151
|
Nebulized solvent ablation of aligned PLLA fibers for the study of neurite response to anisotropic-to-isotropic fiber/film transition (AFFT) boundaries in astrocyte-neuron co-cultures. Biomaterials 2015; 46:82-94. [PMID: 25678118 DOI: 10.1016/j.biomaterials.2014.12.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/01/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022]
Abstract
Developing robust in vitro models of in vivo environments has the potential to reduce costs and bring new therapies from the bench top to the clinic more efficiently. This study aimed to develop a biomaterial platform capable of modeling isotropic-to-anisotropic cellular transitions observed in vivo, specifically focusing on changes in cellular organization following spinal cord injury. In order to accomplish this goal, nebulized solvent patterning of aligned, electrospun poly-l-lactic acid (PLLA) fiber substrates was developed. This method produced a clear topographic transitional boundary between aligned PLLA fibers and an isotropic PLLA film region. Astrocytes were then seeded on these scaffolds, and a shift between oriented and non-oriented astrocytes was created at the anisotropic-to-isotropic fiber/film transition (AFFT) boundary. Orientation of chondroitin sulfate proteoglycans (CSPGs) and fibronectin produced by these astrocytes was analyzed, and it was found that astrocytes growing on the aligned fibers produced aligned arrays of CSPGs and fibronectin, while astrocytes growing on the isotropic film region produced randomly-oriented CSPG and fibronectin arrays. Neurite extension from rat dissociated dorsal root ganglia (DRG) was studied on astrocytes cultured on anisotropic, aligned fibers, isotropic films, or from fibers to films. It was found that neurite extension was oriented and longer on PLLA fibers compared to PLLA films. When dissociated DRG were cultured on the astrocytes near the AFFT boundary, neurites showed directed orientation that was lost upon growth into the isotropic film region. The AFFT boundary also restricted neurite extension, limiting the extension of neurites once they grew from the fibers and into the isotropic film region. This study reveals the importance of anisotropic-to-isotropic transitions restricting neurite outgrowth by itself. Furthermore, we present this scaffold as an alternative culture system to analyze neurite response to cellular boundaries created following spinal cord injury and suggest its usefulness to study cellular responses to any aligned-to-unorganized cellular boundaries seen in vivo.
Collapse
|
152
|
Zheng J, Kontoveros D, Lin F, Hua G, Reneker DH, Becker ML, Willits RK. Enhanced Schwann cell attachment and alignment using one-pot "dual click" GRGDS and YIGSR derivatized nanofibers. Biomacromolecules 2015; 16:357-63. [PMID: 25479181 PMCID: PMC5953569 DOI: 10.1021/bm501552t] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using metal-free click chemistry and oxime condensation methodologies, GRGDS and YIGSR peptides were coupled to random and aligned degradable nanofiber networks postelectrospinning in a one-pot reaction. The bound peptides are bioactive, as demonstrated by Schwann cell attachment and proliferation, and the inclusion of YIGSR with GRGDS alters the expression of the receptor for YIGSR. Additionally, aligned nanofibers act as a potential guidance cue by increasing the aspect ratio and aligning the actin filaments, which suggest that peptide-functionalized scaffolds would be useful to direct SCs for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jukuan Zheng
- Departments of ‡Polymer Science and §Biomedical Engineering, The University of Akron , Akron, Ohio 44325, United States
| | | | | | | | | | | | | |
Collapse
|
153
|
Li D, Pan X, Sun B, Wu T, Chen W, Huang C, Ke Q, EI-Hamshary HA, Al-Deyab SS, Mo X. Nerve conduits constructed by electrospun P(LLA-CL) nanofibers and PLLA nanofiber yarns. J Mater Chem B 2015; 3:8823-8831. [DOI: 10.1039/c5tb01402f] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nerve conduits constructed by PLLA nanofiber yarns could facilitate the proliferation, spreading, and migration of SC cells.
Collapse
|
154
|
Wen X, Wang Y, Guo Z, Meng H, Huang J, Zhang L, Zhao B, Zhao Q, Zheng Y, Peng J. Cauda equina-derived extracellular matrix for fabrication of nanostructured hybrid scaffolds applied to neural tissue engineering. Tissue Eng Part A 2014; 21:1095-105. [PMID: 25366704 DOI: 10.1089/ten.tea.2014.0173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Extracellular matrix (ECM) components have become important candidate materials for use as neural scaffolds for neural tissue engineering. In the current study, we prepared cauda equina-derived ECM materials for the production of scaffolds. Natural porcine cauda equina was decellularized using Triton X-100 and sodium deoxycholate, shattered physically, and made into a suspension by differential centrifugation. The decellularization procedure resulted in the removal of >94% of the nuclear material and preserved the extracellular collagen and sulfated glycosaminoglycan. Immunofluorescent staining confirmed the presence of collagen type I, laminin, and fibronectin in the ECM. The cauda equine-derived ECM was blended with poly(l-lactide-co-glycolide) (PLGA) to fabricate nanostructured scaffolds using electrospinning. The incorporation of the ECM increased the hydrophilicity of the scaffolds. Fourier transform infrared spectroscopy and multiphoton-induced autofluorescence images showed the presence of the ECM in the scaffolds. ECM/PLGA scaffolds were beneficial for the survival of Schwann cells compared with scaffolds consisting of PLGA alone, and the aligned fibers could regulate cell morphologic features by modulating cellular orientation. Axons in the dorsal root ganglia explants extended to a greater extent along ECM/PLGA compared with PLGA-alone fibers. The cauda equina ECM might be a promising material for forming scaffolds for use in neural tissue engineering.
Collapse
Affiliation(s)
- Xiaoxiao Wen
- 1 School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
McLane JS, Rivet CJ, Gilbert RJ, Ligon LA. A biomaterial model of tumor stromal microenvironment promotes mesenchymal morphology but not epithelial to mesenchymal transition in epithelial cells. Acta Biomater 2014; 10:4811-4821. [PMID: 25058401 DOI: 10.1016/j.actbio.2014.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 12/13/2022]
Abstract
The stromal tissue surrounding most carcinomas is comprised of an extracellular matrix densely packed with collagen-I fibers, which are often highly aligned in metastatic disease. Here we developed an in vitro model to test the effect of an aligned fibrous environment on cancer cell morphology and behavior, independent of collagen ligand presentation. We grew cells on a biomimetic surface of aligned electrospun poly-l-lactic acid (PLLA) fibers and then examined the effect of this environment on growth rate, morphology, cytoskeletal organization, biochemical and genetic markers of epithelial to mesenchymal transition (EMT), cell surface adhesion, and cell migration. We grew a phenotypically normal breast epithelial cell line (MCF10A) and an invasive breast cancer cell line (MDA-MB-231) on three different substrates: typical flat culture surface (glass or plastic), flat PLLA (glass coated with PLLA) or electrospun PLLA fibers. Cells of both types adopted a more mesenchymal morphology when grown on PLLA fibers, and this effect was exaggerated in the more metastatic-like MDA-MB-231 cells. However, neither cell type underwent the changes in gene expression indicative of EMT despite the changes in cell shape, nor did they exhibit the decreased adhesive strength or increased migration typical of metastatic cells. These results suggest that changes in cell morphology alone do not promote a more mesenchymal phenotype and consequently that the aligned fibrous environment surrounding epithelial cancers may not promote EMT solely through topographical cues.
Collapse
Affiliation(s)
- Joshua S McLane
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Christopher J Rivet
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Ryan J Gilbert
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Lee A Ligon
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
| |
Collapse
|
156
|
Cirillo V, Guarino V, Alvarez-Perez MA, Marrese M, Ambrosio L. Optimization of fully aligned bioactive electrospun fibers for "in vitro" nerve guidance. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2323-2332. [PMID: 24737088 DOI: 10.1007/s10856-014-5214-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/28/2014] [Indexed: 06/03/2023]
Abstract
Complex architecture of natural tissues such as nerves requires the use of multifunctional scaffolds with peculiar topological and biochemical signals able to address cell behavior towards specific events at the cellular (microscale) and macromolecular (nanoscale) level. In this context, the electrospinning technique is useful to generate fiber assemblies having peculiar fiber diameters at the nanoscale and patterned by unidirectional ways, to facilitate neurite extension via contact guidance. Following a bio-mimetic approach, fully aligned polycaprolactone fibers blended with gelatin macromolecules have been fabricated as potential bioactive substrate for nerve regeneration. Morphological and topographic aspects of electrospun fibers assessed by SEM/AFM microscopy supported by image analyses elaboration allow estimating an increase of fully aligned fibers from 5 to 39% as collector rotating rate increases from 1,000 to 3,000 rpm. We verify that fully alignment of fibers positively influences in vitro response of hMSC and PC-12 cells in neurogenic way. Immunostaining images show that the presence of topological defects, i.e., kinks--due to more frequent fiber crossing--in the case of randomly organized fiber assembly concurs to interfere with proper neurite outgrowth. On the contrary, fully aligned fibers without kinks offer a more efficient contact guidance to direct the orientation of nerve cells along the fibers respect to randomly organized ones, promoting a high elongation of neurites at 7 days and the formation of bipolar extensions. So, this confirms that the topological cue of fully alignment of fibers elicits a favorable environment for nerve regeneration.
Collapse
Affiliation(s)
- Valentina Cirillo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le Kennedy 54, Pad 20, Mostra d'Oltremare, 80125, Naples, Italy
| | | | | | | | | |
Collapse
|
157
|
Masaeli E, Wieringa PA, Morshed M, Nasr-Esfahani MH, Sadri S, van Blitterswijk CA, Moroni L. Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1559-69. [DOI: 10.1016/j.nano.2014.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 03/19/2014] [Accepted: 04/20/2014] [Indexed: 12/18/2022]
|
158
|
Tidjarat S, Winotapun W, Opanasopit P, Ngawhirunpat T, Rojanarata T. Uniaxially aligned electrospun cellulose acetate nanofibers for thin layer chromatographic screening of hydroquinone and retinoic acid adulterated in cosmetics. J Chromatogr A 2014; 1367:141-7. [PMID: 25294296 DOI: 10.1016/j.chroma.2014.09.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Uniaxially aligned cellulose acetate (CA) nanofibers were successfully fabricated by electrospinning and applied to use as stationary phase for thin layer chromatography. The control of alignment was achieved by using a drum collector rotating at a high speed of 6000 rpm. Spin time of 6h was used to produce the fiber thickness of about 10 μm which was adequate for good separation. Without any chemical modification after the electrospinning process, CA nanofibers could be readily devised for screening hydroquinone (HQ) and retinoic acid (RA) adulterated in cosmetics using the mobile phase consisting of 65:35:2.5 methanol/water/acetic acid. It was found that the separation run on the aligned nanofibers over a distance of 5 cm took less than 15 min which was two to three times faster than that on the non-aligned ones. On the aligned nanofibers, the masses of HQ and RA which could be visualized were 10 and 25 ng, respectively, which were two times lower than those on the non-aligned CA fibers and five times lower than those on conventional silica plates due to the appearance of darker and sharper of spots on the aligned nanofibers. Furthermore, the proposed method efficiently resolved HQ from RA and ingredients commonly found in cosmetic creams. Due to the satisfactory analytical performance, facile and inexpensive production process, uniaxially aligned electrospun CA nanofibers are promising alternative media for planar chromatography.
Collapse
Affiliation(s)
- Siripran Tidjarat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Weerapath Winotapun
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
159
|
Lee JH, Lee YJ, Cho HJ, Shin H. Guidance of In Vitro Migration of Human Mesenchymal Stem Cells and In Vivo Guided Bone Regeneration Using Aligned Electrospun Fibers. Tissue Eng Part A 2014; 20:2031-42. [DOI: 10.1089/ten.tea.2013.0282] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ji-hye Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
| | - Young Jun Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
| | - Hyeong-jin Cho
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
160
|
Koppes AN, Zaccor NW, Rivet CJ, Williams LA, Piselli JM, Gilbert RJ, Thompson DM. Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation. J Neural Eng 2014; 11:046002. [PMID: 24891494 DOI: 10.1088/1741-2560/11/4/046002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from dorsal root ganglia neurons than the presence of electrical stimulation or aligned topography alone. APPROACH To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide films or electrospun fibers (2 µm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. MAIN RESULTS Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurites, indicating topographical cues are responsible for guiding neurite extension. SIGNIFICANCE Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury.
Collapse
Affiliation(s)
- A N Koppes
- Department of Biomedical Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | | | | | | | | | | |
Collapse
|
161
|
Braghirolli DI, Steffens D, Pranke P. Electrospinning for regenerative medicine: a review of the main topics. Drug Discov Today 2014; 19:743-53. [DOI: 10.1016/j.drudis.2014.03.024] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/06/2014] [Accepted: 03/27/2014] [Indexed: 12/20/2022]
|
162
|
Toncheva A, Spasova M, Paneva D, Manolova N, Rashkov I. Polylactide (PLA)-Based Electrospun Fibrous Materials Containing Ionic Drugs as Wound Dressing Materials: A Review. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.854240] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
163
|
Roberts MJ, Leach MK, Bedewy M, Meshot ER, Copic D, Corey JM, Hart AJ. Growth of primary motor neurons on horizontally aligned carbon nanotube thin films and striped patterns. J Neural Eng 2014; 11:036013. [DOI: 10.1088/1741-2560/11/3/036013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
164
|
Hopkins AM, Wheeler B, Staii C, Kaplan DL, Atherton TJ. Semi-automatic quantification of neurite fasciculation in high-density neurite images by the neurite directional distribution analysis (NDDA). J Neurosci Methods 2014; 228:100-9. [PMID: 24680908 DOI: 10.1016/j.jneumeth.2014.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bundling of neurite extensions occur during nerve development and regeneration. Understanding the factors that drive neurite bundling is important for designing biomaterials for nerve regeneration toward the innervation target and preventing nociceptive collateral sprouting. High-density neuron cultures including dorsal root ganglia explants are employed for in vitro screening of biomaterials designed to control directional outgrowth. Although some semi-automated image processing methods exist for quantification of neurite outgrowth, methods to quantify axonal fasciculation in terms of direction of neurite outgrowth are lacking. NEW METHOD This work presents a semi-automated program to analyze micrographs of high-density neurites; the program aims to quantify axonal fasciculation by determining the orientational distribution function of the tangent vectors of the neurites and calculating its Fourier series coefficients ('c' values). RESULTS We found that neurite directional distribution analysis (NDDA) of fasciculated neurites yielded 'c' values of ≥∼0.25 whereas branched outgrowth led to statistically significant lesser values of <∼0.2. The 'c' values correlated directly to the width of neurite bundles and indirectly to the number of branching points. COMPARISON WITH EXISTING METHODS Information about the directional distribution of outgrowth is lost in simple counting methods or achieved laboriously through manual analysis. The NDDA supplements previous quantitative analyses of axonal bundling using a vector-based approach that captures new information about the directionality of outgrowth. CONCLUSION The NDDA is a valuable addition to open source image processing tools available to biomedical researchers offering a robust, precise approach to quantification of imaged features important in tissue development, disease, and repair.
Collapse
Affiliation(s)
- Amy M Hopkins
- Department of Biomedical Engineering, Tufts University Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| | - Brandon Wheeler
- Department of Biomedical Engineering, Tufts University Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| | - Cristian Staii
- Department of Physics and Astronomy, and Center for Nanoscopic Physics, Tufts University Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| | - Timothy J Atherton
- Department of Physics and Astronomy, and Center for Nanoscopic Physics, Tufts University Science & Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
165
|
Abstract
It has become increasingly clear that the cellular microenvironment, in particular the extracellular matrix, plays an important role in regulating cell function. However, the extracellular matrix is extraordinarily complex in both its makeup and its physical properties. Therefore, there is a need to develop model systems to independently evaluate the effect of specific extracellular matrix features upon cells. Here we describe a model system to evaluate one aspect of the extracellular matrix, its fibrous topology. We describe how to generate bio-mimetic nanofibers by electrospinning, how to grow cells on these fibers, and also some methods for fixing and visualizing cells grown on these fibers. These methods can be used to investigate a wide range of biological questions, including, but not limited to, cell-extracellular matrix adhesion and cell motility on extracellular matrix.
Collapse
|
166
|
He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J, Zhang W, Zhang X, Deng Y. Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules 2014; 15:618-27. [PMID: 24405043 DOI: 10.1021/bm401656a] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Uniaxially aligned cellulose nanofibers with well oriented cellulose nanocrystals (CNCs) embedded were fabricated via electrospinning using a rotating drum as the collector. Scanning electron microscope (SEM) images indicated that most cellulose nanofibers were uniaxially aligned. The incorporation of CNCs into the spinning dope resulted in more uniform morphology of the electrospun cellulose/CNCs nanocomposite nanofibers (ECCNN). Polarized light microscope (PLM) and transmission electron microscope (TEM) showed that CNCs dispersed well in ECCNN nonwovens and achieved considerable orientation along the long axis direction. This unique hierarchical microstructure of ECCNN nonwovens gave rise to remarkable enhancement of their physical properties. By incorporating 20% loading (in weight) of CNCs, the tensile strength and elastic modulus of ECCNN along the fiber alignment direction were increased by 101.7 and 171.6%, respectively. Their thermal stability was significantly improved as well. In addition, the ECCNN nonwovens were assessed as potential scaffold materials for tissue engineering. It was elucidated from MTT tests that the ECCNN were essentially nontoxic to human cells. Cell culture experiments demonstrated that cells could proliferate rapidly not only on the surface but also deep inside the ECCNN. More importantly, the aligned nanofibers of ECCNN exhibited a strong effect on directing cellular organization. This feature made the scaffold particularly useful for various artificial tissues or organs, such as blood vessel, tendon, nerve, and so on, in which cell orientation was crucial for their performance.
Collapse
Affiliation(s)
- Xu He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University , Chengdu 610065, China
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Li H, Xu Y, Xu H, Chang J. Electrospun membranes: control of the structure and structure related applications in tissue regeneration and drug delivery. J Mater Chem B 2014; 2:5492-5510. [DOI: 10.1039/c4tb00913d] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multilevel structures of electrospun membranes can be controlled and the designed structures can strongly affect cell behavior and drug delivery.
Collapse
Affiliation(s)
- Haiyan Li
- Med-X Research Institute
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai, China
| | - Yachen Xu
- Med-X Research Institute
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai, China
| | - He Xu
- Med-X Research Institute
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai, China
| | - Jiang Chang
- Med-X Research Institute
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai, China
- Shanghai Institute of Ceramics
| |
Collapse
|
168
|
Simitzi C, Stratakis E, Fotakis C, Athanassakis I, Ranella A. Microconical silicon structures influence NGF-induced PC12 cell morphology. J Tissue Eng Regen Med 2013; 9:424-34. [PMID: 24497489 DOI: 10.1002/term.1853] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/21/2013] [Accepted: 11/08/2013] [Indexed: 11/07/2022]
Abstract
Micro-and nanofabrication techniques provide the opportunity to develop new types of cell culture platform, where the effect of various topographical cues on cellular functions such as proliferation and differentiation can be studied. In this study, PC12 cells were cultured on patterned silicon (Si) surfaces comprising arrays of microcones (MCs) exhibiting different geometrical characteristics and surface chemistries. It was illustrated that, in the absence of nerve growth factor (NGF), PC12 cells increased proliferation on all types of patterned surface, as compared to flat Si surfaces. However, in the presence of NGF, PC12 cells showed different responses, depending on the plating surface. Unlike low and intermediate rough MC surfaces, highly rough ones exhibiting large distances between MCs did not support PC12 cell differentiation, independently of the MCs' chemical coatings. These results suggest that the geometrical characteristics of MCs alone can influence specific cellular functions. Tailoring of the physical properties of arrays of Si MCs in order to identify which combinations of MC topologies and spatially defined chemistries are capable of driving specific cellular responses is envisaged.
Collapse
Affiliation(s)
- C Simitzi
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas (IESL-FORTH), Heraklion, Greece; Department of Biology, University of Crete, Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
169
|
Bourke JL, Coleman HA, Pham V, Forsythe JS, Parkington HC. Neuronal electrophysiological function and control of neurite outgrowth on electrospun polymer nanofibers are cell type dependent. Tissue Eng Part A 2013; 20:1089-95. [PMID: 24147808 DOI: 10.1089/ten.tea.2013.0295] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Modeling of cellular environments with nanofabricated biomaterial scaffolds has the potential to improve the growth and functional development of cultured cellular models, as well as assist in tissue engineering efforts. An understanding of how such substrates may alter cellular function is critical. Highly plastic central nervous system hippocampal cells and non-network forming peripheral nervous system dorsal root ganglion (DRG) cells from embryonic rats were cultured upon laminin-coated degradable polycaprolactone (PCL) and nondegradable polystyrene (PS) electrospun nanofibrous scaffolds with fiber diameters similar to those of neuronal processes. The two cell types displayed intrinsically different growth patterns on the nanofibrous scaffolds. Hippocampal neurites grew both parallel and perpendicular to the nanofibers, a property that would increase neurite-to-neurite contacts and maximize potential synapse development, essential for extensive network formation in a highly plastic cell type. In contrast, non-network-forming DRG neurons grew neurites exclusively along fibers, recapitulating the simple direct unbranching pathway between sensory ending and synapse in the spinal cord that occurs in vivo. In addition, the two primary neuronal types showed different functional capacities under patch clamp testing. The substrate composition did not alter the neuronal functional development, supporting electrospun PCL and PS as candidate materials for controlled cellular environments in culture and electrospun PCL for directed neurite outgrowth in tissue engineering applications.
Collapse
Affiliation(s)
- Justin L Bourke
- 1 Department of Physiology, Monash University , Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
170
|
Verhulsel M, Vignes M, Descroix S, Malaquin L, Vignjevic DM, Viovy JL. A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials 2013; 35:1816-32. [PMID: 24314552 DOI: 10.1016/j.biomaterials.2013.11.021] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/07/2013] [Indexed: 12/28/2022]
Abstract
This review highlights recent trends towards the development of in vitro multicellular systems with definite architectures, or "organs on chips". First, the chemical composition and mechanical properties of the scaffold have to be consistent with the anatomical environment in vivo. In this perspective, the flourishing interest in hydrogels as cellular substrates has highlighted the main parameters directing cell differentiation that need to be recapitulated in artificial matrix. Another scaffold requirement is to act as a template to guide tissue morphogenesis. Therefore specific microfabrication techniques are required to spatially pattern the environment at microscale. 2D patterning is particularly efficient for organizing planar polarized cell types such as endothelial cells or neurons. However, most organs are characterized by specific sub units organized in three dimensions at the cellular level. The reproduction of such 3D patterns in vitro is necessary for cells to fully differentiate, assemble and coordinate to form a coherent micro-tissue. These physiological microstructures are often integrated in microfluidic devices whose controlled environments provide the cell culture with more life-like conditions than traditional cell culture methods. Such systems have a wide range of applications, for fundamental research, as tools to accelerate drug development and testing, and finally, for regenerative medicine.
Collapse
Affiliation(s)
- Marine Verhulsel
- Macromolécules et Microsystèmes en Biologie et en Médecine, Institut Curie, UMR 168, Paris 75005, France
| | - Maéva Vignes
- Macromolécules et Microsystèmes en Biologie et en Médecine, Institut Curie, UMR 168, Paris 75005, France
| | - Stéphanie Descroix
- Macromolécules et Microsystèmes en Biologie et en Médecine, Institut Curie, UMR 168, Paris 75005, France
| | - Laurent Malaquin
- Macromolécules et Microsystèmes en Biologie et en Médecine, Institut Curie, UMR 168, Paris 75005, France
| | | | - Jean-Louis Viovy
- Macromolécules et Microsystèmes en Biologie et en Médecine, Institut Curie, UMR 168, Paris 75005, France.
| |
Collapse
|
171
|
Zuidema JM, Hyzinski-García MC, Van Vlasselaer K, Zaccor NW, Plopper GE, Mongin AA, Gilbert RJ. Enhanced GLT-1 mediated glutamate uptake and migration of primary astrocytes directed by fibronectin-coated electrospun poly-L-lactic acid fibers. Biomaterials 2013; 35:1439-49. [PMID: 24246642 DOI: 10.1016/j.biomaterials.2013.10.079] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/27/2013] [Indexed: 12/17/2022]
Abstract
Bioengineered fiber substrates are increasingly studied as a means to promote regeneration and remodeling in the injured central nervous system (CNS). Previous reports largely focused on the ability of oriented scaffolds to bridge injured regions and direct outgrowth of axonal projections. In the present work, we explored the effects of electrospun microfibers on the migration and physiological properties of brain astroglial cells. Primary rat astrocytes were cultured on either fibronectin-coated poly-L-lactic acid (PLLA) films, fibronectin-coated randomly oriented PLLA electrospun fibers, or fibronectin-coated aligned PLLA electrospun fibers. Aligned PLLA fibers strongly altered astrocytic morphology, orienting cell processes, actin microfilaments, and microtubules along the length of the fibers. On aligned fibers, astrocytes also significantly increased their migration rates in the direction of fiber orientation. We further investigated if fiber topography modifies astrocytic neuroprotective properties, namely glutamate and glutamine transport and metabolism. This was done by quantifying changes in mRNA expression (qRT-PCR) and protein levels (Western blotting) for a battery of relevant biomolecules. Interestingly, we found that cells grown on random and/or aligned fibers increased the expression levels of two glutamate transporters, GLAST and GLT-1, and an important metabolic enzyme, glutamine synthetase, as compared to the fibronectin-coated films. Functional assays revealed increases in glutamate transport rates due to GLT-1 mediated uptake, which was largely determined by the dihydrokainate-sensitive GLT-1. Overall, this study suggests that aligned PLLA fibers can promote directed astrocytic migration, and, of most importance, our in vitro results indicate for the first time that electrospun PLLA fibers can positively modify neuroprotective properties of glial cells by increasing rates of glutamate uptake.
Collapse
Affiliation(s)
- Jonathan M Zuidema
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - María C Hyzinski-García
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Kristien Van Vlasselaer
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Nicholas W Zaccor
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - George E Plopper
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Ryan J Gilbert
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
172
|
Schaub NJ, Britton T, Rajachar R, Gilbert RJ. Engineered nanotopography on electrospun PLLA microfibers modifies RAW 264.7 cell response. ACS APPLIED MATERIALS & INTERFACES 2013; 5:10173-10184. [PMID: 24063250 DOI: 10.1021/am402827g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this study, we created a new method of electrospinning capable of controlling the surface structure of individual fibers (fiber nanotopography). The nanotopographical features were created by a phase separation in the fibers as they formed. To control the phase separation, a nonsolvent (a chemical insoluble with the polymer) was added to an electrospinning solution containing poly-l-lactic acid (PLLA) and chloroform. The nanotopography of electrospun fibers in the PLLA/chloroform solution was smooth. However, adding a small weight (<2% of total solution) of a single nonsolvent (water, ethanol, or dimethyl sulfoxide) generated nanoscale depressions on the surface of the fibers unique to the nonsolvent added. Additionally, nanoscale depressions on electrospun fibers were observed to change with dimethyl sulfoxide (DMSO) concentration in the PLLA/chloroform solution. A nonlinear relationship was found between the concentration of DMSO and the number and size of nanotopographical features. The surface depressions did not alter the hydrophobicity of the scaffold or degradation of the scaffold over a two-day period. To determine if fiber nanotopography altered cell behavior, macrophages (RAW 264.7 cells) were cultured on fibers with a smooth nanotopography or fibers with nanoscale depressions. RAW 264.7 cells spread less on fibers with nanoscale depressions than fibers with a smooth topography (p<0.05), but there were no differences between groups with regard to cell metabolism or the number of adherent cells. The results of this study demonstrate the necessity to consider the nanotopography of individual fibers as these features may affect cellular behavior. More importantly, we demonstrate a versatile method of controlling electrospun fiber nanotopography.
Collapse
Affiliation(s)
- Nicholas J Schaub
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180-3590, United States
| | | | | | | |
Collapse
|
173
|
Fan Z, Shen Y, Zhang F, Zuo B, Lu Q, Wu P, Xie Z, Dong Q, Zhang H. Control of olfactory ensheathing cell behaviors by electrospun silk fibroin fibers. Cell Transplant 2013; 22 Suppl 1:S39-50. [PMID: 24153024 DOI: 10.3727/096368913x672190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Olfactory ensheathing cells (OECs), the only glial cell type that normally penetrates the transition zone between the peripheral and central nervous systems, are one of the most promising candidates for cell transplantation in repairing spinal cord injury (SCI). However, we must manipulate and regulate OECs' behavior to make these cells effective in cell transplantation. In the present study, we assessed the response of rat OECs to different variants of nanofibrous silk fibroin mats with regard to cell morphology, adhesion, proliferation, and migration and the related gene and protein expression. Results showed that OECs adhere and spread more easily on Tussah silk fibroin (TSF) fibers than Bombyx mori silk fibroin fibers, resulting in a higher rate of cell proliferation and gene and protein expression, examined by RT-PCR and ELISA. In addition, the morphology of OECs on microfibers is mainly polygonal with short protrusions, whereas the OECs on nanofibers exhibit a bipolar shape with long protrusions that align along the fibers, especially when aligned fibers are employed. Moreover, OECs on silk fibroin nanofibers migrate more efficiently than those on poly-L-lysine (PLL). Based on the experimental results, the morphology, adhesion, spread, gene and protein expression, and migration of OECs could be modulated and regulated by adjusting the contents and structure of silk fibroin nanofibers, shedding light on the control of OECs' behavior in nerve tissue engineering and thus the future therapeutic intervention for nerve repair after injury. This manuscript is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation.
Collapse
|
174
|
Liu Z, Li X, Yang Y, Zhang K, Wang X, Zhu M, Hsiao BS. Control of structure and morphology of highly aligned PLLA ultrafine fibers via linear-jet electrospinning. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.08.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
175
|
Mammadov B, Sever M, Guler MO, Tekinay AB. Neural differentiation on synthetic scaffold materials. Biomater Sci 2013; 1:1119-1137. [PMID: 32481935 DOI: 10.1039/c3bm60150a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The potential of stem cells to differentiate into a variety of subgroups of neural cells makes stem cell differentiation and transplantation a promising candidate for neurodegenerative disorder therapies. However, selective differentiation of stem cells to neurons while preventing glial scar formation is a complex process. Mimicking the natural environment of neural tissue is pivotal, thus various synthetic materials have been developed for this purpose. The synthetic scaffolds can direct stem cells into a neural lineage by including extracellular factors that act on cell fate, which are mainly soluble signals, extracellular matrix proteins and physical factors (e.g. elasticity and topography). This article reviews synthetic materials developed for neural regeneration in terms of their extracellular matrix mimicking properties. Functionalization of synthetic materials by addition of bioactive chemical groups and adjustment of physical properties such as topography, electroactivity and elasticity are discussed.
Collapse
Affiliation(s)
- Busra Mammadov
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey 06800.
| | | | | | | |
Collapse
|
176
|
de Luca AC, Faroni A, Downes S, Terenghi G. Differentiated adipose-derived stem cells act synergistically with RGD-modified surfaces to improve neurite outgrowth in a co-culture model. J Tissue Eng Regen Med 2013; 10:647-55. [PMID: 23950058 DOI: 10.1002/term.1804] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/29/2013] [Accepted: 07/15/2013] [Indexed: 11/11/2022]
Abstract
Peripheral nerve damage is a problem encountered after trauma and during surgery and the development of synthetic polymer conduits may offer a promising alternative to autografts. In order to improve the performance of the polymer to be used for nerve conduits, poly-ε-caprolactone (PCL) films were chemically functionalized with RGD moieties, using a chemical reaction previously developed. In vitro cultures of dissociated dorsal root ganglion (DRG) neurons provide a valid model to study different factors affecting axonal growth. In this work, DRG neurons were cultured on RGD-functionalized PCL films. Adult adipose-derived stem cells differentiated to Schwann cells (dASCs) were initially cultured on the functionalized PCL films, resulting in improved attachment and proliferation. dASCs were also co-cultured with DRG neurons on treated and untreated PCL to assess stimulation by dASCs on neurite outgrowth. Neuron response was generally poor on untreated PCL films, but long neurites were observed in the presence of dASCs or RGD moieties. A combination of the two factors enhanced even further neurite outgrowth, acting synergistically. Finally, in order to better understand the extracellular matrix (ECM)-cell interaction, a β1 integrin blocking experiment was carried out. Neurite outgrowth was not affected by the specific antibody blocking, showing that β1 integrin function can be compensated by other molecules present on the cell membrane. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- A C de Luca
- Blond McIndoe Laboratories, Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, UK.,School of Materials, University of Manchester, UK
| | - A Faroni
- Blond McIndoe Laboratories, Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, UK
| | - S Downes
- School of Materials, University of Manchester, UK
| | - G Terenghi
- Blond McIndoe Laboratories, Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, UK
| |
Collapse
|
177
|
Jeffries EM, Wang Y. Incorporation of parallel electrospun fibers for improved topographical guidance in 3D nerve guides. Biofabrication 2013; 5:035015. [DOI: 10.1088/1758-5082/5/3/035015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
178
|
Schaub NJ, Kirkpatrick SJ, Gilbert RJ. Automated Methods to Determine Electrospun Fiber Alignment and Diameter Using the Radon Transform. BIONANOSCIENCE 2013. [DOI: 10.1007/s12668-013-0100-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
179
|
Binder C, Milleret V, Hall H, Eberli D, Lühmann T. Influence of micro and submicro poly(lactic-glycolic acid) fibers on sensory neural cell locomotion and neurite growth. J Biomed Mater Res B Appl Biomater 2013; 101:1200-8. [PMID: 23650277 DOI: 10.1002/jbm.b.32931] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/11/2013] [Accepted: 02/17/2013] [Indexed: 01/28/2023]
Abstract
For successful peripheral nerve regeneration, a complex interplay of growth factors, topographical guidance structure by cells and extracellular matrix proteins, are needed. Aligned fibrous biomaterials with a wide variety in fiber diameter have been used successfully to support neuronal guidance. To better understand the importance of size of the topographical features, we investigated the directionality of neuronal migration of sensory ND7/23 cells on aligned electrospun poly(lactic-glycolic acid) PLGA fibers in the range of micrometer and submicrometer diameters by time-lapse microscopy. Cell trajectories of single ND7/23 cells were found to significantly follow topographies of PLGA fibers with micrometer dimensions in contrast to PLGA fibers within the submicrometer range, where cell body movement was observed to be independent of fibrous structures. Moreover, neurite alignment of ND7/23 cells on various topographies was assessed. PLGA fibers with micrometer dimensions significantly aligned 83.3% of all neurites after 1 day of differentiation compared to similar submicrometer structures, which orientated 25.8% of all neurites. Interestingly, after 7 days of differentiation ND7/23 cells on submicrometer PLGA fibers increased their alignment of neurites to 52.5%. Together, aligned PLGA fibers with micrometer dimensions showed a superior influence on directionality of neuronal migration and neurite outgrowth of sensory ND7/23 cells, indicating that electrospun micro-PLGA fibers might represent a potential material to induce directionality of neuronal growth in engineering applications for sensory nerve regeneration.
Collapse
Affiliation(s)
- Carmen Binder
- Cells and BioMaterials, Department of Materials, ETH Zurich, Switzerland
| | | | | | | | | |
Collapse
|
180
|
Qu J, Wang D, Wang H, Dong Y, Zhang F, Zuo B, Zhang H. Electrospun silk fibroin nanofibers in different diameters support neurite outgrowth and promote astrocyte migration. J Biomed Mater Res A 2013; 101:2667-78. [PMID: 23427060 DOI: 10.1002/jbm.a.34551] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 11/11/2012] [Accepted: 12/03/2012] [Indexed: 12/17/2022]
Abstract
Nerve tissue engineering has been one of the promising strategies for regenerative treatment in patients suffering from neural tissue loss, but considerable challenges remain before it is able to progress toward clinical application. It has been demonstrated that transplantation of cells in combination with physically or chemically modified biomaterials provides better environments for neurite outgrowth and further promotes axonal regeneration in animal models of spinal cord injury. In this study, neurons and astrocytes were incorporated into 400-nm, 800-nm, and 1200-nm electrospun Bombyx mori silk fibroin (SF) materials to investigate the effects of scaffold-diameter in regulating and directing cell behaviors. β-III-tubulin immunofluorescence analyses reveal that SF nanofibers with smaller diameters are more favorable to the development and maturation of subventricular zone-derived neurons than 1200-nm SF scaffolds. In addition, astrocytes exhibited well-arranged glial fibrillary acidic protein (GFAP) expression on SF scaffolds, and a significant increase in cell-spreading area was observed on 400-nm but not 1200-nm SF scaffolds. Moreover, a significantly enhanced migration efficiency of astrocytes grown on SF scaffolds was verified, which highlights the guiding roles of SF nanofibers to the migratory cells. Overall, our results may provide valuable information to develop effective tissue remodeling substrates and to optimize existing biomaterials for neural tissue engineering applications.
Collapse
Affiliation(s)
- Jing Qu
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Medical College of Soochow University, Suzhou Industrial Park, Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|
181
|
|
182
|
Pêgo AP, Kubinova S, Cizkova D, Vanicky I, Mar FM, Sousa MM, Sykova E. Regenerative medicine for the treatment of spinal cord injury: more than just promises? J Cell Mol Med 2012; 16:2564-82. [PMID: 22805417 PMCID: PMC4118226 DOI: 10.1111/j.1582-4934.2012.01603.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 07/09/2012] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury triggers a complex set of events that lead to tissue healing without the restoration of normal function due to the poor regenerative capacity of the spinal cord. Nevertheless, current knowledge about the intrinsic regenerative ability of central nervous system axons, when in a supportive environment, has made the prospect of treating spinal cord injury a reality. Among the range of strategies under investigation, cell-based therapies offer the most promising results, due to the multifactorial roles that these cells can fulfil. However, the best cell source is still a matter of debate, as are clinical issues that include the optimal cell dose as well as the timing and route of administration. In this context, the role of biomaterials is gaining importance. These can not only act as vehicles for the administered cells but also, in the case of chronic lesions, can be used to fill the permanent cyst, thus creating a more favourable and conducive environment for axonal regeneration in addition to serving as local delivery systems of therapeutic agents to improve the regenerative milieu. Some of the candidate molecules for the future are discussed in view of the knowledge derived from studying the mechanisms that facilitate the intrinsic regenerative capacity of central nervous system neurons. The future challenge for the multidisciplinary teams working in the field is to translate the knowledge acquired in basic research into effective combinatorial therapies to be applied in the clinic.
Collapse
Affiliation(s)
- Ana Paula Pêgo
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
183
|
Genchi GG, Ciofani G, Polini A, Liakos I, Iandolo D, Athanassiou A, Pisignano D, Mattoli V, Menciassi A. PC12 neuron-like cell response to electrospun poly( 3-hydroxybutyrate) substrates. J Tissue Eng Regen Med 2012; 9:151-61. [DOI: 10.1002/term.1623] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/09/2012] [Accepted: 08/25/2012] [Indexed: 01/02/2023]
Affiliation(s)
- Giada Graziana Genchi
- Scuola Superiore Sant'Anna, The BioRobotics Institute; Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
- Istituto Italiano di Tecnologia, Center for MicroBioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Center for MicroBioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| | - Alessandro Polini
- NNL, National Nanotechnology Laboratory of CNR-Nanoscienze; Via Arnesano 16 73100 Lecce Italy
| | - Ioannis Liakos
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies; Via Barsanti 73010 Lecce Italy
| | - Donata Iandolo
- NNL, National Nanotechnology Laboratory of CNR-Nanoscienze; Via Arnesano 16 73100 Lecce Italy
| | - Athanassia Athanassiou
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies; Via Barsanti 73010 Lecce Italy
| | - Dario Pisignano
- NNL, National Nanotechnology Laboratory of CNR-Nanoscienze; Via Arnesano 16 73100 Lecce Italy
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies; Via Barsanti 73010 Lecce Italy
- Università del Salento; Dipartimento di Matematica e Fisica “Ennio De Giorgi”; Via Arnesano 73100 Lecce Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Center for MicroBioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| | - Arianna Menciassi
- Scuola Superiore Sant'Anna, The BioRobotics Institute; Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
- Istituto Italiano di Tecnologia, Center for MicroBioRobotics @SSSA; Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| |
Collapse
|
184
|
Kim YP, Lee GS, Kim JW, Kim MS, Ahn HS, Lim JY, Kim HW, Son YJ, Knowles JC, Hyun JK. Phosphate glass fibres promote neurite outgrowth and early regeneration in a peripheral nerve injury model. J Tissue Eng Regen Med 2012; 9:236-46. [PMID: 23038678 DOI: 10.1002/term.1626] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/27/2012] [Indexed: 11/11/2022]
Abstract
Three-dimensional (3D) scaffolds, which are bioactive and aid in neuronal guidance, are essential in the repair and regeneration of injured peripheral nerves. In this study, we used novel inorganic microfibres guided by phosphate glass (PG). PG fibres (PGfs) were aligned on compressed collagen that was rolled into a nerve conduit. In vitro tests confirmed that adult dorsal root ganglion (DRG) neurons showed active neurite outgrowth along the fibres, with a maximum number and length of neurites being significantly higher than those cultured on tissue culture plastic. In vivo experiments with nerve conduits that either contained PGfs (PGf/Col) or lacked them (Col) were conducted on transected sciatic nerves of rats for up to 12 weeks. One week after implantation, the PGf/Col group showed many axons extending along the scaffold, whereas the Col group showed none. Eight weeks after implantation, the PGf/Col group exhibited greater recovery of plantar muscle atrophy than the Col group. Electrophysiological studies revealed that some animals in the PGf/Col group at 6 and 7 weeks post-implantation (5.3% and 15.8%, respectively) showed compound muscle action potential. The Col group over the same period showed no response. Motor function also showed faster recovery in the PGf/Col group compared to the Col group up to 7 weeks. However, there was no significant difference in the number of axons, muscle atrophy or motor and sensory functions between the two groups at 12 weeks post-implantation. In summary, phosphate glass fibres can promote directional growth of axons in cases of peripheral nerve injury by acting as physical guides.
Collapse
Affiliation(s)
- Young-Phil Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea; Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Daud MF, Pawar KC, Claeyssens F, Ryan AJ, Haycock JW. An aligned 3D neuronal-glial co-culture model for peripheral nerve studies. Biomaterials 2012; 33:5901-13. [DOI: 10.1016/j.biomaterials.2012.05.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/05/2012] [Indexed: 01/15/2023]
|
186
|
Jiang X, Mi R, Hoke A, Chew SY. Nanofibrous nerve conduit-enhanced peripheral nerve regeneration. J Tissue Eng Regen Med 2012; 8:377-85. [PMID: 22700359 DOI: 10.1002/term.1531] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/28/2012] [Accepted: 04/04/2012] [Indexed: 11/09/2022]
Abstract
Fibre structures represent a potential class of materials for the formation of synthetic nerve conduits due to their biomimicking architecture. Although the advantages of fibres in enhancing nerve regeneration have been demonstrated, in vivo evaluation of fibre size effect on nerve regeneration remains limited. In this study, we analyzed the effects of fibre diameter of electrospun conduits on peripheral nerve regeneration across a 15-mm critical defect gap in a rat sciatic nerve injury model. By using an electrospinning technique, fibrous conduits comprised of aligned electrospun poly (ε-caprolactone) (PCL) microfibers (981 ± 83 nm, Microfiber) or nanofibers (251 ± 32 nm, Nanofiber) were obtained. At three months post implantation, axons regenerated across the defect gap in all animals that received fibrous conduits. In contrast, complete nerve regeneration was not observed in the control group that received empty, non-porous PCL film conduits (Film). Nanofiber conduits resulted in significantly higher total number of myelinated axons and thicker myelin sheaths compared to Microfiber and Film conduits. Retrograde labeling revealed a significant increase in number of regenerated dorsal root ganglion sensory neurons in the presence of Nanofiber conduits (1.93 ± 0.71 × 10(3) vs. 0.98 ± 0.30 × 10(3) in Microfiber, p < 0.01). In addition, the compound muscle action potential (CMAP) amplitudes were higher and distal motor latency values were lower in the Nanofiber conduit group compared to the Microfiber group. This study demonstrated the impact of fibre size on peripheral nerve regeneration. These results could provide useful insights for future nerve guide designs.
Collapse
Affiliation(s)
- Xu Jiang
- Nanyang Technological University, School of Chemical & Biomedical Engineering, Singapore, 637459, Singapore
| | | | | | | |
Collapse
|
187
|
Wallin P, Zandén C, Carlberg B, Hellström Erkenstam N, Liu J, Gold J. A method to integrate patterned electrospun fibers with microfluidic systems to generate complex microenvironments for cell culture applications. BIOMICROFLUIDICS 2012; 6:24131. [PMID: 23781291 PMCID: PMC3391307 DOI: 10.1063/1.4729747] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 06/01/2012] [Indexed: 05/14/2023]
Abstract
The properties of a cell's microenvironment are one of the main driving forces in cellular fate processes and phenotype expression invivo. The ability to create controlled cell microenvironments invitro becomes increasingly important for studying or controlling phenotype expression in tissue engineering and drug discovery applications. This includes the capability to modify material surface properties within well-defined liquid environments in cell culture systems. One successful approach to mimic extra cellular matrix is with porous electrospun polymer fiber scaffolds, while microfluidic networks have been shown to efficiently generate spatially and temporally defined liquid microenvironments. Here, a method to integrate electrospun fibers with microfluidic networks was developed in order to form complex cell microenvironments with the capability to vary relevant parameters. Spatially defined regions of electrospun fibers of both aligned and random orientation were patterned on glass substrates that were irreversibly bonded to microfluidic networks produced in poly-dimethyl-siloxane. Concentration gradients obtained in the fiber containing channels were characterized experimentally and compared with values obtained by computational fluid dynamic simulations. Velocity and shear stress profiles, as well as vortex formation, were calculated to evaluate the influence of fiber pads on fluidic properties. The suitability of the system to support cell attachment and growth was demonstrated with a fibroblast cell line. The potential of the platform was further verified by a functional investigation of neural stem cell alignment in response to orientation of electrospun fibers versus a microfluidic generated chemoattractant gradient of stromal cell-derived factor 1 alpha. The described method is a competitive strategy to create complex microenvironments invitro that allow detailed studies on the interplay of topography, substrate surface properties, and soluble microenvironment on cellular fate processes.
Collapse
Affiliation(s)
- Patric Wallin
- Department of Applied Physics, Biological Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
188
|
TONG HOWANG, WANG MIN. NEGATIVE VOLTAGE ELECTROSPINNING AND POSITIVE VOLTAGE ELECTROSPINNING OF TISSUE ENGINEERING SCAFFOLDS: A COMPARATIVE STUDY AND CHARGE RETENTION ON SCAFFOLDS. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s1793984411000384] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Positive voltage electrospinning (PVES) has been mainly used for forming fibrous polymer scaffolds for different applications including tissue engineering. There is virtually no report on negative voltage electrospinning (NVES) of tissue engineering scaffolds. In this study, NVES of four biopolymers, namely, gelatin, chitosan, poly(lactic-co-glycolic acid) (PLGA), and polybutylene terephthalate (PBT), to form nanofibrous membranes was systematically investigated. For comparisons, PVES of these polymers was also conducted. It was found that chitosan fibers could not be produced using NVES. Under NVES or PVES, the fiber diameter of electrospun scaffolds generally increased with increasing needle inner diameter and polymer solution concentration but decreased with increasing working distance for all four polymers. Neither NVES nor PVES altered the chemical structure of gelatin, PLGA, and PBT. PVES and NVES resulted in fibrous membranes bearing positive charges and negative charges, respectively. PLGA and PBT fibrous membranes retained around 30% and 50%, respectively, of the initial charge one week after electrospinning. Charges on gelatin and chitosan fibrous membranes were almost completely dissipated within 60 min of electrospinning. For all four polymers, under either PVES or NVES, the retained charges on fibrous membranes increased with increasing applied electrospinning voltage. This study explored a new approach for forming fibrous scaffolds by using NVES and has opened a new area for developing negatively charged fibrous scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- HO-WANG TONG
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - MIN WANG
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
189
|
Wang TY, Forsythe JS, Parish CL, Nisbet DR. Biofunctionalisation of polymeric scaffolds for neural tissue engineering. J Biomater Appl 2012; 27:369-90. [DOI: 10.1177/0885328212443297] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Patients who experience injury to the central or peripheral nervous systems invariably suffer from a range of dysfunctions due to the limited ability for repair and reconstruction of damaged neural tissue. Whilst some treatment strategies can provide symptomatic improvement of motor and cognitive function, they fail to repair the injured circuits and rarely offer long-term disease modification. To this end, the biological molecules, used in combination with neural tissue engineering scaffolds, may provide feasible means to repair damaged neural pathways. This review will focus on three promising classes of neural tissue engineering scaffolds, namely hydrogels, electrospun nanofibres and self-assembling peptides. Additionally, the importance and methods for presenting biologically relevant molecules such as, neurotrophins, extracellular matrix proteins and protein-derived sequences that promote neuronal survival, proliferation and neurite outgrowth into the lesion will be discussed.
Collapse
Affiliation(s)
- TY Wang
- Department of Materials Engineering, Monash University, Victoria, Australia
| | - JS Forsythe
- Department of Materials Engineering, Monash University, Victoria, Australia
| | - CL Parish
- Florey Neuroscience Institute and Centre for Neuroscience, The University of Melbourne, Victoria, Australia
| | - DR Nisbet
- Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| |
Collapse
|
190
|
Liu T, Houle JD, Xu J, Chan BP, Chew SY. Nanofibrous collagen nerve conduits for spinal cord repair. Tissue Eng Part A 2012; 18:1057-66. [PMID: 22220714 DOI: 10.1089/ten.tea.2011.0430] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nerve regeneration in an injured spinal cord is often restricted, contributing to the devastating outcome of neurologic impairment below the site of injury. Although implantation of tissue-engineered scaffolds has evolved as a potential treatment method, the outcomes remain sub-optimal. One possible reason may be the lack of topographical signals from these constructs to provide contact guidance to invading cells or regrowing axons. Nanofibers mimic the natural extracellular matrix architecturally and may therefore promote physiologically relevant cellular phenotypes. In this study, the potential application of electrospun collagen nanofibers (diameter=208.2±90.4 nm) for spinal cord injury (SCI) treatment was evaluated in vitro and in vivo. Primary rat astrocytes and dorsal root ganglias (DRGs) were seeded on collagen-coated glass cover slips (two-dimensional [2D] substrate controls), and randomly oriented or aligned collagen fibers to evaluate scaffold topographical effects on astrocyte behavior and neurite outgrowth, respectively. When cultured on collagen nanofibers, astrocyte proliferation and expression of glial fibrillary acidic protein (GFAP) were suppressed as compared to cells on 2D controls at days 3 (p<0.05) and 7 (p<0.01). Aligned fibers resulted in elongated astrocytes (elongation factor >4, p<0.01) and directed the orientation of neurite outgrowth from DRGs along fiber axes. In the contrast, neurites emanated radially on randomly oriented collagen fibers. By forming collagen scaffolds into spiral tubular structures, we demonstrated the feasibility of using electrospun nanofibers for the treatment of acute SCI using a rat hemi-section model. At days 10 and 30 postimplantation, extensive cellular penetration into the constructs was observed regardless of fiber orientation. However, scaffolds with aligned fibers appeared more structurally intact at day 30. ED1 immunofluorescent staining revealed macrophage invasion by day 10, which decreased significantly by day 30. Neural fiber sprouting as evaluated by neurofilament staining was observed as early as day 10. In addition, GFAP immunostained astrocytes were found only at the boundary of the lesion site, and no astrocyte accumulation was observed in the implantation area at any time point. These findings indicate the feasibility of fabricating 3D spiral constructs using electrospun collagen fibers and demonstrated the potential of these scaffolds for SCI repair.
Collapse
Affiliation(s)
- Ting Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | | | | | | | | |
Collapse
|
191
|
Naik AK, Latham JR, Obradovic A, Jevtovic-Todorovic V. Dorsal root ganglion application of muscimol prevents hyperalgesia and stimulates myelin protein expression after sciatic nerve injury in rats. Anesth Analg 2011; 114:674-82. [PMID: 22190549 DOI: 10.1213/ane.0b013e31823fad7e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Peripheral nerve injuries may result in debilitating pain that is poorly responsive to conventional treatment. Neuropathic pain induced by peripheral nerve injury is caused, in part, by ectopic discharges from the injury site or the dorsal root ganglia (DRG) resulting in enhanced central input and central hyperexcitability. A heterogeneous family of γ-aminobutyric acid (GABA)(A) channels is important in quieting neuronal excitability. We have recently reported that in vivo modulation of GABAergic neurons in DRG can alter the course of neuropathic pain development after peripheral nerve injury. It seems that direct application of a potent GABA(A) agonist, muscimol, to the ipsilateral DRG prevents the development of hyperalgesia in rats subjected to a sciatic nerve crush injury. In addition to potentially curtailing hyperexcitability, GABAergic stimulation upregulated expression of peripheral myelin protein 22 (PMP22), a key component of the basal lamina. PMP22 expression correlates with peripheral myelin formation and nerve regeneration. METHODS Because of the importance of PMP22 for the formation and stability of myelin, and the fact that PMP22 expression could be GABAergically modulated, we examined whether direct DRG application of muscimol can restore PMP22 protein expression and the integrity of nerve fibers after crush injury of a sciatic nerve. RESULTS Using adult female rats and a crush injury model, we found that GABAergic modulation in the ipsilateral DRG restores PMP22 protein expression in the distal segment of the sciatic nerve and improves myelin stability in the basal membrane of nerve fibers, thus giving the morphological appearance of lessened nerve injury or faster nerve fiber regeneration. Both the enhanced PMP22 protein expression and morphological improvements coincide with the abolishment of thermal and mechanical hypersensitivity. CONCLUSIONS The DRG could be a promising therapeutic target in nerve regeneration and pain alleviation after crush injury of a myelinated peripheral nerve.
Collapse
Affiliation(s)
- Ajit K Naik
- Department of Anesthesiology, University of Virginia Health System, PO Box 800710, Charlottesville, VA 22980, USA
| | | | | | | |
Collapse
|
192
|
Bell JHA, Haycock JW. Next generation nerve guides: materials, fabrication, growth factors, and cell delivery. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:116-28. [PMID: 22010760 DOI: 10.1089/ten.teb.2011.0498] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nerve guides are increasingly being used surgically to repair acute peripheral nerve injuries. This is not only due to an increase in the number of commercially available devices, but also clinical acceptance. However, regeneration distance is typically limited to 20-25 mm, in part due to the basic tubular design. A number of experimental studies have shown improvements in nerve regeneration distance when conduits incorporate coatings, internal scaffolds, topographical cues, or the delivery of support cells. Current studies on designing nerve guides for maximizing nerve regeneration focus both on cell-containing and cell-free devices, the latter being clinically attractive as "off the shelf" products. Arguably better results are obtained when conduits are used in conjunction with support cells (e.g., Schwann cells or stem cells) that can improve regeneration distance and speed of repair, and provide informative experimental data on how Schwann and neuronal cells respond in regenerating injured nerves. In this review we discuss the range of current nerve guides commercially available and appraise experimental studies in the context of the future design of nerve guides for clinical use.
Collapse
Affiliation(s)
- Juliet H A Bell
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
193
|
Schaub NJ, Gilbert RJ. Controlled release of 6-aminonicotinamide from aligned, electrospun fibers alters astrocyte metabolism and dorsal root ganglia neurite outgrowth. J Neural Eng 2011; 8:046026. [PMID: 21730749 DOI: 10.1088/1741-2560/8/4/046026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Following central nervous system (CNS) injury, activated astrocytes form a glial scar that inhibits the migration of axons ultimately leading to regeneration failure. Biomaterials developed for CNS repair can provide local delivery of therapeutics and/or guidance mechanisms to encourage cell migration into damaged regions of the brain or spinal cord. Electrospun fibers are a promising type of biomaterial for CNS injury since these fibers can direct cellular and axonal migration while slowly delivering therapy to the injury site. In this study, it was hypothesized that inclusion of an anti-metabolite, 6-aminonicotinamide (6AN), within poly-l-lactic acid electrospun fibers could attenuate astrocyte metabolic activity while still directing axonal outgrowth. Electrospinning parameters were varied to produce highly aligned electrospun fibers that contained 10% or 20% (w/w) 6AN. 6AN release from the fiber substrates occurred continuously over 2 weeks. Astrocytes placed onto drug-releasing fibers were less active than those cultured on scaffolds without 6AN. Dorsal root ganglia placed onto control and drug-releasing scaffolds were able to direct neurites along the aligned fibers. However, neurite outgrowth was stunted by fibers that contained 20% 6AN. These results show that 6AN release from aligned, electrospun fibers can decrease astrocyte activity while still directing axonal outgrowth.
Collapse
Affiliation(s)
- Nicholas J Schaub
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931-1295, USA
| | | |
Collapse
|
194
|
Scott JB, Afshari M, Kotek R, Saul JM. The promotion of axon extension in vitro using polymer-templated fibrin scaffolds. Biomaterials 2011; 32:4830-9. [DOI: 10.1016/j.biomaterials.2011.03.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/18/2011] [Indexed: 01/03/2023]
|
195
|
Ulery BD, Nair LS, Laurencin CT. Biomedical Applications of Biodegradable Polymers. JOURNAL OF POLYMER SCIENCE. PART B, POLYMER PHYSICS 2011; 49:832-864. [PMID: 21769165 PMCID: PMC3136871 DOI: 10.1002/polb.22259] [Citation(s) in RCA: 1193] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Bret D. Ulery
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Lakshmi S. Nair
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| | - Cato T. Laurencin
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| |
Collapse
|
196
|
Hurtado A, Cregg JM, Wang HB, Wendell DF, Oudega M, Gilbert RJ, McDonald JW. Robust CNS regeneration after complete spinal cord transection using aligned poly-L-lactic acid microfibers. Biomaterials 2011; 32:6068-79. [PMID: 21636129 DOI: 10.1016/j.biomaterials.2011.05.006] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/01/2011] [Indexed: 11/29/2022]
Abstract
Following spinal cord injury, axons fail to regenerate without exogenous intervention. In this study we report that aligned microfiber-based grafts foster robust regeneration of vascularized CNS tissue. Film, random, and aligned microfiber-based conduits were grafted into a 3 mm thoracic rat spinal cord gap created by complete transection. Over the course of 4 weeks, microtopography presented by aligned or random poly-L-lactic acid microfibers facilitated infiltration of host tissue, and the initial 3 mm gap was closed by endogenous cell populations. This bulk tissue response was composed of regenerating axons accompanied by morphologically aligned astrocytes. Aligned fibers promoted long distance (2055 ± 150 μm), rostrocaudal axonal regeneration, significantly greater than random fiber (1162 ± 87 μm) and film (413 ± 199 μm) controls. Retrograde tracing indicated that regenerating axons originated from propriospinal neurons of the rostral spinal cord, and supraspinal neurons of the reticular formation, red nucleus, raphe and vestibular nuclei. Our findings outline a form of regeneration within the central nervous system that holds important implications for regeneration biology.
Collapse
Affiliation(s)
- Andres Hurtado
- International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
197
|
Surface-modified nanofibrous biomaterial bridge for the enhancement and control of neurite outgrowth. Biointerphases 2011; 5:149-58. [PMID: 21219036 DOI: 10.1116/1.3526140] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biomaterial bridges constructed from electrospun fibers offer a promising alternative to traditional nerve tissue regeneration substrates. Aligned and unaligned polycaprolactone (PCL) electrospun fibers were prepared and functionalized with the extracellular matrix proteins collagen and laminin using covalent and physical adsorption attachment chemistries. The effect of the protein modified and native PCL nanofiber scaffolds on cell proliferation, neurite outgrowth rate, and orientation was examined with neuronlike PC12 cells. All protein modified scaffolds showed enhanced cellular adhesion and neurite outgrowth compared to unmodified PCL scaffolds. Neurite orientation was found to be in near perfect alignment with the fiber axis for cells grown on aligned fibers, with difference angles of less than 7° from the fiber axis, regardless of the surface chemistry. The bioavailability of PCL fibers with covalently attached laminin was found to be identical to that of PCL fibers with physically adsorbed laminin, indicating that the covalent chemistry did not change the protein conformation into a less active form and the covalent attachment of protein is a suitable method for enhancing the biocompatibility of tissue engineering scaffolds.
Collapse
|
198
|
Hsiang SW, Tsai CC, Tsai FJ, Ho TY, Yao CH, Chen YS. Novel use of biodegradable casein conduits for guided peripheral nerve regeneration. J R Soc Interface 2011; 8:1622-34. [PMID: 21525148 DOI: 10.1098/rsif.2011.0009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent advances in nerve repair technology have focused on finding more biocompatible, non-toxic materials to imitate natural peripheral nerve components. In this study, casein protein cross-linked with naturally occurring genipin (genipin-cross-linked casein (GCC)) was used for the first time to make a biodegradable conduit for peripheral nerve repair. The GCC conduit was dark blue in appearance with a concentric and round lumen. Water uptake, contact angle and mechanical tests indicated that the conduit had a high stability in water and did not collapse and cramped with a sufficiently high level of mechanical properties. Cytotoxic testing and terminal deoxynucleotidyl transferase dUTP nick-end labelling assay showed that the GCC was non-toxic and non-apoptotic, which could maintain the survival and outgrowth of Schwann cells. Non-invasive real-time nuclear factor-κB bioluminescence imaging accompanied by histochemical assessment showed that the GCC was highly biocompatible after subcutaneous implantation in transgenic mice. Effectiveness of the GCC conduit as a guidance channel was examined as it was used to repair a 10 mm gap in the rat sciatic nerve. Electrophysiology, labelling of calcitonin gene-related peptide in the lumbar spinal cord, and histology analysis all showed a rapid morphological and functional recovery for the disrupted nerves. Therefore, we conclude that the GCC can offer great nerve regeneration characteristics and can be a promising material for the successful repair of peripheral nerve defects.
Collapse
Affiliation(s)
- Shih-Wei Hsiang
- Laboratory of Biomaterials, School of Chinese Medicine, China Medical University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
199
|
Li N, Xiong J, Xue H. Effect of wheel rotating speed and LiCl additives on electrospun aligned polyacrylonitrile nanofiber. POLYM ENG SCI 2011. [DOI: 10.1002/pen.21989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
200
|
Wang W, Lin JH, Tsai CC, Chuang HC, Ho CY, Yao CH, Chen YS. Biodegradable Glutaraldehyde-crosslinked Casein Conduit Promotes Regeneration after Peripheral Nerve Injury in Adult Rats. Macromol Biosci 2011; 11:914-26. [DOI: 10.1002/mabi.201000498] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 03/18/2011] [Indexed: 12/18/2022]
|