151
|
Foster HA, Abeydeera LR, Griffin DK, Bridger JM. Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci 2005; 118:1811-20. [PMID: 15827089 DOI: 10.1242/jcs.02301] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chromosomes are highly organized and compartmentalized in cell nuclei. The analysis of their position is a powerful way to monitor genome organization in different cell types and states. Evidence suggests that the organization of the genome could be functionally important for influencing different cellular and developmental processes, particularly at early stages of development (i.e. fertilization and the consequent entry of the sperm nucleus into the egg). The position of chromosomes in the sperm nucleus might be crucial, because their location could determine the time at which particular chromatin domains are decondensed and remodelled, allowing some epigenetic level of control or influence over subsequent paternal gene expression in the embryo. Here, we analyse genome organization by chromosome position in mammalian sperm nuclei from three breeds of pig, as a model species. We have mapped the preferential position of all chromosomes (bar one) in sperm nuclei in two dimensions and have established that the sex chromosomes are the most internally localized chromosomes in mature sperm. The distribution of two autosomes and chromosomes X and Y in sperm heads was compared in primary and secondary spermatocytes and spermatids in porcine testes. The sex chromosomes were found at the nuclear edge in primary spermatocytes, which correlates with the known position of the XY body and their position in somatic cells, whereas, in spermatids, the sex chromosomes were much more centrally located, mirroring the position of these chromosomes in ejaculated spermatozoa. This study reveals the temporal repositioning of chromosome territories in spermatogenesis.
Collapse
Affiliation(s)
- Helen A Foster
- Laboratory of Nuclear and Genomic Health, Cell and Chromosome Biology Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, UB8 3PH, UK
| | | | | | | |
Collapse
|
152
|
Abstract
DNA methylation is the most intensively studied epigenetic phenomenon, disturbances of which result in changes in gene transcription, thus exerting drastic imparts onto biological behaviors of cancer. Both the global demethylation and the local hypermethylation have been widely reported in all types of tumors, providing both challenges and opportunities for a better understanding and eventually controlling of the malignance. However, we are still in the very early stage of information accumulation concerning the tumor associated changes in DNA methylation pattern. A number of excellent recent reviews have covered this issue in depth. Therefore, this review will summarize our recent data on DNA methylation profiling in cancers. Perspectives for the future direction in this dynamic and exciting field will also be given.
Collapse
Affiliation(s)
- Jing De Zhu
- The State-key Laboratory for Oncogenes and Related Genes, Shanghai Jiaotong University, China.
| |
Collapse
|
153
|
Yamashita R, Suzuki Y, Sugano S, Nakai K. Genome-wide analysis reveals strong correlation between CpG islands with nearby transcription start sites of genes and their tissue specificity. Gene 2005; 350:129-36. [PMID: 15784181 DOI: 10.1016/j.gene.2005.01.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 12/28/2004] [Accepted: 01/24/2005] [Indexed: 10/25/2022]
Abstract
It has been envisaged that CpG islands are often observed near the transcriptional start sites (TSS) of housekeeping genes. However, neither the precise positions of CpG islands relative to TSS of genes nor the correlation between the presence of the CpG islands and the expression specificity of these genes is well-understood. Using thousands of sequences with known TSS in human and mouse, we found that there is a clear peak in the distribution of CpG islands around TSS in the genes of these two species. Thus, we classified human (mouse) genes into 6600 (2948) CpG+ genes and 2619 (1830) CpG- ones, based on the presence of a CpG island within the -100: +100 region. We estimated the degree of each gene being a housekeeper by the number of cDNA libraries where its ESTs were detected. Then, the tendency that a gene lacking CpG islands around its TSS is expressed with a higher degree of tissue specificity turned out to be evolutionarily conserved. We also confirmed this tendency by analyzing the gene ontology annotation of classified genes. Since no such clear correlation was found in the control data (mRNAs, pre-mRNAs, and chromosome banding pattern), we concluded that the effect of a CpG island near the TSS should be more important than the global GC content of the region where the gene resides.
Collapse
Affiliation(s)
- Riu Yamashita
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokane-dai Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
154
|
Missiaglia E, Donadelli M, Palmieri M, Crnogorac-Jurcevic T, Scarpa A, Lemoine NR. Growth delay of human pancreatic cancer cells by methylase inhibitor 5-aza-2'-deoxycytidine treatment is associated with activation of the interferon signalling pathway. Oncogene 2005; 24:199-211. [PMID: 15637593 DOI: 10.1038/sj.onc.1208018] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alteration of methylation status has been recognized as a possible epigenetic mechanism of selection during tumorigenesis in pancreatic cancer. This type of cancer is characterized by poor prognosis partly due to resistance to conventional drug treatments. We have used microarray technology to investigate the changes in global gene expression observed after treatment of different pancreatic cancer cell lines with the methylase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR). We have observed that this agent is able to inhibit to various degrees the growth of three pancreatic cancer cell lines. In particular, this inhibition was associated with induction of interferon (IFN)-related genes, as observed in other tumour types. Thus, expression of STAT1 seems to play a key role in the cellular response to treatment with the cytosine analogue. Moreover, we found increased p21(WAF1) and gadd45A expression to be associated with the efficacy of the treatment; this induction may correlate with activation of the IFN signalling pathway. Expression of the p16(INK) protein was also linked to the ability of cells to respond to 5-aza-CdR. Finally, genome-wide demethylation induced sensitization that significantly increased response to further treatment with various chemotherapy agents.
Collapse
Affiliation(s)
- Edoardo Missiaglia
- Cancer Research UK, Molecular Oncology Unit, Imperial College School of Medicine at Hammersmith Campus, London, UK
| | | | | | | | | | | |
Collapse
|
155
|
Steiger JL, Bandyopadhyay S, Farb DH, Russek SJ. cAMP response element-binding protein, activating transcription factor-4, and upstream stimulatory factor differentially control hippocampal GABABR1a and GABABR1b subunit gene expression through alternative promoters. J Neurosci 2005; 24:6115-26. [PMID: 15240803 PMCID: PMC6729677 DOI: 10.1523/jneurosci.1200-04.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Expression of metabotropic GABA(B) receptors is essential for slow inhibitory synaptic transmission in the CNS, and disruption of GABA(B) receptor-mediated responses has been associated with several disorders, including neuropathic pain and epilepsy. The location of GABA(B) receptors in neurons determines their specific role in synaptic transmission, and it is believed that sorting of subunit isoforms, GABA(B)R1a and GABA(B)R1b, to presynaptic or postsynaptic membranes helps to determine this role. GABA(B)R1a and GABA(B)R1b are thought to arise by alternative splicing of heteronuclear RNA. We now demonstrate that alternative promoters, rather than alternative splicing, produce GABA(B)R1a and GABA(B)R1b isoforms. Our data further show that subunit gene expression in hippocampal neurons is mediated by the cAMP response element-binding protein (CREB) by binding to unique cAMP response elements in the alternative promoter regions. Double-stranded oligonucleotide decoys selectively alter levels of endogenous GABA(B)R1a and GABA(B)R1b in primary hippocampal neurons, and CREB knock-out mice show changes in levels of GABA(B)R1a and GABA(B)R1b transcripts, consistent with decoy competition experiments. These results demonstrate a critical role of CREB in transcriptional mechanisms that control GABA(B)R1 subunit levels in vivo. In addition, the CREB-related factor activating transcription factor-4 (ATF4) has been shown to interact directly with GABA(B)R1 in neurons, and we show that ATF4 differentially regulates GABA(B)R1a and GABA(B)R1b promoter activity. These results, together with our finding that the depolarization-sensitive upstream stimulatory factor (USF) binds to a composite CREB/ATF4/USF regulatory element only in the absence of CREB binding, indicate that selective control of alternative GABA(B)R1 promoters by CREB, ATF4, and USF may dynamically regulate expression of their gene products in the nervous system.
Collapse
Affiliation(s)
- Janine L Steiger
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
156
|
Tsellou E, Troungos C, Moschovi M, Athanasiadou-Piperopoulou F, Polychronopoulou S, Kosmidis H, Kalmanti M, Hatzakis A, Dessypris N, Kalofoutis A, Petridou E. Hypermethylation of CpG islands in the promoter region of the p15INK4B gene in childhood acute leukaemia. Eur J Cancer 2005; 41:584-9. [PMID: 15737564 DOI: 10.1016/j.ejca.2004.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 11/05/2004] [Accepted: 12/10/2004] [Indexed: 10/25/2022]
Abstract
It has been reported that the cyclin-dependent kinase inhibitor (CDKI) gene p15INK4B is frequently inactivated by genetic alterations and may be responsible for various malignant tumours. Another way of inactivation of this CDKI is by hypermethylation of 5'CpG islands in the promoter region of the p15INK4B gene and this inactivation seems to be a frequent event in various haematological malignancies. In the present study, we investigated the methylation status of the p151NK4B gene to clarify its role in the pathogenesis of childhood acute myeloid (AML) and acute lymphoblastic leukaemia (ALL). The study included 23 cases of B-cell origin ALL, 13 cases of T-cell origin ALL, 32 cases of AML, and 10 apparently healthy controls. Hypermethylation was studied by methylation-specific polymerase chain reaction. Hypermethylation of the p15INK4B gene was more frequent in cases with T-cell origin ALL (46.2%), but similar among children with B-cell origin ALL (13.0%) and AML (18.8%). Hypermethylation of p15INK4B may be involved in the pathogenesis of T-cell origin ALL, but not in that of AML or B-cell origin ALL.
Collapse
Affiliation(s)
- Erasmia Tsellou
- Department of Biological Chemistry, Athens University Medical School, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Maier S, Dahlstroem C, Haefliger C, Plum A, Piepenbrock C. Identifying DNA Methylation Biomarkers of Cancer Drug Response. ACTA ACUST UNITED AC 2005; 5:223-32. [PMID: 16078859 DOI: 10.2165/00129785-200505040-00003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the last few years, DNA methylation has become one of the most studied gene regulation mechanisms in carcinogenesis as a result of the cumulative evidence produced by the scientific community. Moreover, advances in the technologies that allow detection of DNA methylation in a variety of analytes have opened the possibility of developing methylation-based tests. A number of studies have provided evidence that specific methylation changes can alter the response to different therapeutic agents in cancer and, therefore, be useful biomarkers. For example, the association of the methylation status of DNA repair genes such as MGMT and MLH1 illustrate the two main mechanisms of response to DNA damaging agents. Loss of methylation of MGMT, and the subsequent increase in gene expression, leads to a reduction in response to alkylating agents as a result of enhanced repair of drug-induced DNA damage. Conversely, the increase in methylation of MLH1 and its resulting loss of expression has been consistently observed in drug-resistant tumor cells. MLH1 encodes a mismatch repair enzyme activated in response to DNA damage; activation of MLH1 also induces apoptosis of tumor cells, and thus loss of its expression leads to resistance to DNA-damaging agents. Other methylation-regulated genes that could serve as biomarkers in cancer therapy include drug transporters, genes involved in microtubule formation and stability, and genes related to hormonal therapy response. These methylation markers have potential applications for disease prognosis, treatment response prediction, and the development of novel treatment strategies.
Collapse
|
158
|
Abstract
DNA methylation is an important regulator of gene transcription, and its role in carcinogenesis has been a topic of considerable interest in the last few years. Alterations in DNA methylation are common in a variety of tumors as well as in development. Of all epigenetic modifications, hypermethylation, which represses transcription of the promoter regions of tumor suppressor genes leading to gene silencing, has been most extensively studied. However, global hypomethylation has also been recognized as a cause of oncogenesis. New information concerning the mechanism of methylation and its control has led to the discovery of many regulatory proteins and enzymes. The contribution of dietary folate and methylene terahydrofolate reductase polymorphisms to methylation patterns in normal and cancer tissues is under intense investigation. As methylation occurs early and can be detected in body fluids, it may be of potential use in early detection of tumors and for determining the prognosis. Because DNA methylation is reversible, drugs like 5'-azacytidine, decitabine, and histone deacetylase inhibitors are being used to treat a variety of tumors. Novel demethylating agents such as antisense DNA methyl transferase and small interference RNA are being developed, making the field of DNA methylation wider and more exciting.
Collapse
Affiliation(s)
- Partha M Das
- Department of Medicine, Miami VA Medical Center, Miami, FL, USA
| | | |
Collapse
|
159
|
Rüter B, Wijermans PW, Lübbert M. DNA methylation as a therapeutic target in hematologic disorders: recent results in older patients with myelodysplasia and acute myeloid leukemia. Int J Hematol 2004; 80:128-35. [PMID: 15481440 DOI: 10.1532/ijh97.04094] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA methylation provides a major epigenetic code (besides histone modification) of the lineage- and development-specific genes (such as regulators of differentiation in the hematopoietic lineages) that control expression of normal cells. However, DNA methylation is also involved in malignancies because aberrant methylating gene activity occurs during leukemic transformation. Thus, genes such as tumor suppressor genes, growth-regulatory genes, and adhesion molecules are often silenced in various hematopoietic malignancies by epigenetic inactivation via DNA hypermethylation. This inactivation is frequently seen not only in transformed cell lines but also in primary leukemia cells. Because this defect is amenable to reversion by pharmacologic means, agents that inhibit DNA methylation have been developed to specifically target this hypermethylation defect in leukemia and preleukemia cases. The most clinically advanced agents, the azanucleosides 5-azacytidine and 5-aza-2'-deoxycytidine (decitabine), were discovered more than 25 years ago, when their methylation-inhibitory activities, even at low concentrations, became apparent. Although both of these agents, like cytarabine, had been clinically used until then at high doses, the redevelopment of these agents for low-dose schedules has revealed very interesting clinical activities for treating myelodysplasia (MDS) and acute myeloid leukemia (AML). Because these diseases occur mostly in patients over 60 years of age, low-dose schedules with these compounds provide a very promising approach in such patient groups by virtue of their low nonhematologic toxicity profiles. In the present review, we describe the development of treatments that target DNA hypermethylation in MDS and AML, and clinical results are presented. In addition, pharmacologic DNA demethylation may be viewed as a platform for biological modification of malignant cells to become sensitized (or resensitized) to secondary signals, such as differentiating signals (retinoids, vitamin D3) and hormonal signals (eg, estrogen receptor in breast cancer cells, androgen receptor in prostate cancer cells). Finally, an in vitro synergism between the reactivating potency of demethylating agents and inhibitors of histone deacetylation has been tested in several pilot studies of AML and MDS treatment. Finally, gene reactivation by either group of compounds results in therapeutically meaningful reactivation of fetal hemoglobin in patients with severe hemoglobinopathies, extending the therapeutic range of derepressive epigenetic agents to nonmalignant hematopoietic disorders.
Collapse
Affiliation(s)
- Björn Rüter
- Department of Hematology/Oncology, Albert-Ludwigs- University (ALU) Freiburg, Germany
| | | | | |
Collapse
|
160
|
Shiraishi M, Oates AJ, Li X, Chuu YH, Sekiya T. Segregation of partly melted molecules: isolation of CpG islands by polyacrylamide gel electrophoresis. Biol Chem 2004; 385:967-73. [PMID: 15551872 DOI: 10.1515/bc.2004.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The technique of segregation of partly melted molecules (SPM) is a convenient and efficient method to isolate DNA fragments associated with CpG islands. The approach is conceptually simple and uses denaturant gradient gel electrophoresis to separate DNA molecules digested with restriction endonucleases. The SPM methodology has successfully been applied to the identification of genes from anonymous, unsequenced DNA fragments and CpG islands methylated in human cancer. In this article the theoretical background and practical application of the SPM method is reviewed.
Collapse
Affiliation(s)
- Masahiko Shiraishi
- DNA Methylation and Genome Function Project, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | |
Collapse
|
161
|
Vladychenskaya IP, Dergunova LV, Dmitrieva VG, Limborska SA. Human gene MOB: structure specification and aspects of transcriptional activity. Gene 2004; 338:257-65. [PMID: 15315829 DOI: 10.1016/j.gene.2004.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 04/15/2004] [Accepted: 06/01/2004] [Indexed: 11/27/2022]
Abstract
Prior investigation of human brain cDNA libraries revealed an evolutionarily conserved gene MOB that has been cloned in silico on chromosome 10. To elucidate its biological role, we performed structural and functional analysis of its transcripts. Applying an expressed sequence tag (EST) approach, we specified the sequence of the predicted MOB transcript and found another four exons to belong to the 5'- end of the MOB gene; the newly constructed MOB transcript was detected in vitro. Here, we report MOB to comprise at least 11 exons and 10 introns and to span more than 320 kb of the genomic sequence. We propose complex regulation of MOB gene activity at a transcriptional level, based on its expression pattern. Thus, in the human cerebellum, we discovered multiple alternatively spliced products of MOB differing in their coding portion; one of the alternative transcripts was demonstrated to lack the longest coding exon VII. MOB was expressed at very low levels in a wide spectrum of human tissues: most abundantly in the brain and in the kidney. Two transcription initiation sites were found for MOB and two alternative promoters were suggested to govern its expression. We believe that MOB activity is also regulated at the posttranscriptional level. In the constructed MOB transcript, the extended multiexon 5'-untranslated region (UTR) together with the weak context of the translation start ATG codon are considered as potent translator inhibitors. Modulation of MOB translation efficiency is proposed based on the appropriate alternative splicing events within the 5'-UTR. The MOB 3'-UTR is anticipated to mediate message instability. We thus suggest that this MOB transcript may be a labile short-lived molecule with strong regulation of its translational efficiency. We believe that MOB gene activity is controlled at least at the transcriptional and the posttranscriptional levels, strictly regulating the amount of the encoded protein product.
Collapse
Affiliation(s)
- Irina P Vladychenskaya
- Department of Human Molecular Genetics, Institute of Molecular Genetics RAS, Kurchatov sq., 2, 123182 Moscow, Russia.
| | | | | | | |
Collapse
|
162
|
Paris J, Virtanen C, Lu Z, Takahashi M. Identification of MEF2-regulated genes during muscle differentiation. Physiol Genomics 2004; 20:143-51. [PMID: 15507520 DOI: 10.1152/physiolgenomics.00149.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although a great deal has been elucidated concerning the mechanisms regulating muscle differentiation, little is known about transcription factor-specific gene regulation. Our understanding of the genetic mechanisms regulating cell differentiation is quite limited. Much of what has been defined centers on regulatory signaling cascades and transcription factors. Surprisingly few studies have investigated the association of genes with specific transcription factors. To address these issues, we have utilized a method coupling chromatin immunoprecipitation and CpG microarrays to characterize the genes associated with MEF2 in differentiating C(2)C(12) cells. Results demonstrated a defined binding pattern over the course of differentiation. Filtered data demonstrated 9 clones to be elevated at 0 h, 792 at 6 h, 163 by 1 day, and 316 at 3 days. Using unbiased selection parameters, we selected a subset of 291 prospective candidates. Clones were sequenced and filtered for removal of redundancy between clones and for the presence of repetitive elements. We were able to place 50 of these on the mouse genome, and 20 were found to be located near well-annotated genes. From this list, previously undefined associations with MEF2 were discovered. Many of these genes represent proteins involved in neurogenesis, neuromuscular junctions, signaling and metabolism. The remaining clones include many full-length cDNA and represent novel gene targets. The results of this study provides for the first time, a unique look at gene regulation at the level of transcription factor binding in differentiating muscle.
Collapse
Affiliation(s)
- James Paris
- Microarray Centre, Clinical Genomics Centre, University Health Network, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
163
|
Suzuki Y, Yamashita R, Shirota M, Sakakibara Y, Chiba J, Mizushima-Sugano J, Nakai K, Sugano S. Sequence comparison of human and mouse genes reveals a homologous block structure in the promoter regions. Genome Res 2004; 14:1711-8. [PMID: 15342556 PMCID: PMC515316 DOI: 10.1101/gr.2435604] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Comparative sequence analysis was carried out for the regions adjacent to experimentally validated transcriptional start sites (TSSs), using 3324 pairs of human and mouse genes. We aligned the upstream putative promoter sequences over the 1-kb proximal regions and found that the sequence conservation could not be further extended at, on average, 510 bp upstream positions of the TSSs. This discontinuous manner of the sequence conservation revealed a "block" structure in about one-third of the putative promoter regions. Consistently, we also observed that G+C content and CpG frequency were significantly different inside and outside the blocks. Within the blocks, the sequence identity was uniformly 65% regardless of their length. About 90% of the previously characterized transcription factor binding sites were located within those blocks. In 46% of the blocks, the 5' ends were bounded by interspersed repetitive elements, some of which may have nucleated the genomic rearrangements. The length of the blocks was shortest in the promoters of genes encoding transcription factors and of genes whose expression patterns are brain specific, which suggests that the evolutional diversifications in the transcriptional modulations should be the most marked in these populations of genes.
Collapse
Affiliation(s)
- Yutaka Suzuki
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Gabellini N. Transcriptional regulation by cAMP and Ca2+ links the Na+/Ca2+ exchanger 3 to memory and sensory pathways. Mol Neurobiol 2004; 30:91-116. [PMID: 15247490 DOI: 10.1385/mn:30:1:091] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The signaling cascades triggered by neurotrophins such as BDNF and by several neurotransmitters and hormones lead to the rapid induction of gene transcription by increasing the intracellular concentration of cAMP and Ca2+. This review examines the mechanisms by which these second messengers control transcriptional initiation at CRE promoters via transcription factor CREB, as well as at DRE sites via transcriptional repressor DREAM. The regulation of the SLC8A3 gene encoding the Na+/Ca2+ exchanger 3 (NCX3) is taken as an example to illustrate both mechanisms since it includes a CRE site in the promoter and several DRE sites in the exon 1 sequence. The upregulation of the NCX3 by Ca2+ signals may be specifically required to establish the Ca2+ balance that regulates several physiological and pathological processes in neurons. The regulatory features and the expression pattern of SLC8A3 gene suggest that NCX3 activity could be crucial in neuronal functions such as memory formation and sensory processing.
Collapse
Affiliation(s)
- Nadia Gabellini
- Department of Biological Chemistry, University of Padova, Padova, Italy.
| |
Collapse
|
165
|
Hattori N, Abe T, Hattori N, Suzuki M, Matsuyama T, Yoshida S, Li E, Shiota K. Preference of DNA methyltransferases for CpG islands in mouse embryonic stem cells. Genome Res 2004; 14:1733-40. [PMID: 15310660 PMCID: PMC515319 DOI: 10.1101/gr.2431504] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many CpG islands have tissue-dependent and differentially methylated regions (T-DMRs) in normal cells and tissues. To elucidate how DNA methyltransferases (Dnmts) participate in methylation of the genomic components, we investigated the genome-wide DNA methylation pattern of the T-DMRs with Dnmt1-, Dnmt3a-, and/or Dnmt3b-deficient ES cells by restriction landmark genomic scanning (RLGS). Approximately 1300 spots were detected in wild-type ES cells. In Dnmt1(-/-) ES cells, additional 236 spots emerged, indicating that the corresponding loci are methylated by Dnmt1 in wild-type ES cells. Intriguingly, in Dnmt3a(-/-)Dnmt3b(-/-) ES cells, the same 236 spots also emerged, and no additional spots appeared differentially. Therefore, Dnmt1 and Dnmt3a/3b share targets in CpG islands. Cloning and virtual image RLGS revealed that 81% of the RLGS spots were associated with genes, and 62% of the loci were in CpG islands. By contrast to the previous reports that demethylation at repeated sequences was severe in Dnmt1(-/-) cells compared with Dnmt3a(-/-)Dnmt3b(-/-) cells, a complete loss of methylation was observed at RLGS loci in Dnmt3a(-/-)Dnmt3b(-/-) cells, whereas methylation levels only decreased to 16% to 48% in the Dnmt1(-/-) cells. We concluded that there are CpG islands with T-DMR as targets shared by Dnmt1 and Dnmt3a/3b and that each Dnmt has target preferences depending on the genomic components.
Collapse
Affiliation(s)
- Naka Hattori
- Laboratory of Cellular Biochemistry, Animal Resource Sciences/Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Marshak-Rothstein A, Busconi L, Rifkin IR, Viglianti GA. The stimulation of Toll-like receptors by nuclear antigens: a link between apoptosis and autoimmunity. Rheum Dis Clin North Am 2004; 30:559-74, ix. [PMID: 15261341 DOI: 10.1016/j.rdc.2004.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As immunologists have long understood, effective responses to foreign antigens require adjuvants. It is now apparent that the initiation of autoimmune disease is comparably facilitated by adjuvant activity. In the case of antinuclear antibodies, it seems that DNA itself can serve as an endogenous adjuvant. Similar to many of the microbial adjuvants, mammalian DNA mediates its effect through a Toll-like receptor--in this case, TLR9.
Collapse
Affiliation(s)
- Ann Marshak-Rothstein
- Department of Microbiology, Boston University School of Medicine, 80 East Concord Street, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
167
|
Steiger JL, Russek SJ. GABAA receptors: building the bridge between subunit mRNAs, their promoters, and cognate transcription factors. Pharmacol Ther 2004; 101:259-81. [PMID: 15031002 DOI: 10.1016/j.pharmthera.2003.12.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The type A gamma-aminobutyric acid (GABA(A)) receptors mediate the majority of fast inhibitory neurotransmission in the CNS, and alterations in GABA(A) receptor function is believed to be involved in the pathology of several neurological and psychiatric illnesses, such as epilepsy, anxiety, Alzheimer's disease, and schizophrenia. GABA(A) receptors can be assembled from eight distinct subunit families defined by sequence similarity: alpha(1-6), beta(1-3), gamma(1-3), delta, pi, theta, and rho(1-3). The regulation of GABA(A) receptor function in the brain is a highly compensating system, influencing both the number and the composition of receptors at the cell surface. While transcriptional and translational points of control operate in parallel, it is becoming increasingly evident that many functional changes in GABA(A) receptors reflect the differential gene regulation of its subunits. The fact that certain GABA(A) receptor subunit genes are transcribed in distinct cell types during specific periods of development strongly suggests that genetic control plays a major role in the choice of subunit variants available for receptor assembly. This review focuses on the physiological conditions that alter subunit mRNA levels, the promoters that may control such levels, and the use of a conceptual framework created by bioinformatics to study coordinate and independent GABA(A) receptor subunit gene regulation. As this exciting field moves closer to identifying the language hidden inside the chromatin of GABA(A) receptor subunit gene clusters, future experiments will be aimed at testing models generated by computational analysis with biologically relevant in vivo and in vitro assays. It is hoped that through this functional genomic approach there will be the identification of new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Janine L Steiger
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
168
|
Shiraishi M, Sekiguchi A, Oates AJ, Terry MJ, Miyamoto Y, Sekiya T. Methyl-CpG binding domain column chromatography as a tool for the analysis of genomic DNA methylation. Anal Biochem 2004; 329:1-10. [PMID: 15136161 DOI: 10.1016/j.ab.2004.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masahiko Shiraishi
- DNA Methylation and Genome Function Project, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | |
Collapse
|
169
|
Moshynska O, Sankaran K, Pahwa P, Saxena A. Prognostic significance of a short sequence insertion in the MCL-1 promoter in chronic lymphocytic leukemia. J Natl Cancer Inst 2004; 96:673-82. [PMID: 15126604 DOI: 10.1093/jnci/djh122] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mcl-1 protein contributes to the longevity of chronic lymphocytic leukemia (CLL) B cells, and its higher expression has been associated with resistance to chemotherapy. We sought structural changes in the MCL-1 gene in CLL patients and associated these with clinical parameters of the disease. METHODS The MCL-1 gene from peripheral blood lymphocytes from 58 CLL patients and 18 control subjects and from the RL and BC-3 lymphoma cell lines was sequenced. Mcl-1 mRNA expression (in 20 consecutive patients and four control subjects) was analyzed by RNase protection assay, and Mcl-1 protein expression (in 18 consecutive patients and four controls) was analyzed by western blotting. Genetic changes in MCL-1 were associated with biochemical and clinical characteristics, including expression of CD38, a negative prognostic factor. Cox proportional hazards modeling was used to determine the prognostic importance of changes in the MCL-1 gene, and the Kaplan-Meier method was used to analyze patient survival. All statistical tests were two sided. RESULTS A 6- or 18-nucleotide sequence insertion was found in the same site in the MCL-1 promoter in 17 of 58 patients and in BC-3 cells; it was absent in all control subjects and in RL cells. Of 21 CD38-negative patients, 10 had a promoter insertion; of 17 CD38-positive patients, one had a promoter insertion (P =.0099). Patients with a promoter insertion had higher mRNA (median = 26.8 relative units, interquartile range [IQR] = 14.9 to 35.2, versus median = 8.8 relative units, IQR = 3.9 to 15.7, P =.030, U-test) and protein (median = 0.84 relative units, IQR = 0.81 to 1.0 versus median = 0.47, IQR = 0.32 to 0.70, P =.021, U-test) expression, more rapid disease progression (P =.012), poorer response to chemotherapy (P =.001), and shorter overall (P =.0088) and disease-specific (P <.001) survival than patients with a normal promoter. The presence of an MCL-1 promoter insertion had prognostic significance in a Cox model (P =.001). CONCLUSIONS The MCL-1 promoter insertion may identify a high-risk group of CD38-negative CLL patients.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Blotting, Western
- Case-Control Studies
- Chromosomes, Human, Pair 1
- DNA Transposable Elements
- DNA, Neoplasm/analysis
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- Gene Rearrangement
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Male
- Middle Aged
- Myeloid Cell Leukemia Sequence 1 Protein
- Neoplasm Proteins/genetics
- Predictive Value of Tests
- Prognosis
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-bcl-2/genetics
- RNA, Messenger/analysis
- Sequence Analysis, DNA
- Survival Analysis
- Up-Regulation
Collapse
Affiliation(s)
- Oksana Moshynska
- Department of Pathology, Royal University Hospital and College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
170
|
Nelson SM, Ferguson LR, Denny WA. DNA and the chromosome - varied targets for chemotherapy. CELL & CHROMOSOME 2004; 3:2. [PMID: 15157277 PMCID: PMC421739 DOI: 10.1186/1475-9268-3-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 05/24/2004] [Indexed: 12/29/2022]
Abstract
The nucleus of the cell serves to maintain, regulate, and replicate the critical genetic information encoded by the genome. Genomic DNA is highly associated with proteins that enable simple nuclear structures such as nucleosomes to form higher-order organisation such as chromatin fibres. The temporal association of regulatory proteins with DNA creates a dynamic environment capable of quickly responding to cellular requirements and distress. The response is often mediated through alterations in the chromatin structure, resulting in changed accessibility of specific DNA sequences that are then recognized by specific proteins. Anti-cancer drugs that target cellular DNA have been used clinically for over four decades, but it is only recently that nuclease specific drugs have been developed to not only target the DNA but also other components of the nuclear structure and its regulation. In this review, we discuss some of the new drugs aimed at primary DNA sequences, DNA secondary structures, and associated proteins, keeping in mind that these agents are not only important from a clinical perspective but also as tools for understanding the nuclear environment in normal and cancer cells.
Collapse
Affiliation(s)
- Stephanie M Nelson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 10000, New Zealand
| | - Lynnette R Ferguson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 10000, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 10000, New Zealand
| |
Collapse
|
171
|
Singh B, Gupta RS. Genomic organization and linkage via a bidirectional promoter of the AP-3 (adaptor protein-3) mu3A and AK (adenosine kinase) genes: deletion mutants of AK in Chinese hamster cells extend into the AP-3 mu3A gene. Biochem J 2004; 378:519-28. [PMID: 14575525 PMCID: PMC1223951 DOI: 10.1042/bj20031219] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 10/07/2003] [Accepted: 10/24/2003] [Indexed: 11/17/2022]
Abstract
The cDNA and genomic DNA for the mu3A subunit of the AP-3 (adaptor protein-3) complex were cloned from Chinese hamster cells. The AP-3 mu3A genes in Chinese hamster, human and mouse each comprise nine exons and eight introns, with all introns located in identical positions in the species studied. The AP-3 mu3A genes in these species are linked in a head-to-head fashion with the gene for the purine salvage pathway enzyme AK (adenosine kinase). These genes share the first exon, and a 512 bp fragment covering the intervening untranslated sequence has the characteristic of a CpG island promoter, and it effectively carried out transcription in both directions. Deletion studies indicate that this region contains both positive and negative regulatory elements affecting transcription of these genes. In comparison with the AP-3 mu3A gene (27 kb), the AK gene in human is very large (558 kb), with average exon and intron lengths of approx. 100 bp and 55.7 kb respectively. The ratio of non-coding to coding sequence in the human AK gene is >550, which is the highest reported for any gene. We also present evidence that a number of AK- mutants of Chinese hamster ovary cells contain large deletions that affect both of these genes. In addition to lacking part of the AK gene, two of these mutants also lacked all of the exons and introns corresponding to the AP-3 mu3A gene. These mutants should prove useful in elucidating the role of AP-3 mu3A in vesicle-mediated protein sorting--a process that is altered in Hermansky-Pudlak syndrome. Detailed phylogenetic analysis of the micro family of proteins presented here also provides insight into how different AP complexes are related and may have evolved.
Collapse
Affiliation(s)
- Bhag Singh
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | |
Collapse
|
172
|
Ioudinkova E, Verbovaia L, Kadulin S, Goldman I, Razin SV. Heterologous CpG island becomes extensively methylated in the genome of transgenic mice. J Cell Biochem 2004; 92:99-103. [PMID: 15095407 DOI: 10.1002/jcb.20023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is demonstrated that a heterologous (chicken) CpG island containing five Sp1 canonical recognition sequences becomes highly methylated in the genome of transgenic mice bearing one or several copies of the transgene. Similar levels of methylation of the chicken CpG island were observed in different tissues of transgenic mice except the brain where the level of methylation of this chicken CpG-rich fragment was significantly lower than in other tissues. Analysis of susceptibility of the "transgenic" CpG island to Hpa II and Msp I restriction nucleases revealed an unusual methylation pattern interfering with the action of both of these enzymes. A conclusion has been drawn that heterologous CpG island per se does not contain all necessary signals permitting to maintain its own non-methylated status in the genome of transgenic animals.
Collapse
Affiliation(s)
- Elena Ioudinkova
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | | | | | | | | |
Collapse
|
173
|
Kim KM, Shibata D. Tracing ancestry with methylation patterns: most crypts appear distantly related in normal adult human colon. BMC Gastroenterol 2004; 4:8. [PMID: 15059289 PMCID: PMC400737 DOI: 10.1186/1471-230x-4-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 04/01/2004] [Indexed: 11/17/2022] Open
Abstract
Background The ability to discern ancestral relationships between individual human colon crypts is limited. Widely separated crypts likely trace their common ancestors to a time around birth, but closely spaced adult crypts may share more recent common ancestors if they frequently divide by fission to form clonal patches. Alternatively, adult crypts may be long-lived structures that infrequently divide or die. Methods Methylation patterns (the 5' to 3' order of methylation) at CpG sites that exhibit random changes with aging were measured from isolated crypts by bisulfite genomic sequencing. This epigenetic drift may be used to infer ancestry because recently related crypts should have similar methylation patterns. Results Methylation patterns were different between widely separated ("unrelated") crypts greater than 15 cm apart. Evidence for a more recent relationship between directly adjacent or branched crypts could not be found because their methylation pattern distances were not significantly different than widely separated crypt pairs. Methylation patterns are essentially equally different between two adult human crypts regardless of their relative locations. Conclusions Methylation patterns appear to record somatic cell trees. Starting from a single cell at conception, sequences replicate and may drift apart. Most adult human colon crypts appear to be long-lived structures that become mosaic with respect to methylation during aging.
Collapse
Affiliation(s)
- Kyoung-Mee Kim
- Department of Pathology, Norris Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Darryl Shibata
- Department of Pathology, Norris Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
174
|
Deobagkar DD, Chandra HS. The inactive X chromosome in the human female is enriched in 5-methylcytosine to an unusual degree and appears to contain more of this modified nucleotide than the remainder of the genome. J Genet 2004; 82:13-6. [PMID: 14631096 DOI: 10.1007/bf02715875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By employing a procedure that combines ELISA and photoacoustic spectroscopy, we have examined the content of 5-methylcytosine (m(5)C) in DNA of individuals who differed from one another in the number of X chromosomes in their genomes. The results show that the human inactive X chromosome (Xi) contains very high amounts of this modified nucleotide. We estimate that in the 46,XX female there is more m(5)C in Xi (~ 3.6 x 10(7)) than in all the remaining chromosomes put together (~ 2.1 x 10(7)). Our results also suggest that nearly one-fifth of all cytosines in Xi are methylated and that, in addition to CpG methylation, there is extensive non-CpG methylation as well.
Collapse
|
175
|
Kubat NJ, Tran RK, McAnany P, Bloom DC. Specific histone tail modification and not DNA methylation is a determinant of herpes simplex virus type 1 latent gene expression. J Virol 2004; 78:1139-49. [PMID: 14722269 PMCID: PMC321404 DOI: 10.1128/jvi.78.3.1139-1149.2004] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
During herpes simplex virus type 1 (HSV-1) latency, gene expression is tightly repressed except for the latency-associated transcript (LAT). The mechanistic basis for this repression is unknown, but its global nature suggests regulation by an epigenetic mechanism such as DNA methylation. Previous work demonstrated that latent HSV-1 genomes are not extensively methylated, but these studies lacked the resolution to examine methylation of individual CpGs that could repress transcription from individual promoters during latency. To address this point, we employed established models to predict genomic regions with the highest probability of being methylated and, using bisulfite sequencing, analyzed the methylation profiles of these regions. We found no significant methylation of latent DNA isolated from mouse dorsal root ganglia in any of the regions examined, including the ICP4 and LAT promoters. This analysis indicates that methylation is unlikely to play a major role in regulating HSV-1 latent gene expression. Subsequently we focused on differential histone modification as another epigenetic mechanism that could regulate latent transcription. Chromatin immunoprecipitation analysis of the latent HSV-1 DNA repeat regions demonstrated that a portion of the LAT region is associated with histone H3 acetylated at lysines 9 and 14, consistent with a euchromatic and nonrepressed structure. In contrast, the chromatin associated with the HSV-1 DNA polymerase gene located in the unique long segment was not enriched in H3 acetylated at lysines 9 and 14, suggesting a transcriptionally inactive structure. These data suggest that histone composition may be a major regulatory determinant of HSV latency.
Collapse
Affiliation(s)
- Nicole J Kubat
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610-0266, USA
| | | | | | | |
Collapse
|
176
|
Shteper PJ, Zcharia E, Ashhab Y, Peretz T, Vlodavsky I, Ben-Yehuda D. Role of promoter methylation in regulation of the mammalian heparanase gene. Oncogene 2003; 22:7737-49. [PMID: 14586400 DOI: 10.1038/sj.onc.1207056] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammalian heparanase (endo-beta-glucuronidase) degrades heparan sulfate proteoglycans and is an important modulator of the extracellular matrix and associated factors. The enzyme is preferentially expressed in neoplastic tissues and contributes to tumour metastasis and angiogenesis. To investigate the epigenetic regulation of the heparanase locus, methylation-specific and bisulfite PCR were performed on a panel of 22 human cancer cell lines. Cytosine methylation of the heparanase promoter was associated with inactivation of the affected allele. Despite lack of sequence homology, extensively methylated CpG islands were found both in human choriocarcinoma (JAR) and rat glioma (C-6) cells which lack heparanase activity. Treatment of these cells with demethylating agents (5-azacytidine, 5-aza-2'-deoxycytidine) resulted in stable dose- and time-dependant promoter hypomethylation accompanied by reappearance of heparanase mRNA, protein and enzymatic activity. An inhibitor of histone deacetylase, Trichostatin A, failed to induce either of these effects. Upregulation of heparanase expression and activity by demethylating drugs was associated with a marked increase in lung colonization by pretreated C-6 rat glioma cells. The increased metastatic potential in vivo was inhibited in mice treated with laminaran sulfate, a potent inhibitor of heparanase activity. We propose a model wherein expression of mammalian heparanase gene is modulated by the interplay between trans-activating genetic and cis-inhibitory epigenetic elements in its promoter.
Collapse
Affiliation(s)
- Pesach J Shteper
- Department of Hematology, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
177
|
Viglianti GA, Lau CM, Hanley TM, Miko BA, Shlomchik MJ, Marshak-Rothstein A. Activation of Autoreactive B Cells by CpG dsDNA. Immunity 2003; 19:837-47. [PMID: 14670301 DOI: 10.1016/s1074-7613(03)00323-6] [Citation(s) in RCA: 428] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The proliferative response of autoreactive rheumatoid factor (RF) B cells to mammalian chromatin-containing immune complexes (ICs) results from the sequential engagement of the B cell receptor (BCR) and Toll-like receptor 9 (TLR9). We have used ICs constructed from anti-hapten antibodies and defined haptenated dsDNA fragments to determine the form of mammalian DNA that mediates this process. Despite their relatively low abundance in mammalian DNA, we found that inclusion of hypomethylated CpG motifs in these ICs was necessary for effective activation. In the absence of antibody, the same fragments could efficiently stimulate low-affinity hapten-specific and DNA-reactive 3H9 B cells, but not RF B cells. These results extend the BCR/TLR9 coengagement paradigm to a second major class of autoreactive B cells, further confirm the critical role of the BCR in chromatin ligand delivery to TLR9, and implicate hypomethylated CpG motifs as ligand elements necessary for the initiation of systemic autoimmune disease.
Collapse
Affiliation(s)
- Gregory A Viglianti
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
178
|
Abstract
Frequent genetic alterations in hematopoietic neoplasias (chromosomal translocations, point mutations, etc.) have provided biologic targets for the development of effective novel therapies. A rapidly increasing body of knowledge provides evidence also for multiple epigenetic alterations in these disorders, which can complement or even precede genetic aberrations. Gene inactivation ('silencing') of tumor suppressor and growth inhibitory genes (e.g. the cyclin-dependent kinase inhibitors p16, p15, p21) is frequently mediated by DNA methylation of gene promoters. The acetylation state of histones (functionally linked to the DNA methylation state by the methylcytosine binding protein 2, recruiting histone deacetylases) provides a second major epigenetic silencing mechanism. Therapeutic reversal strategies are being developed for acute leukemias, myelodysplastic syndromes and malignant lymphomas. Since the discovery of the DNA methyltransferase (Dnmt) inhibitory activity of two azanucleosides (5-azacytidine, 5-aza-2'-deoxycytidine/decitabine) even at doses with minimal nonhematologic toxicity, both have been clinically studied in several myeloid neoplasias, particularly in elderly patients unable to tolerate aggressive treatment. Further development of agents counteracting aberrant methylation is directed at more targeted approaches, for example, antisense molecules against Dnmts. Histone deacetylases (HDACs) can be inhibited by numerous compounds (sodium phenylbutyrate, valproic acid, novel compounds such as depsipeptide), which have entered the clinical arena in similar indications as Dnmt inhibitors. Impressive effects of HDAC inhibition in acute promyelocytic leukemia models (PML/RARA expression) translate the finding of HDAC recruitment by this chimeric transcription factor to its target genes. The recent discovery of recruitment by PML/RARA also of Dnmt activity to the retinoic acid receptor-beta promoter makes it an interesting candidate for Dnmt inhibitors. Studies combining a 're-expressor' strategy with inhibitors of Dnmts and HDACs are underway. Thus, resensitization to biological agents such as retinoids, colony-stimulating factors and other differentiation inducers may be envisioned.
Collapse
Affiliation(s)
- Rainer Claus
- Department Internal Medicine I, Division Hematology/Oncology, University of Freiburg Medical Center, Hugstetter Str., D-79106 Freiburg, Germany
| | | |
Collapse
|
179
|
Abstract
The frequencies of individual nucleotides exhibit significant fluctuations across eukaryotic genes. In this paper, we investigate nucleotide variation across an averaged representation of all known human genes. Such a representation allows us to average out random fluctuations that constitute noise and uncover remarkable systematic trends in nucleotide distributions, particularly near boundaries between genetic elements--the promoter, exons, and introns. We propose that such variations result from differential mutational pressures and from the presence of specific regulatory motifs, such as transcription and splicing factor binding sites. Specifically, we observe significant GC and TA biases (excess of G over C and T over A) in noncoding regions of genes. Such biases are most probably caused by transcription-coupled mismatch repair, an effect that has recently been detected in mammalian genes. Subsequently, we examine the distribution of all hexanucleotides and identify motifs that are overrepresented within regulatory regions. By clustering and aligning such sequences, we recognize families of putative regulatory elements involved in exonic and intronic splicing control, and 3' mRNA processing. Some of our motifs have been identified in prior theoretical and experimental studies, thus validating our approach, but we detect several novel sequences that we propose as candidates for future functional assays and mutation screens for genetic disorders.
Collapse
|
180
|
Kremenskoy M, Kremenska Y, Ohgane J, Hattori N, Tanaka S, Hashizume K, Shiota K. Genome-wide analysis of DNA methylation status of CpG islands in embryoid bodies, teratomas, and fetuses. Biochem Biophys Res Commun 2003; 311:884-90. [PMID: 14623263 DOI: 10.1016/j.bbrc.2003.10.078] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Differentiation of embryonic stem (ES) cells into embryoid bodies (EBs) provides an in vitro system for the study of early lineage determination during mammalian development. We have previously reported that there are 247 CpG islands that potentially have tissue-dependent and differentially methylated regions (T-DMRs). This provided evidence that the formation of DNA methylation patterns at CpG islands is a crucial epigenetic event underlying mammalian development. Here we present an analysis by the restriction landmark genomic scanning (RLGS) using NotI as a landmark enzyme of the genome-wide methylation status of CpG islands of ES cells and EBs and of teratomas produced from ES cells. These results are considered in relation to the methylation status of CpG islands of genomic DNA from normal fetus (10.5dpc) and adult tissues. We have prepared a DNA methylation panel that consists of 259 T-DMRs and includes novel T-DMRs that are distinctly methylated or unmethylated in the teratomas. The DNA methylation pattern was complex and differed for the ES cells, EBs, and teratomas, providing evidence that differentiation of cells involves both de novo DNA methylation as well as demethylation. Comparison of the numbers of T-DMRs, that were differentially methylated or unmethylated among the cells and tissue types studied, revealed that the teratomas were the most epigenetically different from ES cells. Thus, analysis of the DNA methylation profiles prepared in this study provides new insights into the differentiation of ES cells and development of fetus, EB, teratoma, and somatic tissues.
Collapse
Affiliation(s)
- Maksym Kremenskoy
- Laboratory of Cellular Biochemistry, Animal Resource Science/Veterinary Medical Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
181
|
Waha A, Waha A, Koch A, Meyer-Puttlitz B, Weggen S, Sörensen N, Tonn JC, Albrecht S, Goodyer CG, Berthold F, Wiestler OD, Pietsch T. Epigenetic Silencing of theHIC-1Gene in Human Medulloblastomas. J Neuropathol Exp Neurol 2003; 62:1192-201. [PMID: 14656076 DOI: 10.1093/jnen/62.11.1192] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The HIC-1 (hypermethylated in cancer) candidate tumor suppressor gene is located on chromosome 17p13.3, a region frequently deleted in medulloblastomas (MBs). MBs arising in the cerebellum represent the most common malignant brain tumors in children. In this study we have analyzed the sequence, methylation, and expression status of the HIC-1 gene in MBs. Hypermethylation of the 5'UTR and/or second exon of HIC-1 was detected in 33/39 (85%) of MB biopsies and in 7/8 (88%) of MB cell lines by methylation-specific PCR. There was a significant correlation (p < 0.001) between HIC-1 methylation and lack of transcription as determined by competitive RT-PCR. Treatment of the MB cell lines Daoy and MEB-MED-8A with 5-aza-2'deoxycytidine led to re-expression of HIC-1 transcripts, indicating a silencing of HIC-1 by CpG island methylation. Mutation analysis of the coding region of HIC-1 revealed a single deletion leading to an in-frame deletion of 4 amino acids in the second exon of HIC-1 (1/68, 1.5%). Our data indicate that a significant number of MBs exhibit strikingly reduced HIC-1 expression caused by altered CpG island methylation. These data suggest that epigenetic silencing of HIC-1 may well contribute to the pathogenesis in the majority of MBs.
Collapse
Affiliation(s)
- Anke Waha
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Abstract
The role of DNA methylation in immune function is discussed extensively in other papers in this issue. Many of these discussions assume that DNA methylation, a major mediator of epigenetic information, is fairly immutable and uniform in adult cells and tissues. There is, however, growing evidence that DNA methylation changes subtly with age. Normal aging cells and tissues show a progressive loss of 5-methylcytosine content, primarily within DNA repeated sequences, but also in potential gene regulatory areas. In parallel, selected genes show progressive age-related increases in promoter methylation, which, once a critical methylation density is reached, have the potential to permanently silence gene expression. These changes are highly mosaic within a given tissue and introduce a high degree of epigenetic variability in aging cells. Such epigenetic phenomena could impact immune response through masking/unmasking potential tissue antigens as well as by modulating the differentiation and response of immune effector cells. The contribution of epigenetic changes to the altered immune function observed in aging humans deserves careful investigation.
Collapse
Affiliation(s)
- Jean-Pierre Issa
- Department of Leukemia, University of Texas at M D Anderson Cancer Center, Houston, TX 77401, USA.
| |
Collapse
|
183
|
Antoniou M, Harland L, Mustoe T, Williams S, Holdstock J, Yague E, Mulcahy T, Griffiths M, Edwards S, Ioannou PA, Mountain A, Crombie R. Transgenes encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are resistant to heterochromatin-mediated silencing. Genomics 2003; 82:269-79. [PMID: 12906852 DOI: 10.1016/s0888-7543(03)00107-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The genetic elements that are responsible for establishing a transcriptionally competent, open chromatin structure at a region of the genome that consists only of ubiquitously expressed, housekeeping genes are currently unknown. We demonstrate for the first time through functional analysis in stably transfected tissue culture cells that transgenes containing methylation-free CpG islands spanning the dual divergently transcribed promoters from the human TATA binding protein (TBP)-proteasome component-B1 (PSMB1) and heterogeneous nuclear ribonucleoprotein A2/B1 (HNRPA2B1)-heterochromatin protein 1Hs-gamma (chromobox homolog 3, CBX3) gene loci are sufficient to prevent transcriptional silencing and a variegated expression pattern when integrated within centromeric heterochromatin. In addition, only transgene constructs extending over both the HNRPA2B1 and the CBX3 promoters, and not the HNRPA2B1 promoter alone, were able to confer high and stable long-term EGFP reporter gene expression. These observations suggest that methylation-free CpG islands associated with dual, divergently transcribed promoters possess an independent dominant chromatin opening function and may therefore be major determinants in establishing and maintaining a region of open chromatin at housekeeping gene loci.
Collapse
Affiliation(s)
- Michael Antoniou
- Nuclear Biology Group, Division of Medical and Molecular Genetics, GKT School of Medicine, King's College London, Guy's Campus, 8th Floor Guy's Tower, Guy's Hospital, London Bridge, SE1 9RT, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Niimura Y, Terabe M, Gojobori T, Miura KI. Comparative analysis of the base biases at the gene terminal portions in seven eukaryote genomes. Nucleic Acids Res 2003; 31:5195-201. [PMID: 12930971 PMCID: PMC212801 DOI: 10.1093/nar/gkg701] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenine nucleotides have been found to appear preferentially in the regions after the initiation codons or before the termination codons of bacterial genes. Our previous experiments showed that AAA and AAT, the two most frequent second codons in Escherichia coli, significantly enhance translation efficiency. To determine whether such a characteristic feature of base frequencies exists in eukaryote genes, we performed a comparative analysis of the base biases at the gene terminal portions using the proteomes of seven eukaryotes. Here we show that the base appearance at the codon third positions of gene terminal regions is highly biased in eukaryote genomes, although the codon third positions are almost free from amino acid preference. The bias changes depending on its position in a gene, and is characteristic of each species. We also found that bias is most outstanding at the second codon, the codon after the initiation codon. NCN is preferred in every genome; in particular, GCG is strongly favored in human and plant genes. The presence of the bias implies that the base sequences at the second codon affect translation efficiency in eukaryotes as well as bacteria.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, 1111, Yata, Mishima, Shizuoka 411-8540, Japan.
| | | | | | | |
Collapse
|
185
|
Bajic VB, Seah SH. Dragon Gene Start Finder identifies approximate locations of the 5' ends of genes. Nucleic Acids Res 2003; 31:3560-3. [PMID: 12824365 PMCID: PMC168976 DOI: 10.1093/nar/gkg570] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recognition of gene starts is a difficult and yet unsolved problem. We present a program, Dragon Gene Start Finder (DGSF), which assesses the gene start in mammalian genomes and predicts a region which should overlap with the first exon of the gene or be in its proximity. The program has been rigorously tested on human chromosomes 4, 21 and 22, and in a strand specific search achieves an overall sensitivity of approximately 65% and a positive predictive value of approximately 78%. The sensitivity for the CpG-island related promoters is >88%. DGSF is free for academic and non-profit users at http://sdmc.lit.org.sg/promoter/dragonGSF1_0/genestart.htm; the download version of the program integrated within the TRANSPLORER package can be obtained from Biobase GmbH, at http://www.biobase.de/.
Collapse
Affiliation(s)
- Vladimir B Bajic
- Knowledge Extraction Laboratory. Discovery Systems Laboratory, Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613.
| | | |
Collapse
|
186
|
Hisano M, Ohta H, Nishimune Y, Nozaki M. Methylation of CpG dinucleotides in the open reading frame of a testicular germ cell-specific intronless gene, Tact1/Actl7b, represses its expression in somatic cells. Nucleic Acids Res 2003; 31:4797-804. [PMID: 12907721 PMCID: PMC169926 DOI: 10.1093/nar/gkg670] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Methylation of CpG islands spanning promoter regions is associated with control of gene expression. However, it is considered that methylation of exonic CpG islands without promoter is not related to gene expression, because such exonic CpG islands are usually distant from the promoter. Whether methylation of exonic CpG islands near the promoter, as in the case of a CpG-rich intronless gene, causes repression of the promoter remains unknown. To gain insight into this issue, we investigated the distribution and methylation status of CpG dinucleotides in the mouse Tact1/Actl7b gene, which is intronless and expressed exclusively in testicular germ cells. The region upstream to the gene was poor in CpG, with CpG dinucleotides absent from the core promoter. However, a CpG island was found inside the open reading frame (ORF). Analysis of the methylation status of the Tact1/Actl7b gene including the 5'-flanking area demonstrated that all CpG sites were methylated in somatic cells, whereas these sites were unmethylated in the Tact1/Actl7b-positive testis. Trans fection experiments with in vitro-methylated constructs indicated that methylation of the ORF but not 5' upstream repressed Tact1/Actl7b promoter activity in somatic cells. Similar effects of ORF methylation on the promoter activity were observed in testicular germ cells. These are the first results indicating that methylation of the CpG island in the ORF represses its promoter in somatic cells and demethylation is necessary for gene expression in spermatogenic cells.
Collapse
Affiliation(s)
- Mizue Hisano
- Department of Laboratory for Science Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
187
|
Bajic VB, Seah SH. Dragon gene start finder: an advanced system for finding approximate locations of the start of gene transcriptional units. Genome Res 2003; 13:1923-9. [PMID: 12869582 PMCID: PMC403784 DOI: 10.1101/gr.869803] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We present an advanced system for recognition of gene starts in mammalian genomes. The system makes predictions of gene start location by combining information about CpG islands, transcription start sites (TSSs), and signals downstream of the predicted TSSs. The system aims at predicting a region that contains the gene start or is in its proximity. Evaluation on human chromosomes 4, 21, and 22 resulted in Se of over 65% and in a ppv of approximately 78%. The system makes on average one prediction per 177000 nucleotides on the human genome, as judged by the results on chromosome 21. Comparison of abilities to predict TSS with the two other systems on human chromosomes 4, 21, and 22 reveals that our system has superior accuracy and overall provides the most confident predictions.
Collapse
Affiliation(s)
- Vladimir B Bajic
- Knowledge Extraction Lab, Institute for Infocomm Research, Singapore 119613.
| | | |
Collapse
|
188
|
Lees-Murdock DJ, De Felici M, Walsh CP. Methylation dynamics of repetitive DNA elements in the mouse germ cell lineage. Genomics 2003; 82:230-7. [PMID: 12837272 DOI: 10.1016/s0888-7543(03)00105-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Repetitive DNA elements account for a substantial fraction of the mammalian genome. Many are subject to DNA methylation, which is known to undergo dynamic change during mouse germ cell development. We found that repeat sequences of three different classes retain high levels of methylation at E12.5, when methylation is erased from many single-copy genes. Maximal demethylation of repeats was seen later in development and at different times in male and female germ cells. At none of the time points examined (E12.5, E15.5, and E17.5) did we see complete demethylation, suggesting that methylation patterns on repeats may be passed on from one generation to the next. In male germ cells, we observed a de novo methylation event resulting in complete methylation of all the repeats in the interval between E15.5 and E17.5, which was not seen in females. These results suggest that repeat sequences undergo coordinate changes in methylation during germ cell development and give further insights into germ cell reprogramming in mice.
Collapse
Affiliation(s)
- D J Lees-Murdock
- Cancer and Ageing Research Group, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK
| | | | | |
Collapse
|
189
|
Khambata-Ford S, Liu Y, Gleason C, Dickson M, Altman RB, Batzoglou S, Myers RM. Identification of promoter regions in the human genome by using a retroviral plasmid library-based functional reporter gene assay. Genome Res 2003; 13:1765-74. [PMID: 12805274 PMCID: PMC403750 DOI: 10.1101/gr.529803] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Attempts to identify regulatory sequences in the human genome have involved experimental and computational methods such as cross-species sequence comparisons and the detection of transcription factor binding-site motifs in coexpressed genes. Although these strategies provide information on which genomic regions are likely to be involved in gene regulation, they do not give information on their functions. We have developed a functional selection for promoter regions in the human genome that uses a retroviral plasmid library-based system. This approach enriches for and detects promoter function of isolated DNA fragments in an in vitro cell culture assay. By using this method, we have discovered likely promoters of known and predicted genes, as well as many other putative promoter regions based on the presence of features such as CpG islands. Comparison of sequences of 858 plasmid clones selected by this assay with the human genome draft sequence indicates that a significantly higher percentage of sequences align to the 500-bp segment upstream of the transcription start sites of known genes than would be expected from random genomic sequences. We also observed enrichment for putative promoter regions of genes predicted in at least two annotation databases and for clones overlapping with CpG islands. Functional validation of randomly selected clones enriched by this method showed that a large fraction of these putative promoters can drive the expression of a reporter gene in transient transfection experiments. This method promises to be a useful genome-wide function-based approach that can complement existing methods to look for promoters.
Collapse
Affiliation(s)
- Shirin Khambata-Ford
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
190
|
Sandell LL, Guan XJ, Ingram R, Tilghman SM. Gatm, a creatine synthesis enzyme, is imprinted in mouse placenta. Proc Natl Acad Sci U S A 2003; 100:4622-7. [PMID: 12671064 PMCID: PMC153605 DOI: 10.1073/pnas.0230424100] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To increase our understanding of imprinting and epigenetic gene regulation, we undertook a search for new imprinted genes. We identified Gatm, a gene that encodes l-arginine:glycine amidinotransferase, which catalyzes the rate-limiting step in the synthesis of creatine. In mouse, Gatm is expressed during development and is imprinted in the placenta and yolk sac, but not in embryonic tissues. The Gatm gene maps to mouse chromosome 2 in a region not previously shown to contain imprinted genes. To determine whether Gatm is located in a cluster of imprinted genes, we investigated the expression pattern of genes located near Gatm: Duox1-2, Slc28a2, Slc30a4 and a transcript corresponding to LOC214616. We found no evidence that any of these genes is imprinted in placenta. We show that a CpG island associated with Gatm is unmethylated, as is a large CpG island associated with a neighboring gene. This genomic screen for novel imprinted genes has elucidated a new connection between imprinting and creatine metabolism during embryonic development in mammals.
Collapse
Affiliation(s)
- Lisa L Sandell
- Howard Hughes Medical Institute and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
191
|
Scott DK, Board JR, Lu X, Pearson ADJ, Kenyon RM, Lunec J. The neuroblastoma amplified gene, NAG: genomic structure and characterisation of the 7.3 kb transcript predominantly expressed in neuroblastoma. Gene 2003; 307:1-11. [PMID: 12706883 DOI: 10.1016/s0378-1119(03)00459-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amplification of the MYCN oncogene in neuroblastoma is associated with poor prognosis. The amplified unit of DNA can be up to 1 Mb in size and so could contain additional genes which affect tumour phenotype. The neuroblastoma amplified gene (NAG) gene was initially located 400 kb telomeric to MYCN at 2p24 and reported to be co-amplified in 5/8 (63%) cell lines and 9/13 (70%) tumours. The sequence of a 4.5 kb transcript was proposed from the analysis of overlapping cDNA clones. However, our Northern blot hybridisation experiments indicate that the main RNA species expressed in neuroblastoma is 7-8 kb in size. We describe for the first time the cloning and sequencing of the 7.3 kb transcript of the NAG gene together with its precise genomic location and full exon structure. The 5' end of the gene is located 30 kb telomeric to DDX1, with the two genes lying in opposite orientations. The 52 exons of the 7.3 kb transcript cover 420 kb of genomic DNA. In vitro translation studies confirmed the protein coding potential of the transcript. Co-amplification of the entire NAG gene with MYCN was found in 1/6 (17%) neuroblastoma cell lines and 10/50 (20%) primary tumours. Previous studies had measured co-amplification of only the 5' end of the gene, nearest to MYCN. In this study, co-amplification of the NAG gene was found to be significantly associated with low disease stage in MYCN-amplified tumours (P=0.0063).
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- Conserved Sequence/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Exons
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Genes/genetics
- Humans
- Introns
- Molecular Sequence Data
- N-Myc Proto-Oncogene Protein
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Staging
- Neuroblastoma/genetics
- Neuroblastoma/pathology
- Nuclear Proteins/genetics
- Oncogene Proteins/genetics
- Promoter Regions, Genetic/genetics
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- D K Scott
- Cancer Research Unit, Northern Institute of Cancer Research, University of Newcastle Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
192
|
Wells J, Yan PS, Cechvala M, Huang T, Farnham PJ. Identification of novel pRb binding sites using CpG microarrays suggests that E2F recruits pRb to specific genomic sites during S phase. Oncogene 2003; 22:1445-60. [PMID: 12629508 DOI: 10.1038/sj.onc.1206264] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retinoblastoma (Rb) tumor suppressor protein is an important regulator of cell proliferation and differentiation. Many studies have shown that pRb can negatively regulate the activity of the E2F family of transcription factors during G(0) and G(1) phases of the cell cycle, perhaps by serving as a bridge between the E2Fs and transcriptional repressors such as histone deacetylases and methylases. However, pRb has also been shown to localize to discrete DNA foci during S phase, a time at which pRb is thought to be dissociated from E2F. Numerous other DNA binding proteins have been shown to interact with pRb, suggesting that pRb may control progression through S phase by binding to sites in the genome distinct from E2F target gene promoters. To test this hypothesis, we have identified novel pRb binding sites within the human genome using an unbiased approach which relies upon a combination of chromatin immunoprecipitation and CpG microarray analysis. To provide the greatest opportunity of finding distinct sets of pRb binding sites, we examined pRb binding in chromatin obtained from human Raji cells synchronized in either G(0)/G(1) phase or S phase. These experiments have allowed us to identify a large set of new genomic binding sites for the pRb protein. We found that some sites are occupied by pRb only during G(0)/G(1) phase, as would be predicted from previous models of pRb function. We also identified sites to which pRb bound only during S phase and other sites which were bound constitutively by pRb. Surprisingly, we found that E2F1 was present at most of the CpG islands bound by pRb, independent of the phase of the cell cycle. Thus, although pRb has the potential to interact with numerous transcription factors, our data suggest that the majority of DNA-bound pRb is recruited to E2F target promoters during both G(0)/G(1) and S phases.
Collapse
Affiliation(s)
- Julie Wells
- McArdle Laboratory for Cancer Research, University of Wisconsin, Medical School, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
193
|
Bajic VB, Seah SH, Chong A, Krishnan SPT, Koh JLY, Brusic V. Computer model for recognition of functional transcription start sites in RNA polymerase II promoters of vertebrates. J Mol Graph Model 2003; 21:323-32. [PMID: 12543131 DOI: 10.1016/s1093-3263(02)00179-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper introduces a new computer system for recognition of functional transcription start sites (TSSs) in RNA polymerase II promoter regions of vertebrates. This system allows scanning complete vertebrate genomes for promoters with significantly reduced number of false positive predictions. It can be used in the context of gene finding through its recognition of the 5' end of genes. The implemented recognition model uses a composite-hierarchical approach, artificial intelligence, statistics, and signal processing techniques. It also exploits the separation of promoter sequences into those that are C+G-rich or C+G-poor. The system was evaluated on a large and diverse human sequence-set and exhibited several times higher accuracy than several publicly available TSS-finding programs. Results obtained using human chromosome 22 data showed even greater specificity than the evaluation set results. The system has been implemented in the Dragon Promoter Finder package, which can be accessed at http://sdmc.krdl.org.sg:8080/promoter/.
Collapse
Affiliation(s)
- Vladimir B Bajic
- Computational Immunology Group, BIC-LIT, Laboratories for Information Technology, 21 Heng Mui Keng Terrace, 119613 Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
194
|
Jung BP, Zhang G, Ho W, Francis J, Eubanks JH. Transient forebrain ischemia alters the mRNA expression of methyl DNA-binding factors in the adult rat hippocampus. Neuroscience 2003; 115:515-24. [PMID: 12421618 DOI: 10.1016/s0306-4522(02)00383-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have examined how transient cerebral ischemia affects the mRNA expression of a family of methyl CpG-binding domain (MBD)-containing factors in the rat hippocampus. Our results show that each member of this family is affected by cerebral ischemia challenge, but with differing patterns of responsiveness. At 3, 6 and 12 h following reperfusion, MeCP2 and MBD1 expression is maintained at control levels throughout the hippocampus. At 24 h, MeCP2 and MBD1 are induced in both the CA1 and CA3 subfields. This delayed pattern of induction is in contrast to the responses of MBD2 and MBD3. Both MBD2 and MBD3 display significant changes in expression at early times following reperfusion, although their changes are opposite in direction. MBD2 expression is induced throughout the hippocampal formation at 6 h, and remains elevated at 12 and 24 h. MBD3 expression decreases as early as 3 h following insult in the CA3 and dentate gyrus, and the decreased expression remains in the vulnerable CA1 subfield at 6, 12, and 24 h. Taken together, these results are the first to illustrate that the expression of methyl DNA-binding factors are affected by challenges to the brain, and they also illustrate that each methyl DNA-binding factor responds differently to cerebral ischemic challenge. As each of these family members is associated either directly or indirectly with the inhibition of gene transcription, our results suggest that following cerebral ischemia the normal pattern of transcriptional inhibition provided by these factors may be altered in the hippocampus.
Collapse
Affiliation(s)
- B P Jung
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, University Health Network, 399 Bathurst Street, ON, Canada M5T 2S8
| | | | | | | | | |
Collapse
|
195
|
Kaneko C, Hatakeyama S, Matsumoto M, Yada M, Nakayama K, Nakayama KI. Characterization of the mouse gene for the U-box-type ubiquitin ligase UFD2a. Biochem Biophys Res Commun 2003; 300:297-304. [PMID: 12504083 DOI: 10.1016/s0006-291x(02)02834-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UFD2a is a mammalian homolog of Saccharomyces cerevisiae Ufd2, originally described as an E4 ubiquitination factor. UFD2a belongs to the U-box family of ubiquitin ligases (E3s) and likely functions as both an E3 and E4. We have isolated and characterized the mouse gene (Ube4b) for UFD2a. A full-length (approximately 5700 bp) Ube4b cDNA was isolated and the corresponding gene spans >100 kb, comprising 27 exons. Luciferase reporter gene analysis of the 5(') flanking region of Ube4b revealed that nucleotides -1018 to -943 (relative to the translation initiation site) possess promoter activity. This functional sequence contains two putative Sp1 binding sites but not a TATA box. Immunoblot and immunohistochemical analyses revealed that UFD2a is expressed predominantly in the neuronal tissues. We also show that UFD2a interacts with VCP (a AAA-family ATPase) that is thought to mediate protein folding. These data implicate UFD2a in the degradation of neuronal proteins by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Chie Kaneko
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
196
|
Affiliation(s)
- Vladimir B Bajic
- Laboratories for Information Technology, 21, Heng Mui Keng Terrace, Singapore 119613
| | | |
Collapse
|
197
|
Singal R, vanWert JM, Ferdinand L. Methylation of alpha-type embryonic globin gene alpha pi represses transcription in primary erythroid cells. Blood 2002; 100:4217-22. [PMID: 12393573 DOI: 10.1182/blood-2002-02-0457] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inverse relationship between expression and methylation of beta-type globin genes is well established. However, little is known about the relationship between expression and methylation of avian alpha-type globin genes. The embryonic alpha(pi)-globin promoter was unmethylated, and alpha(pi)-globin RNA was easily detected in 5-day chicken erythroid cells. A progressive methylation of the CpG dinucleotides in the alpha(pi) promoter associated with loss of expression of alpha(pi)-globin gene was seen during development in primary erythroid cells. A 315-bp alpha(pi)-globin promoter region was cloned in an expression construct (alpha(pi)pGL3E) containing a luciferase reporter gene and SV40 enhancer. The alpha(pi)pGL3E construct was transfected into primary erythroid cells derived from 5-day-old chicken embryos. Methylation of alpha(pi)pGL3E plasmid and alpha(pi)-globin promoter alone resulted in a 20-fold and 7-fold inhibition of expression, respectively. The fully methylated but not the unmethylated 315-bp alpha(pi)-globin gene promoter fragment formed a methyl cytosine-binding protein complex (MeCPC). Chromatin immunoprecipitation assays were combined with quantitative real-time polymerase chain reaction to assess histone acetylation associated with the alpha(pi)-globin gene promoter. Slight hyperacetylation of histone H3 but a marked hyperacetylation of histone H4 was seen in 5-day when compared with 14-day erythroid cells. These results demonstrate that methylation can silence transcription of an avian alpha-type embryonic globin gene in homologous primary erythroid cells, possibly by interacting with an MeCPC and histone deacetylase complex.
Collapse
Affiliation(s)
- Rakesh Singal
- Department of Medicine, Overton Brooks VA Medical Center and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport 71101, USA.
| | | | | |
Collapse
|
198
|
Majewski J, Ott J. Distribution and characterization of regulatory elements in the human genome. Genome Res 2002; 12:1827-36. [PMID: 12466286 PMCID: PMC187578 DOI: 10.1101/gr.606402] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Accepted: 10/10/2002] [Indexed: 11/24/2022]
Abstract
The regulation of transcription and subsequent gene splicing are crucial to correct gene expression. Although a number of regulatory sequences involved in both processes are known, it is not clear how general their functions are in the genomic context, nor how the regulatory regions are distributed throughout the genome. Here we study the distribution of known mutagenic elements within human introns and exons to deduce the properties of regions essential for splicing and transcription. We show that intronic splicing regulators are generally found close to the splice sites, but may be found as far as 200 nucleotides away from the splice junctions. Similarly, sequences important for splicing may be located as far as 125 nucleotides away from the junctions, within exons. We characterize several types of simple repetitive sequences and low-complexity regions that are overrepresented close to both intron ends and are likely to play important roles in the splicing process. We show that the first introns within most genes play a particularly important regulatory role that is most likely, however, to be involved in transcription control. We also study the distribution of two known regulatory motifs, the GGG trinucleotide and the CpG dinucleotide, and deduce their respective importance to splicing and transcription regulation.
Collapse
|
199
|
Abstract
DNA molecules are able to transport electrons over long distances. In most experiments the process is stimulated by the oxidation of guanines (G), which generates guanine radical cations. The electron transport through DNA occurs in a multistep hopping mechanism with all Gs as carriers of the positive charge. The rate of each individual hopping step between the Gs decreases strongly with increase of the distance. If the (A:T) bridges between the guanines are long, adenines (A) also become charge carriers. Mismatches, single strands, and G-oxidation products can drastically diminish the efficiency of the charge transport. But in triplexes and DNA/RNA duplexes, as well as in several duplex DNA/peptide complexes, the efficacy of the charge transport is less affected. The ability of DNA molecules to transport charges over long distances could provide a mechanism for ameliorating the harmfulness of damage to DNA under the conditions of oxidative stress.
Collapse
Affiliation(s)
- Bernd Giese
- Department of Chemistry, University of Basel, St. Johanns Ring 19, CH-4056 Basel, Switzerland.
| |
Collapse
|
200
|
Francis J, Jung B, Zhang G, Cheng J, Ho W, Burnham WM, Eubanks JH. Kindling induces the mRNA expression of methyl DNA-binding factors in the adult rat hippocampus. Neuroscience 2002; 113:79-87. [PMID: 12123686 DOI: 10.1016/s0306-4522(02)00150-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have investigated the gene expression responses of a family of methyl CpG-binding domain-containing factors (MeCP2, MBD1, MBD2, and MBD3) in the hippocampus of electrically kindled rats. Expression was examined in both amygdala- and partial perforant-pathway-kindled subjects, 24 h and 28 days following the final stimulation. In general, the responses of MBDs 2 and 3 paralleled each another, both temporally and spatially. The expression of both genes was significantly elevated in all hippocampal subfields at 24 h following either the fifth stage 5 seizure (amygdala kindling) or the 15th stimulation of the perforant pathway. This induced expression was transient, however, as the expression of both genes returned to control levels by 28 days. This pattern of response contrasted to that observed for MeCP2 and MBD1. MeCP2 displayed no change in expression either 24 h or 28 days after amygdala kindling, but did display a late-developing, significant increase in expression in the dentate gyrus at 28 days following perforant-pathway kindling. The expression of MBD1 was unchanged by partial perforant-pathway kindling, but was induced in the dentate gyrus 28 days after amygdala kindling. These results demonstrate that electrical kindling alters the hippocampal expression of methyl DNA-binding factors, but does not affect each factor equivalently. The responsive patterns observed suggest that this family of transcriptional regulators can be differentially altered in the hippocampus by seizure activity.
Collapse
Affiliation(s)
- J Francis
- Division of Cell and Molecular Biology, Toronto Western Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario, Canada M5T 2S8
| | | | | | | | | | | | | |
Collapse
|