151
|
Coffman JA. Mitochondria and metazoan epigenesis. Semin Cell Dev Biol 2009; 20:321-9. [PMID: 19429498 DOI: 10.1016/j.semcdb.2009.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/30/2009] [Accepted: 02/04/2009] [Indexed: 01/07/2023]
Abstract
In eukaryotes, mitochondrial activity controls ATP production, calcium dynamics, and redox state, thereby establishing physiological parameters governing the transduction of biochemical signals that regulate nuclear gene expression. However, these activities are commonly assumed to fulfill a 'housekeeping' function: necessary for life, but an epiphenomenon devoid of causal agency in the developmental flow of genetic information. Moreover, it is difficult to perturb mitochondrial function without generally affecting cell viability. For these reasons little is known about the extent of mitochondrial influence on gene activity in early development. Recent discoveries pertaining to the redox regulation of key developmental signaling systems together with the fact that mitochondria are often asymmetrically distributed in animal embryos suggests that they may contribute spatial information underlying differential specification of cell fate. In many cases such asymmetries correlate with localization of genetic determinants (i.e., mRNAs or proteins), particularly in embryos that rely heavily on cell-autonomous means of cell fate specification. In such embryos the localized genetic determinants play a dominant role, and any developmental information contributed by the mitochondria themselves is likely to be less obvious and more difficult to isolate experimentally. Hence, 'regulative' embryos that make more extensive use of conditional cell fate specification are better suited to experimental investigation of mitochondrial impacts on developmental gene regulation. Recent studies of the sea urchin embryo, which is a paradigmatic example of such a system, suggest that anisotropic distribution of mitochondria provides a source gradient of spatial information that directs epigenetic specification of the secondary axis via Nodal-Lefty signaling.
Collapse
Affiliation(s)
- James A Coffman
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA.
| |
Collapse
|
152
|
Hu H, Bandell M, Petrus MJ, Zhu MX, Patapoutian A. Zinc activates damage-sensing TRPA1 ion channels. Nat Chem Biol 2009; 5:183-90. [PMID: 19202543 DOI: 10.1038/nchembio.146] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 01/13/2009] [Indexed: 02/07/2023]
Abstract
Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and it is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine modification. Zinc activates TRPA1 through a unique mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as an important target for the sensory effects of zinc and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission.
Collapse
Affiliation(s)
- Hongzhen Hu
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | | | | | | | | |
Collapse
|
153
|
Cortese-Krott MM, Suschek CV, Wetzel W, Kröncke KD, Kolb-Bachofen V. Nitric oxide-mediated protection of endothelial cells from hydrogen peroxide is mediated by intracellular zinc and glutathione. Am J Physiol Cell Physiol 2009; 296:C811-20. [PMID: 19193864 DOI: 10.1152/ajpcell.00643.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidative stress may cause endothelial dysfunction and vascular disease. It has been shown that NO protects endothelial cells (EC) against H(2)O(2)-induced toxicity. In addition, it is known that NO within cells induces a zinc release from proteins containing zinc-sulfur complexes. The aim of this study was to investigate whether zinc released intracellularly by NO plays a signaling role in the NO-mediated protection against H(2)O(2) in rat aortic EC. Our results show that the NO-mediated protection toward H(2)O(2) depends on the activities of glutathione peroxidase and glutamate cysteine ligase (GCL), the rate-limiting enzyme of glutathione (GSH) de novo biosynthesis. Moreover, NO increases the synthesis of the antioxidant GSH by inducing the expression of the catalytic subunit of GCL (GCLC). Chelating intracellular "free" zinc abrogates the NO-mediated increase of GCLC and of cellular GSH levels. As a consequence, the NO-mediated protection against H(2)O(2)-induced toxicity is impaired. We also show that under proinflammatory conditions, both cellular NO synthesis and intracellular "free" zinc are required to maintain the cellular GSH levels. Using RNA interference and laser scanning microscopy, we found that the NO-induced expression of GCLC depends on the activation of the transcription factor Nrf2 but not on the activity of the "zinc-sensing" transcription factor MTF-1. These findings show that intracellular "free" zinc plays a signaling role in the protective activity of NO and could explain why maintenance of an adequate zinc status in the endothelium is important to protect from oxidative stress and the development of vascular disease.
Collapse
Affiliation(s)
- Miriam M Cortese-Krott
- Institute of Molecular Medicine, Research Group Immunobiology, Medical Faculty of Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
154
|
Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. Biometals 2009; 22:149-57. [DOI: 10.1007/s10534-008-9186-z] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/07/2008] [Indexed: 11/27/2022]
|
155
|
Bell SG, Vallee BL. The Metallothionein/Thionein System: An Oxidoreductive Metabolic Zinc Link. Chembiochem 2009; 10:55-62. [DOI: 10.1002/cbic.200800511] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
156
|
Kimura T, Okumura F, Oguro I, Nakanishi T, Sone T, Isobe M, Tanaka K, Itoh N. Metal Response Element-binding Transcription Factor-1 Is Activated by Degradation of Metallothionein. ACTA ACUST UNITED AC 2009. [DOI: 10.1248/jhs.55.72] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoki Kimura
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Fumika Okumura
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Ikuyo Oguro
- Department of Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Tsuyoshi Nakanishi
- Department of Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University
- Present address: Laboratory of Hygienics, Gifu Pharmaceutical University
| | - Tomomichi Sone
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Masakazu Isobe
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Keiichi Tanaka
- Department of Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University
- Present address: Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University
| | - Norio Itoh
- Department of Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
157
|
Kruczek C, Görg B, Keitel V, Pirev E, Kröncke KD, Schliess F, Häussinger D. Hypoosmotic swelling affects zinc homeostasis in cultured rat astrocytes. Glia 2009; 57:79-92. [DOI: 10.1002/glia.20737] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
158
|
Hogstrand C, Zheng D, Feeney G, Cunningham P, Kille P. Zinc-controlled gene expression by metal-regulatory transcription factor 1 (MTF1) in a model vertebrate, the zebrafish. Biochem Soc Trans 2008; 36:1252-7. [PMID: 19021535 DOI: 10.1042/bst0361252] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
There is a growing appreciation for the diverse roles of zinc as a signalling substance in biological systems. Zinc signalling is brought about by changes in intracellular concentrations of labile Zn(2+), resulting in both genomic and non-genomic effects. The genomic responses are largely mediated by MTF1 (metal-regulatory transcription factor 1), which binds to MREs (metal-response elements) in the 5' regulatory region of genes in response to zinc. Treatment of cultured zebrafish ZF4 cells with siRNA (small interfering RNA) to MTF1 changed the transcriptional response to zinc for over 1000 genes, as assessed using an oligonucleotide microarray. From this primary list of MTF1-dependent genes, we identified a relatively small cohort that showed a configuration of MREs in their 5' regulatory regions similar to known MTF1 targets. This group showed a remarkable dominance of nucleic acid-binding proteins and other proteins involved in embryological development, implicating MTF1 as a master regulator of gene expression during development.
Collapse
Affiliation(s)
- Christer Hogstrand
- Nutritional Sciences Division, School of Biomedical and Health Sciences, King's College London, Franklin-Wilkins Building, London, UK.
| | | | | | | | | |
Collapse
|
159
|
Systemic translocation of (70)zinc: kinetics following intratracheal instillation in rats. Toxicol Appl Pharmacol 2008; 234:25-32. [PMID: 18973770 DOI: 10.1016/j.taap.2008.09.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/18/2008] [Accepted: 09/20/2008] [Indexed: 11/24/2022]
Abstract
Mechanisms of particulate matter (PM)-induced cardiotoxicity are not fully understood. Direct translocation of PM-associated metals, including zinc, may mediate this effect. We hypothesized that following a single intratracheal instillation (IT), zinc directly translocates outside of the lungs, reaching the heart. To test this, we used high resolution magnetic sector field inductively coupled plasma mass spectrometry to measure levels of five stable isotopes of zinc ((64)Zn, (66)Zn, (67)Zn, (68)Zn, (70)Zn), and copper in lungs, plasma, heart, liver, spleen, and kidney of male Wistar Kyoto rats (13 weeks old, 250-300 g), 1, 4, 24, and 48 h following a single IT or oral gavage of saline or 0.7 micromol/rat (70)Zn, using a solution enriched with 76.6% (70)Zn. Natural abundance of (70)Zn is 0.62%, making it an easily detectable tracer following exposure. In IT rats, lung (70)Zn was highest 1 h post IT and declined by 48 h. Liver endogenous zinc was increased 24 and 48 h post IT. (70)Zn was detected in all extrapulmonary organs, with levels higher following IT than following gavage. Heart (70)Zn was highest 48 h post IT. Liver, spleen and kidney (70)Zn peaked 4 h following gavage, and 24 h following IT. (70)Zn IT exposure elicited changes in copper homeostasis in all tissues. IT instilled (70)Zn translocates from lungs into systemic circulation. Route of exposure affects (70)Zn translocation kinetics. Our data suggests that following pulmonary exposure, zinc accumulation and subsequent changes in normal metal homeostasis in the heart and other organs could induce cardiovascular injury.
Collapse
|
160
|
Sandstead HH, Prasad AS, Penland JG, Beck FWJ, Kaplan J, Egger NG, Alcock NW, Carroll RM, Ramanujam VMS, Dayal HH, Rocco CD, Plotkin RA, Zavaleta AN. Zinc deficiency in Mexican American children: influence of zinc and other micronutrients on T cells, cytokines, and antiinflammatory plasma proteins. Am J Clin Nutr 2008; 88:1067-73. [PMID: 18842795 DOI: 10.1093/ajcn/88.4.1067] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The Third National Health and Nutrition Examination Survey suggested some Mexican American children are at risk of zinc deficiency. OBJECTIVE We measured the effects of zinc and micronutrients or of micronutrients alone on indexes of cell-mediated immunity and antiinflammatory plasma proteins. DESIGN Subjects (n = 54) aged 6-7 y were randomly assigned and treated in double-blind fashion in equal numbers with 20 mg Zn (as sulfate) and micronutrients or with micronutrients alone 5 d/wk for 10 wk. RESULTS Before treatment the mean +/- SD plasma zinc was 14.9 +/- 1.7 micromol/dL and the range was within the reference; hair zinc was 1.78 +/- 0.52 micromol/g and 41.6% were < or =1.68 micromol/g; serum ferritin was 25.7 +/- 18.6 microg/L and 50.0% were < or =20 microg/L. The zinc and micronutrients treatment increased the lymphocyte ratios of CD4(+) to CD8(+) and of CD4(+)CD45RA(+) to CD4(+)CD45RO(+), increased the ex vivo generation of interleukin-2 (IL-2) and interferon-gamma (IFN-gamma), decreased the generation of interleukin-10 (IL-10), and increased plasma interleukin-1 receptor antagonist (sIL-1ra) and soluble tumor necrosis factor receptor 1 (sTNF-R1). Micronutrients alone increased the ratio of CD4(+) to CD8(+) but not of CD4(+)CD45RA(+) to CD4(+)CD45RO(+), increased IFN-gamma but had no effect on IL-2 or IL-10, and increased sIL-1ra but not sTNF-R1. Efficacy of zinc and micronutrients was greater than micronutrients alone for all indexes except the ratio of CD4(+) to CD8(+), which was affected similarly. CONCLUSIONS Before treatment, concentrations of hair zinc in 41.6% of subjects and serum ferritin in 50% were consistent with the presence of zinc deficiency. The greater efficacy of the zinc and micronutrients treatment compared with micronutrients alone supports this interpretation.
Collapse
Affiliation(s)
- Harold H Sandstead
- Division of Human Nutrition, Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555-1109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Zhao J, Bertoglio BA, Devinney MJ, Dineley KE, Kay AR. The interaction of biological and noxious transition metals with the zinc probes FluoZin-3 and Newport Green. Anal Biochem 2008; 384:34-41. [PMID: 18848515 DOI: 10.1016/j.ab.2008.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 09/05/2008] [Accepted: 09/06/2008] [Indexed: 12/23/2022]
Abstract
Zinc-sensitive fluorescent probes have become increasingly important in the investigation of the cellular roles of zinc. There is, however, little information on how the other transition metals in cells may influence the measurement of zinc. We have characterized in vitro the interaction of the nominal zinc indicators FluoZin-3 and Newport Green with all the cationic transition metals found within cells, Cr, Mn, Fe, Co, and Cu, as well as Ni and Cd, by measuring their dissociation constants. In addition, we have shown how FluoZin-3 can be used to quantify the concentration of copper in a cell-free assay and report that the fluorescence of Newport Green is boosted by both Cu(I) and Fe(II). Furthermore, we have introduced diagnostics for detecting the interference of metals other than zinc with its measurement within cells.
Collapse
Affiliation(s)
- Jinfu Zhao
- Department of Biology, 336 BB, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
162
|
Chanoit G, Lee S, Xi J, Zhu M, McIntosh RA, Mueller RA, Norfleet EA, Xu Z. Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3beta. Am J Physiol Heart Circ Physiol 2008; 295:H1227-H1233. [PMID: 18660440 DOI: 10.1152/ajpheart.00610.2008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to determine whether exogenous zinc prevents cardiac reperfusion injury by targeting the mitochondrial permeability transition pore (mPTP) via glycogen synthase kinase-3beta (GSK-3beta). The treatment of cardiac H9c2 cells with ZnCl2 (10 microM) in the presence of zinc ionophore pyrithione for 20 min significantly enhanced GSK-3beta phosphorylation at Ser9, indicating that exogenous zinc can inactivate GSK-3beta in H9c2 cells. The effect of zinc on GSK-3beta activity was blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002 but not by the mammalian target of rapamycin (mTOR) inhibitor rapamycin or the PKC inhibitor chelerythrine, implying that PI3K but not mTOR or PKC accounts for the action of zinc. In support of this interpretation, zinc induced a significant increase in Akt but not mTOR phosphorylation. Further experiments found that zinc also increased mitochondrial GSK-3beta phosphorylation. This may indicate an involvement of the mitochondria in the action of zinc. The effect of zinc on mitochondrial GSK-3beta phosphorylation was not altered by the mitochondrial ATP-sensitive K+ channel blocker 5-hydroxydecanoic acid. Zinc applied at reperfusion reduced cell death in cells subjected to simulated ischemia/reperfusion, indicating that zinc can prevent reperfusion injury. However, zinc was not able to exert protection in cells transfected with the constitutively active GSK-3beta (GSK-3beta-S9A-HA) mutant, suggesting that zinc prevents reperfusion injury by inactivating GSK-3beta. Cells transfected with the catalytically inactive GSK-3beta (GSK-3beta-KM-HA) also revealed a significant decrease in cell death, strongly supporting the essential role of GSK-3beta inactivation in cardioprotection. Moreover, zinc prevented oxidant-induced mPTP opening through the inhibition of GSK-3beta. Taken together, these data suggest that zinc prevents reperfusion injury by modulating the mPTP opening through the inactivation of GSK-3beta. The PI3K/Akt signaling pathway is responsible for the inactivation of GSK-3beta by zinc.
Collapse
Affiliation(s)
- Guillaume Chanoit
- Department of Anesthesiology, CB #7010, The Univ. of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Cortese MM, Suschek CV, Wetzel W, Kröncke KD, Kolb-Bachofen V. Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radic Biol Med 2008; 44:2002-12. [PMID: 18355458 DOI: 10.1016/j.freeradbiomed.2008.02.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/16/2008] [Indexed: 12/30/2022]
Abstract
Oxidative stress is one of the main causes of vascular disease. This study aims to investigate the antioxidant activity exerted by zinc in primary rat endothelial cells (EC). Using a 24-h treatment with hydrogen peroxide as a model for oxidative stress, we found that zinc supplementation protects from peroxide-induced cell death via increasing the transcription of the catalytic subunit (heavy chain) of glutamate-cysteine ligase (GCLC) and the concentrations of glutathione (GSH). Conversely, zinc depletion significantly decreased the expression of GCLC and the cellular GSH levels, resulting in an increased susceptibility of EC to oxidative stress. Using confocal microscopy and the RNA silencing technique, we found that zinc upregulates the expression of GCLC by activating the transcription factor Nrf2. Surprisingly, the intracellular zinc sensor, metal-responsive transcription factor-1, is not involved in the zinc-induced expression of GCLC. The present study shows that zinc controls the redox state of EC by regulating the de novo synthesis of GSH. This molecular mechanism may contribute to the elaboration of new nutritional and/or pharmaceutical approaches for protecting the endothelium against oxidative stress.
Collapse
Affiliation(s)
- Miriam M Cortese
- Institute of Molecular Medicine, Research Group Immunobiology, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
164
|
McCarthy SM, Bove PF, Matthews DE, Akaike T, van der Vliet A. Nitric oxide regulation of MMP-9 activation and its relationship to modifications of the cysteine switch. Biochemistry 2008; 47:5832-40. [PMID: 18452312 DOI: 10.1021/bi702496v] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Matrix metalloproteases (MMPs) are Zn-containing endopeptidases involved in the degradation of extracellular matrix components and are typically secreted in a latent (pro-MMP) form and activated either by proteolytic or oxidative disruption of a conserved cysteine switch. Several recent studies have suggested that nitric oxide (NO) can contribute to the activation of MMPs, but the mechanisms involved are incompletely understood. We investigated the ability of NO to regulate the activation of (pro)MMP-9 using a variety of NO-donor compounds and characterized modifications of the cysteine switch using a synthetic peptide (PRCGVPDLGR) representing the cysteine switch domain of MMP-9. Among the NO-donors used, only S-nitrosocysteine (SNOC) was found to be capable of modest activation of proMMP-9, but S-nitrosoglutathione (GSNO) or the NONOates, DEA-NO, SPER-NO, or DETA-NO, were ineffective. In fact, high concentrations of DETA-NO were found to inhibit MMP-9 activity, presumably by direct interaction with the active-site Zn (2+). Analysis of chemical modifications within the Cys-containing peptide, PRCGVPDLGR, revealed rapid and transient S-nitrosylation by SNOC and GSNO, and formation of mixed disulfides and dimerized peptide as major final products. Similarly, NONOates induced transient S-nitrosylation and primarily peptide dimerization. Coordination of the peptide Cys with a synthetic Zn (2+) complex, to more closely mimic the structure of the active site in proMMP-9, reduced peptide nitrosylation and oxidation by NONOates, but enhanced peptide nitrosylation by SNOC and GSNO. Collectively, our results demonstrate that NO is incapable of directly activating proMMP-9 and that S-nitrosylation of MMP-9 propeptide by NO-donors is unrelated to their ability to regulate MMP-9 activity.
Collapse
Affiliation(s)
- Sean M McCarthy
- Department of Pathology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
165
|
Maret W. Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc. Exp Gerontol 2008; 43:363-9. [DOI: 10.1016/j.exger.2007.11.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
|
166
|
Colvin RA, Bush AI, Volitakis I, Fontaine CP, Thomas D, Kikuchi K, Holmes WR. Insights into Zn2+homeostasis in neurons from experimental and modeling studies. Am J Physiol Cell Physiol 2008; 294:C726-42. [DOI: 10.1152/ajpcell.00541.2007] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To understand the mechanisms of neuronal Zn2+homeostasis better, experimental data obtained from cultured cortical neurons were used to inform a series of increasingly complex computational models. Total metals (inductively coupled plasma-mass spectrometry), resting metallothionein,65Zn2+uptake and release, and intracellular free Zn2+levels using ZnAF-2F were determined before and after neurons were exposed to increased Zn2+, either with or without the addition of a Zn2+ionophore (pyrithione) or metal chelators [EDTA, clioquinol (CQ), and N, N, N′, N′-tetrakis(2-pyridylmethyl)ethylenediamine]. Three models were tested for the ability to match intracellular free Zn2+transients and total Zn2+content observed under these conditions. Only a model that incorporated a muffler with high affinity for Zn2+, trafficking Zn2+to intracellular storage sites, was able to reproduce the experimental results, both qualitatively and quantitatively. This “muffler model” estimated the resting intracellular free Zn2+concentration to be 1.07 nM. If metallothionein were to function as the exclusive cytosolic Zn2+muffler, the muffler model predicts that the cellular concentration required to match experimental data is greater than the measured resting concentration of metallothionein. Thus Zn2+buffering in resting cultured neurons requires additional high-affinity cytosolic metal binding moieties. Added CQ, as low as 1 μM, was shown to selectively increase Zn2+influx. Simulations reproduced these data by modeling CQ as an ionophore. We conclude that maintenance of neuronal Zn2+homeostasis, when challenged with Zn2+loads, relies heavily on the function of a high-affinity muffler, the characteristics of which can be effectively studied with computational models.
Collapse
|
167
|
Krezel A, Maret W. Thionein/metallothionein control Zn(II) availability and the activity of enzymes. J Biol Inorg Chem 2007; 13:401-9. [PMID: 18074158 DOI: 10.1007/s00775-007-0330-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
Abstract
Fundamental issues in zinc biology are how proteins control the concentrations of free Zn(II) ions and how tightly they interact with them. Since, basically, the Zn(II) stability constants of only two cytosolic zinc enzymes, carbonic anhydrase and superoxide dismutase, have been reported, the affinity for Zn(II) of another zinc enzyme, sorbitol dehydrogenase (SDH), was determined. Its log K is 11.2 +/- 0.1, which is similar to the log K values of carbonic anhydrase and superoxide dismutase despite considerable differences in the coordination environments of Zn(II) in these enzymes. Protein tyrosine phosphatase 1B (PTP 1B), on the other hand, is not classified as a zinc enzyme but is strongly inhibited by Zn(II), with log K = 7.8 +/- 0.1. In order to test whether or not metallothionein (MT) can serve as a source for Zn(II) ions, it was used to control free Zn(II) ion concentrations. MT makes Zn(II) available for both PTP 1B and the apoform of SDH. However, whether or not Zn(II) ions are indeed available for interaction with these enzymes depends on the thionein (T) to MT ratio and the redox poise. At ratios [T/(MT + T) = 0.08-0.31] prevailing in tissues and cells, picomolar concentrations of free Zn(II) are available from MT for reconstituting apoenzymes with Zn(II). Under conditions of decreased ratios, nanomolar concentrations of free Zn(II) become available and affect enzymes that are not zinc metalloenzymes. The match between the Zn(II) buffering capacity of MT and the Zn(II) affinity of proteins suggests a function of MT in controlling cellular Zn(II) availability.
Collapse
Affiliation(s)
- Artur Krezel
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | | |
Collapse
|
168
|
Maret W, Krezel A. Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease. Mol Med 2007. [PMID: 17622324 DOI: 10.2119/2007-00036.maret] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zinc is involved in virtually all aspects of cellular and molecular biology as a catalytic, structural, and regulatory cofactor in over 1000 proteins. Zinc binding to proteins requires an adequate supply of zinc and intact molecular mechanisms for redistributing zinc ions to make them available at the right time and location. Several dozen gene products participate in this process, in which interactions between zinc and sulfur donors determine the mobility of zinc and establish coupling between cellular redox state and zinc availability. Specifically, the redox properties of metallothionein and its apoprotein thionein are critical for buffering zinc ions and for controlling fluctuations in the range of picomolar concentrations of "free" zinc ions in cellular signaling. Metallothionein and other proteins with sulfur coordination environments are sensitive to redox perturbations and can render cells susceptible to injury when oxidative stress compromises the cellular redox and zinc buffering capacity in chronic diseases. The implications of these fundamental principles for zinc metabolism in type 2 diabetes are briefly discussed.
Collapse
Affiliation(s)
- Wolfgang Maret
- Department of Preventive Medicine & Community Health, The University of Texas Medical Branch, Galveston, Texas 77555-1109, USA.
| | | |
Collapse
|
169
|
Krezel A, Maret W. Dual nanomolar and picomolar Zn(II) binding properties of metallothionein. J Am Chem Soc 2007; 129:10911-21. [PMID: 17696343 DOI: 10.1021/ja071979s] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Each of the seven Zn(II) ions in the Zn(3)S(9) and Zn(4)S(11) clusters of human metallothionein is in a tetrathiolate coordination environment. Yet analysis of Zn(II) association with thionein, the apoprotein, and analysis of Zn(II) dissociation from metallothionein using the fluorescent chelating agents FluoZin-3 and RhodZin-3 reveal at least three classes of sites with affinities that differ by 4 orders of magnitude. Four Zn(II) ions are bound with an apparent average log K of 11.8, and with the methods employed, their binding is indistinguishable. This binding property makes thionein a strong chelating agent. One Zn(II) ion is relatively weakly bound, with a log K of 7.7, making metallothionein a zinc donor in the absence of thionein. The binding data demonstrate that Zn(II) binds with at least four species: Zn(4)T, Zn(5)T, Zn(6)T, and Zn(7)T. Zn(5)T and Zn(6)T bind Zn(II) with a log K of approximately 10 and are the predominant species at micromolar concentrations of metallothionein in cells. Central to the function of the protein is the reactivity of its cysteine side chains in the absence and presence of Zn(II). Chelating agents, such as physiological ligands with moderate affinities for Zn(II), cause dissociation of Zn(II) ions from metallothionein at pH 7.4 (Zn(7)T <==> Zn(7-n)T + nZn(2+)), thereby affecting the reactivity of its thiols. Thus, the rate of thiol oxidation increases in the presence of Zn(II) acceptors but decreases if more free Zn(II) becomes available. Thionein is such an acceptor. It regulates the reactivity and availability of free Zn(II) from metallothionein. At thionein/metallothionein ratios > 0.75, free Zn(II) ions are below a pZn (-log[Zn(2+)](free)) of 11.8, and at ratios < 0.75, relatively large fluctuations of free Zn(II) ions are possible (pZn between 7 and 11). These chemical characteristics match cellular requirements for Zn(II) and suggest how the molecular structures and redox chemistries of metallothionein and thionein determine Zn(II) availability for biological processes.
Collapse
Affiliation(s)
- Artur Krezel
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | |
Collapse
|
170
|
Maret W, Krezel A. Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 13:371-5. [PMID: 17622324 PMCID: PMC1952669 DOI: 10.2119/2007–00036.maret] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 04/25/2007] [Indexed: 11/06/2022]
Abstract
Zinc is involved in virtually all aspects of cellular and molecular biology as a catalytic, structural, and regulatory cofactor in over 1000 proteins. Zinc binding to proteins requires an adequate supply of zinc and intact molecular mechanisms for redistributing zinc ions to make them available at the right time and location. Several dozen gene products participate in this process, in which interactions between zinc and sulfur donors determine the mobility of zinc and establish coupling between cellular redox state and zinc availability. Specifically, the redox properties of metallothionein and its apoprotein thionein are critical for buffering zinc ions and for controlling fluctuations in the range of picomolar concentrations of "free" zinc ions in cellular signaling. Metallothionein and other proteins with sulfur coordination environments are sensitive to redox perturbations and can render cells susceptible to injury when oxidative stress compromises the cellular redox and zinc buffering capacity in chronic diseases. The implications of these fundamental principles for zinc metabolism in type 2 diabetes are briefly discussed.
Collapse
Affiliation(s)
- Wolfgang Maret
- Department of Preventive Medicine & Community Health, The University of Texas Medical Branch, Galveston, Texas 77555-1109, USA.
| | | |
Collapse
|
171
|
Kröncke KD. Cellular stress and intracellular zinc dyshomeostasis. Arch Biochem Biophys 2007; 463:183-7. [PMID: 17442256 DOI: 10.1016/j.abb.2007.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 03/09/2007] [Accepted: 03/12/2007] [Indexed: 11/20/2022]
Abstract
Various stressful conditions like oxidative or nitrosative stress, heavy metal load or thiol-modifying compounds have been shown to disturb the intracellular zinc homeostasis leading to increasing concentrations of free zinc within the cytoplasm or nuclei of cells. However, much less is known about the consequences of a disturbed intracellular Zn2+ homeostasis under these conditions. Current knowledge is reviewed here.
Collapse
Affiliation(s)
- Klaus-D Kröncke
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University of Düsseldorf, Universitätsstr.1, D-40225, Düsseldorf, Germany.
| |
Collapse
|
172
|
Carpenè E, Andreani G, Isani G. Metallothionein functions and structural characteristics. J Trace Elem Med Biol 2007; 21 Suppl 1:35-9. [PMID: 18039494 DOI: 10.1016/j.jtemb.2007.09.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 09/10/2007] [Indexed: 11/28/2022]
Abstract
Metallothioneins (MTs) are low molecular weight proteins characterized by a high cysteine content and give rise to metal-thiolate clusters. Most MTs have two metal clusters containing three and four bivalent metal ions, respectively. The MT gene family in mammals consists of four subfamilies designated MT-1 through MT-4. MT-3 is expressed predominantly in brain and MT-4 in differentiating stratified squamous epithelial cells. Many reports have addressed MT structure and function, but despite the increasing experimental data several topics remain to be clarified, and the true function of this elusive protein has yet to be disclosed. Owing to their induction by a variety of stimuli, MTs are considered valid biomarkers in medicine and environmental studies. Here, we will discuss only a few topics taken from the latest literature. Special emphasis will be placed on MT antioxidant functions, the related oxidation of cysteines, which can give rise to intra/intermolecular bridges, and the relations between MTs and diseases which could be originated by metal dysregulation.
Collapse
Affiliation(s)
- Emilio Carpenè
- Department of Biochemistry, University of Bologna, Via Tolara di Sopra 50, 40024 Ozzano Emilia, Bologna, Italy.
| | | | | |
Collapse
|