Zhao H, Song C, Liu S, Cheng Y, Wang H, Li J, Sun D, Fu X, Gao J, Liu M. Conditional deletion of Hspa5 leads to spermatogenesis failure and male infertility in mice. Life Sci 2023; 314:121319. [PMID: 36574945 DOI: 10.1016/j.lfs.2022.121319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/26/2022]
Abstract
Heat shock proteins (HSPs) have important roles in different developmental stages of spermatogenesis. The heat shock 70 kDa protein 5 (HSPA5) is an important component of the unfolded protein response that promotes cell survival under endoplasmic reticulum (ER) stress conditions. In this study, we explored the function of HSPA5 in spermatogenesis, by generating a germ cell-specific deletion mutant of the Hspa5 gene (conditional knockout of the Hspa5 gene, Hspa5-cKO) using CRISPR/Cas9 technology and the Cre/Loxp system. Hspa5 knockout resulted in severe germ cell loss and vacuolar degeneration of seminiferous tubules, leading to complete arrest of spermatogenesis, testicular atrophy, and male infertility in adult mice. Furthermore, defects occurred in the spermatogenic epithelium of Hspa5-cKO mice as early as Cre recombinase expression. Germ cell ablation of Hspa5 impaired spermatogonia proliferation and differentiation from post-natal day 7 (P7) to P10, which led to a dramatic reduction of differentiated spermatogonia, compromised meiosis, and led to impairment of testis development and the disruption of the first wave of spermatogenesis. Consistent with these results, single-cell RNA sequencing (scRNA-seq) analysis showed that germ cells, especially differentiated spermatogonia, were dramatically reduced in Hspa5-cKO testes compared with controls at P10, further confirming that HSPA5 is crucial for germ cell development. These results suggest that HSPA5 is indispensable for normal spermatogenesis and male reproduction in mice.
Collapse
Affiliation(s)
- Zongzhuang Wen
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, PR China
| | - Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Jing Wang
- Department of Basic Medicine, Jinan Vacational College of Nursing, Jinan 250102, PR China
| | - Bin Wu
- Department of Reproductive Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, PR China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Hui Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, PR China
| | - Chenyang Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, PR China
| | - Shuangyuan Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, PR China
| | - Yin Cheng
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Hongxiang Wang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China
| | - Jianyuan Li
- Key Laboratory of Male Reproductive Health, Institute of Science and Technology, National Health Commission, Beijing 100081, PR China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin 300041, PR China
| | - Xiaolong Fu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, PR China.
| | - Jiangang Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, PR China; School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, PR China.
| | - Min Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan 250117, PR China.
| |
Collapse
|
188
|
Adah AS, Ayo JO, Adah DA, Nwonuma CO, Lawal TA. Molecular docking and experimental validation of the effect of ergothioneine on heat shock protein-70 following endurance exercise by Arabian stallions. BMC Vet Res 2023; 19:27. [PMID: 36717851 PMCID: PMC9887863 DOI: 10.1186/s12917-023-03584-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Exercise-induced oxidative stress is a challenge in equine sports. This study aims at determining the effects of ergothioneine on heat shock protein-70 (HSP-70) following the stress of an endurance exercise of 30 km by Arabian stallions. Molecular docking was also done to investigate the interaction between the ligand ergothioneine and heat shock protein-70 using sulfogalactosylceramide and sulfogalactoglycerolipid as standards. The study involved a total of 18 clinically healthy stallions, with an average age of 6.7 ± 2.4 years and an average weight of 411.54 ± 12.46 kg. Only clinically healthy stallions were selected as subjects. The stallions were divided into two groups of nine stallions each. Group I (ERGX) was administered ergothioneine at a dose of 0.02 mg/kg once daily orally for four weeks while group II (ERGN) was not administered ergothioneine. The activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase were determined in the two groups before and post-exercise. The concentrations of malondialdehyde and HSP-70 were also determined. RESULTS The results obtained showed that the activities of the antioxidant enzymes and concentration of HSP-70 were higher (P < 0.05) in the ERGX group compared to the ERGN group. The concentration of malondialdehyde was however lower in the ERGX group. Following molecular docking, ergothioneine and the selected standards have common amino acids at the site of interaction with the target protein (HSP-70) suggesting that ergothioneine may have a modulatory effect on the synthesis of HSP-70. CONCLUSION The results obtained indicated that ergothioneine modulated the synthesis of HSP-70 and the biomarkers of oxidative stress. It was therefore concluded that ergothioneine may be beneficial to horses subjected to endurance exercise.
Collapse
Affiliation(s)
- Adakole Sylvanus Adah
- grid.412974.d0000 0001 0625 9425Department of Veterinary Physiology and Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Joseph Olusegun Ayo
- grid.411225.10000 0004 1937 1493Department of Veterinary Physiology, Ahmadu Bello University, Zaria, Nigeria
| | - Deborah Arimie Adah
- grid.412974.d0000 0001 0625 9425Department of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - Charles Obiora Nwonuma
- grid.448923.00000 0004 1767 6410Department of Biochemistry, Landmark University, Omuaran, Nigeria
| | - Teslim Alabi Lawal
- Computational Biophysical Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University, Ogbomoso, Nigeria
| |
Collapse
|
189
|
Liaisons dangereuses: Intrinsic Disorder in Cellular Proteins Recruited to Viral Infection-Related Biocondensates. Int J Mol Sci 2023; 24:ijms24032151. [PMID: 36768473 PMCID: PMC9917183 DOI: 10.3390/ijms24032151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the formation of so-called membrane-less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins are also known to partition into cellular MLOs, thus raising the question as to whether these cellular phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on a set of eukaryotic proteins that are either sequestered in viral factories or colocalize with viral proteins within cellular MLOs, with the primary goal of gathering organized, predicted, and experimental information on these proteins, which constitute promising targets for innovative antiviral strategies. Using various computational approaches, we thoroughly investigated their disorder content and inherent propensity to undergo LLPS, along with their biological functions and interactivity networks. Results show that these proteins are on average, though to varying degrees, enriched in disorder, with their propensity for phase separation being correlated, as expected, with their disorder content. A trend, which awaits further validation, tends to emerge whereby the most disordered proteins serve as drivers, while more ordered cellular proteins tend instead to be clients of viral factories. In light of their high disorder content and their annotated LLPS behavior, most proteins in our data set are drivers or co-drivers of molecular condensation, foreshadowing a key role of these cellular proteins in the scaffolding of viral infection-related MLOs.
Collapse
|
190
|
Chen L, Xu Y. Low temperature upregulating HSP70 expression to mitigate the paclitaxel-induced damages in NHEK cell. PeerJ 2023; 11:e14630. [PMID: 36684674 PMCID: PMC9854382 DOI: 10.7717/peerj.14630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/02/2022] [Indexed: 01/18/2023] Open
Abstract
Scalp cooling is the most approved treatment for preventing chemotherapy-induced alopecia (CIA). However, the protective mechanism of scalp cooling has rarely been reported. The goal of the present study was to study the relationship between paclitaxel concentration and temperature and the inhibitory effect of low temperature on paclitaxel-induced alopecia. The results showed that the dose of paclitaxel should not exceed 60-70 mg/mL during scalp cooling treatment, and the optimal cooling temperature under different paclitaxel concentrations was determined. Normal human epidermal keratinocytes (NHEK) cells were analyzed by global transcriptome analysis, functional annotation and pathway analysis of differentially expressed genes (DEGs) and ELISA kit to analyze the mechanism of low temperature therapy. The expression of HSPA8, HSPA1A and HSPA1B, which belongs to HSP70, was up-regulated by low temperature. These genes are important target genes of low temperature treatment, which were confirmed by ELISA. The up-regulation of PLK2 and the down-regulation of TXNIP expression are the upstream of mitochondrial dysfunction and ROS, inhibiting the accumulation of ROS and up-regulating the mitochondrial membrane potential. Our research partially elucidates the therapeutic mechanism of scalp cooling, which provides a new idea on the drug research and development in CIA.
Collapse
Affiliation(s)
- Liang Chen
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China,Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China,Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| | - Yi Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, China,Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai, China,Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
| |
Collapse
|
191
|
Shan SO. Role of Hsp70 in Post-Translational Protein Targeting: Tail-Anchored Membrane Proteins and Beyond. Int J Mol Sci 2023; 24:1170. [PMID: 36674686 PMCID: PMC9866221 DOI: 10.3390/ijms24021170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The Hsp70 family of molecular chaperones acts as a central 'hub' in the cell that interacts with numerous newly synthesized proteins to assist in their biogenesis. Apart from its central and well-established role in facilitating protein folding, Hsp70s also act as key decision points in the cellular chaperone network that direct client proteins to distinct biogenesis and quality control pathways. In this paper, we review accumulating data that illustrate a new branch in the Hsp70 network: the post-translational targeting of nascent membrane and organellar proteins to diverse cellular organelles. Work in multiple pathways suggests that Hsp70, via its ability to interact with components of protein targeting and translocation machineries, can initiate elaborate substrate relays in a sophisticated cascade of chaperones, cochaperones, and receptor proteins, and thus provide a mechanism to safeguard and deliver nascent membrane proteins to the correct cellular membrane. We discuss the mechanistic principles gleaned from better-studied Hsp70-dependent targeting pathways and outline the observations and outstanding questions in less well-studied systems.
Collapse
Affiliation(s)
- Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
192
|
Salvermoser L, Flisikowski K, Dressel-Böhm S, Nytko KJ, Rohrer Bley C, Schnieke A, Samt AK, Thölke D, Lennartz P, Schwab M, Wang F, Bashiri Dezfouli A, Multhoff G. Elevated circulating Hsp70 levels are correlative for malignancies in different mammalian species. Cell Stress Chaperones 2023; 28:105-118. [PMID: 36399258 PMCID: PMC9877270 DOI: 10.1007/s12192-022-01311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Circulating Hsp70 levels were determined in feline and porcine cohorts using two different ELISA systems. These comparative animal models of larger organisms often reflect diseases, and especially malignant tumors, better than conventional rodent models. It is therefore essential to investigate the biology and utility of tumor biomarkers in animals such as cats and pigs. In this study, levels of free Hsp70 in the blood of cats with spontaneously occurring tumors were detected using a commercial Hsp70 ELISA (R&D Systems). Sub-analysis of different tumor groups revealed that animals with tumors of epithelial origin presented with significantly elevated circulating Hsp70 concentrations. In addition to free Hsp70 levels measured with the R&D Systems Hsp70 ELISA, levels of exosomal Hsp70 were determined using the compHsp70 ELISA in pigs. Both ELISA systems detected significantly elevated Hsp70 levels (R&D Systems: median 24.9 ng/mL; compHsp70: median 44.2 ng/mL) in the blood of a cohort of APC1311/+ pigs diagnosed with high-grade adenoma polyps, and the R&D Systems Hsp70 ELISA detected also elevated Hsp70 levels in animals with low-grade polyps. In contrast, in flTP53R167H pigs, suffering from malignant osteosarcoma, the compHsp70 ELISA (median 674.32 ng/mL), but not the R&D Systems Hsp70 ELISA (median 4.78 ng/mL), determined significantly elevated Hsp70 concentrations, indicating that in tumor-bearing animals, the dominant form of Hsp70 is of exosomal origin. Our data suggest that both ELISA systems are suitable for detecting free circulating Hsp70 levels in pigs with high-grade adenoma, but only the compHsp70 ELISA can measure elevated, tumor-derived exosomal Hsp70 levels in tumor-bearing animals.
Collapse
Affiliation(s)
- Lukas Salvermoser
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany.
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany.
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany.
| | - Krzysztof Flisikowski
- Livestock Biotechnology, School of Live Sciences, Technische Universität München (TUM), Liesel-Beckmannstr 1, 85354, Freising, Germany
| | - Susann Dressel-Böhm
- Vetsuisse Faculty, Division of Radiation Oncology, University of Zurich, Winterthurerstr 258C, CH-8057, Zurich, Switzerland
| | - Katarzyna J Nytko
- Vetsuisse Faculty, Division of Radiation Oncology, University of Zurich, Winterthurerstr 258C, CH-8057, Zurich, Switzerland
| | - Carla Rohrer Bley
- Vetsuisse Faculty, Division of Radiation Oncology, University of Zurich, Winterthurerstr 258C, CH-8057, Zurich, Switzerland
| | - Angelika Schnieke
- Livestock Biotechnology, School of Live Sciences, Technische Universität München (TUM), Liesel-Beckmannstr 1, 85354, Freising, Germany
| | - Ann-Kathrin Samt
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Dennis Thölke
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Philipp Lennartz
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Melissa Schwab
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Fei Wang
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Ali Bashiri Dezfouli
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| |
Collapse
|
193
|
Hamstra SI, Roy BD, Tiidus P, MacNeil AJ, Klentrou P, MacPherson RE, Fajardo VA. Beyond its Psychiatric Use: The Benefits of Low-dose Lithium Supplementation. Curr Neuropharmacol 2023; 21:891-910. [PMID: 35236261 PMCID: PMC10227915 DOI: 10.2174/1570159x20666220302151224] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
Lithium is most well-known for its mood-stabilizing effects in the treatment of bipolar disorder. Due to its narrow therapeutic window (0.5-1.2 mM serum concentration), there is a stigma associated with lithium treatment and the adverse effects that can occur at therapeutic doses. However, several studies have indicated that doses of lithium under the predetermined therapeutic dose used in bipolar disorder treatment may have beneficial effects not only in the brain but across the body. Currently, literature shows that low-dose lithium (≤0.5 mM) may be beneficial for cardiovascular, musculoskeletal, metabolic, and cognitive function, as well as inflammatory and antioxidant processes of the aging body. There is also some evidence of low-dose lithium exerting a similar and sometimes synergistic effect on these systems. This review summarizes these findings with a focus on low-dose lithium's potential benefits on the aging process and age-related diseases of these systems, such as cardiovascular disease, osteoporosis, sarcopenia, obesity and type 2 diabetes, Alzheimer's disease, and the chronic low-grade inflammatory state known as inflammaging. Although lithium's actions have been widely studied in the brain, the study of the potential benefits of lithium, particularly at a low dose, is still relatively novel. Therefore, this review aims to provide possible mechanistic insights for future research in this field.
Collapse
Affiliation(s)
- Sophie I. Hamstra
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Brian D. Roy
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Peter Tiidus
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Adam J. MacNeil
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Rebecca E.K. MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Neurosciences, Brock University, St. Catharines, Ontario, Canada
| | - Val A. Fajardo
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
- Centre for Neurosciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
194
|
Bracher A, Verghese J. Nucleotide Exchange Factors for Hsp70 Molecular Chaperones: GrpE, Hsp110/Grp170, HspBP1/Sil1, and BAG Domain Proteins. Subcell Biochem 2023; 101:1-39. [PMID: 36520302 DOI: 10.1007/978-3-031-14740-1_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molecular chaperones of the Hsp70 family are key components of the cellular protein-folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis, and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) facilitate the conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. NEF function can additionally be antagonized by ADP dissociation inhibitors. Beginning with the discovery of the prototypical bacterial NEF, GrpE, a large diversity of nucleotide exchange factors for Hsp70 have been identified, connecting it to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances toward structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families and discuss how these cochaperones connect protein folding with cellular quality control and degradation pathways.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| | - Jacob Verghese
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- Trophic Communications GmbH, Munich, Germany
| |
Collapse
|
195
|
Zeng Q, Yang Q, Chai Y, Wei W, Luo M, Li W. Polystyrene microplastics enhanced copper-induced acute immunotoxicity in red swamp crayfish (Procambarus clarkii). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114432. [PMID: 38321696 DOI: 10.1016/j.ecoenv.2022.114432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 02/08/2024]
Abstract
Microplastic pollution has attracted a lot of attention in recent years. Not only can it be ingested by animals, but it can easily become a carrier of other pollutants, forming a composite pollutant with potentially toxic effects on organisms. We investigated the effect of Cu on the accumulation of polystyrene microplastics (PS) in the gills of Procambarus clarkii and whether PS exacerbated the immune toxicity of Cu to P. clarkii were exposed to Cu, PS and PS+Cu for 48 h, the accumulation of PS in gill and hepatopancreas immune and antioxidant indices were analyzed. The objective was to investigate the toxic effects of Ps and Cu compound pollutants on P. clarkii and whether the accumulated pollutants would cause food safety problems. The results showed that microplastic particles adhered to each other and aggregated in the PS+Cu group, and the number of microplastic particles in gill in the PS+Cu group was significantly lower than that in the PS group. Compared with the other two treatment groups, SOD, CAT, GPx activities and MDA content increased significantly in the PS+Cu group and were relatively delayed. At 12 h, 24 h, 36 h and 48 h, the SOD mRNA expression levels in the PS+Cu group were all significantly lower than those in the Cu group (P < 0.05). At 24 h and 48 h, CAT mRNA expression in the PS+Cu group was significantly higher than that in the Cu group (P < 0.05). Crustin 4 mRNA expressions in the PS+Cu group was significantly higher than that in the Cu group at 12 h and 36 h (P < 0.05). The results demonstrate that the PS and Cu compound reduced the accumulation of microplastic particles in the gill. PS particles delayed Cu entry into P. clarkii for a short time (12 h) and reduced the toxic effect, but with the increase of exposure time (24 h and 48 h), the toxic effect of PS and Cu complexes on P. clarkii increases, and the large accumulation of PS and Cu complexes may cause food safety problems.
Collapse
Affiliation(s)
- Qinghui Zeng
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiufeng Yang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Yi Chai
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingzhong Luo
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Animal Science, Yangtze University, Jingzhou 434025, China.
| | - Wei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
196
|
Leung ETY, Lee BKM, Lee CL, Tian X, Lam KKW, Li RHW, Ng EHY, Yeung WSB, Ou JP, Chiu PCN. The role of spermatozoa-zona pellucida interaction in selecting fertilization-competent spermatozoa in humans. Front Endocrinol (Lausanne) 2023; 14:1135973. [PMID: 37020592 PMCID: PMC10067631 DOI: 10.3389/fendo.2023.1135973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Human fertilization begins when a capacitated spermatozoon binds to the zona pellucida (ZP) surrounding a mature oocyte. Defective spermatozoa-ZP interaction contributes to male infertility and is a leading cause of reduced fertilization rates in assisted reproduction treatments (ARTs). Human ejaculate contains millions of spermatozoa with varying degrees of fertilization potential and genetic quality, of which only thousands of motile spermatozoa can bind to the ZP at the fertilization site. This observation suggests that human ZP selectively interacts with competitively superior spermatozoa characterized by high fertilizing capability and genetic integrity. However, direct evidence for ZP-mediated sperm selection process is lacking. This study aims to demonstrate that spermatozoa-ZP interaction represents a crucial step in selecting fertilization-competent spermatozoa in humans. ZP-bound and unbound spermatozoa were respectively collected by a spermatozoa-ZP coincubation assay. The time-course data demonstrated that ZP interacted with a small proportion of motile spermatozoa. Heat shock 70 kDa protein 2 (HSPA2) and sperm acrosome associated 3 (SPACA 3) are two protein markers associated with the sperm ZP-binding ability. Immunofluorescent staining indicated that the ZP-bound spermatozoa had significantly higher expression levels of HSPA2 and SPACA3 than the unbound spermatozoa. ZP-bound spermatozoa had a significantly higher level of normal morphology, DNA integrity, chromatin integrity, protamination and global methylation when compared to the unbound spermatozoa. The results validated the possibility of applying spermatozoa-ZP interaction to select fertilization-competent spermatozoa in ART. This highly selective interaction might also provide diagnostic information regarding the fertilization potential and genetic qualities of spermatozoa independent of those derived from the standard semen analysis.
Collapse
Affiliation(s)
- Erica T. Y. Leung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Brayden K. M. Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - Xinyi Tian
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kevin K. W. Lam
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - Raymond H. W. Li
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - Ernest H. Y. Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - William S. B. Yeung
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
| | - Jian-Ping Ou
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Center for Reproductive Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Philip C. N. Chiu, ; Jian-Ping Ou,
| | - Philip C. N. Chiu
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong – Shenzhen Hospital, Shenzhen, China
- *Correspondence: Philip C. N. Chiu, ; Jian-Ping Ou,
| |
Collapse
|
197
|
Prodromou C, Aran-Guiu X, Oberoi J, Perna L, Chapple JP, van der Spuy J. HSP70-HSP90 Chaperone Networking in Protein-Misfolding Disease. Subcell Biochem 2023; 101:389-425. [PMID: 36520314 DOI: 10.1007/978-3-031-14740-1_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein-folding, quality control and function. In particular, the heat-shock protein (HSP) 70 and HSP90 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein-folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and HSP90, plus their co-chaperones, have been recognised as potent modulators of misfolded protein toxicity, inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. Moreover, these chaperone machines function not only in folding but also in proteasome-mediated degradation of neurodegenerative disease proteins. This chapter gives an overview of the HSP70 and HSP90 chaperones, and their respective regulatory co-chaperones, and explores how the HSP70 and HSP90 chaperone systems form a larger functional network and its relevance to counteracting neurodegenerative disease associated with misfolded proteins and disruption of proteostasis.
Collapse
Affiliation(s)
| | - Xavi Aran-Guiu
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Laura Perna
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | |
Collapse
|
198
|
Ono K, Niwa M, Suzuki H, Kobayashi NB, Yoshida T, Sawada M. Calmodulin as a Key Regulator of Exosomal Signal Peptides. Cells 2022; 12:cells12010158. [PMID: 36611951 PMCID: PMC9818429 DOI: 10.3390/cells12010158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Signal peptides (SPs) and their fragments play important roles as biomarkers and substances with physiological functions in extracellular fluid. We previously reported that SP fragments were released into extracellular fluid via exosomes and bound to calmodulin (CaM), an exosomal component, in a cell-free system. However, it currently remains unclear whether CaM intracellularly interacts with SP fragments or is involved in the trafficking of these fragments to exosomes. Therefore, the present study examined the binding of CaM to SP fragments in T-REx AspALP cells, transformed HEK293 cells expressing amyloid precursor protein (APP) SP flanking a reporter protein, and their exosomes. APP SP fragments were detected in exosomes from T-REx AspALP cells in the absence of W13, a CaM inhibitor, but were present in lower amounts in exosomes from W13-treated cells. Cargo proteins, such as Alix, CD63, and CD81, were increased in W13-treated T-REx AspALP cells but were decreased in their exosomes. Furthermore, CaM interacted with heat shock protein 70 and CD81 in T-REx AspALP cells and this increased in the presence of W13. APP SP fragments were detected in intracellular CaM complexes in the absence of W13, but not in its presence. These results indicate that CaM functions as a key regulator of the transport of SP fragments into exosomes and plays novel roles in the sorting of contents during exosomal biogenesis.
Collapse
Affiliation(s)
- Kenji Ono
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
- Department of Molecular Pharmacokinetics, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
- Correspondence: ; Tel.: +81-52-789-5002; Fax: +81-52-789-3994
| | - Mikio Niwa
- Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba 300-2611, Ibaraki, Japan
| | - Hiromi Suzuki
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
- Department of Molecular Pharmacokinetics, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
| | | | - Tetsuhiko Yoshida
- Institute for Advanced Sciences, Toagosei Co., Ltd., Tsukuba 300-2611, Ibaraki, Japan
| | - Makoto Sawada
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
- Department of Molecular Pharmacokinetics, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Aichi, Japan
| |
Collapse
|
199
|
Zheng M, Jiang X, Kong X, Guo Y, Zhang W, Di W. Proteomic analysis of Fasciola gigantica excretory and secretory products ( FgESPs) co-immunoprecipitated using a time course of infected buffalo sera. Front Microbiol 2022; 13:1089394. [PMID: 36620027 PMCID: PMC9816151 DOI: 10.3389/fmicb.2022.1089394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Widespread Fasciola gigantica infection in buffaloes has caused great economic losses in buffalo farming. Studies on F. gigantica excretory and secretory products (FgESP) have highlighted their importance in F. gigantica parasitism and their potential in vaccine development. Identifying FgESP components involved in F. gigantica-buffalo interactions during different periods is important for developing effective strategies against fasciolosis. Methods Buffaloes were assigned to non-infection (n = 3, as control group) and infection (n = 3) groups. The infection group was orally administrated 250 metacercariae. Sera were collected at 3, 10, and 16 weeks post-infection (wpi) for the non-infection group and at 0 (pre-infection), 1, 3, 6, 8, 10, 13, and 16 wpi for the infection group. FgESP components interacting with sera from the non-infection and infection groups assay were pulled down by co-IP and identified using LC-MS/MS. Interacting FgESP components in infection group were subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway and gene ontology (GO) functional annotation to infer their potential functions. Results and discussion Proteins of FgESP components identified in the non-infection group at 3, 10, and 16 wpi accounted for 80.5%, 84.3%, and 82.1% of all proteins identified in these three time points, respectively, indicating surroundings did not affect buffalo immune response during maintenance. Four hundred and ninety proteins were identified in the infection group, of which 87 were consistently identified at 7 time points. Following GO analysis showed that most of these 87 proteins were in biological processes, while KEGG analysis showed they mainly functioned in metabolism and cellular processing, some of which were thought to functions throughout the infection process. The numbers of specific interactors identified for each week were 1 (n = 12), 3 (n = 5), 6 (n = 8), 8 (n = 15), 10 (n = 23), 13 (n = 22), and 16 (n = 14) wpi, some of which were thought to functions in specific infection process. This study screened the antigenic targets in FgESP during a dense time course over a long period. These findings may enhance the understanding of molecular F. gigantica-buffalo interactions and help identify new potential vaccine and drug target candidates.
Collapse
Affiliation(s)
- Mengwei Zheng
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Xuelian Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Xinping Kong
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Yanfeng Guo
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China,*Correspondence: Weiyu Zhang, ✉
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China,Wenda Di, ✉
| |
Collapse
|
200
|
Sagarika P, Yadav K, Sahi C. Volleying plasma membrane proteins from birth to death: Role of J-domain proteins. Front Mol Biosci 2022; 9:1072242. [PMID: 36589230 PMCID: PMC9798423 DOI: 10.3389/fmolb.2022.1072242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The function, stability, and turnover of plasma membrane (PM) proteins are crucial for cellular homeostasis. Compared to soluble proteins, quality control of plasma membrane proteins is extremely challenging. Failure to meet the high quality control standards is detrimental to cellular and organismal health. J-domain proteins (JDPs) are among the most diverse group of chaperones that collaborate with other chaperones and protein degradation machinery to oversee cellular protein quality control (PQC). Although fragmented, the available literature from different models, including yeast, mammals, and plants, suggests that JDPs assist PM proteins with their synthesis, folding, and trafficking to their destination as well as their degradation, either through endocytic or proteasomal degradation pathways. Moreover, some JDPs interact directly with the membrane to regulate the stability and/or functionality of proteins at the PM. The deconvoluted picture emerging is that PM proteins are relayed from one JDP to another throughout their life cycle, further underscoring the versatility of the Hsp70:JDP machinery in the cell.
Collapse
|