151
|
Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, Bonten MMJ, Dahly DL, Damen JAA, Debray TPA, de Jong VMT, De Vos M, Dhiman P, Haller MC, Harhay MO, Henckaerts L, Heus P, Kammer M, Kreuzberger N, Lohmann A, Luijken K, Ma J, Martin GP, McLernon DJ, Andaur Navarro CL, Reitsma JB, Sergeant JC, Shi C, Skoetz N, Smits LJM, Snell KIE, Sperrin M, Spijker R, Steyerberg EW, Takada T, Tzoulaki I, van Kuijk SMJ, van Bussel B, van der Horst ICC, van Royen FS, Verbakel JY, Wallisch C, Wilkinson J, Wolff R, Hooft L, Moons KGM, van Smeden M. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ 2020; 369:m1328. [PMID: 32265220 PMCID: PMC7222643 DOI: 10.1136/bmj.m1328] [Citation(s) in RCA: 1671] [Impact Index Per Article: 417.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To review and appraise the validity and usefulness of published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at increased risk of covid-19 infection or being admitted to hospital with the disease. DESIGN Living systematic review and critical appraisal by the COVID-PRECISE (Precise Risk Estimation to optimise covid-19 Care for Infected or Suspected patients in diverse sEttings) group. DATA SOURCES PubMed and Embase through Ovid, up to 1 July 2020, supplemented with arXiv, medRxiv, and bioRxiv up to 5 May 2020. STUDY SELECTION Studies that developed or validated a multivariable covid-19 related prediction model. DATA EXTRACTION At least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool). RESULTS 37 421 titles were screened, and 169 studies describing 232 prediction models were included. The review identified seven models for identifying people at risk in the general population; 118 diagnostic models for detecting covid-19 (75 were based on medical imaging, 10 to diagnose disease severity); and 107 prognostic models for predicting mortality risk, progression to severe disease, intensive care unit admission, ventilation, intubation, or length of hospital stay. The most frequent types of predictors included in the covid-19 prediction models are vital signs, age, comorbidities, and image features. Flu-like symptoms are frequently predictive in diagnostic models, while sex, C reactive protein, and lymphocyte counts are frequent prognostic factors. Reported C index estimates from the strongest form of validation available per model ranged from 0.71 to 0.99 in prediction models for the general population, from 0.65 to more than 0.99 in diagnostic models, and from 0.54 to 0.99 in prognostic models. All models were rated at high or unclear risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, high risk of model overfitting, and unclear reporting. Many models did not include a description of the target population (n=27, 12%) or care setting (n=75, 32%), and only 11 (5%) were externally validated by a calibration plot. The Jehi diagnostic model and the 4C mortality score were identified as promising models. CONCLUSION Prediction models for covid-19 are quickly entering the academic literature to support medical decision making at a time when they are urgently needed. This review indicates that almost all pubished prediction models are poorly reported, and at high risk of bias such that their reported predictive performance is probably optimistic. However, we have identified two (one diagnostic and one prognostic) promising models that should soon be validated in multiple cohorts, preferably through collaborative efforts and data sharing to also allow an investigation of the stability and heterogeneity in their performance across populations and settings. Details on all reviewed models are publicly available at https://www.covprecise.org/. Methodological guidance as provided in this paper should be followed because unreliable predictions could cause more harm than benefit in guiding clinical decisions. Finally, prediction model authors should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guideline. SYSTEMATIC REVIEW REGISTRATION Protocol https://osf.io/ehc47/, registration https://osf.io/wy245. READERS' NOTE This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). Previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp). When citing this paper please consider adding the update number and date of access for clarity.
Collapse
Affiliation(s)
- Laure Wynants
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Peter Debyeplein 1, 6229 HA Maastricht, Netherlands
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Ben Van Calster
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - Gary S Collins
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Richard D Riley
- Centre for Prognosis Research, School of Primary, Community and Social Care, Keele University, Keele, UK
| | - Georg Heinze
- Section for Clinical Biometrics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Ewoud Schuit
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marc M J Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Darren L Dahly
- HRB Clinical Research Facility, Cork, Ireland
- School of Public Health, University College Cork, Cork, Ireland
| | - Johanna A A Damen
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thomas P A Debray
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Valentijn M T de Jong
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Maarten De Vos
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT Stadius, KU Leuven, Leuven, Belgium
| | - Paul Dhiman
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Musculoskeletal Sciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Maria C Haller
- Section for Clinical Biometrics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
- Ordensklinikum Linz, Hospital Elisabethinen, Department of Nephrology, Linz, Austria
| | - Michael O Harhay
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Palliative and Advanced Illness Research Center and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liesbet Henckaerts
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
- Department of General Internal Medicine, KU Leuven-University Hospitals Leuven, Leuven, Belgium
| | - Pauline Heus
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Michael Kammer
- Section for Clinical Biometrics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Nina Kreuzberger
- Evidence-Based Oncology, Department I of Internal Medicine and Centre for Integrated Oncology Aachen Bonn Cologne Dusseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Lohmann
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Kim Luijken
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Jie Ma
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Glen P Martin
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David J McLernon
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Constanza L Andaur Navarro
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Johannes B Reitsma
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jamie C Sergeant
- Centre for Biostatistics, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Chunhu Shi
- Division of Nursing, Midwifery and Social Work, School of Health Sciences, University of Manchester, Manchester, UK
| | - Nicole Skoetz
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
| | - Luc J M Smits
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Peter Debyeplein 1, 6229 HA Maastricht, Netherlands
| | - Kym I E Snell
- Centre for Prognosis Research, School of Primary, Community and Social Care, Keele University, Keele, UK
| | - Matthew Sperrin
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - René Spijker
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Medical Library, Netherlands
| | - Ewout W Steyerberg
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - Toshihiko Takada
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, Imperial College London School of Public Health, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Bas van Bussel
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Peter Debyeplein 1, 6229 HA Maastricht, Netherlands
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht University, Maastricht, Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht University, Maastricht, Netherlands
| | - Florien S van Royen
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jan Y Verbakel
- EPI-Centre, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Christine Wallisch
- Section for Clinical Biometrics, Centre for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Jack Wilkinson
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - Lotty Hooft
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Karel G M Moons
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
- Cochrane Netherlands, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Maarten van Smeden
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
152
|
Rahaman MM, Li C, Yao Y, Kulwa F, Rahman MA, Wang Q, Qi S, Kong F, Zhu X, Zhao X. Identification of COVID-19 samples from chest X-Ray images using deep learning: A comparison of transfer learning approaches. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2020; 28:821-839. [PMID: 32773400 PMCID: PMC7592691 DOI: 10.3233/xst-200715] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND The novel coronavirus disease 2019 (COVID-19) constitutes a public health emergency globally. The number of infected people and deaths are proliferating every day, which is putting tremendous pressure on our social and healthcare system. Rapid detection of COVID-19 cases is a significant step to fight against this virus as well as release pressure off the healthcare system. OBJECTIVE One of the critical factors behind the rapid spread of COVID-19 pandemic is a lengthy clinical testing time. The imaging tool, such as Chest X-ray (CXR), can speed up the identification process. Therefore, our objective is to develop an automated CAD system for the detection of COVID-19 samples from healthy and pneumonia cases using CXR images. METHODS Due to the scarcity of the COVID-19 benchmark dataset, we have employed deep transfer learning techniques, where we examined 15 different pre-trained CNN models to find the most suitable one for this task. RESULTS A total of 860 images (260 COVID-19 cases, 300 healthy and 300 pneumonia cases) have been employed to investigate the performance of the proposed algorithm, where 70% images of each class are accepted for training, 15% is used for validation, and rest is for testing. It is observed that the VGG19 obtains the highest classification accuracy of 89.3% with an average precision, recall, and F1 score of 0.90, 0.89, 0.90, respectively. CONCLUSION This study demonstrates the effectiveness of deep transfer learning techniques for the identification of COVID-19 cases using CXR images.
Collapse
Affiliation(s)
- Md Mamunur Rahaman
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Frank Kulwa
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | | | - Qian Wang
- Liaoning Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Shouliang Qi
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Fanjie Kong
- Electrical Engineering Department, Pratt School of Engineering Duke University, Durham, NC, USA
| | - Xuemin Zhu
- Whiting School of Engineering, Johns Hopkins University, 500 W University Parkway, MD, USA, USA
| | - Xin Zhao
- Environmental Engineering Department, Northeastern University, Shenyang, China
| |
Collapse
|