151
|
LeMoine CMR, Bucking C, Craig PM, Walsh PJ. Divergent Hypoxia Tolerance in Adult Males and Females of the Plainfin Midshipman (Porichthys notatus). Physiol Biochem Zool 2014; 87:325-33. [DOI: 10.1086/674565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
152
|
Dey A, De PS. Influence of Condensed Tannins from Ficus bengalensis Leaves on Feed Utilization, Milk Production and Antioxidant Status of Crossbred Cows. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:342-8. [PMID: 25049960 PMCID: PMC4093261 DOI: 10.5713/ajas.2013.13295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/06/2013] [Accepted: 09/30/2013] [Indexed: 11/27/2022]
Abstract
This study was conducted to examine the effects of condensed tannins (CT) from Ficus bengalensis leaves on the feed utilization, milk production and health status of crossbred cows. Eighteen crossbred dairy cows at their second and mid lactation (avg. BW 351.6±10.6 kg) were randomly divided into two groups of nine each in a completely randomized block design and fed two iso-nitrogenous supplements formulated to contain 0% and 1.5% CT through dried and ground leaves of Ficus bengalensis. The diets were designated as CON and FBLM, respectively and fed to cows with a basal diet of rice straw to meet requirements for maintenance and milk production. The daily milk yield was significantly (p<0.05) increased due to supplementation of FBLM diet. The 4% fat corrected milk yield was also significantly (p<0.01) higher due to increased (p<0.05) milk fat in cows under diet FBLM as compared to CON. The inclusion of CT at 1.5% in the supplement did not interfere with the feed intake or digestibility of DM, OM, CP, EE, NDF, and ADF by lactating cows. Digestible crude protein (DCP) and total digestible nutrients (TDN) values of the composite diets were comparable between the groups. The blood biochemical parameters remained unaltered except significantly (p<0.05) lowered serum urea concentration in cows fed FBLM diet. There was a significant (p<0.05) increase intracellular reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activity in cows supplemented with condensed tannins. The total thiol group (T-SH) was found to be higher with reduction in lipid peroxidation (LPO) in cows of FBLM group. The cost of feeding per kg milk production was also reduced due to supplementation of Ficus bengalensis leaves. Therefore, a perceptible positive impact was evident on milk production and antioxidant status in crossbred cows during mid-lactation given supplement containing 1.5% CT through Ficus bengalensis leaves.
Collapse
Affiliation(s)
- Avijit Dey
- Department of Botany, Sonamukhi College, University of Burdwan, Sonamukhi, Bankura- 722 207, West Bengal,
India
| | - Partha Sarathi De
- Department of Botany, Sonamukhi College, University of Burdwan, Sonamukhi, Bankura- 722 207, West Bengal,
India
| |
Collapse
|
153
|
Guffey SC, Goss GG. Time course of the acute response of the North Pacific spiny dogfish shark (Squalus suckleyi) to low salinity. Comp Biochem Physiol A Mol Integr Physiol 2014; 171:9-15. [PMID: 24518388 DOI: 10.1016/j.cbpa.2014.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/23/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Dogfish are considered stenohaline sharks but are known to briefly enter estuaries. The acute response of North Pacific spiny dogfish (Squalus suckleyi) to lowered salinity was tested by exposing sharks to 21‰ salinity for 48 h. Temporal trends in blood pH, plasma osmolality, CO2, HCO3(-), Na(+), Cl(-), K(+), and urea concentrations, and in the rates of urea efflux and O2 consumption, were quantified. The rate of O2 consumption exhibited cyclic variation and was significantly depressed by lowered salinity. After 9 h, plasma [Cl(-)] stabilized at 9% below initial levels, while plasma [Na(+)] decreased by more than 20% within the first 12 h. Plasma [urea] dropped by 15% between 4 and 6 h, and continued to decrease. The rate of urea efflux increased over time, peaking after 36 h at 72% above the initial rate. Free-swimming sharks subjected to the same salinity challenge survived over 96 h and differed from cannulated sharks with respect to patterns of Na(+) and urea homeostasis. This high-resolution study reveals that dogfish exposed to 21‰ salinity can maintain homeostasis of Cl(-) and pH, but Na(+) and urea continue to be lost, likely accounting for the inability of the dogfish to fully acclimate to reduced salinity.
Collapse
Affiliation(s)
- Samuel C Guffey
- Department of Biological Sciences, CW405 Biological Sciences Bldg, University of Alberta, Edmonton, AB T6G 2E9, Canada; Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada.
| | - Greg G Goss
- Department of Biological Sciences, CW405 Biological Sciences Bldg, University of Alberta, Edmonton, AB T6G 2E9, Canada; Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC V0R 1B0, Canada.
| |
Collapse
|
154
|
Wood CM, Nawata CM, Wilson JM, Laurent P, Chevalier C, Bergman HL, Bianchini A, Maina JN, Johannsson OE, Bianchini LF, Kavembe GD, Papah MB, Ojoo RO. Rh proteins and NH4(+)-activated Na+-ATPase in the Magadi tilapia (Alcolapia grahami), a 100% ureotelic teleost fish. ACTA ACUST UNITED AC 2014; 216:2998-3007. [PMID: 23885087 DOI: 10.1242/jeb.078634] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The small cichlid fish Alcolapia grahami lives in Lake Magadi, Kenya, one of the most extreme aquatic environments on Earth (pH ~10, carbonate alkalinity ~300 mequiv l(-1)). The Magadi tilapia is the only 100% ureotelic teleost; it normally excretes no ammonia. This is interpreted as an evolutionary adaptation to overcome the near impossibility of sustaining an NH3 diffusion gradient across the gills against the high external pH. In standard ammoniotelic teleosts, branchial ammonia excretion is facilitated by Rh glycoproteins, and cortisol plays a role in upregulating these carriers, together with other components of a transport metabolon, so as to actively excrete ammonia during high environmental ammonia (HEA) exposure. In Magadi tilapia, we show that at least three Rh proteins (Rhag, Rhbg and Rhcg2) are expressed at the mRNA level in various tissues, and are recognized in the gills by specific antibodies. During HEA exposure, plasma ammonia levels and urea excretion rates increase markedly, and mRNA expression for the branchial urea transporter mtUT is elevated. Plasma cortisol increases and branchial mRNAs for Rhbg, Rhcg2 and Na(+),K(+)-ATPase are all upregulated. Enzymatic activity of the latter is activated preferentially by NH4(+) (versus K(+)), suggesting it can function as an NH4(+)-transporter. Model calculations suggest that active ammonia excretion against the gradient may become possible through a combination of Rh protein and NH4(+)-activated Na(+)-ATPase function.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Wright PA, Wood CM, Wilson JM. Rh vs pH: the role of Rhesus glycoproteins in renal ammonia excretion during metabolic acidosis in a freshwater teleost fish. J Exp Biol 2014; 217:2855-65. [DOI: 10.1242/jeb.098640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Increased renal ammonia excretion in response to metabolic acidosis is thought to be a conserved response in vertebrates. We tested the hypothesis that Rhesus (Rh) glycoproteins in the kidney of the freshwater common carp Cyprinus carpio play a critical role in regulating renal ammonia excretion during chronic metabolic acidosis. Exposure to water pH 4.0 (72 h) resulted in a classic metabolic acidosis with reduced plasma pHa, [HCO3-], no change in PCO2, and large changes in renal function. Urine [NH4+] as well as [titratable acidity–HCO3-] rose significantly over the acid exposure, but the profound reduction (5-fold) in urine flow rates eliminated the expected elevations in renal ammonia excretion. Low urine flow rates may be a primary strategy to conserve ions, as urinary excretion of Na+, Cl- and Ca2+ were significantly lower during the acid exposure relative to the control period. Interestingly, renal Rhcg1 mRNA and protein levels were elevated in acid relative to control groups, along with mRNA levels of several ion transporters, including the Na+/H+ exchanger (NHE3), H+ATPase and Na+/K+ATPase (NKA). Immunofluorescence microscopy showed a strong apical Rhcg1 signal in distal tubules. Taken together, these data show that renal Rh glycoproteins and associated ion transporters are responsive to metabolic acidosis, but conservation of ions through reduced urine flow rates takes primacy over renal acid-base regulation in the freshwater C. carpio. We propose that an “acid/base-ion balance” compromise explains the variable renal responses to metabolic acidosis in freshwater teleosts.
Collapse
|
156
|
de Vasconcelos TL, Pereira EC, da Silva NH, Vicente C, Legaz ME. Intracellular urease activity in the lichen Cladonia verticillaris, and its implication for toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 98:310-316. [PMID: 24367816 DOI: 10.1016/j.ecoenv.2013.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Urea is currently used as a nitrogen fertilizer in many plant cultures, such as sugar cane. Several lichen species grow in the edges of the fields fertilized with urea. This implies that the hydrolysis of an excess of urea by soil bacteria or by the lichens themselves would increase the concentration of ammonia in the lichen thallus to a level that may be toxic to the photobiont. However, Cladonia verticillaris produces urease through positive feedback by urea supplied from the medium. This urease is partially secreted to the media or retained on the external surface of algal cells, as demonstrated herein by an adequate cytochemical reaction. This implies that ammonia produced by urea hydrolysis will be immediately dissolved in the water filling the intercellular spaces on the thallus. A possible protection mechanism against eventual ammonia toxicity, derived from the results described here, is also discussed.
Collapse
|
157
|
Al-Reasi HA, Yusuf U, Smith DS, Wood CM. The effect of dissolved organic matter (DOM) on sodium transport and nitrogenous waste excretion of the freshwater cladoceran (Daphnia magna) at circumneutral and low pH. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:207-15. [PMID: 24028854 DOI: 10.1016/j.cbpc.2013.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 11/16/2022]
Abstract
Dissolved organic matter (DOM), a heterogeneous substance found in all natural waters, has many documented abiotic roles, but recently, several possible direct influences of DOM on organism physiology have been reported. However, most studies have been carried out with a limited number of natural DOM isolates or were restricted to the use of commercial or artificial humic substances. We therefore employed three previously characterized, chemically-distinct natural DOMs, as well as a commercially available humic acid (Aldrich, AHA), at circumneutral (7-8) and acidic pH (~5), to examine DOM effects on whole-body Na(+) concentration, unidirectional influx and efflux rates of Na(+), and ammonia and urea excretion rates in Daphnia magna. Whole-body Na(+) concentration, Na(+) influx, and Na(+) efflux rates were all unaffected regardless of pH, suggesting no influence of the various natural DOMs on active uptake and passive diffusion of Na(+) in this organism. Ammonia and urea excretion rates were both increased by low pH. Ammonia excretion rates were reduced at circumneutral pH by the most highly colored, allochthonous DOM, and at low pH by all three natural DOMs, as well as by the commercial AHA. Urea excretion rates were not influenced by the presence of the various DOMs in circumneutral solutions, but were attenuated by the presence of two allochthonous DOM sources (isolated from Bannister Lake and Luther Marsh) at acidic pH. The observed reductions may be attributed partially to the higher buffering capacities of natural DOM sources, as well as their ability to interact with biological membranes as estimated by a new measure calculated from their acid-base titration characteristics, the Proton Binding Index (PBI).
Collapse
Affiliation(s)
- Hassan A Al-Reasi
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1.
| | | | | | | |
Collapse
|
158
|
Liew HJ, Chiarella D, Pelle A, Faggio C, Blust R, De Boeck G. Cortisol emphasizes the metabolic strategies employed by common carp, Cyprinus carpio at different feeding and swimming regimes. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:449-64. [DOI: 10.1016/j.cbpa.2013.07.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/18/2013] [Accepted: 07/28/2013] [Indexed: 01/19/2023]
|
159
|
De Boeck G, Wood CM, Iftikar FI, Matey V, Scott GR, Sloman KA, de Nazaré Paula da Silva M, Almeida-Val VMF, Val AL. Interactions between hypoxia tolerance and food deprivation in Amazonian oscars, Astronotus ocellatus. ACTA ACUST UNITED AC 2013; 216:4590-600. [PMID: 24072802 DOI: 10.1242/jeb.082891] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oscars are often subjected to a combination of low levels of oxygen and fasting during nest-guarding on Amazonian floodplains. We questioned whether this anorexia would aggravate the osmo-respiratory compromise. We compared fed and fasted oscars (10-14 days) in both normoxia and hypoxia (10-20 Torr, 4 h). Routine oxygen consumption rates (O2) were increased by 75% in fasted fish, reflecting behavioural differences, whereas fasting improved hypoxia resistance and critical oxygen tensions (Pcrit) lowered from 54 Torr in fed fish to 34 Torr when fasting. In fed fish, hypoxia reduced liver lipid stores by approximately 50% and total liver energy content by 30%. Fasted fish had a 50% lower hepatosomatic index, resulting in lower total liver protein, glycogen and lipid energy stores under normoxia. Compared with hypoxic fed fish, hypoxic fasted fish only showed reduced liver protein levels and even gained glycogen (+50%) on a per gram basis. This confirms the hypothesis that hypoxia-tolerant fish protect their glycogen stores as much as possible as a safeguard for more prolonged hypoxic events. In general, fasted fish showed lower hydroxyacylCoA dehydrogenase activities compared with fed fish, although this effect was only significant in hypoxic fasted fish. Energy stores and activities of enzymes related to energy metabolism in muscle or gills were not affected. Branchial Na(+) uptake rates were more than two times lower in fed fish, whereas Na(+) efflux was similar. Fed and fasted fish quickly reduced Na(+) uptake and efflux during hypoxia, with fasting fish responding more rapidly. Ammonia excretion and K(+) efflux were reduced under hypoxia, indicating decreased transcellular permeability. Fasted fish had more mitochondria-rich cells (MRC), with larger crypts, indicating the increased importance of the branchial uptake route when feeding is limited. Gill MRC density and surface area were greatly reduced under hypoxia, possibly to reduce ion uptake and efflux rates. Density of mucous cells of normoxic fasted fish was approximately fourfold of that in fed fish. Overall, a 10-14 day fasting period had no negative effects on hypoxia tolerance in oscars, as fasted fish were able to respond more quickly to lower oxygen levels, and reduced branchial permeability effectively.
Collapse
Affiliation(s)
- Gudrun De Boeck
- SPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Lapa-Guimarães J, Felício P, Contreras Guzmán E. An alternative approach for improving freshness indices for squid (Loligo plei). ACTA ALIMENTARIA 2013. [DOI: 10.1556/aalim.42.2013.3.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
161
|
Sinha AK, Liew HJ, Nawata CM, Blust R, Wood CM, De Boeck G. Modulation of Rh glycoproteins, ammonia excretion and Na+ fluxes in three freshwater teleosts when exposed chronically to high environmental ammonia. J Exp Biol 2013; 216:2917-30. [PMID: 23661781 DOI: 10.1242/jeb.084574] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
We investigated relationships among branchial unidirectional Na(+) fluxes, ammonia excretion, urea excretion, plasma ammonia, plasma cortisol, and gill transporter expression and function in three freshwater fish differing in their sensitivity to high environmental ammonia (HEA). The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less ammonia-sensitive cyprinid Cyprinus carpio (common carp) and the highly ammonia-resistant cyprinid Carassius auratus (goldfish) were exposed chronically (12-168 h) to 1 mmol l(-1) ammonia (as NH4HCO3; pH 7.9). During HEA exposure, carp and goldfish elevated ammonia excretion (JAmm) and Na(+) influx rates ( ) while trout experienced higher plasma ammonia (TAmm) and were only able to restore control rates of JAmm and . All three species exhibited increases in Na(+) efflux rate ( ). At the molecular level, there was evidence for activation of a 'Na(+)/NH4(+) exchange metabolon' probably in response to elevated plasma cortisol and TAmm, though surprisingly, some compensatory responses preceded molecular responses in all three species. Expression of Rhbg, Rhcg (Rhcg-a and Rhcg-b), H(+)-ATPase (V-type, B-subunit) and Na(+)/K(+)-ATPase (NKA) mRNA was upregulated in goldfish, Rhcg-a and NKA in carp, and Rhcg2, NHE-2 (Na(+)/H(+) exchanger) and H(+)-ATPase in trout. Branchial H(+)-ATPase activity was elevated in goldfish and trout, and NKA activity in goldfish and carp, but NKA did not appear to function preferentially as a Na(+)/NH4(+)-ATPase in any species. Goldfish alone increased urea excretion rate during HEA, in concert with elevated urea transporter mRNA expression in gills. Overall, goldfish showed more effective compensatory responses towards HEA than carp, while trout were least effective.
Collapse
Affiliation(s)
- Amit Kumar Sinha
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium.
| | | | | | | | | | | |
Collapse
|
162
|
Golombieski JI, Koakoski G, Becker AJ, Almeida APG, Toni C, Finamor IA, Pavanato MA, de Almeida TM, Baldisserotto B. Nitrogenous and phosphorus excretions in juvenile silver catfish (Rhamdia quelen) exposed to different water hardness, humic acid, and pH levels. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:837-849. [PMID: 23135153 DOI: 10.1007/s10695-012-9744-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/29/2012] [Indexed: 06/01/2023]
Abstract
This study examined ammonia, urea, creatinine, protein, nitrite, nitrate, and phosphorus (P) excretion at different water hardness, humic acid, or pH levels in silver catfish (Rhamdia quelen) juveniles. The fish were exposed to different levels of water hardness (4, 24, 50, or 100 mg L(-1) CaCO3), humic acid (0, 2.5, or 5.0 mg L(-1)), or pH (5.0, 6.0, 7.0, 8.0, or 9.0) for 10 days. The overall measured nitrogen excretions were 88.1% (244-423 μmol kg(-1 )h(-1)) for ammonia, 10.9% (30-52 μmol kg(-1 )h(-1)) for creatinine, 0.02% (0.05-0.08 μmol kg(-1 )h(-1)) for protein, 0.001 % (0.002-0.004 μmol kg(-1 )h(-1)) for urea, 0.5% (0.64-3.6 μmol kg(-1 )h(-1)) for nitrite, and 0.5% (0.0-6.9 μmol kg(-1 )h(-1)) for nitrate, and these proportions were not affected by water hardness or humic acid levels. The overall P excretion in R. quelen was 0.14-2.97 μmol kg(-1) h(-1). Ammonia excretion in R. quelen usually was significantly higher in the first 12 h after feeding, and no clear effect of water hardness, humic acid levels, and pH on this daily pattern of ammonia excretion could be observed. Water hardness only affected the ammonia and P excretion of R. quelen juveniles in the initial and fifth days after transfer, respectively. The exposure of this species to humic acid increased ammonia excretion after 10 days of exposure but did not affect P excretion. An increase in pH decreased ammonia and increased creatinine excretion but did not change P excretion in R. quelen. Therefore, when there is any change on humic acid levels or pH in the culture of this species, nitrogenous compounds must be monitored because their excretion rates are variable. On the other hand, P excretion rates determined in the present study are applicable to a wide range of fish culture conditions.
Collapse
Affiliation(s)
- Jaqueline Ineu Golombieski
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Bucking C, Lemoine CMR, Walsh PJ. Waste nitrogen metabolism and excretion in zebrafish embryos: effects of light, ammonia, and nicotinamide. ACTA ACUST UNITED AC 2013; 319:391-403. [PMID: 23754660 DOI: 10.1002/jez.1802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/28/2013] [Accepted: 04/01/2013] [Indexed: 11/08/2022]
Abstract
Bony fish primarily excrete ammonia as adults however the persistence of urea cycle genes may reflect a beneficial role for urea production during embryonic stages in protecting the embryo from toxic effects of ammonia produced from a highly nitrogenous yolk. This study aimed to examine the dynamic scope for changes in rates of urea synthesis and excretion in one such species (zebrafish, Danio rerio) by manipulating the intrinsic developmental rate (by alteration of light:dark cycles), as well as by direct chemical manipulation via ammonia injection (to potentially activate urea production) and nicotinamide exposure (to potentially inhibit urea production). Continuous dark exposure delayed development in embryos as evidenced by delayed appearance of hallmark anatomical features (heartbeat, eye pigmentation, body pigmentation, lateral line, fin buds) at 30 and 48 hr post-fertilization, as well by a lower hatching rate compared to embryos reared in continuous light. Both ammonia and urea excretion were similarly effected and were generally higher in embryos continuously exposed to light. Ammonia injection resulted in significant increases (up to fourfold) of urea N excretion and no changes to ammonia excretion rates along with modest increases in yolk ammonia content during 2-6 hr post-injection. Nicotinamide (an inhibitor of urea synthesis in mammals) reduced the ammonia-induced increase in urea excretion and led to retention of ammonia in the yolk and body of the embryo. Our results indicate that there is a relatively rapid and large scope for increases in urea production/excretion rates in developing embryos. Potential mechanisms for these increases are discussed.
Collapse
Affiliation(s)
- Carol Bucking
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | | | | |
Collapse
|
164
|
Liew HJ, De Boeck G, Wood CM. An in vitro study of urea, water, ion and CO2/HCO3− transport in the gastrointestinal tract of the dogfish shark (Squalus acanthias): the influence of feeding. J Exp Biol 2013; 216:2063-72. [DOI: 10.1242/jeb.082313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SUMMARY
In vitro gut sac preparations made from the cardiac stomach (stomach 1), pyloric stomach (stomach 2), intestine (spiral valve) and colon were used to examine the impact of feeding on transport processes in the gastrointestinal tract of the dogfish shark. Preparations were made from animals that were euthanized after 1–2 weeks of fasting, or at 24–48 h after voluntary feeding on a 3% ration of teleost fish (hake). Sacs were incubated under initially symmetrical conditions with dogfish saline on both surfaces. In comparison to an earlier in vivo study, the results confirmed that feeding caused increases in H+ secretion in both stomach sections, but an increase in Cl− secretion only in stomach 2. Na+ absorption, rather than Na+ secretion, occurred in both stomach sections after feeding. All sections of the tract absorbed water and the intestine strongly absorbed Na+ and Cl−, regardless of feeding condition. The results also confirmed that feeding increased water absorption in the intestine (but not in the colon), and had little influence on the handling of Ca2+ and Mg2+, which exhibited negligible absorption across the tract. However, K+ was secreted in the intestine in both fasted and fed preparations. Increased intestinal water absorption occurred despite net osmolyte secretion into the mucosal saline. The largest changes occurred in urea and CO2/HCO3− fluxes. In fasted preparations, urea was absorbed at a low rate in all sections except the intestine, where it was secreted. Instead of an increase in intestinal urea secretion predicted from in vivo data, feeding caused a marked switch to net urea absorption. This intestinal urea transport occurred at a rate comparable to urea reabsorption rates reported at gills and kidney, and was apparently active, establishing a large serosal-to-mucosal concentration gradient. Feeding also greatly increased intestinal CO2/HCO3− secretion; if interpreted as HCO3− transport, the rates were in the upper range of those reported in marine teleosts. Phloretin (0.25 mmol l−1, applied mucosally) completely blocked the increases in intestinal urea absorption and CO2/HCO3− secretion caused by feeding, but had no effect on Na+, Cl− or water absorption.
Collapse
Affiliation(s)
- Hon Jung Liew
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada, V0R 1B0
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Gudrun De Boeck
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada, V0R 1B0
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Chris M. Wood
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, Canada, V0R 1B0
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
165
|
Effects of rumen-protected gamma-aminobutyric acid on feed intake, performance and antioxidative status in transition cows. Livest Sci 2013. [DOI: 10.1016/j.livsci.2013.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
166
|
Wang D, Wang C, Liu H, Liu J, Ferguson JD. Effects of rumen-protected γ-aminobutyric acid on feed intake, lactation performance, and antioxidative status in early lactating dairy cows. J Dairy Sci 2013; 96:3222-7. [DOI: 10.3168/jds.2012-6285] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/24/2013] [Indexed: 11/19/2022]
|
167
|
Bucking C, LeMoine CMR, Craig PM, Walsh PJ. Nitrogen metabolism of the intestine during digestion in a teleost fish, the plainfin midshipman (Porichthys notatus). ACTA ACUST UNITED AC 2013; 216:2821-32. [PMID: 23619402 DOI: 10.1242/jeb.081562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Digestion affects nitrogen metabolism in fish, as both exogenous and endogenous proteins and amino acids are catabolized, liberating ammonia in the process. Here we present a model of local detoxification of ammonia by the intestinal tissue of the plainfin midshipman (Porichthys notatus) during digestion, resulting in an increase in urea excretion of gastrointestinal origin. Corroborating evidence indicated whole-animal ammonia and urea excretion increased following feeding, and ammonia levels within the lumen of the midshipman intestine increased to high levels (1.8±0.4 μmol N g(-1)). We propose that this ammonia entered the enterocytes and was detoxified to urea via the ornithine-urea cycle (O-UC) enzymes, as evidenced by a 1.5- to 2.9-fold post-prandial increase in glutamine synthetase activity (0.14±0.05 and 0.28±0.02 μmol min(-1) g(-1) versus 0.41±0.03 μmol min(-1) g(-1)) and an 8.7-fold increase in carbamoyl phosphate synthetase III activity (0.3±1.2 versus 2.6±0.4 nmol min(-1) g(-1)). Furthermore, digestion increased urea production by isolated gastrointestinal tissue 1.7-fold, supporting our hypothesis that intestinal tissue synthesizes urea in response to feeding. We further propose that the intestinal urea may have been excreted into the intestinal lumen via an apical urea transporter as visualized using immunohistochemistry. A portion of the urea was then excreted to the environment along with the feces, resulting in the observed increase in urea excretion, while another portion may have been used by intestinal ureolytic bacteria. Overall, we propose that P. notatus produces urea within the enterocytes via a functional O-UC, which is then excreted into the intestinal lumen. Our model of intestinal nitrogen metabolism does not appear to be universal as we were unab le to activate the O-UC in the intestine of fed rainbow trout. However, literature values suggest that multiple fish species could follow this model.
Collapse
Affiliation(s)
- Carol Bucking
- Department of Biology, University of Ottawa, ON, Canada and Bamfield Marine Science Center, Bamfield, BC, Canada.
| | | | | | | |
Collapse
|
168
|
Sinha AK, Giblen T, AbdElgawad H, De Rop M, Asard H, Blust R, De Boeck G. Regulation of amino acid metabolism as a defensive strategy in the brain of three freshwater teleosts in response to high environmental ammonia exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 130-131:86-96. [PMID: 23384996 DOI: 10.1016/j.aquatox.2013.01.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 05/12/2023]
Abstract
Many teleosts have evolved mechanisms to cope with ammonia toxicity in the brain when confronted with high environmental ammonia (HEA). In the present study, the possible role of conversion of accumulated ammonia to glutamine and other free amino acids in the brain of three freshwater teleosts differing in their sensitivities to ammonia was investigated. The detoxification mode of ammonia in brain is suggested to be through amination of glutamate to glutamine by the coupled activities of glutamate dehydrogenase (GDH), transaminase (aspartate aminotransaminase 'AST' and alanine aminotransaminase 'ALT') and glutamine synthetase (GSase). We investigated the metabolic response of amino acids in the brain of highly sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less sensitive cyprinid Cyprinus carpio (common carp) and the highly resistant cyprinid Carassius auratus (goldfish) when exposed to 1mM ammonia (as NH4HCO3; pH 7.9) for 0 h (control), 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the brain of all the three species from 12h onwards. Unlike in trout, ammonia accumulation in carp and goldfish was restored to control levels (48-84h); which was accompanied with a significant increase in glutamine content as well as GSase activity. In trout, glutamine levels also increased (84-180 h) but GSase was not activated. The elevated glutamine level in trout was accompanied by a significant depletion of the glutamate pool in contrast to the stable glutamate levels seen in carp and goldfish. This suggests a simultaneous increase in the rate of glutamate formation to match with the demand of glutamine formation in cyprinids. The activity of GDH was elevated significantly in carp and goldfish but remained unaltered in trout. Also, the transaminase enzymes (AST and ALT) were elevated significantly in exposed carp and goldfish while only ALT was up-regulated in trout. Consequently, in carp and goldfish both aspartate and alanine were utilized under HEA, whereas only alanine was consumed in trout. With ammonia treatment, significant changes in concentrations of other amino acids also occurred. None of the species could detoxify brain ammonia into urea. This study suggests that protective strategies to combat ammonia toxicity in brain are more pronounced in carp and goldfish than in trout.
Collapse
Affiliation(s)
- Amit Kumar Sinha
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
169
|
LeMoine CMR, Walsh PJ. Ontogeny of ornithine-urea cycle gene expression in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 2013; 304:R991-1000. [PMID: 23576614 DOI: 10.1152/ajpregu.00411.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the majority of adult teleosts excrete most of their nitrogenous wastes as ammonia, several fish species are capable of producing urea early in development. In zebrafish, it is unclear whether this results from a functional ornithine-urea cycle (O-UC) and, if so, how it might be regulated. This study examined the spatiotemporal patterns of gene expression of four major O-UC enzymes: carbamoyl phosphate synthase III (CPSIII), ornithine transcarboxylase, arginosuccinate synthetase, and arginosuccinate lyase, using real-time PCR and whole mount in situ hybridization. In addition, we hypothesized that CPSIII gene expression was epigenetically regulated through methylation of its promoter, a widespread mode of differential gene regulation between tissues and life stages in vertebrates. Furthermore, to assess CPSIII functionality, we used morpholinos to silence CPSIII in zebrafish embryos and assessed their nitrogenous waste handling during development, and in response to ammonia injections. Our results suggest that mRNAs of O-UC enzymes are expressed early in zebrafish development and colocalize to the embryonic endoderm. In addition, the methylation status of CPSIII promoter is not consistent with the patterns of expression observed in developing larvae or adult tissues, suggesting other means of transcriptional regulation of this enzyme. Finally, CPSIII morphants exhibited a transient reduction in CPSIII enzyme activity 24 h postfertilization, which was paralleled by reduced urea production during development and in response to an ammonia challenge. Overall, we conclude that the O-UC is functional in zebrafish embryos, providing further evidence that the capacity to produce urea via the O-UC is widespread in developing teleosts.
Collapse
|
170
|
Frere AW, McDonald MD. The effect of stress on gill basolateral membrane binding kinetics of 5-ht2 receptor ligands: potential implications for urea excretion mechanisms. ACTA ACUST UNITED AC 2013; 319:237-48. [PMID: 23495168 DOI: 10.1002/jez.1788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 11/13/2012] [Accepted: 02/06/2013] [Indexed: 11/07/2022]
Abstract
The goal of this study was to determine the relationship between cortisol and the toadfish serotonin 2A (5-HT2A ) receptor, which is believed to be responsible for the activation of the toadfish urea transporter, tUT. We hypothesize that elevations in cortisol would play a role in the regulation of the 5-HT2A receptor at the level of mRNA expression, ligand binding, and/or function. To test this idea, cortisol levels were manipulated by either crowding or through treatment with the cortisol synthesis blocker, metyrapone. Crowded fish had significantly higher circulating cortisol levels compared to uncrowded fish and cortisol levels in metyrapone-treated fish were significantly lower than saline-treated controls. No significant difference was measured in gill 5-HT2A mRNA expression levels between uncrowded and crowded, control- or metyrapone-treated fish. Furthermore, no significant difference was measured in [(3) H]-5-HT binding kinetics or in the competitive binding of the 5-HT2 agonist, α-methyl 5-HT, to isolated gill basolateral membranes of uncrowded or crowded toadfish. However, the binding maximum (Bmax ) of the 5-HT2A receptor antagonist, [(3) H]-ketanserin, was significantly different between all four groups of fish (metyrapone > control > crowded > uncrowded). Furthermore, metyrapone-treated fish excreted approximately twofold more urea compared to controls when injected with α-methyl 5-HT, a 5-HT2 receptor agonist shown to stimulate urea excretion. Our results suggest that cortisol may have differential effects on 5-HT receptor binding, which could have potential implications on the control of pulsatile urea excretion in toadfish.
Collapse
Affiliation(s)
- Alexander W Frere
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | | |
Collapse
|
171
|
Grant JK, Steichen PL, Wright CL, Vonnahme KA, Bauer ML, Jennings JS, Perry GA. Influence of nitrogen and sulfur intake on bovine uterine pH throughout the luteal phase1. J Anim Sci 2013; 91:1186-92. [DOI: 10.2527/jas.2012-5518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- J. K. Grant
- Department of Animal Sciences, South Dakota State University, Brookings, 57007
| | - P. L. Steichen
- Department of Animal Sciences, North Dakota State University, Fargo 58108
| | - C. L. Wright
- Department of Animal Sciences, South Dakota State University, Brookings, 57007
| | - K. A. Vonnahme
- Department of Animal Sciences, North Dakota State University, Fargo 58108
| | - M. L. Bauer
- Department of Animal Sciences, North Dakota State University, Fargo 58108
| | | | - G. A. Perry
- Department of Animal Sciences, South Dakota State University, Brookings, 57007
| |
Collapse
|
172
|
Wood CM, Liew HJ, De Boeck G, Walsh PJ. A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias). PeerJ 2013; 1:e33. [PMID: 23638369 PMCID: PMC3628372 DOI: 10.7717/peerj.33] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/16/2013] [Indexed: 11/20/2022] Open
Abstract
The branchial mechanism of urea retention in elasmobranchs was investigated using an in vitro isolated-perfused head preparation, as well as in vivo samples, in the spiny dogfish shark. Both in vivo and in control saline perfusions containing 350 mmol L−1 urea, calculated intracellular urea concentrations in gill epithelial cells were close to extracellular concentrations. Urea efflux to the external water fell only non-significantly, and calculated gill intracellular urea concentration did not change when perfusate urea concentration was reduced from 350 to 175 mmol L−1 with osmotic compensation by 175 mmol L−1 mannitol. However, when the urea analogues thiourea or acetamide were present in the perfusate at concentrations equimolar (175 mmol L−1) to those of urea (175 mmol L−1), urea efflux rates were increased 4-fold and 6.5-fold respectively, and calculated gill intracellular urea concentrations were depressed by about 55%. Analogue efflux rates were similar to urea efflux rates. Previous studies have argued that either the basolateral or apical membranes provided the limiting permeability barrier, and/or that a back-transporter on the basolateral membranes of gill cells is responsible for urea retention. The present results provide new evidence that the apical membrane is the limiting factor in maintaining gill urea impermeability, and raise the prospect that a urea back-transporter, which can be competitively inhibited by thiourea and acetamide, operates at the apical membrane.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology , McMaster University , Hamilton, Ontario , Canada ; Bamfield Marine Sciences Centre , Bamfield, BC , Canada ; Division of Marine Biology and Fisheries, Rosenstiel School , University of Miami , Miami, Florida , USA
| | | | | | | |
Collapse
|
173
|
Suresh C, Das A, Katole S, Saini M, Swarup D. Effect of concentrate supplementation on feed consumption, nutrient utilization and blood metabolite profile in captive spotted deer (Axis axis) fed oat (Avena sativa) and berseem (Trifolium alexandrinum) fodders based diet. Zoo Biol 2013; 32:195-203. [PMID: 23349033 DOI: 10.1002/zoo.21058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 09/03/2012] [Accepted: 12/13/2012] [Indexed: 11/09/2022]
Abstract
This experiment was conducted to determine the optimum level of a maize-soybean meal-wheat bran concentrate supplement fed to captive spotted deer fed an oat and berseem fodder-based diet. Twelve adult spotted deer [64-76 kg body weight (BW)] were distributed into three groups of four each and were housed individually. A diet consisting of 5 kg of oat fodder and 5.5 kg of berseem fodder was offered to each one of the experimental animals. The animal in group I received no supplementary concentrate, whereas, those in groups II and III received 0.5 and 1 kg of supplementary concentrate, respectively. A 60 days digestibility trial was conducted with a 5 days collection period on Days 55-59 of the trial. Blood samples were collected from all animals on Day 60 of the experiment. Average daily dry matter intake (DMI) was 1,224, 1,613, and 1,574 g/day in groups I, II, and III, respectively. Dry matter (DM) and organic matter (OM) intake was lowest (P < 0.01) in group I. Intake of P, Cu, and Zn was highest (P < 0.01) in group III, followed by groups II and I. Digestibility of neutral detergent fiber was highest (P < 0.05) in group II. Digestibility of OM and CP was lowest (P < 0.05) in group I. Digestibility of gross energy was highest (P < 0.01) in group III (74.9%), followed by groups II (69.3%) and I (66.2%). Digestible energy (DE) intake (kcal/kg BW(0.75) ) was highest (P < 0.01) in group III (195.4), followed by groups II (180.9) and I (129.8). Initial BW was 72.7, 72.5, and 71.0 kg, whereas, final BW was 71.0, 72.7, and 73.5 kg, in groups I, II and III, respectively. Average daily change in body mass was significantly (P < 0.01) different among the groups. The body mass was lost (-29.2 g/day), maintained (4.1 g/day) and gained (41.6 g/day) in groups I, II, and III, respectively. Blood glucose and cholesterol concentration was highest (P < 0.05) in group III, followed by groups II and I. Serum concentration of Cu and Zn was highest (P < 0.05) in group III, followed by groups II and I. Supplementation of forage only diet with 0.5 kg of concentrate mixture increased intake and digestibility of nutrients, without change in body mass. Animals fed 1 kg of supplementary concentrate received energy in excess of requirements, were consistently gaining body mass and were prone to obesity. Thus, it is a right strategy to supplement forage only diet of captive spotted deer with 0.5 kg of concentrate.
Collapse
Affiliation(s)
- C Suresh
- Centre for Wildlife Conservation, Management and Disease Surveillance, Indian Veterinary Research Institute, Izatnagar, India
| | | | | | | | | |
Collapse
|
174
|
Liew HJ, Sinha AK, Nawata CM, Blust R, Wood CM, De Boeck G. Differential responses in ammonia excretion, sodium fluxes and gill permeability explain different sensitivities to acute high environmental ammonia in three freshwater teleosts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:63-76. [PMID: 23143040 DOI: 10.1016/j.aquatox.2012.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 06/01/2023]
Abstract
We examined the acute physiological responses to high environmental ammonia (HEA), particularly the linkages between branchial ammonia fluxes and unidirectional Na(+) fluxes, as well as urea excretion, cortisol, and indicators of gill permeability in three freshwater teleosts differing in their sensitivities to ammonia; the highly sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less sensitive cyprinid Cyprinus carpio (common carp) and the highly resistant cyprinid Carassius auratus (goldfish). Fish were acutely exposed to two sub-lethal ammonia concentrations (as NH(4)HCO(3)) at pH 7.9: 1 mM for a period of 12 h, identical for all species, and 5 mM for the cyprinids and 1.4 mM for the trout for 3 h. Elevation of plasma cortisol at both levels of HEA was apparent in all species. At 1 mM, ammonia excretion (J(amm)) was inhibited to a greater extent in trout than cyprinids and concurrently a significantly higher plasma ammonia level was evident in trout. However J(amm) was reversed in all species at 5 or 1.4 mM. Goldfish showed a significant increase in urea excretion rate (J(urea)) during HEA exposure. In carp and trout, neither level of HEA elevated J(urea) but urea production was increased as evidenced by a considerable elevation of plasma urea. At 1mM HEA, Na(+) imbalance became progressively more severe in trout and carp due to a stimulation of unidirectional Na(+) efflux (J(out)(Na)) without a concomitant increase in unidirectional Na(+) influx (J(in)(Na)). Additionally, a transient reduction of J(in)(Na) was evident in trout. Goldfish showed an opposite trend for J(out)(Na) with reduced efflux rates and a positive Na(+) balance during the first few hours of HEA. However, after 12 h of exposure, both J(in)(Na) and J(out)(Na) were also increased in both carp and goldfish, whereas only J(out)(Na) was increased in trout, leading to a net Na(+) loss. Na(+) homeostasis was entirely disrupted in all three species when subjected to the 5 or 1.4 mM ammonia for 3 h: J(in)(Na) was significantly inhibited while considerable activation of J(out)(Na) was observed. Diffusive water efflux rates and net K(+) loss rates across the gills were enhanced during HEA only in trout, indicating an increment in gill transcellular permeability. Transepithelial potential was increased in all the species during ammonia exposure, but to the least extent in goldfish. Overall, for several different physiological systems, trout were most disturbed, and goldfish were least disturbed by HEA, helping to explain the differential ammonia tolerance of the three species.
Collapse
Affiliation(s)
- Hon Jung Liew
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
175
|
Zhu W, Fu Y, Wang B, Wang C, Ye JA, Wu YM, Liu JX. Effects of dietary forage sources on rumen microbial protein synthesis and milk performance in early lactating dairy cows. J Dairy Sci 2013; 96:1727-34. [PMID: 23295118 DOI: 10.3168/jds.2012-5756] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 11/03/2012] [Indexed: 11/19/2022]
Abstract
The objective of this study was to evaluate the effects of dietary forage sources on milk performance, rumen microbial protein synthesis, and N utilization in early lactation dairy cows. Twelve primiparous Chinese Holstein dairy cows (45 ± 6.0 DIM) were used in a 3 × 3 Latin square design. Diets were isonitrogenous and isocaloric, with a forage-to-concentrate ratio of 45:55 [dry matter (DM) basis] and contained similar concentrate mixtures. Different forage sources were then added (on a DM basis): 21% corn silage, 19% corn stover, and 5% alfalfa hay (CS); 19% corn silage, 21% Chinese wild rye hay and 5% alfalfa hay (CWR); or 19% corn silage, 9% Chinese wild rye hay, and 17% alfalfa hay (AH). Each period lasted for 21 d, with the first 14 d for an adaptation period. Dry matter intake was not affected by the source of dietary forage. Milk yield was higher for cows fed AH than those fed CS, with an intermediate value for CWR. Milk protein content was higher in the cows fed AH compared with CWR (3.02 vs. 2.92%), with CS (2.95%) at an intermediate position. The contents of milk fat and lactose were not different among the treatments. However, milk efficiency (milk yield/DM intake) was higher for cows fed AH than those fed CS, with those fed CWR intermediate. Cows fed AH had higher microbial protein yield and metabolizable protein than those fed CS or CWR. The concentrations of urea N in the urine, blood, and milk were decreased for cows fed AH, indicating an increased N conversion. The results indicated that corn stover could replace Chinese wild rye grass in the diets for lactating cows and that a high proportion of alfalfa hay in the diet is beneficial for milk protein production by increasing microbial protein yield. This can be attributed to the improving the supply of rumen-available energy.
Collapse
Affiliation(s)
- W Zhu
- Institute of Dairy Science, Zhejiang University, Hangzhou 310058, P.R. China
| | | | | | | | | | | | | |
Collapse
|
176
|
Effects of feeding nutritionally balanced rations on animal productivity, feed conversion efficiency, feed nitrogen use efficiency, rumen microbial protein supply, parasitic load, immunity and enteric methane emissions of milking animals under field conditions. Anim Feed Sci Technol 2013. [DOI: 10.1016/j.anifeedsci.2012.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
177
|
Kolarevic J, Takle H, Felip O, Ytteborg E, Selset R, Good CM, Baeverfjord G, Asgård T, Terjesen BF. Molecular and physiological responses to long-term sublethal ammonia exposure in Atlantic salmon (Salmo salar). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 124-125:48-57. [PMID: 22898234 DOI: 10.1016/j.aquatox.2012.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 06/01/2023]
Abstract
The objective of this study was to determine the underlying physiological and molecular responses to long-term sublethal ammonia exposure in Atlantic salmon (Salmo salar) parr. Previous studies have predominately focused on mechanisms during acute, short-term exposure. For that purpose Atlantic salmon parr were exposed to four ammonia concentrations between 4 and 1800 μmol l(-1) total ammonia nitrogen (TAN), and subjected to two feeding regimes for 15 weeks. Elevated environmental ammonia and full feeding strength caused an initial increase in plasma ammonia levels ([T(amm)]) after 22 days of exposure, which thereafter declined and remained similar to the control animals towards the end of the study. On the other hand, a progressive decrease in plasma urea levels was evident throughout the entire exposure period and depended on the concentration of environmental ammonia, with the largest decrease in urea levels observed at the highest ammonia concentrations (1700 and 1800 μmol l(-1) TAN). We hypothesized that the successful adaptation to long-term elevated ammonia levels would involve an increased capacity for carrier-facilitated branchial excretion. This hypothesis was strengthened by the first evidence of an up-regulation of branchial transcription of the genes encoding the Rhesus (Rh) glycoproteins, Rhcg1 and Rhcg2, urea transporter (UT) and aquaporin 3a (Aqp3a), during long-term exposure. Of the Rhesus glycoprotein (Rh) mRNAs, Rhcg1 was up-regulated at all tested ammonia levels, while Rhcg2 showed a concentration-sensitive increase. Increased transcription levels of V-type H(+)-ATPase (H(+)-ATPase) were observed at the highest ammonia concentrations (1700 and 1800 μmol l(-1) TAN) and coincided with an up-regulation of Rhcg2 at these concentrations. Transcription of UT and Aqp3a was increased after 15 weeks of exposure to low ammonia levels (470 and 480 μmol l(-1) TAN). A significant increase in brain glutamine (Gln) concentration was observed for full fed Atlantic salmon after 22 days and in fish with restricted feeding after 105 days of exposure to 1800 and 1700 μmol l(-1) TAN, respectively, without any concomitant decrease in brain glutamate (Glu) concentrations. These results suggest that Gln synthesis is an ammonia detoxifying strategy employed in the brain of Atlantic salmon parr during long-term sublethal ammonia exposure. Full feed strength had an additive effect on plasma [T(amm)], while the restricted feeding regime postponed the majority of the observed physiological and molecular responses. In conclusion, Atlantic salmon parr adapts to the long-term sublethal ammonia concentrations with increased branchial transcription levels of ammonia and urea transporting proteins and ammonia detoxification in the brain.
Collapse
|
178
|
Chen B, Wang C, Liu JX. Effects of dietary biotin supplementation on performance and hoof quality of Chinese Holstein dairy cows. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
179
|
Mager EM, Medeiros LR, Lange AP, McDonald MD. The toadfish serotonin 2A (5-HT(2A)) receptor: molecular characterization and its potential role in urea excretion. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:319-26. [PMID: 22884998 DOI: 10.1016/j.cbpa.2012.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Based on early pharmacological work, the serotonin 2A (5-HT(2A)) receptor subtype is believed to be involved in the regulation of toadfish pulsatile urea excretion. The goal of the following study was to characterize the toadfish 5-HT(2A) receptor at a molecular level, to determine the tissues in which this receptor is predominantly expressed and to further investigate the pharmacological specificity of toadfish pulsatile urea excretion by examining the effect of ketanserin, a 5-HT(2A) receptor antagonist, on resting rates of pulsatile urea excretion. The full-length toadfish 5-HT(2A) receptor encodes a 496 amino acid sequence and shares 57-80% sequence identity to 5-HT(2A) receptors of other organisms, with 100% conservation among important ligand-binding residues. Toadfish 5-HT(2A) receptor mRNA expression was highest in the swim bladder and gonad, followed by the whole brain. All other tissues tested (esophagus, stomach, anterior intestine, posterior intestine, rectum, liver, kidney, heart, muscle and gill) had mRNA expression levels that were significantly less than whole brain. Toadfish 5-HT(2A) receptor mRNA expression within the brain was highest in the hindbrain, telencephalon and midbrain/diencephalon regions. Treatment with the 5-HT(2A) receptor antagonist, ketanserin, resulted in a significant decrease in the pulsatile component of spontaneous urea excretion due to a reduction in urea pulse size with no significant change in pulse frequency. These results lend further support for the 5-HT(2A) receptor in the regulation of pulsatile urea excretion in toadfish.
Collapse
Affiliation(s)
- Edward M Mager
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | | | | | | |
Collapse
|
180
|
Dai X, Zhao Y, Li M, Fang X, Li X, Li H, Xu B. Determination of Urea in Milk by Liquid Chromatography-Isotope Dilution Mass Spectrometry. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.677779] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
181
|
Development and Validation of a Chromatographic and Electrophoretic Method for the Determination of Amikacin and Urea in Bronchial Epithelial Lining Fluid. Chromatographia 2012. [DOI: 10.1007/s10337-012-2249-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
182
|
Smith AA, Zimmer AM, Wood CM. Branchial and extra-branchial ammonia excretion in goldfish (Carassius auratus) following thermally induced gill remodeling. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:185-92. [PMID: 22387290 DOI: 10.1016/j.cbpa.2012.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/17/2012] [Accepted: 02/17/2012] [Indexed: 12/29/2022]
Abstract
Under cold acclimated conditions, goldfish (Carassius auratus) express an interlamellar cell mass (ILCM) which limits diffusive ion loss but may also impede branchial ammonia excretion (J(amm)). In the present study, goldfish were subjected to a 2-week 5 or 25 °C acclimation in order to modulate the degree of ILCM gill coverage and determine potential effects on J(amm). 25 °C-fish displayed gill coverage which was significantly lower than the 5 °C-fish, though the ILCM was not completely absent in these fish. 5 °C-fish demonstrated J(amm) values approximately 60% lower than those of 25 °C-fish. The magnitude of anterior (branchial) J(amm) strongly correlated with gill coverage (r(2)=0.83), suggesting that the ILCM may impede branchial J(amm). Divided chamber experiments demonstrated that relative to the 25 °C-fish, 5 °C-fish relied more upon posterior routes of excretion. In response to high external ammonia (HEA; 1.5mM NH(4)HCO(3)) exposures, 25 °C-fish displayed ammonia uptake while 5 °C-fish maintained excretion against HEA, suggesting that the ILCM may act as a barrier preventing ammonia uptake. In summary, the ILCM appears to impede branchial J(amm), such that 5 °C-rely more on extra-branchial routes of excretion. We hypothesize that gill remodeling in these fish may be intimately tied to physiological adjustments on the whole-body scale.
Collapse
Affiliation(s)
- Amanda A Smith
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | | | | |
Collapse
|
183
|
Maas A, Seibel BA, Walsh PJ. Effects of elevated ammonia concentrations on survival, metabolic rates, and glutamine synthetase activity in the Antarctic pteropod mollusk Clione limacina antarctica. Polar Biol 2012. [DOI: 10.1007/s00300-012-1158-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
184
|
Wood CM, Nawata CM. A nose-to-nose comparison of the physiological and molecular responses of rainbow trout to high environmental ammonia in seawater versus freshwater. ACTA ACUST UNITED AC 2012; 214:3557-69. [PMID: 21993784 DOI: 10.1242/jeb.057802] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Steelhead rainbow trout acclimated to either freshwater (FW) or seawater (SW) were exposed to high environmental ammonia (HEA, 1000 μmol l(-1) NH(4)HCO(3), pH 7.8-8.0) for 24 h. SW trout restored ammonia excretion more rapidly (3-6 h versus 9-12 h in FW), despite higher production rates and lower plasma pH. Plasma total ammonia levels stabilized at comparable levels below the external HEA concentration, and blood acid-base disturbances were small at both salinities. The electrochemical gradients for NH(4)(+) entry (F(NH(4))(+)) were the same in the two salinities, but only because FW trout allowed their transepithelial potential to rise by ∼15 mV during HEA exposure. Elevation of plasma [cortisol] during HEA exposure was more prolonged in SW fish. Plasma [glucose] increased in SW, but decreased in FW trout. Plasma [urea-N] also decreased in FW, in concert with elevated urea transporter (UT) mRNA expression in the gills. Of 13 branchial transporters, baseline mRNA expression levels were higher for Rhcg1, NHE2, NKCC1a and UT, and lower for NBC1 and NKA-α1a in SW trout, whereas NKA-α1b, NHE3, CA2, H(+)-ATPase, Rhag, Rhbg and Rhcg2 did not differ. Of the Rh glycoprotein mRNAs responding to HEA, Rhcg2 was greatly upregulated in both FW and SW, Rhag decreased only in SW and Rhcg1 decreased only in FW. H(+)-ATPase mRNA increased in FW whereas NHE2 mRNA increased in SW; NHE3 did not respond, and V-type H(+)-ATPase activity declined in SW during HEA exposure. Branchial Na(+),K(+)-ATPase activity was much higher in SW gills, but could not be activated by NH(4)(+). Overall, the more effective response of SW trout was explained by differences in physical chemistry between SW and FW, which greatly reduced the plasma NH(3) tension gradient for NH(3) entry, as well as by the higher [Na(+)] in SW, which favoured Na(+)-coupled excretion mechanisms. At a molecular level, responses in SW trout showed subtle differences from those in FW trout, but were very different than in the SW pufferfish. Upregulation of Rhcg2 appears to play a key role in the response to HEA in both FW and SW trout, and NH(4)(+) does not appear to move through Na(+),K(+)-ATPase.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | | |
Collapse
|
185
|
Rodela TM, Esbaugh AJ, Weihrauch D, Veauvy CM, McDonald MD, Gilmour KM, Walsh PJ. Revisiting the effects of crowding and feeding in the gulf toadfish, Opsanus beta: the role of Rhesus glycoproteins in nitrogen metabolism and excretion. J Exp Biol 2012; 215:301-13. [DOI: 10.1242/jeb.061879] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SUMMARY
Models of branchial transport in teleosts have been reshaped by the recent discovery of Rhesus (Rh) glycoproteins, a family of proteins that facilitate the movement of NH3 across cell membranes. This study examines the effects of crowding and feeding on ammonia excretion in gulf toadfish (Opsanus beta) within the context of Rh glycoproteins and the ammonia-fixing enzyme, glutamine synthetase (GS). Four Rh isoforms (Rhag, Rhbg, Rhcg1 and Rhcg2) were isolated from toadfish. Tissue distributions showed higher levels of mRNA expression in the gills and liver, moderate levels in the intestine and lower levels in the stomach. Crowding significantly lowered branchial Rh expression and ammonia excretion rates in fasted toadfish. A comparison of Rh expression in the digestive tract revealed relatively low levels of Rhcg1 and Rhcg2 in the stomach and high mRNA abundance of Rhbg, Rhcg1 and Rhcg2 in the intestine of fasted, crowded toadfish. We speculate that these trends may reduce secretion and enhance absorption, respectively, to minimize the amount of ammonia that is lost through gastrointestinal routes. By contrast, these patterns of expression were modified in response to an exogenous ammonia load via feeding. Post-prandial ammonia excretion rates were elevated twofold, paralleled by similar increases in branchial Rhcg1 mRNA, gastric Rhcg1 mRNA and mRNA of all intestinal Rh isoforms. These changes were interpreted as an attempt to increase post-prandial ammonia excretion rates into the environment owing to a gradient created by elevated circulating ammonia concentrations and acidification of the digestive tract. Overall, we provide evidence that toadfish modulate both the expression of Rh isoforms and urea synthesis pathways to tightly control and regulate nitrogen excretion.
Collapse
Affiliation(s)
- Tamara M. Rodela
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Andrew J. Esbaugh
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Clémence M. Veauvy
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA
| | - M. Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA
| | - Kathleen M. Gilmour
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Patrick J. Walsh
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
186
|
Brix KV, Esbaugh AJ, Munley KM, Grosell M. Investigations into the mechanism of lead toxicity to the freshwater pulmonate snail, Lymnaea stagnalis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 106-107:147-156. [PMID: 22172541 DOI: 10.1016/j.aquatox.2011.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/11/2011] [Accepted: 11/15/2011] [Indexed: 05/31/2023]
Abstract
The freshwater pulmonate snail, Lymnaea stagnalis, is the most sensitive aquatic organism tested to date for Pb with an estimated EC20 for juvenile snail growth of 3 μg l⁻¹. A previous study supported the hypothesis that this hypersensitivity to Pb was due to an extremely high Ca²⁺ uptake rate needed to support shell formation. The current study sought to build upon this working hypothesis and develop a mechanistic predictive model for inhibition of snail growth as a function of Pb exposure. Initial experiments confirmed previous predictions that juvenile snails have net Ca²⁺ uptake rates of 7000-8000 nmol g⁻¹ h⁻¹, approximately 100-fold higher than observed in a typical freshwater fish. However, an initial time course study revealed that the onset of growth inhibition occurs at least 4d prior to inhibition of net Ca²⁺ flux in Pb-exposed snails indicating the latter is not the primary mechanism of action. Qualitative observations during this experiment indicated snail feeding was inhibited in a dose-dependent manner. A subsequent experiment demonstrated that when food is withheld from snails for even 24 h, net Ca²⁺ uptake is significantly (∼50%) reduced. A second time course study demonstrated quantitatively that snail feeding is inhibited by Pb exposure by up to 98% at relatively high Pb concentrations (57 μg l⁻¹) but no inhibition was observed at ≤ 10 μg l⁻¹ Pb indicating feeding inhibition is not causing observed growth effects at concentrations approximating the EC20 of 3 μg l⁻¹ Pb. A final experiment testing whether Pb-induced growth effects are related to inhibition of carbonic anhydrase activity in the snail mantle also failed to demonstrate an effect. We conclude that while both feeding and net Ca²⁺ uptake in snails are affected by Pb exposure, they appear to be secondary effects. The primary mechanism of action explaining L. stagnalis hypersensitivity to Pb remains to be identified.
Collapse
Affiliation(s)
- Kevin V Brix
- RSMAS, Marine Biology and Fisheries, University of Miami, Miami, FL 33149, USA.
| | | | | | | |
Collapse
|
187
|
Rodela TM, McDonald MD, Walsh PJ, Gilmour KM. Interactions between cortisol and Rhesus glycoprotein expression in ureogenic toadfish, Opsanus beta. J Exp Biol 2012; 215:314-23. [DOI: 10.1242/jeb.061895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
SUMMARY
In their native environment, gulf toadfish excrete equal quantities of ammonia and urea. However, upon exposure to stressful conditions in the laboratory (i.e. crowding, confinement or air exposure), toadfish decrease branchial ammonia excretion and become ureotelic. The objective of this study was to determine the influences of cortisol and ammonia on ammonia excretion relative to expression of Rhesus (Rh) glycoproteins and the ammonia-fixing enzyme, glutamine synthetase (GS). In vivo infusions and/or injections were used to manipulate corticosteroid activity and plasma ammonia concentrations in ureotelic toadfish. Metyrapone treatment to lower circulating cortisol levels resulted in a 3.5-fold elevation of ammonia excretion rates, enhanced mRNA expression of two of the toadfish Rh isoforms (Rhcg1 and Rhcg2), and decreased branchial and hepatic GS activity. Correspondingly, cortisol infusion decreased ammonia excretion 2.5-fold, a change that was accompanied by reduced branchial expression of all toadfish Rh isoforms (Rhag, Rhbg, Rhcg1 and Rhcg2) and a twofold increase in hepatic GS activity. In contrast, maintenance of high circulating ammonia levels by ammonia infusion enhanced ammonia excretion and Rh expression (Rhag, Rhbg and Rhcg2). Toadfish treated with cortisol showed an attenuated response to ammonia infusion with no change in Rh mRNA expression or GS activity. In summary, the evidence suggests that ammonia excretion in toadfish is modulated by cortisol-induced changes in both Rh glycoprotein expression and GS activity.
Collapse
Affiliation(s)
- Tamara M. Rodela
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - M. Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA
| | - Patrick J. Walsh
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Kathleen M. Gilmour
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
188
|
Anderson WG, Nawata CM, Wood CM, Piercey-Normore MD, Weihrauch D. Body fluid osmolytes and urea and ammonia flux in the colon of two chondrichthyan fishes, the ratfish, Hydrolagus colliei, and spiny dogfish, Squalus acanthias. Comp Biochem Physiol A Mol Integr Physiol 2012; 161:27-35. [PMID: 21911071 DOI: 10.1016/j.cbpa.2011.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 12/29/2022]
Abstract
The present study has examined the role of the colon in regulating ammonia and urea nitrogen balance in two species of chondrichthyans, the ratfish, Hydrolagus colliei (a holocephalan) and the spiny dogfish, Squalus acanthias (an elasmobranch). Stripped colonic tissue from both the dogfish and ratfish was mounted in an Ussing chamber and in both species bi-directional urea flux was found to be negligible. Urea uptake by the mucosa and serosa of the isolated colonic epithelium through accumulation of (14)C-urea was determined to be 2.8 and 6.2 fold greater in the mucosa of the dogfish compared to the serosa of the dogfish and the mucosa of the ratfish respectively. Furthermore, there was no difference between serosal and mucosal accumulation of (14)C-urea in the ratfish. Through the addition of 2mM NH(4)Cl to the mucosal side of each preparation the potential for ammonia flux was also examined. This was again found to be negligible in both species suggesting that the colon is an extremely tight epithelium to the movement of both urea and ammonia. Plasma, chyme and bile fluid samples were also taken from the agastric ratfish and were compared with solute concentrations of equivalent body fluids in the dogfish. Finally molecular analysis revealed expression of 3 isoforms of the urea transport protein (UT) and an ammonia transport protein (Rhbg) in the gill, intestine, kidney and colon of the ratfish. Partial nucleotide sequences of the UT-1, 2 and 3 isoforms in the ratfish had 95, 95 and 92% identity to the equivalent UT isoforms recently identified in another holocephalan, the elephantfish, Callorhinchus milii. Finally, the nucleotide sequence of the Rhbg identified in the ratfish had 73% identity to the Rhbg protein recently identified in the little skate, Leucoraja erinacea.
Collapse
Affiliation(s)
- W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | | | | | | | | |
Collapse
|
189
|
Das A, Katole S, Choubey M, Gupta SP, Saini M, Kumar V, Swarup D. Feed consumption, diet digestibility and mineral utilization in captive blackbuck (Antelope cervicapra) fed different levels of concentrates. J Anim Physiol Anim Nutr (Berl) 2011; 97:80-90. [DOI: 10.1111/j.1439-0396.2011.01245.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
190
|
Pal DT, Kamra DN, Pathak NN, Bisht GS. Influence of Rumen Ciliate Protozoa and Protein Level on Rumen Fermentation, Enzyme Activities and Blood Metabolites in Crossbred Cattle Calves. JOURNAL OF APPLIED ANIMAL RESEARCH 2011. [DOI: 10.1080/09712119.1998.9706681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- D. T. Pal
- a Microbiology Section, Animal Nutrition Division , Indian Veterinary Research Institute , Izatnagar , 243 122 , India
| | - D. N. Kamra
- a Microbiology Section, Animal Nutrition Division , Indian Veterinary Research Institute , Izatnagar , 243 122 , India
| | - N. N. Pathak
- a Microbiology Section, Animal Nutrition Division , Indian Veterinary Research Institute , Izatnagar , 243 122 , India
| | - G. S. Bisht
- a Microbiology Section, Animal Nutrition Division , Indian Veterinary Research Institute , Izatnagar , 243 122 , India
| |
Collapse
|
191
|
Das A, Katole S, Kumar A, Gupta SP, Saini M, Swarup D. Feed consumption, nutrient utilization and serum metabolite profile of captive blackbucks (Antelope cervicapra) fed diets varying in crude protein content. J Anim Physiol Anim Nutr (Berl) 2011; 96:442-9. [DOI: 10.1111/j.1439-0396.2011.01162.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
192
|
Holland AD, Dragavon JM, Sigee DC. Intrinsic autotrophic biomass yield and productivity in algae: Experimental methods for strain selection. Biotechnol J 2011; 6:572-83. [DOI: 10.1002/biot.201000260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/05/2010] [Accepted: 12/20/2010] [Indexed: 11/10/2022]
|
193
|
Braun MH, Perry SF. Ammonia and urea excretion in the Pacific hagfish Eptatretus stoutii: Evidence for the involvement of Rh and UT proteins. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:405-15. [PMID: 20732439 DOI: 10.1016/j.cbpa.2010.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 01/14/2023]
Abstract
The nature of ammonia and urea excretion was examined in the Pacific hagfish (Eptatretus stoutii), which, under resting conditions, excreted similar quantities of nitrogen as either ammonia or urea. In the presence of high external ammonia (HEA) concentrations, ammonia was taken up at high rates and then excreted at similarly high rates upon return to normal water. However, although elevated by HEA, plasma ammonia levels were maintained at approximately 1-4 μmolNg⁻¹, reflecting time-dependent decreases in the rates of ammonia uptake, the possible conversion of ammonia to urea, and the potential active excretion of ammonia against a gradient. Internal injections of NH₄Cl caused marked increases in the rate of ammonia excretion and a delayed increase in urea excretion that may have resulted from increasing urea levels in the plasma. Conversely, when the rate of urea excretion was reduced in the presence of 0.1 mM phloretin, ammonia excretion was significantly elevated. Rates of urea excretion were initially increased by approximately 1000-fold following internal urea injections while the presence of high external urea levels (5-100 mM final concentration) resulted in associated linear increases in plasma urea levels. Using hagfish skin mounted in Ussing chambers, the rate of diffusion of ammonia across the skin exceeded that of urea by approximately four times when equivalent gradients were imposed. Based on western blotting and immunocytochemistry, hagfish gill appears to possess Rh proteins (Rhag, Rhbg and Rhcg1) and urea transporter proteins. Despite the tolerance of hagfish to high levels of ammonia and urea, it is suggested that the presence of ammonia and urea transporter proteins may be required during the period of time hagfish spend in burrows or while feeding, when conditions of high ammonia and/or urea might be encountered.
Collapse
Affiliation(s)
- Marvin H Braun
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada ON K1N 6N5
| | | |
Collapse
|
194
|
Wang C, Liu HY, Wang YM, Yang ZQ, Liu JX, Wu YM, Yan T, Ye HW. Effects of dietary supplementation of methionine and lysine on milk production and nitrogen utilization in dairy cows. J Dairy Sci 2010; 93:3661-70. [PMID: 20655436 DOI: 10.3168/jds.2009-2750] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 05/06/2010] [Indexed: 11/19/2022]
Abstract
The effect of the content of lysine and methionine in metabolizable protein (MP) on lactation performance and N utilization in Chinese Holstein cows was determined. A control diet (C) was formulated to be adequate in energy but slightly limiting in MP. The concentration of Met and Lys in MP was 1.87 and 5.93%, respectively. The treatments were as follows (% of Met or Lys in MP): L=diet C supplemented with L-lysine-HCl at 0.49% on a dry matter (DM) basis (Met, 1.87; Lys, 7.00); M=diet C supplemented with 2-hydroxy-4-(methylthio)-butanoic acid (HMB) at 0.15% (Met, 2.35; Lys, 5.93); ML=diet C supplemented with 0.49% L-lysine HCl and 0.15% HMB (Met, 2.39; Lys, 7.10). The diets were fed to 60 Chinese Holsteins in mid-lactation (average days in milk=120, and milk yield=32.0 kg/d) for 8 wk. Milk yield was increased by supplementation of either Lys (1.5 kg/d) or Met (2.0 kg/d), and supplementation of both Lys and Met further increased milk yield (3.8 kg/d). There was no significant difference in dry matter intake across treatment groups. Cows on treatments M (3.95%) and ML (3.90%) had higher milk fat content than those on C (3.60%) and L (3.67%), but there were no significant differences in milk protein and lactose contents or somatic cell count among treatments. Supplementation of Met or Lys significantly increased Met or Lys concentration in arterial plasma. Treatment ML had a higher conversion of intake N to milk N and lower urea N concentrations in serum, urine, and milk than did treatment C. Supplementing HMB and L-lysine-HCl to provide approximately 2.3% Met and 7.0% Lys of the MP in diets slightly limiting in MP increased milk production, milk protein yield, and N utilization efficiency.
Collapse
Affiliation(s)
- C Wang
- Institute of Dairy Science, Zhejiang University, Hangzhou 310029, PR China
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Das A, Choubey M, Gupta S, Saini M, Swarup D. Feed consumption, nutrient utilization, faecal pellet characteristics and serum metabolite profile of captive spotted deer (Axis axis) fed diets containing different roughages. Small Rumin Res 2010. [DOI: 10.1016/j.smallrumres.2010.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
196
|
Medeiros LR, Mager EM, Grosell M, McDonald MD. The serotonin subtype 1A receptor regulates cortisol secretion in the Gulf toadfish, Opsanus beta. Gen Comp Endocrinol 2010; 168:377-87. [PMID: 20488186 DOI: 10.1016/j.ygcen.2010.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 02/26/2010] [Accepted: 05/12/2010] [Indexed: 11/16/2022]
Abstract
It is well established that serotonin (5-HT; 5-hydroxytryptamine) plays a role in mammalian regulation of the hypothalamic-pituitary-adrenal (HPA) axis via the 5-HT receptor subtype 1A (5-HT(1A)). To date, there has not been a comprehensive investigation of the molecular, pharmacological and physiological aspects of the 5-HT(1A) receptor and its role in the activation of the hypothalamic-pituitary-interrenal (HPI) axis in teleost fish. The 5-HT(1A) receptor of the Gulf toadfish (Opsanus beta) was cloned and sequenced, showing 67.5% amino acid similarity to the human homologue. The 5-HT(1A) receptor was distributed throughout the brain, with the whole brain containing significantly higher levels of 5-HT(1A) mRNA compared to all other tissues and the midbrain/diencephalon region containing significantly higher levels of transcript than any other brain region. Substantial levels of transcript were also found in the pituitary, while very low levels were in the kidney that contains the interrenal cells. Xenopus oocytes injected with toadfish 5-HT(1A) receptor cRNA displayed significantly higher binding of [(3)H]5-HT that was abolished by the mammalian 5-HT(1A) receptor agonist, 8-OH-DPAT, indicating a conserved binding site of the toadfish 5-HT(1A) receptor and a high specificity for the agonist. Supporting this, binding of [(3)H]5-HT was not affected by the mammalian 5-HT(1B) receptor agonist, 5-nonyloxytryptamine, the 5-HT(7) receptor antagonist, SB269970, or the 5-HT(2) receptor agonist, alpha-methylserotonin. Confirming these molecular and pharmacological findings, intravenous injection of 8-OH-DPAT stimulated the HPI axis to cause a 2-fold increase in circulating levels of cortisol. The present study of the 5-HT(1A) receptor in a single teleost species illustrates the high conservation of this 5-HT receptor amongst vertebrates.
Collapse
Affiliation(s)
- Lea R Medeiros
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149-1098, USA.
| | | | | | | |
Collapse
|
197
|
Dallas LJ, Shultz AD, Moody AJ, Sloman KA, Danylchuk AJ. Chemical excretions of angled bonefish Albula vulpes and their potential use as predation cues by juvenile lemon sharks Negaprion brevirostris. JOURNAL OF FISH BIOLOGY 2010; 77:947-962. [PMID: 20840622 DOI: 10.1111/j.1095-8649.2010.02738.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bonefish Albula vulpes (n = 7) exercised to exhaustion and air exposed for 1 min as part of a catch-and-release angling event were found to excrete both ammonia and urea, but cortisol and lactate were below detectable levels. Urea made up a greater proportion of total nitrogen excretion from these fish at all time points following an angling event. When captive juvenile lemon sharks Negaprion brevirostris (n = 12) were exposed to a 30 s pulse of these chemicals [ammonia (500 mM), cortisol (20 µg l(-1) ), lactate (6 mM) or urea (3 mM)], they showed a significant reduction in the frequency of resting behaviours when exposed to ammonia and urea than when exposed to control water. It appears that products excreted by A. vulpes, particularly ammonia and urea, may provide an olfactory cue for the post-release predation of A. vulpes by N. brevirostris during catch-and-release angling events.
Collapse
Affiliation(s)
- L J Dallas
- School of Marine Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | | | | | | | | |
Collapse
|
198
|
Uliano E, Cataldi M, Carella F, Migliaccio O, Iaccarino D, Agnisola C. Effects of acute changes in salinity and temperature on routine metabolism and nitrogen excretion in gambusia (Gambusia affinis) and zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2010; 157:283-90. [PMID: 20674761 DOI: 10.1016/j.cbpa.2010.07.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/22/2010] [Accepted: 07/23/2010] [Indexed: 11/30/2022]
Abstract
Acute stress may affect metabolism and nitrogen excretion as part of the adaptive response that allows animals to face adverse environmental changes. In the present paper the acute effects of different salinities and temperatures on routine metabolism, spontaneous activity and excretion of ammonia and urea were studied in two freshwater fish: gambusia, Gambusia affinis and zebrafish, Danio rerio, acclimated to 27 degrees C. The effects on gill morphology were also evaluated. Five salinities (0 per thousand, 10 per thousand, 20 per thousand, 30 per thousand and 35 per thousand) were tested in gambusia, while four salinities were used in zebrafish (0 per thousand, 10 per thousand, 20 per thousand and 25 per thousand). Each salinity acute stress was tested alone or in combination with an acute temperature reduction to 20 degrees C. In gambusia, both salinity and temperature acute stress strongly stimulated urea excretion. Routine oxygen consumption was barely affected by acute salinity or temperature stress, and was reduced by the combined effects of temperature and high salinity. Gills maintained their structural integrity in all stressing conditions; hyperplasia and hypertrophy of mitochondria-rich cells were observed. In zebrafish, temperature and salinity acute changes, both alone and in combination, scarcely affected any parameter tested. The major effect observed was a reduction of nitrogen excretion at 20 degrees C-25 per thousand; under these extreme conditions a significant structural disruption of gills was observed. These results confirm the high tolerance to acute salinity and temperature stress in gambusia, and demonstrate the involvement of urea excretion modulation in the stress response in this species.
Collapse
Affiliation(s)
- E Uliano
- Department of Biological Sciences, University of Naples Federico II, Italy
| | | | | | | | | | | |
Collapse
|
199
|
Dai X, Fang X, Su F, Yang M, Li H, Zhou J, Xu R. Accurate analysis of urea in milk and milk powder by isotope dilution gas chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1634-8. [DOI: 10.1016/j.jchromb.2010.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 04/05/2010] [Accepted: 04/07/2010] [Indexed: 10/19/2022]
|
200
|
Babu LK, Pandey H, Patra RC, Sahoo A. Hemato-biochemical changes, disease incidence and live weight gain in individual versus group reared calves fed on different levels of milk and skim milk. Anim Sci J 2010; 80:149-56. [PMID: 20163584 DOI: 10.1111/j.1740-0929.2008.00620.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 2 x 3 factorial design was used to study the impact of rearing systems, individual (I) versus group (G) and different levels of milk/skim milk feeding (F1, F2 and F3) on hemato-biochemical profile, disease incidence and average daily gain of crossbred (Bos indicus x Bos taurus) calves. Six calves were taken in each group on the basis of their birth weight and housed in individual (2.20 x 1.16 m(2)/calf) or in group pens (2.20 x 1.03 m(2)/calf). After 3 days of colostrum feeding, calves were allocated to one of three different milk feeding schedules: milk fed up to 8 weeks of age (F1), milk up to 4 weeks followed by 50% replacement by skim milk up to 6 weeks and 100% thereafter (F2) and 100% replacement of milk with skim milk after 4 weeks (F3). Calf starter and cereal green fodders were fed ad libitum from the second week of age and continued for 14 weeks. Parameters on health and disease profiles of calves (disease incidence, duration of illness, response to treatment and recovery) and weekly live weight change were recorded. Calf scour predominated (52.8%), followed by joint ill (25.0%) and respiratory infections (19.4%). The disease incidence was greater (P < 0.01) in individually housed calves (94.4 vs. 55.9%). The management of navel ill required longer recovery (7.01 days) followed by joint ill (4.87 days) and respiratory infection (4.86 days). The average daily gain during 0-14 weeks of age was higher (P < 0.01) in group-housed calves (433 +/- 22 vs. 355 +/- 31 g), while the effect of feeding was not significant. Blood samples collected at 4, 8 and 14 weeks of age showed some periodic higher concentrations (but within normal range) of plasma urea and total protein in group housed calves on F2 and F3 feeding schedules in response to high protein intake. Other parameters remained non-significantly different. Thus, group-housed calves can be reared successfully with comparatively better performance and less illness than individually housed ones under the present health care and housing management system. However, the system should not be used as a substitute for good management, and frequent observations of calves should be an integral part of any successful rearing program.
Collapse
Affiliation(s)
- Lakshman K Babu
- Department of Livestock Production & Management, Orissa Veterinary College Bhubaneswar, India
| | | | | | | |
Collapse
|