151
|
Molteni C, La Motta C, Valoppi F. Improving the Bioaccessibility and Bioavailability of Carotenoids by Means of Nanostructured Delivery Systems: A Comprehensive Review. Antioxidants (Basel) 2022; 11:antiox11101931. [PMID: 36290651 PMCID: PMC9598319 DOI: 10.3390/antiox11101931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Carotenoids are bioactive compounds provided by the diet playing a key role in maintaining human health. Therefore, they should be ingested daily in an adequate amount. However, even a varied and well-balanced diet does not guarantee an adequate intake, as both the bioaccessibility and bioavailability of the compounds significantly affect their absorption. This review summarizes the main results achieved in improving the bioaccessibility and bioavailability of carotenoids by means of nanostructured delivery systems, discussing in detail the available lipid-based and biopolymeric nanocarriers at present, with a focus on their formulation and functional efficiency. Although the toxicity profile of these innovative delivery systems is not fully understood, especially for long-term intake, these systems are an effective and valuable approach to increase the availability of compounds of nutritional interest.
Collapse
Affiliation(s)
- Camilla Molteni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2219593
| | - Fabio Valoppi
- Department of Food and Nutrition, University of Helsinki, PL 66, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland
- Faculty of Agriculture and Forestry, Helsinki Institute of Sustainability Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Physics, University of Helsinki, PL 64, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland
| |
Collapse
|
152
|
Antioxidant and Physical Properties of Dual-Networked Contact Lenses Containing Quercetin Using Chitosan and Alginate. Macromol Res 2022. [DOI: 10.1007/s13233-022-0098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
153
|
Cai D, Yang Y, Lu J, Yuan Z, Zhang Y, Yang X, Huang X, Li T, Tian X, Xu B, Wang P, Lei H. Injectable Carrier-Free Hydrogel Dressing with Anti-Multidrug-Resistant Staphylococcus aureus and Anti-Inflammatory Capabilities for Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43035-43049. [PMID: 36124878 DOI: 10.1021/acsami.2c15463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibacterial hydrogels have gradually become a powerful weapon to treat bacterially infected wounds and accelerate healing. In this paper, we designed a small-molecule self-healing antibacterial hydrogel containing 100% drug-loaded benzyl 3β-amino-11-oxo-olean-12-en-30-oate (GN-Bn), which was governed by π-π stacking, hydrogen bonding, and van der Waals forces. Due to the carrier-free design concept, the problems of interbatch variability during sample preparation and carrier-related toxicity can be effectively avoided. Moreover, the GN-Bn hydrogel exhibited promising antibacterial activities against multidrug-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration (MIC) of the GN-Bn hydrogel was 1.5625 nmol/mL, which was lower than those against clinical agents such as norfloxacin, penicillin, and tetracycline. This is attributed to its unique antibacterial mechanism that aims at killing bacteria or preventing their growth by regulating arginine biosynthesis and metabolism through both transcriptomic (RNA-seq) analysis and quantitative polymerase chain reaction (qPCR) analysis. In addition, the GN-Bn hydrogel can also inhibit proinflammatory cytokines (TNF-α, IL-1β, and IL-6) to promote wound healing. Collectively, the GN-Bn hydrogel elicited dual therapeutic effects on an MRSA-infected full-thickness skin wound model through its antibacterial and anti-inflammatory activities, which is attributed to the fact that the GN-Bn hydrogel has multiple advantages including sufficient mechanical stability, biocompatibility, and unique antibacterial mechanisms, making it significantly accelerate MRSA-infected full-thickness skin wound healing as a wound dressing. In a word, the GN-Bn antibacterial hydrogel dressing with an anti-inflammatory and antibacterial bifunctional material holds great potential in clinical application.
Collapse
Affiliation(s)
- Desheng Cai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Yuqin Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Zhihua Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Yaozhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xiaoyun Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Tong Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xuehao Tian
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| |
Collapse
|
154
|
Tapia Hernandez R, Lee MC, Yadav AK, Chan J. Repurposing Cyanine Photoinstability To Develop Near-Infrared Light-Activatable Nanogels for In Vivo Cargo Delivery. J Am Chem Soc 2022; 144:18101-18108. [PMID: 36153991 PMCID: PMC10088867 DOI: 10.1021/jacs.2c08187] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The favorable properties of cyanines (e.g., near-infrared (NIR) absorbance and emission) have made this class of dyes popular for a wide variety of biomedical applications. However, many cyanines are prone to rapid photobleaching when irradiated with light. In this study, we have exploited this undesirable trait to develop NIR-nanogels for NIR light-mediated cargo delivery. NIR-nanogels feature a photolabile cyanine cross-linker (Cy780-Acryl) that can cleave via dioxetane chemistry when irradiated. This photochemical process results in the formation of two carbonyl fragments and concomitant NIR-nanogel degradation to facilitate cargo release. In contrast to studies where cyanines are utilized as photocages, our approach does not require direct chemical attachment to the cargo, thus expanding our ability to deliver molecules that cannot be covalently modified. We showcase this feature by encapsulating a palette of small-molecule chemotherapeutics that feature a structurally diverse chemical architecture. To demonstrate site-selective release in vivo, we generated a murine model of breast cancer. Relative to nonlight irradiated and drug-free controls, treatment with NIR-nanogels loaded with paclitaxel (a potent cytotoxic agent) and NIR light resulted in significant attenuation of tumor growth. Moreover, we show via histological staining of the vital organs that minimal off-target effects are observed.
Collapse
Affiliation(s)
- Rodrigo Tapia Hernandez
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael C Lee
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Anuj K Yadav
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
155
|
Jindal S, Awasthi R, Goyal K, Kulkarni GT. Hydrogels for localized drug delivery: A special emphasis on dermatologic applications. Dermatol Ther 2022; 35:e15830. [DOI: 10.1111/dth.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/06/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Shammy Jindal
- Laureate Institute of Pharmacy, Kathog Jawalamukhi Himachal Pradesh India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences School of Health Sciences & Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, P.O. Bidholi, Via‐Prem Nagar Dehradun Uttarakhand India
| | - Kamya Goyal
- Laureate Institute of Pharmacy, Kathog Jawalamukhi Himachal Pradesh India
| | | |
Collapse
|
156
|
Karimzadeh Z, Jouyban A, Ostadi A, Gharakhani A, Rahimpour E. A sensitive determination of morphine in plasma using AuNPs@UiO-66/PVA hydrogel as an advanced optical scaffold. Anal Chim Acta 2022; 1227:340252. [DOI: 10.1016/j.aca.2022.340252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/01/2022]
|
157
|
Yeingst TJ, Arrizabalaga JH, Hayes DJ. Ultrasound-Induced Drug Release from Stimuli-Responsive Hydrogels. Gels 2022; 8:554. [PMID: 36135267 PMCID: PMC9498906 DOI: 10.3390/gels8090554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/16/2022] Open
Abstract
Stimuli-responsive hydrogel drug delivery systems are designed to release a payload when prompted by an external stimulus. These platforms have become prominent in the field of drug delivery due to their ability to provide spatial and temporal control for drug release. Among the different external triggers that have been used, ultrasound possesses several advantages: it is non-invasive, has deep tissue penetration, and can safely transmit acoustic energy to a localized area. This review summarizes the current state of understanding about ultrasound-responsive hydrogels used for drug delivery. The mechanisms of inducing payload release and activation using ultrasound are examined, along with the latest innovative formulations and hydrogel design strategies. We also report on the most recent applications leveraging ultrasound activation for both cancer treatment and tissue engineering. Finally, the future perspectives offered by ultrasound-sensitive hydrogels are discussed.
Collapse
Affiliation(s)
- Tyus J. Yeingst
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Julien H. Arrizabalaga
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Daniel J. Hayes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- Materials Research Institute, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- The Huck Institute of the Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| |
Collapse
|
158
|
Hydrogels: potential aid in tissue engineering—a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03864-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
159
|
Faria M, Cunha C, Gomes M, Mendonça I, Kaufmann M, Ferreira A, Cordeiro N. Bacterial cellulose biopolymers: The sustainable solution to water-polluting microplastics. WATER RESEARCH 2022; 222:118952. [PMID: 35964508 DOI: 10.1016/j.watres.2022.118952] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) pollution has become one of our time's most consequential issue. These micropolymeric particles are ubiquitously distributed across all natural and urban ecosystems. Current filtration systems in wastewater treatment plants (WWTPs) rely on non-biodegradable fossil-based polymeric filters whose maintenance procedures are environmentally damaging and unsustainable. Following the need to develop sustainable filtration frameworks for MPs water removal, years of R&D lead to the conception of bacterial cellulose (BC) biopolymers. These bacterial-based naturally secreted polymers display unique features for biotechnological applications, such as straightforward production, large surface areas, nanoporous structures, biodegradability, and utilitarian circularity. Diligently, techniques such as flow cytometry, scanning electron microscopy and fluorescence microscopy were used to evaluate the feasibility and characterise the removal dynamics of highly concentrated MPs-polluted water by BC biopolymers. Results show that BC biopolymers display removal efficiencies of MPs of up to 99%, maintaining high performance for several continuous cycles. The polymer's characterisation showed that MPs were both adsorbed and incorporated in the 3D nanofibrillar network. The use of more economically- and logistics-favourable dried BC biopolymers preserves their physicochemical properties while maintaining high efficiency (93-96%). These polymers exhibited exceptional structural preservation, conserving a high water uptake capacity which drives microparticle retention. In sum, this study provides clear evidence that BC biopolymers are high performing, multifaceted and genuinely sustainable/circular alternatives to synthetic water treatment MPs-removal technologies.
Collapse
Affiliation(s)
- Marisa Faria
- LB3-Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - César Cunha
- LB3-Faculty of Science and Engineering, University of Madeira, Portugal
| | - Madalena Gomes
- LB3-Faculty of Science and Engineering, University of Madeira, Portugal
| | - Ivana Mendonça
- LB3-Faculty of Science and Engineering, University of Madeira, Portugal
| | - Manfred Kaufmann
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; Marine Biology Station of Funchal, Faculty of Life Sciences, University of Madeira, Portugal
| | - Artur Ferreira
- CICECO-Aveiro Institute of Materials and Águeda School of Technology and Management, University of Aveiro, Portugal
| | - Nereida Cordeiro
- LB3-Faculty of Science and Engineering, University of Madeira, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.
| |
Collapse
|
160
|
Li C, Li Y, Li G, Wu S. Functional Nanoparticles for Enhanced Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081682. [PMID: 36015307 PMCID: PMC9412412 DOI: 10.3390/pharmaceutics14081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is the leading cause of death in people worldwide. The conventional therapeutic approach is mainly based on chemotherapy, which has a series of side effects. Compared with traditional chemotherapy drugs, nanoparticle-based delivery of anti-cancer drugs possesses a few attractive features. The application of nanotechnology in an interdisciplinary manner in the biomedical field has led to functional nanoparticles achieving much progress in cancer therapy. Nanoparticles have been involved in the diagnosis and targeted and personalized treatment of cancer. For example, different nano-drug strategies, including endogenous and exogenous stimuli-responsive, surface conjugation, and macromolecular encapsulation for nano-drug systems, have successfully prevented tumor procession. The future for functional nanoparticles is bright and promising due to the fast development of nanotechnology. However, there are still some challenges and limitations that need to be considered. Based on the above contents, the present article analyzes the progress in developing functional nanoparticles in cancer therapy. Research gaps and promising strategies for the clinical application are discussed.
Collapse
Affiliation(s)
- Chenchen Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Yuqing Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Correspondence: (G.L.); (S.W.)
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
- Correspondence: (G.L.); (S.W.)
| |
Collapse
|
161
|
Shi H, Zhu Y, Xing C, Li S, Bao Z, Lei L, Lin D, Wang Y, Chen H, Xu X. An injectable thermosensitive hydrogel for dual delivery of diclofenac and Avastin® to effectively suppress inflammatory corneal neovascularization. Int J Pharm 2022; 625:122081. [PMID: 35934166 DOI: 10.1016/j.ijpharm.2022.122081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 10/16/2022]
Abstract
Corneal neovascularization (CNV) is a sequela of anterior segment inflammation, which could lead to vision impairment and even blindness. In the present study, the dual delivery of anti-inflammatory agent (i.e., diclofenac; DIC) and anti-VEGF antibody (i.e., Avastin®; Ava) by the thermosensitive hydrogel (Poly(dl-lactide)-poly(ethylene glycol)-poly(dl-lactide); PDLLA-PEG-PDLLA) is expected to effectively inhibit CNV via their synergistic effects. The optimal DIC micelles were formulated and then mixed with Ava and PDLLA-PEG-PDLLA aqueous solution to generate various DIC@Ava-loaded hydrogels. The co-encapsulation of DIC micelles and Ava did not influence the gelling behavior of the system, and the resulting DIC@Ava-loaded hydrogel provided sustained drug release of both DIC and Ava without compromising their pharmacological activity over 19 days. As indicated by in vitro cytotoxicity and in vivo ocular biocompatibility test, the proposed PDLLA-PEG-PDLLA hydrogel caused minimal cytotoxicity against all tested cell lines at a polymeric concentration ranging from 0.05 mg/mL to 0.8 mg/mL and demonstrated good ocular biocompatibility after a single subconjunctival injection. Using the rabbit CNV model, we documented the superior anti-angiogenic effects of the DIC@Ava-loaded hydrogel over Ava alone medication (treatment with Ava solution and Ava-loaded hydrogel) due to synergistic effects of anti-VEGF and anti-inflammatory action. Overall, the proposed DIC@Ava-loaded hydrogel might be a powerful strategy to reduce CNV.
Collapse
|
162
|
Topuz F, Uyar T. Advances in the development of cyclodextrin-based nanogels/microgels for biomedical applications: Drug delivery and beyond. Carbohydr Polym 2022; 297:120033. [DOI: 10.1016/j.carbpol.2022.120033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 12/20/2022]
|
163
|
Kedir WM, Abdi GF, Goro MM, Tolesa LD. Pharmaceutical and drug delivery applications of chitosan biopolymer and its modified nanocomposite: A review. Heliyon 2022; 8:e10196. [PMID: 36042744 PMCID: PMC9420383 DOI: 10.1016/j.heliyon.2022.e10196] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
Due to their improved structural and functional properties as well as biocompatibility, biodegradability, and nontoxicity, chitosan and its nanoparticles are currently grasping the interest of researchers. Although numerous attempts have been made to apply chitosan and its derivatives to biological applications, few have reported in achieving its pharmacological and drug delivery. The goal of the current work is to provide a summary of the chitosan biopolymer's physical, chemical, and biological properties as well as its synthesis of nanoparticles and characterization of its modified nanocomposites. The drug delivery method and pharmaceutical applications of chitosan biopolymer and its modified nanocomposites are examined in further detail in this research. We will introduce also about the most current publications in this field of study as well as its recent expansion.
Collapse
Affiliation(s)
- Welela Meka Kedir
- Department of Chemistry, College of Natural and Computational Sciences, Mettu University, Mettu, Ethiopia
| | - Gamachu Fikadu Abdi
- Department of Chemistry, College of Natural and Computational Sciences, Mettu University, Mettu, Ethiopia
| | - Meta Mamo Goro
- Department of Chemistry, College of Natural and Computational Sciences, Mettu University, Mettu, Ethiopia
| | - Leta Deressa Tolesa
- Department of Chemistry, College of Natural and Computational Sciences, Mettu University, Mettu, Ethiopia
| |
Collapse
|
164
|
Ahmed YM, Orfali R, Hamad DS, Rateb ME, Farouk HO. Sustainable Release of Propranolol Hydrochloride Laden with Biconjugated-Ufasomes Chitosan Hydrogel Attenuates Cisplatin-Induced Sciatic Nerve Damage in In Vitro/In Vivo Evaluation. Pharmaceutics 2022; 14:1536. [PMID: 35893792 PMCID: PMC9394333 DOI: 10.3390/pharmaceutics14081536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injuries significantly impact patients' quality of life and poor functional recovery. Chitosan-ufasomes (CTS-UFAs) exhibit biomimetic features, making them a viable choice for developing novel transdermal delivery for neural repair. This study aimed to investigate the role of CTS-UFAs loaded with the propranolol HCl (PRO) as a model drug in enhancing sciatica in cisplatin-induced sciatic nerve damage in rats. Hence, PRO-UFAs were primed, embedding either span 20 or 60 together with oleic acid and cholesterol using a thin-film hydration process based on full factorial design (24). The influence of formulation factors on UFAs' physicochemical characteristics and the optimum formulation selection were investigated using Design-Expert® software. Based on the optimal UFA formulation, PRO-CTS-UFAs were constructed and characterized using transmission electron microscopy, stability studies, and ex vivo permeation. In vivo trials on rats with a sciatic nerve injury tested the efficacy of PRO-CTS-UFA and PRO-UFA transdermal hydrogels, PRO solution, compared to normal rats. Additionally, oxidative stress and specific apoptotic biomarkers were assessed, supported by a sciatic nerve histopathological study. PRO-UFAs and PRO-CTS-UFAs disclosed entrapment efficiency of 82.72 ± 2.33% and 85.32 ± 2.65%, a particle size of 317.22 ± 6.43 and 336.12 ± 4.9 nm, ζ potential of -62.06 ± 0.07 and 65.24 ± 0.10 mV, and accumulatively released 70.95 ± 8.14% and 64.03 ± 1.9% PRO within 6 h, respectively. Moreover, PRO-CTS-UFAs significantly restored sciatic nerve structure, inhibited the cisplatin-dependent increase in peripheral myelin 22 gene expression and MDA levels, and further re-established sciatic nerve GSH and CAT content. Furthermore, they elicited MBP re-expression, BCL-2 mild expression, and inhibited TNF-α expression. Briefly, our findings proposed that CTS-UFAs are promising to enhance PRO transdermal delivery to manage sciatic nerve damage.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Doaa S. Hamad
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| | - Mostafa E. Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hanan O. Farouk
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| |
Collapse
|
165
|
Ahmad A, Ahmad M, Minhas MU, Sarfraz M, Sohail M, Khan KU, Tanveer S, Ijaz S. Synthesis and Evaluation of Finasteride-Loaded HPMC-Based Nanogels for Transdermal Delivery: A Versatile Nanoscopic Platform. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2426960. [PMID: 35909483 PMCID: PMC9325624 DOI: 10.1155/2022/2426960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Herein, we report nanogels comprising diverse feed ratio of polymer hydroxypropyl methylcellulose (HPMC), monomer acrylic acid (AA), and cross-linker methylene bisacrylamide (MBA) fabricated for transdermal delivery of finasteride (FIN). Free radical solution polymerization method with subsequent condensation was employed for the synthesis using ammonium per sulfate (APS) and sodium hydrogen sulfite (SHS) as initiators. Carbopol-940 gel (CG) was formulated as assisting platform to deliver FIN nanogels transdermally. Developed formulations were evaluated by several in vitro, ex vivo, and in vivo parameters such as particle size and charge distribution analysis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffractogram (XRD), rheological testing, in vitro swelling and drug release, and ex vivo skin permeation, irritation, and toxicity assessment. The results endorsed the nanogel formation (117.3 ± 29.113 nm), and the impact of synthesizing method was signified by high yield of nanogels (≈91%). Efficient response for in vitro swelling and FIN release was revealed at pH 5.5 and 7.4. Skin irritation and toxicity assessment ensured the biocompatibility of prepared nanocomposites. On the basis of the results obtained, it can be concluded that the developed nanogels were stable with excellent drug permeation profile across skin.
Collapse
Affiliation(s)
- Aousaf Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
- Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Mahmood Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road Sargodha City, Punjab, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy Al Ain University, Al Ain Campus, Al Ain, UAE
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060 KPK, Pakistan
| | | | - Sana Tanveer
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | - Shakeel Ijaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
- Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| |
Collapse
|
166
|
Rosales TKO, Fabi JP. Nanoencapsulated anthocyanin as a functional ingredient: Technological application and future perspectives. Colloids Surf B Biointerfaces 2022; 218:112707. [PMID: 35907354 DOI: 10.1016/j.colsurfb.2022.112707] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/30/2022]
Abstract
Anthocyanins are an important group of phenolic compounds responsible for pigmentation in several plants, and regular consumption is associated with a reduced risk of several diseases. However, the application of anthocyanins in foods represents a challenge due to molecular instability. The encapsulation of anthocyanins in nanostructures is a viable way to protect from the factors responsible for degradation and enable the industrial application of these compounds. Nanoencapsulation is a set of techniques in which the bioactive molecules are covered by resistant biomaterials that protect them from chemical and biological factors during processing and storage. This review comprehensively summarizes the existing knowledge about the structure of anthocyanins and molecular stability, with a critical analysis of anthocyanins' nanoencapsulation, the main encapsulating materials (polysaccharides, proteins, and lipids), and techniques used in the formation of nanocarriers to protect anthocyanins. Some studies point to the effectiveness of nanostructures in maintaining anthocyanin stability and antioxidant activity. The main advantages of the application of nanoencapsulated anthocyanins in foods are the increase in the nutritional value of the food, the addition of color, the increase in food storage, and the possible increase in bioavailability after oral ingestion. Nanoencapsulation improves stability for anthocyanin, thus demonstrating the potential to be included in foods or used as dietary supplements, and current limitations, challenges, and future directions of anthocyanins' have also been discussed.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
167
|
Salari N, Faraji F, Torghabeh FM, Faraji F, Mansouri K, Abam F, Shohaimi S, Akbari H, Mohammadi M. Polymer-based drug delivery systems for anticancer drugs: A systematic review. Cancer Treat Res Commun 2022; 32:100605. [PMID: 35816909 DOI: 10.1016/j.ctarc.2022.100605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in nanotechnology sciences lead to the development of new treatment approaches for various diseases such as cancer. Nanotechnology advances can potentially minimize the side effects of drugs through the employment of effective and controlled drug delivery systems (DDSs). Polymers are optimal tools providing drug delivery mechanisms through the unique features of pharmacokinetics, circulation time, biocompatibility, and biodegradability. This systematic review aimed to evaluate polymer-based DDSs for anticancer drugs and their various therapeutic applications in cancer treatment. This study was conducted with no time limitation by November 2021. Related articles were collected through a deep search in English and Persian databases of SID, MagIran, Scopus, Web Of Science (WoS), PubMed, Science Direct, and Google Scholar. Keywords included drug delivery system, anticancer agent, polymeric nanostructure-based drug delivery, polymer-based drug delivery, and polymeric system. As the results showed, polymeric nanoparticles (PNPs) have influential roles in cancer treatment than conventional chemotherapy procedures. PNPs can reduce cytotoxicity following chemotherapy drug administration, improve the solubility characteristics of these therapeutic agents and inhibit the rate of tumor growth.
Collapse
Affiliation(s)
- Nader Salari
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Mansouri Torghabeh
- Department of Physiology Sciences, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Faraji
- Student research committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farzaneh Abam
- Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shamarina Shohaimi
- Department of Biology, Faculty of Science, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hakimeh Akbari
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Masoud Mohammadi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
| |
Collapse
|
168
|
Liu M, Chen Y, Zhu Q, Tao J, Tang C, Ruan H, Wu Y, Loh XJ. Antioxidant Thermogelling Formulation for Burn Wound Healing. Chem Asian J 2022; 17:e202200396. [DOI: 10.1002/asia.202200396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/13/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University 361102 Xiamen P. R. China
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University 361102 Xiamen P. R. China
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way Singapore 138634 Singapore
| | - Junjun Tao
- Zhejiang Fenix Health Science and Technology Co., Ltd. 176849 Zhejiang P. R. China
| | - Changming Tang
- Zhejiang Fenix Health Science and Technology Co., Ltd. 176849 Zhejiang P. R. China
| | - Huajun Ruan
- Zhejiang Fenix Health Science and Technology Co., Ltd. 176849 Zhejiang P. R. China
| | - Yunlong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University 361102 Xiamen P. R. China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way Singapore 138634 Singapore
| |
Collapse
|
169
|
Beyond particle stabilization of emulsions and foams: Proteins in liquid-liquida and liquid-gas interfaces. Adv Colloid Interface Sci 2022; 308:102743. [DOI: 10.1016/j.cis.2022.102743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 01/02/2023]
|
170
|
Use of Hydrogels to Regulate Orthodontic Tooth Movement in Animal Models: A Systematic Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The objective of this article is to conduct a systematic review of the literature to contrast the existing evidence regarding the use of hydrogels during and after experimental orthodontic treatment in animals. An extensive search was performed through the electronic databases, Medline, Web of Science and Scopus, from December 2020 to April 2021 for in vivo animal studies. A total of 282 studies were reviewed. Eight studies were included for final revision; four studies were conducted in rats, two in rabbits, one study in mice and one study in guinea pigs. The quality assessment of the eight included studies was performed according to the ARRIVE guidelines and the risk of bias was assessed using the Center for Systematic Review of Laboratory Animal Experimentation tool; in four of the eight articles evaluated, a high risk-of-bias rating was obtained in 40% of the criteria evaluated. In the studies reviewed, the hydrogel acted as a carrier, and inhibition (post-treatment retention) or acceleration of orthodontic tooth movement was assessed according to the active substance used in each of the articles. The uses of hydrogels for transporting active substances to regulate the rate of orthodontic tooth movement remains debatable. Future studies are suggested to evaluate the feasibility of hydrogel as a transport method in humans.
Collapse
|
171
|
Suhail M, Chiu IH, Hung MC, Vu QL, Lin IL, Wu PC. In Vitro Evaluation of Smart and pH-Sensitive Chondroitin Sulfate/Sodium Polystyrene Sulfonate Hydrogels for Controlled Drug Delivery. Gels 2022; 8:gels8070406. [PMID: 35877491 PMCID: PMC9323728 DOI: 10.3390/gels8070406] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Ibuprofen is an antipyretic and analgesic drug used for the management of different inflammatory diseases, such as rheumatoid arthritis and osteoarthritis. Due to a short half-life and rapid elimination, multiple doses of ibuprofen are required in a day to maintain pharmacological action for a long duration of time. Due to multiple intakes of ibuprofen, certain severe adverse effects, such as gastric irritation, bleeding, ulcers, and abdominal pain are produced. Therefore, a system is needed which not only prolongs the release of ibuprofen but also overcomes the drug’s adverse effects. Hence, the authors have synthesized chondroitin sulfate/sodium polystyrene sulfonate–co-poly(acrylic acid) hydrogels by the free radical polymerization technique for the controlled release of ibuprofen. Sol-gel, porosity, swelling, and drug release studies were performed on the fabricated hydrogel. The pH-responsive behavior of the fabricated hydrogel was determined by both swelling and drug release studies in three different pH values, i.e., pH 1.2, 4.6, and 7.4. Maximum swelling and drug release were observed at pH 7.4, as compared to pH 4.6 and 1.2. Similarly, the structural arrangement and crosslinking of the hydrogel contents were confirmed by Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) evaluated the hard and irregular surface with a few macrospores of the developed hydrogel, which may be correlated with the strong crosslinking of polymers with monomer content. Similarly, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated the high thermal stability of the formulated hydrogel, as compared to pure polymers. A decrease in the crystallinity of chondroitin sulfate and sodium polystyrene sulfonate after crosslinking was revealed by powder X-ray diffraction (PXRD). Thus, considering the results, we can demonstrate that a developed polymeric network of hydrogel could be used as a safe, stable, and efficient carrier for the controlled release of ibuprofen.
Collapse
Affiliation(s)
- Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (M.S.); (I.-H.C.); (M.-C.H.)
| | - I-Hui Chiu
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (M.S.); (I.-H.C.); (M.-C.H.)
| | - Ming-Chia Hung
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (M.S.); (I.-H.C.); (M.-C.H.)
| | - Quoc Lam Vu
- Department of Clinical Pharmacy, Thai Nguyen University of Medicine and Pharmacy, 284 Luong Ngoc Quyen Str., Thai Nguyen City 24000, Vietnam;
| | - I-Ling Lin
- Department of Medicine Laboratory Science and Biotechnology, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan; (M.S.); (I.-H.C.); (M.-C.H.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101
| |
Collapse
|
172
|
Ma X, Li SJ, Liu Y, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Bioengineered nanogels for cancer immunotherapy. Chem Soc Rev 2022; 51:5136-5174. [PMID: 35666131 DOI: 10.1039/d2cs00247g] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed increasingly rapid advances in nanocarrier-based biomedicine aimed at improving treatment paradigms for cancer. Nanogels serve as multipurpose and constructed vectors formed via intramolecular cross-linking to generate drug delivery systems, which is attributed predominantly to their satisfactory biocompatibility, bio-responsiveness, high stability, and low toxicity. Recently, immunotherapy has experienced unprecedented growth and has become the preferred strategy for cancer treatment, and mainly involves the mobilisation of the immune system and an enhanced anti-tumour immunity of the tumour microenvironment. Despite the inspiring success, immunotherapeutic strategies are limited due to the low response rates and immune-related adverse events. Like other nanomedicines, nanogels are comparably limited by lower focal enrichment rates upon introduction into the organism via injection. Because nanogels are three-dimensional cross-linked aqueous materials that exhibit similar properties to natural tissues and are structurally stable, they can comfortably cope with shear forces and serum proteins in the bloodstream, and the longer circulation life increases the chance of nanogel accumulation in the tumour, conferring deep tumour penetration. The large specific surface area can reduce or eliminate off-target effects by introducing stimuli-responsive functional groups, allowing multiple physical and chemical modifications for specific purposes to improve targeting to specific immune cell subpopulations or immune organs, increasing the bioavailability of the drug, and conferring a low immune-related adverse events on nanogel therapies. The slow release upon reaching the tumour site facilitates long-term awakening of the host's immune system, ultimately achieving enhanced therapeutic effects. As an effective candidate for cancer immunotherapy, nanogel-based immunotherapy has been widely used. In this review, we mainly summarize the recent advances of nanogel-based immunotherapy to deliver immunomodulatory small molecule drugs, antibodies, genes and cytokines, to target antigen presenting cells, form cancer vaccines, and enable chimeric antigen receptor (CAR)-T cell therapy. Future challenges as well as expected and feasible prospects for clinical treatment are also highlighted.
Collapse
Affiliation(s)
- Xianbin Ma
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Shu-Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Yuantong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Tian Zhang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Peng Xue
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Yuejun Kang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhigang Xu
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy & Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
173
|
Nizardo NM, Alimin DF, Lestari MLAD. Synthesis and characterization of dual-responsive poly(N-vinylcaprolactam-co-N-methylolacrylamide) nanogels. Des Monomers Polym 2022; 25:155-164. [PMID: 35711620 PMCID: PMC9196741 DOI: 10.1080/15685551.2022.2086412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This article reports the synthesis of poly(N-vinylcaprolactam-co-N-methylolacrylamide) (P(NVCL-co-NMA)) nanogels and investigates their thermo-/pH-responsive behavior. The formation of nanogels was synthesized using free radical emulsion polymerization by varying the monomer composition of NVCL:NMA, and their molecular structure was characterized by 1H-NMR and FTIR. It was found that the nanogels were successfully prepared, and the nanogels exhibited LCST-type phase transition behavior. Cloud point transition temperature (Tc) was studied as a function of copolymer composition, MBA concentration, and pH of the solution by exploring their changes in turbidity using UV-vis spectrophotometer. Our studies reveal that Tc nanogels increased with increasing concentration of NMA, which is due to the hydrophilicity of NMA. Our research also demonstrated that the increase in MBA percentage could decrease the Tc of the synthesized nanogels. Interestingly, P(NVCL-co-NMA) nanogels showed not only a thermoresponsive behavior but also a pH response with increasing Tc in a strong acidic environment owing to the H-bonds within the polymer chains. The results show that nanogels with initial monomer composition of NVCL and NMA of 75% and 25%, respectively, and using 4% of MBA showed Tc around 35°C at pH 7.4. In addition, DLS studies also confirmed this result since the particle sizes became much larger after surpassing the temperature of 35°C. Due to this founding, such nanogels might have potential application in controlled release. Nevertheless, further studies regarding the adjustment of Tc are still needed.
Collapse
Affiliation(s)
- Noverra M Nizardo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Dzul Fadli Alimin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
| | - Maria L A D Lestari
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
174
|
Fan R, Cheng Y, Wang R, Zhang T, Zhang H, Li J, Song S, Zheng A. Thermosensitive Hydrogels and Advances in Their Application in Disease Therapy. Polymers (Basel) 2022; 14:polym14122379. [PMID: 35745954 PMCID: PMC9227257 DOI: 10.3390/polym14122379] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Thermosensitive hydrogels, having unique sol–gel transition properties, have recently received special research attention. These hydrogels exhibit a phase transition near body temperature. This feature is the key to their applications in human medicine. In addition, hydrogels can quickly gel at the application site with simple temperature stimulation and without additional organic solvents, cross-linking agents, or external equipment, and the loaded drugs can be retained locally to improve the local drug concentration and avoid unexpected toxicity or side effects caused by systemic administration. All of these features have led to thermosensitive hydrogels being some of the most promising and practical drug delivery systems. In this paper, we review thermosensitive hydrogel materials with biomedical application potential, including natural and synthetic materials. We describe their structural characteristics and gelation mechanism and briefly summarize the mechanism of drug release from thermosensitive hydrogels. Our focus in this review was to summarize the application of thermosensitive hydrogels in disease treatment, including the postoperative recurrence of tumors, the delivery of vaccines, the prevention of postoperative adhesions, the treatment of nervous system diseases via nasal brain targeting, wound healing, and osteoarthritis treatment.
Collapse
Affiliation(s)
- Ranran Fan
- School of Pharmacy, Bengbu Medical College, Anhui 233030, China;
| | - Yi Cheng
- College of Pharmacy, Yanbian University, Jilin 133002, China;
| | - Rongrong Wang
- School of Pharmacy, North China University of Science and Technology, Hebei 063210, China;
| | - Ting Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Hui Zhang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China;
- Correspondence: (H.Z.); (J.L.); (S.S.)
| | - Jianchun Li
- School of Pharmacy, Bengbu Medical College, Anhui 233030, China;
- Correspondence: (H.Z.); (J.L.); (S.S.)
| | - Shenghan Song
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Correspondence: (H.Z.); (J.L.); (S.S.)
| | - Aiping Zheng
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China;
| |
Collapse
|
175
|
Synthesis and Hydrogelation of Star-Shaped Graft Copolypetides with Asymmetric Topology. Gels 2022; 8:gels8060366. [PMID: 35735710 PMCID: PMC9223145 DOI: 10.3390/gels8060366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
To study the self-assembly and hydrogel formation of the star-shaped graft copolypeptides with asymmetric topology, star-shaped poly(L-lysine) with various arm numbers were synthesized by using asymmetric polyglycerol dendrimers (PGDs) as the initiators and 1,1,3,3-tetramethylguanidine (TMG) as an activator for OH groups, followed by deprotection and grafting with indole or phenyl group on the side chain. The packing of the grafting moiety via non-covalent interactions not only facilitated the polypeptide segments to adopt more ordered conformations but also triggered the spontaneous hydrogelation. The hydrogelation ability was found to be correlated with polypeptide composition and topology. The star-shaped polypeptides with asymmetric topology exhibited poorer hydrogelation ability than those with symmetric topology due to the less efficient packing of the grafted moiety. The star-shaped polypeptides grafted with indole group on the side chain exhibited better hydrogelation ability than those grafted with phenyl group with the same arm number. This report demonstrated that the grafted moiety and polypeptide topology possessed the potential ability to modulate the polypeptide hydrogelation and hydrogel characteristics.
Collapse
|
176
|
Multi-responsive poly N-isopropylacrylamide/poly N-tert-butylacrylamide nanocomposite hydrogel with the ability to be adsorbed on the chitosan film as an active antibacterial material. Int J Biol Macromol 2022; 208:1019-1028. [PMID: 35381289 DOI: 10.1016/j.ijbiomac.2022.03.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/20/2022]
Abstract
Nanocomposite hydrogel composed of Poly N-isopropylacrylamide (PNIPAM), poly N-tert-Butylacrylamide (PBAM) and poly acrylic acid (PAA) was synthesized by free radical polymerization, and then thymol was embedded in it, to design an active antibacterial material that could control release. The characterization of products used SEM, AFM, FTIR, Zeta sizer to analyze the sensitivity of nanoparticles to pH, temperature and salt ions, and the agar diffusion method was used to determine the antibacterial effect of the polymers. The results showed that nanoparticles had pH, temperature and salt ion responsiveness, PNIPAM/PBAM (65:35) nanoparticles loaded thymol had longer release time (more than 24 h) at lower temperature than that (around 6 h) at high temperature. In addition, the nanoparticles could also be adsorbed on the chitosan film, which makes it have a wider range of applications. All thymol-loaded nanoparticles showed antibacterial activity against both B. subtilis and E. coli, while the chitosan film adsorbed nanoparticles showed weak effect, which was related to the controlled and slow release of bacteriostatic agents. Thus, these copolymers have potential value in the development and application of bacteriostatic packaging films for food.
Collapse
|
177
|
Kitayama Y, Yamada T, Kiguchi K, Yoshida A, Hayashi S, Akasaka H, Igarashi K, Nishimura Y, Matsumoto Y, Sasaki R, Takano E, Sunayama H, Takeuchi T. In vivo stealthified molecularly imprinted polymer nanogels incorporated with gold nanoparticles for radiation therapy. J Mater Chem B 2022; 10:6784-6791. [PMID: 35621050 DOI: 10.1039/d2tb00481j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Radiation therapy is a representative therapeutic approach for cancer treatment, wherein the development of efficient radiation sensitizers with low side effects is critical. In this study, a novel stealth radiation sensitizer based on Au-embedded molecularly imprinted polymer nanogels (Au MIP-NGs) was developed for low-dose X-ray radiation therapy. Surface plasmon resonance measurements reveal the good affinity and selectivity of the obtained Au MIP-NGs toward the target dysopsonic protein, human serum albumin. The protein recognition capability of the nanogels led to the formation of the albumin-rich protein corona in the plasma. The Au MIP-NGs acquire stealth capability in vivo through protein corona regulation using the intrinsic dysopsonic proteins. The injection of Au MIP-NGs improved the efficiency of the radiation therapy in mouse models of pancreatic cancer. The growth of the pancreatic tumor was inhibited even at low X-ray doses (2 Gy). The novel strategy reported in this study for the synthesis of stealth nanomaterials based on nanomaterial-protein interaction control shows significant potential for application even in other approaches for cancer treatment, diagnostics, and theranostics. This strategy paves a way for the development of a wide range of effective nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Yukiya Kitayama
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan. .,Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Takuya Yamada
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
| | - Kentaro Kiguchi
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
| | - Aoi Yoshida
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
| | - Shuhei Hayashi
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
| | - Hiroaki Akasaka
- Graduate School of Medicine, Kobe University, Chuo Ku, 7-5-1, Kusunoki Cho, Kobe, Hyogo, 650-0017, Japan
| | - Kazunori Igarashi
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuya Nishimura
- Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Yu Matsumoto
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryohei Sasaki
- Graduate School of Medicine, Kobe University, Chuo Ku, 7-5-1, Kusunoki Cho, Kobe, Hyogo, 650-0017, Japan
| | - Eri Takano
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
| | - Hirobumi Sunayama
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
| | - Toshifumi Takeuchi
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
| |
Collapse
|
178
|
Construction and Evaluation of Chitosan-Based Nanoparticles for Oral Administration of Exenatide in Type 2 Diabetic Rats. Polymers (Basel) 2022; 14:polym14112181. [PMID: 35683851 PMCID: PMC9183037 DOI: 10.3390/polym14112181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/20/2023] Open
Abstract
Oral delivery of therapeutic peptides has been a daunting challenge due to poor transport across the tight junctions and susceptibility to enzymatic degradation in the gastrointestinal tract. Numerous advancement in nanomedicine has been made for the effective delivery of protein and peptide. Owing to the superior performance of chitosan in opening intercellular tight junctions of epithelium and excellent mucoadhesive properties, chitosan-based nanocarriers have recently garnered considerable attention, which was formulated in this paper to orally deliver the GLP-1 drug (Exenatide). Against this backdrop, we used chitosan (CS) polymers to encapsulate the exenatide, sodium tripolyphosphate (TPP) as the cross-linking agent and coated the exterior with sodium alginate (ALG) to impart the stability in an acidic environment. The chitosan/alginate nanoparticles (CS-TPP-ALG) functioned as a protective exenatide carrier, realized efficient cellular uptake and controlled release, leading to a steady hypoglycemic effect and a good oral bioavailability in vivo. Trimethyl chitosan (TMC), a chitosan derivative with stronger positive electrical properties was additionally selected as a substitute for chitosan to construct the TMC-TPP-ALG nanoparticle, and its oral peptide delivery capacity was explored in terms of both characterization and pharmacodynamics studies. Overall, our study demonstrated that functional chitosan/alginate nanoparticles can protect proteins from enzymatic degradation and enhance oral absorption, which presents important research value and application prospects.
Collapse
|
179
|
Wang Q, Chan HN, Wu H. Replicating 3D printed structures into functional materials. J Appl Polym Sci 2022. [DOI: 10.1002/app.52655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qiaoyi Wang
- Department of Chemistry The Hong Kong University of Science and Technology Kowloon Hong Kong
| | - Ho Nam Chan
- Department of Chemistry The Hong Kong University of Science and Technology Kowloon Hong Kong
| | - Hongkai Wu
- Department of Chemistry The Hong Kong University of Science and Technology Kowloon Hong Kong
| |
Collapse
|
180
|
Quantifying How Drug-Polymer Interaction and Volume Phase Transition Modulate the Drug Release Kinetics from Core-Shell Microgels. Int J Pharm 2022; 622:121838. [PMID: 35597392 DOI: 10.1016/j.ijpharm.2022.121838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/23/2022] [Accepted: 05/14/2022] [Indexed: 12/30/2022]
Abstract
This paper presents a simple experimental-informed theory describing the drug release process from a temperature-responsive core-shell microgel. In stark contrast to the commonly employed power-law models, we couple electric, hydrophobic, and steric factors to characterize the impact of drug-polymer pair interaction on the release kinetics. To this end, we also propose a characteristic time, depicting the drug release process as an interplay between kinetics and thermodynamics. In some instances, the negative correlation between the diffusivity and the (thermodynamics) drug-polymer interaction renders the drug release time non-trivial. In conclusion, our theory establishes a mechanistic understanding of the drug release process, exploring the effect of (hydrophobic adhesion) attractive and (steric exclusion) repulsive pair interactions between the drugs and the microgel in the presence of temperature-induced volume phase transition.
Collapse
|
181
|
Ma Y, He S, Huang J. DNA hydrogels as selective biomaterials for specifically capturing DNA, protein and bacteria. Acta Biomater 2022; 147:158-167. [PMID: 35584747 DOI: 10.1016/j.actbio.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
The ability to selectively capture biomacromolecules and other components from solution has many important applications in biotechnology. However, capturing targets from solution while minimizing interference with the sample solution is still challenging. Here, we describe the design and assembly of a group of DNA hydrogels consisting of long single-stranded DNA produced by rolling amplification reaction (RCA) and crosslinked by DNA duplexes. The developed DNA hydrogels can selectively capture and separate oligonucleotides, proteins and bacteria from solution in situ without complex separation processes. Since such DNA hydrogels can capture their targets in the solution independently, multiple DNA hydrogels that target different compounds can be employed to separate different compounds in the solution at the same time. The work not only expands the application of DNA hydrogels, but also paves the way for developing novel selective biomaterials. STATEMENT OF SIGNIFICANCE: Biomaterials capable of selectively capturing various components have great potential in the field of biotechnology. Here, we proposed a new class of hydrogel composed of crosslinked long DNA strands for selectively capturing DNA, protein and bacteria. Unlike traditional polymeric hydrogels that have small meshes and limit macromolecule diffusion owing to the short distance between two adjacent crosslinks, the described DNA hydrogel has a much larger distance between its crosslinks because of the sequence designability of DNA, which allows easy diffusion of biomacromolecules through its networks and greatly expand its specific surface area. Moreover, the developed DNA hydrogel can also easily combine different aptamers to target different components via the Watson-Crick base pairing without making significant changes in its original design.
Collapse
Affiliation(s)
- Yinzhou Ma
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Shangwen He
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China.
| |
Collapse
|
182
|
Goyal H, Gupta R. Sensing and formation of a stable gel in the presence of picric acid by a low-molecular-weight-gelator. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
183
|
Effect of tethered sheet-like motif and asymmetric topology on hydrogelation of star-shaped block copolypeptides. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
184
|
Hyaluronic acid-based self-repairing hydrogel preparation and 3D cell culture. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
185
|
Carboué Q, Fadlallah S, Lopez M, Allais F. Progress in degradation behavior of most common types of functionalized polymers: a review. Macromol Rapid Commun 2022; 43:e2200254. [DOI: 10.1002/marc.202200254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Quentin Carboué
- URD Agro‐Biotechnologies Industrielles (ABI) CEBB AgroParisTech Pomacle 51110 France
| | - Sami Fadlallah
- URD Agro‐Biotechnologies Industrielles (ABI) CEBB AgroParisTech Pomacle 51110 France
| | - Michel Lopez
- URD Agro‐Biotechnologies Industrielles (ABI) CEBB AgroParisTech Pomacle 51110 France
| | - Florent Allais
- URD Agro‐Biotechnologies Industrielles (ABI) CEBB AgroParisTech Pomacle 51110 France
| |
Collapse
|
186
|
Abid U, Pervaiz F, Shoukat H, Rehman S, Abid S. Fabrication and characterization of novel semi-IPN hydrogels based on xanthan gum and polyvinyl pyrrolidone-co-poly (2-acrylamido-2-methyl propane sulfonic acid) for the controlled delivery of venlafaxine. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1995421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Usman Abid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fahad Pervaiz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sadia Rehman
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sobia Abid
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
187
|
Liu H, Chen B, Zhu Q. Potential application of hydrogel to the diagnosis and treatment of multiple sclerosis. J Biol Eng 2022; 16:10. [PMID: 35395765 PMCID: PMC8991948 DOI: 10.1186/s13036-022-00288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/12/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system. This disorder may cause progressive and permanent impairment, placing significant physical and psychological strain on sufferers. Each progress in MS therapy marks a significant advancement in neurological research. Hydrogels can serve as a scaffold with high water content, high expansibility, and biocompatibility to improve MS cell proliferation in vitro and therapeutic drug delivery to cells in vivo. Hydrogels may also be utilized as biosensors to detect MS-related proteins. Recent research has employed hydrogels as an adjuvant imaging agent in immunohistochemistry assays. Following an overview of the development and use of hydrogels in MS diagnostic and therapy, this review discussed hydrogel’s advantages and future opportunities in the diagnosis and treatment of MS. Graphical abstract ![]()
Collapse
Affiliation(s)
- Haochuan Liu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Xiantai Street No. 126, Changchun, TX, 130031, PR China
| | - Bing Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Xiantai Street No. 126, Changchun, TX, 130031, PR China.
| | - Qingsan Zhu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Xiantai Street No. 126, Changchun, TX, 130031, PR China.
| |
Collapse
|
188
|
Engineered Nanoparticle-Protein Interactions Influence Protein Structural Integrity and Biological Significance. NANOMATERIALS 2022; 12:nano12071214. [PMID: 35407332 PMCID: PMC9002493 DOI: 10.3390/nano12071214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023]
Abstract
Engineered nanoparticles (ENPs) are artificially synthesized particles with unique physicochemical properties. ENPs are being extensively used in several consumer items, elevating the probability of ENP exposure to biological systems. ENPs interact with various biomolecules like lipids, proteins, nucleic acids, where proteins are most susceptible. The ENP-protein interactions are mostly studied for corona formation and its effect on the bio-reactivity of ENPs, however, an in-depth understanding of subsequent interactive effects on proteins, such as alterations in their structure, conformation, free energy, and folding is still required. The present review focuses on ENP-protein interactions and the subsequent effects on protein structure and function followed by the therapeutic potential of ENPs for protein misfolding diseases.
Collapse
|
189
|
Choi C, Chakraborty A, Coyle A, Shamiya Y, Paul A. Contact-Free Remote Manipulation of Hydrogel Properties Using Light-Triggerable Nanoparticles: A Materials Science Perspective for Biomedical Applications. Adv Healthc Mater 2022; 11:e2102088. [PMID: 35032156 DOI: 10.1002/adhm.202102088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/26/2021] [Indexed: 12/12/2022]
Abstract
Considerable progress has been made in synthesizing "intelligent", biodegradable hydrogels that undergo rapid changes in physicochemical properties once exposed to external stimuli. These advantageous properties of stimulus-triggered materials make them highly appealing to diverse biomedical applications. Of late, research on the incorporation of light-triggered nanoparticles (NPs) into polymeric hydrogel networks has gained momentum due to their ability to remotely tune hydrogel properties using facile, contact-free approaches, such as adjustment of wavelength and intensity of light source. These multi-functional NPs, in combination with tissue-mimicking hydrogels, are increasingly being used for on-demand drug release, preparing diagnostic kits, and fabricating smart scaffolds. Here, the authors discuss the atomic behavior of different NPs in the presence of light, and critically review the mechanisms by which NPs convert light stimuli into heat energy. Then, they explain how these NPs impact the mechanical properties and rheological behavior of NPs-impregnated hydrogels. Understanding the rheological behavior of nanocomposite hydrogels using different sophisticated strategies, including computer-assisted machine learning, is critical for designing the next generation of drug delivery systems. Next, they highlight the salient strategies that have been used to apply light-induced nanocomposites for diverse biomedical applications and provide an outlook for the further improvement of these NPs-driven light-responsive hydrogels.
Collapse
Affiliation(s)
- Cho‐E Choi
- Department of Chemical and Biochemical Engineering The University of Western Ontario London ON N6A 5B9 Canada
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering The University of Western Ontario London ON N6A 5B9 Canada
| | - Ali Coyle
- School of Biomedical Engineering The University of Western Ontario London ON N6A 5B9 Canada
| | - Yasmeen Shamiya
- Department of Chemistry The University of Western Ontario London ON N6A 5B9 Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering School of Biomedical Engineering Department of Chemistry The Centre for Advanced Materials and Biomaterials Research The University of Western Ontario London ON N6A 5B9 Canada
| |
Collapse
|
190
|
Arad E, Jelinek R, Rapaport H. Amyloid fishing: β-Amyloid adsorption using tailor-made coated titania nanoparticles. Colloids Surf B Biointerfaces 2022; 212:112374. [PMID: 35121429 DOI: 10.1016/j.colsurfb.2022.112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
Abstract
Amyloidoses are a family of diseases characterized by abnormal protein folding that leads to fibril aggregates, amyloids. Extensive research efforts are devoted to developing inhibitors to amyloid aggregates. Here we set to explore functionalized titania (TiO2) nanoparticles (NPs) as potential amyloid inhibiting agents. TiO2 NPs were coated by a catechol derivative, dihydroxy-phenylalanine propanoic acid (DPA), and further conjugated to the amyloids' specific dye Congo-Red (CR). TiO2-DPA-CR NPs were found to target mature fibrils of β-amyloid (Aβ). Moreover, coated NPs incubated with Aβ proteins suppressed amyloid fibrillation. TiO2-DPA-CR were found to target amyloids in solution and induce their sedimentation upon centrifugation. This work demonstrates the potential utilization of TiO2-DPA NPs for labeling and facilely separating from solution mature amyloid fibrils.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Raz Jelinek
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Hanna Rapaport
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
191
|
Kheiri K, Sohrabi N, Mohammadi R, Amini-Fazl MS. Preparation and characterization of magnetic nanohydrogel based on chitosan for 5-fluorouracil drug delivery and kinetic study. Int J Biol Macromol 2022; 202:191-198. [PMID: 35033524 DOI: 10.1016/j.ijbiomac.2022.01.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
Chemotherapy is currently used for most cancer treatments, but one of the significant problems of this treatment is that it affects the healthy tissues of the body. Therefore, designing new systems for the intelligent and controlled release of these drugs in cancer tissues is one of the major challenges in the world. Hence, today, huge costs are spent designing appropriate new drug delivery systems (DDS) with controlled drug release. In this study, chitosan-polyacrylic acid encapsulated Fe3O4 magnetic nanogelic core-shell (Fe3O4@CS-PAA) was synthesized in the presence of glutaraldehyde used for loaded anticancer 5-fluorouracil (5-FU) drug. Also, the prepared Fe3O4@CS-PAA was characterized by using FT-IR, SEM, XRD, and VSM analysis. Then, drug delivery tests were carried out in the in-vitro conditions that are the simulated physiological environment and tumor tissue conditions. The drug release tests indicated that the Fe3O4@CS-PAA upgraded the rate of 5-FU release from nanogelic core-shell under tumor tissue conditions (pH 4.5) than physiological environments (pH 7.4). In addition, various models were used to investigate the drug release mechanism. Results of modeling studies of drug release showed the mechanism of 5-FU release from Fe3O4@CS-PAA controlled by Fickian diffusion.
Collapse
Affiliation(s)
- Karim Kheiri
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Negin Sohrabi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Department of Biosystem Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Mohammad Sadegh Amini-Fazl
- Research Laboratory of Advanced Polymer Material, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
192
|
Drug Delivery Strategies and Biomedical Significance of Hydrogels: Translational Considerations. Pharmaceutics 2022; 14:pharmaceutics14030574. [PMID: 35335950 PMCID: PMC8950534 DOI: 10.3390/pharmaceutics14030574] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels are a promising and attractive option as polymeric gel networks, which have immensely fascinated researchers across the globe because of their outstanding characteristics such as elevated swellability, the permeability of oxygen at a high rate, good biocompatibility, easy loading, and drug release. Hydrogels have been extensively used for several purposes in the biomedical sector using versatile polymers of synthetic and natural origin. This review focuses on functional polymeric materials for the fabrication of hydrogels, evaluation of different parameters of biocompatibility and stability, and their application as carriers for drugs delivery, tissue engineering and other therapeutic purposes. The outcome of various studies on the use of hydrogels in different segments and how they have been appropriately altered in numerous ways to attain the desired targeted delivery of therapeutic agents is summarized. Patents and clinical trials conducted on hydrogel-based products, along with scale-up translation, are also mentioned in detail. Finally, the potential of the hydrogel in the biomedical sector is discussed, along with its further possibilities for improvement for the development of sophisticated smart hydrogels with pivotal biomedical functions.
Collapse
|
193
|
Cruz MEM, Corvo ML, Martins MB, Simões S, Gaspar MM. Liposomes as Tools to Improve Therapeutic Enzyme Performance. Pharmaceutics 2022; 14:531. [PMID: 35335906 PMCID: PMC8954053 DOI: 10.3390/pharmaceutics14030531] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The drugs concept has changed during the last few decades, meaning the acceptance of not only low molecular weight entities but also macromolecules as bioagent constituents of pharmaceutics. This has opened a new era for a different class of molecules, namely proteins in general and enzymes in particular. The use of enzymes as therapeutics has posed new challenges in terms of delivery and the need for appropriate carrier systems. In this review, we will focus on enzymes with therapeutic properties and their applications, listing some that reached the pharmaceutical market. Problems associated with their clinical use and nanotechnological strategies to solve some of their drawbacks (i.e., immunogenic reactions and low circulation time) will be addressed. Drug delivery systems will be discussed, with special attention being paid to liposomes, the most well-studied and suitable nanosystem for enzyme delivery in vivo. Examples of liposomal enzymatic formulations under development will be described and successful pre-clinical results of two enzymes, L-Asparaginase and Superoxide dismutase, following their association with liposomes will be extensively discussed.
Collapse
Affiliation(s)
| | - Maria Luísa Corvo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.E.M.C.); (M.B.M.)
| | | | | | | |
Collapse
|
194
|
Rapid Removal of Acid Red 88 by Zeolite/Chitosan Hydrogel in Aqueous Solution. Polymers (Basel) 2022; 14:polym14050893. [PMID: 35267716 PMCID: PMC8912896 DOI: 10.3390/polym14050893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/20/2022] Open
Abstract
In the present study, we developed a new adsorbent product with zeolite crosslinked chitosan (ZL–CH hydrogel) to remove acid red 88 (AR88) in an aqueous solution. The effects of several factors, such as the comparison of ZL–CH hydrogel and the absence of chitosan, pH, adsorbent dosage, initial AR88 concentration, contact time, and ion strength, were determined. Obtained results showed that ZL–CH hydrogel improved AR88 removal compared to the absence of chitosan, with an adsorption capacity of 332.48 mg/g in equilibrium time of 1 min, and adding ionic strength had no significant effect. However, with optimal conditions at pH 2.0, dry ZL–CH became hydrogel due to protonation of amino and hydroxyl groups through hydrogen bonds in the AR88 solution. Volume fraction and interaction force decreased with increasing porosity, leading to an increase in adsorption capacity and swelling ratio. Experimental data of the adsorption process showed the Freundlich isotherm model. The equilibrium for adsorption and swelling kinetics studies showed and fitted a pseudo-second-order model. NaOH was successful as a desorbing agent with 93.8%, and it followed the pseudo-second-order kinetics model. The recycling process indicates great potential for AR88 removal.
Collapse
|
195
|
Bu W, Wu Y, Ghaemmaghami AM, Sun H, Mata A. Rational design of hydrogels for immunomodulation. Regen Biomater 2022; 9:rbac009. [PMID: 35668923 PMCID: PMC9160883 DOI: 10.1093/rb/rbac009] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The immune system protects organisms against endogenous and exogenous harm and plays a key role in tissue development, repair, and regeneration. Traditional immunomodulatory biologics exhibit limitations including degradation by enzymes, short half-life, and lack of targeting ability. Encapsulating or binding these biologics within biomaterials is an effective way to address these problems. Hydrogels are promising immunomodulatory materials because of their prominent biocompatibility, tuneability, and versatility. However, to take advantage of these opportunities and optimize material performance, it is important to more specifically elucidate, and leverage on, how hydrogels affect and control the immune response. Here, we summarize how key physical and chemical properties of hydrogels affect the immune response. We first provide an overview of underlying steps of the host immune response upon exposure to biomaterials. Then, we discuss recent advances in immunomodulatory strategies where hydrogels play a key role through a) physical properties including dimensionality, stiffness, porosity, and topography; b) chemical properties including wettability, electric property, and molecular presentation; and c) the delivery of bioactive molecules via chemical or physical cues. Thus, this review aims to build a conceptual and practical toolkit for the design of immune-instructive hydrogels capable of modulating the host immune response.
Collapse
Affiliation(s)
- Wenhuan Bu
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang, 110001, China
- Department of Dental Materials, School of Stomatology, China Medical University, Shenyang, 110001, China
- Department of Center Laboratory, School of Stomatology, China Medical University, Shenyang, 110001, China
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Yuanhao Wu
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Hongchen Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang, 110001, China
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
196
|
Landsgesell J, Beyer D, Hebbeker P, Košovan P, Holm C. The pH-Dependent Swelling of Weak Polyelectrolyte Hydrogels Modeled at Different Levels of Resolution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonas Landsgesell
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| | - David Beyer
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Pascal Hebbeker
- Department of Physical and Macromolecular Chemistry, Charles University, Prague 116 36, Czechia
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Charles University, Prague 116 36, Czechia
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
197
|
Liu Z, Ji X, He D, Zhang R, Liu Q, Xin T. Nanoscale Drug Delivery Systems in Glioblastoma. NANOSCALE RESEARCH LETTERS 2022; 17:27. [PMID: 35171358 PMCID: PMC8850533 DOI: 10.1186/s11671-022-03668-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/09/2022] [Indexed: 05/13/2023]
Abstract
Glioblastoma is the most aggressive cerebral tumor in adults. However, the current pharmaceuticals in GBM treatment are mainly restricted to few chemotherapeutic drugs and have limited efficacy. Therefore, various nanoscale biomaterials that possess distinct structure and unique property were constructed as vehicles to precisely deliver molecules with potential therapeutic effect. In this review, nanoparticle drug delivery systems including CNTs, GBNs, C-dots, MOFs, Liposomes, MSNs, GNPs, PMs, Dendrimers and Nanogel were exemplified. The advantages and disadvantages of these nanoparticles in GBM treatment were illustrated.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Xiaoshuai Ji
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Qian Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014, China.
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang Jiangxi, 330006, China.
| |
Collapse
|
198
|
Roka N, Kokkorogianni O, Kontoes-Georgoudakis P, Choinopoulos I, Pitsikalis M. Recent Advances in the Synthesis of Complex Macromolecular Architectures Based on Poly(N-vinyl pyrrolidone) and the RAFT Polymerization Technique. Polymers (Basel) 2022; 14:701. [PMID: 35215614 PMCID: PMC8880212 DOI: 10.3390/polym14040701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Recent advances in the controlled RAFT polymerization of complex macromolecular architectures based on poly(N-vinyl pyrrolidone), PNVP, are summarized in this review article. Special interest is given to the synthesis of statistical copolymers, block copolymers, and star polymers and copolymers, along with graft copolymers and more complex architectures. In all cases, PNVP is produced via RAFT techniques, whereas other polymerization methods can be employed in combination with RAFT to provide the desired final products. The advantages and limitations of the synthetic methodologies are discussed in detail.
Collapse
Affiliation(s)
| | | | | | | | - Marinos Pitsikalis
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.R.); (O.K.); (P.K.-G.); (I.C.)
| |
Collapse
|
199
|
Adhesive hydrogels with toughness, stretchability, and conductivity performances for motion monitoring. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
200
|
|