151
|
O'Brien J, Bloomfield SA. Plasticity of Retinal Gap Junctions: Roles in Synaptic Physiology and Disease. Annu Rev Vis Sci 2018; 4:79-100. [DOI: 10.1146/annurev-vision-091517-034133] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electrical synaptic transmission via gap junctions underlies direct and rapid neuronal communication in the central nervous system. The diversity of functional roles played by electrical synapses is perhaps best exemplified in the vertebrate retina, in which gap junctions are expressed by each of the five major neuronal types. These junctions are highly plastic; they are dynamically regulated by ambient illumination and circadian rhythms acting through light-activated neuromodulators. The networks formed by electrically coupled neurons provide plastic, reconfigurable circuits positioned to play key and diverse roles in the transmission and processing of visual information at every retinal level. Recent work indicates gap junctions also play a role in the progressive cell death and aberrant activity seen in various pathological conditions of the retina. Gap junctions thus form potential targets for novel neuroprotective therapies in the treatment of neurodegenerative retinal diseases such as glaucoma and ischemic retinopathies.
Collapse
Affiliation(s)
- John O'Brien
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Stewart A. Bloomfield
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY 10036, USA
| |
Collapse
|
152
|
Jain PG, Mahajan UB, Shinde SD, Surana SJ. Cardioprotective role of FA against isoproterenol induced cardiac toxicity. Mol Biol Rep 2018; 45:1357-1365. [PMID: 30105550 DOI: 10.1007/s11033-018-4297-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
The present study was designed to investigate the protective effect of ferulic acid (FA) against isoproterenol (ISO)-induced cardiac toxicity in rats. Isoproterenol challenged in a dose of 85 mg/kg body weight (b.w.) subcutaneously for two consecutive days in the experimental group resulted in acute cardiac toxicity as evidenced by changes in electrocardiogram (ECG) pattern and marked elevation of serum cardiac enzymes viz aspartate aminotransferase (AST), alanine transaminase (ALT), creatinine kinase (CK-MB) and lactate dehydrogenase (LDH) also increases inflammatory cytokines. Moreover, acute toxicity effect was exhibited by disturbance in the antioxidant system as decrease in activities of superoxide dismutase (SOD) and glutathione (GSH) with the rise in activities of malondialdehyde (MDA) and nitric oxide (NO). Pre-treatment with FA at the increasing dose of (10, 20 and 40 mg/kg b.w.) orally for 28 consecutive days followed by isoproterenol injection for 2 days significantly attenuated changes in serum cardiac enzymes. Furthermore, histopathological evaluation confirmed the restoration of cellular architecture in FA pretreated rats. The cardioprotective effect of FA was comparable with standard drug treatment metoprolol. Taken together, FA demonstrated cardioprotective effect against ISO-induced cardiac toxicity by normalization of serum cardiac biomarkers, alleviating oxidative stress and augmenting endogenous antioxidant system.
Collapse
Affiliation(s)
- Pankaj G Jain
- R. C. Patel Institute of Pharmaceutical Education and Research, Dist-Dhule, Shirpur, Maharashtra, 425405, India.
| | - Umesh B Mahajan
- R. C. Patel Institute of Pharmaceutical Education and Research, Dist-Dhule, Shirpur, Maharashtra, 425405, India
| | - Sachin D Shinde
- R. C. Patel Institute of Pharmaceutical Education and Research, Dist-Dhule, Shirpur, Maharashtra, 425405, India
| | - Sanjay J Surana
- R. C. Patel Institute of Pharmaceutical Education and Research, Dist-Dhule, Shirpur, Maharashtra, 425405, India
| |
Collapse
|
153
|
Kucharczyk M, Kurek A, Pomierny B, Detka J, Papp M, Tota K, Budziszewska B. The reduced level of growth factors in an animal model of depression is accompanied by regulated necrosis in the frontal cortex but not in the hippocampus. Psychoneuroendocrinology 2018; 94:121-133. [PMID: 29775875 DOI: 10.1016/j.psyneuen.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
In the present study, we asked if the different types of stress alter neuronal plasticity markers distinctively in the frontal cortex (FCx) and in the hippocampus (Hp). To do so, we implemented various stress regimens to analyze changes evoked in these rat brain structures. We utilized several molecular techniques, including western blot, ELISA, quantitative RT-PCR, and various biochemical assays, to examine a range of proteins and subjected rats to behavioral tests to evaluate potential maladaptive alterations. A decrease in the level of growth factors in the FCx was accompanied by changes suggesting damage of this structure in the manner of regulated necrosis, while the Hp appeared to be protected. The observed changes in the brain region-specific alterations in neurotrophin processing may also depend on the period of life, in which an animal experiences stress and the duration of the stressful stimuli. We conclude that chronic stress during pregnancy can result in serious alterations in the functioning of the FCx of the progeny, facilitating the development of depressive behavior later in life. We also suggest that the altered energy metabolism may redirect pro-NGF/p75NTR/ATF2 signaling in the cortical neurons towards cellular death resembling regulated necrosis, rather than apoptosis.
Collapse
Affiliation(s)
- Mateusz Kucharczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| | - Anna Kurek
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Bartosz Pomierny
- Department of Biochemical Toxicology, Chair of Toxicology, Faculty of Pharmacy, Medical College, Jagiellonian University, Kraków, Poland
| | - Jan Detka
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Mariusz Papp
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Tota
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Bogusława Budziszewska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
154
|
Induction of Oxidative DNA Damage in Bovine Herpesvirus 1 Infected Bovine Kidney Cells (MDBK Cells) and Human Tumor Cells (A549 Cells and U2OS Cells). Viruses 2018; 10:v10080393. [PMID: 30049996 PMCID: PMC6115950 DOI: 10.3390/v10080393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/23/2018] [Indexed: 01/06/2023] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is an important pathogen of cattle that causes lesions in mucosal surfaces, genital tracts and nervous systems. As a novel oncolytic virus, BoHV-1 infects and kills numerous human tumor cells. However, the mechanisms underlying the virus-induced cell damages are not fully understood. In this study, we demonstrated that virus infection of MDBK cells induced high levels of DNA damage, because the percentage of comet tail DNA (tailDNA%) determined by comet assay, a direct indicator of DNA damage, and the levels of 8-hydroxyguanine (8-oxoG) production, an oxidative DNA damage marker, consistently increased following the virus infection. The expression of 8-oxoguanine DNA glycosylase (OGG-1), an enzyme responsible for the excision of 8-oxoG, was significantly decreased due to the virus infection, which corroborated with the finding that BoHV-1 infection stimulated 8-oxoG production. Furthermore, the virus replication in human tumor cells such as in A549 cells and U2OS cells also induced DNA damage. Chemical inhibition of reactive oxidative species (ROS) production by either ROS scavenger N-Acetyl-l-cysteine or NOX inhibitor diphenylene iodonium (DPI) significantly decreased the levels of tailDNA%, suggesting the involvement of ROS in the virus induced DNA lesions. Collectively, these results indicated that BoHV-1 infection of these cells elicits oxidative DNA damages, providing a perspective in understanding the mechanisms by which the virus induces cell death in both native host cells and human tumor cells.
Collapse
|
155
|
Morris G, Walker AJ, Berk M, Maes M, Puri BK. Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists. Mol Neurobiol 2018; 55:5767-5786. [PMID: 29052145 PMCID: PMC5994217 DOI: 10.1007/s12035-017-0793-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/26/2017] [Indexed: 02/08/2023]
Abstract
In the first part, the following mechanisms involved in different forms of cell death are considered, with a view to identifying potential therapeutic targets: tumour necrosis factor receptors (TNFRs) and their engagement by tumour necrosis factor-alpha (TNF-α); poly [ADP-ribose] polymerase (PARP)-1 cleavage; the apoptosis signalling kinase (ASK)-c-Jun N-terminal kinase (JNK) axis; lysosomal permeability; activation of programmed necrotic cell death; oxidative stress, caspase-3 inhibition and parthanatos; activation of inflammasomes by reactive oxygen species and the development of pyroptosis; oxidative stress, calcium dyshomeostasis and iron in the development of lysosomal-mediated necrosis and lysosomal membrane permeability; and oxidative stress, lipid peroxidation, iron dyshomeostasis and ferroptosis. In the second part, there is a consideration of the role of lethal and sub-lethal activation of these pathways in the pathogenesis and pathophysiology of neurodegenerative and neuroprogressive disorders, with particular reference to the TNF-α-TNFR signalling axis; dysregulation of ASK-1-JNK signalling; prolonged or chronic PARP-1 activation; the role of pyroptosis and chronic inflammasome activation; and the roles of lysosomal permeabilisation, necroptosis and ferroptosis. Finally, it is suggested that, in addition to targeting oxidative stress and inflammatory processes generally, neuropsychiatric disorders may respond to therapeutic targeting of TNF-α, PARP-1, the Nod-like receptor NLRP3 inflammasome and the necrosomal molecular switch receptor-interacting protein kinase-3, since their widespread activation can drive and/or exacerbate peripheral inflammation and neuroinflammation even in the absence of cell death. To this end, the use is proposed of a combination of the tetracycline derivative minocycline and N-acetylcysteine as adjunctive treatment for a range of neuropsychiatric disorders.
Collapse
Affiliation(s)
- G Morris
- , Bryn Road Seaside 87, Llanelli, Wales, , SA15 2LW, UK
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - A J Walker
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - M Berk
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-040, Brazil
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - M Maes
- School of Medicine, Deakin University, Geelong, 3220, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - B K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, W12 0HS, UK.
| |
Collapse
|
156
|
Vasanthi Bathrinarayanan P, Brown JEP, Marshall LJ, Leslie LJ. An investigation into E-cigarette cytotoxicity in-vitro using a novel 3D differentiated co-culture model of human airways. Toxicol In Vitro 2018; 52:255-264. [PMID: 29940344 DOI: 10.1016/j.tiv.2018.06.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022]
Abstract
Currently there is a lack of consensus on the possible adverse health effects of E-cigarettes (ECs). Important factors including cell model employed and exposure method determine the physiological relevance of EC studies. The present study aimed to evaluate EC cytotoxicity using a physiologically relevant in-vitro multicellular model of human airways. Human bronchial epithelial cells (CALU-3) and pulmonary fibroblasts (MRC-5) were co-cultured at air-liquid-interface for 11-14 days post which they were exposed to whole cigarette smoke (WCS) or EC vapour (ECV) at standard ISO-3308 regime for 7 m using a bespoke aerosol delivery system. ECV effects were further investigated at higher exposure times (1 h-6 h). Results showed that while WCS significantly reduced cell viability after 7 m, ECV decreased cell viability only at exposure times higher than 3 h. Furthermore, ECV caused elevated IL-6 and IL-8 production despite reduced cell viability. ECV exposure also produced a marked increase in oxidative stress. Finally, WCS but not ECV exposure induced caspase 3/7 activation, suggesting a caspase independent death of ECV exposed cells. Overall, our results indicate that prolonged ECV exposure (≥3 h) has a significant impact on pro-inflammatory mediators' production, oxidative stress and cell viability but not caspase 3/7 activity.
Collapse
Affiliation(s)
- Pranav Vasanthi Bathrinarayanan
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, United Kingdom
| | - James E P Brown
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, United Kingdom; Aston Medical Research Institute, Aston University, Birmingham B4 7ET, United Kingdom
| | - Lindsay J Marshall
- Research and Toxicology Department, Humane Society International, 5, Underwood Street, London, United Kingdom
| | - Laura J Leslie
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, United Kingdom.
| |
Collapse
|
157
|
Almabhouh FA, Osman K, Ibrahim SF, Gupalo S, Gnanou J, Ibrahim E, Singh HJ. Melatonin ameliorates the adverse effects of leptin on sperm. Asian J Androl 2018; 19:647-654. [PMID: 27748315 PMCID: PMC5676423 DOI: 10.4103/1008-682x.183379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study examined the effects of melatonin on leptin-induced changes in sperm parameters in adult rats. Five groups of Sprague-Dawley rats were treated with either leptin or leptin and melatonin or melatonin for 6 weeks. Leptin was given daily via the intraperitoneal route (60 μg kg−1 body weight) and melatonin was given in drinking water (10 mg kg−1 or 20 mg kg−1 body weight per day). Upon completion, sperm count, sperm morphology, 8-hydroxy-2-deoxyguanosine, Comet assay, TUNEL assay, gene expression profiles of antioxidant enzymes, respiratory chain reaction enzymes, DNA damage, and apoptosis genes were estimated. Data were analyzed using ANOVA. Sperm count was significantly lower whereas the fraction of sperm with abnormal morphology, the level of 8-hydroxy-2-deoxyguanosine, and sperm DNA fragmentation were significantly higher in rats treated with leptin only. Microarray analysis revealed significant upregulation of apoptosis-inducing factor, histone acetyl transferase, respiratory chain reaction enzyme, cell necrosis and DNA repair genes, and downregulation of antioxidant enzyme genes in leptin-treated rats. Real-time polymerase chain reaction showed significant decreases in glutathione peroxidase 1 expression with increases in the expression of apoptosis-inducing factor and histone acetyl transferase in leptin-treated rats. There was no change in the gene expression of caspase-3 (CASP-3). In conclusion, the adverse effects of leptin on sperm can be prevented by concurrent melatonin administration.
Collapse
Affiliation(s)
- Fayez A Almabhouh
- Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, 47000 Sg Buloh, Selangor, Malaysia
| | - Khairul Osman
- Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda, Kuala Lumpur, Malaysia
| | - Siti Fatimah Ibrahim
- Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda, Kuala Lumpur, Malaysia
| | - Sergey Gupalo
- Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, 47000 Sg Buloh, Selangor, Malaysia
| | - Justin Gnanou
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kem Sungai Besi, 57000, Selangor, Malaysia
| | - Effendi Ibrahim
- Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, 47000 Sg Buloh, Selangor, Malaysia
| | - Harbindar Jeet Singh
- Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, 47000 Sg Buloh, Selangor, Malaysia.,IMMB, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, 47000 Sg Buloh, Selangor, Malaysia.,I-PPerForM, Universiti Teknologi MARA, Sg Buloh Campus, Selangor, Malaysia
| |
Collapse
|
158
|
Loetsch C, Warren J, Laskowski A, Vazquez-Lombardi R, Jandl C, Langley DB, Christ D, Thorburn DR, Ryugo DK, Sprent J, Batten M, King C. Cytosolic Recognition of RNA Drives the Immune Response to Heterologous Erythrocytes. Cell Rep 2018; 21:1624-1638. [PMID: 29117566 DOI: 10.1016/j.celrep.2017.10.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/07/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
The archetypal T cell-dependent antigen is sheep red blood cells (SRBCs), which have defined much of what we know about humoral immunity. Early studies using solubilized or sonicated SRBCs argued that the intact structure of SRBCs was important for optimal antibody responses. However, the reason for the requirement of intact SRBCs for the response to polyvalent protein antigen remained unknown. Here, we report that the immune response to SRBCs is driven by cytosolic recognition of SRBC RNA through the RIG-I-like receptor (RLR)-mitochondrial anti-viral signaling adaptor (MAVS) pathway. Following the uptake of SRBCs by antigen-presenting cells, the MAVS signaling complex governs the differentiation of both T follicular cells and antibody-producing B cells. Importantly, the involvement of the RLR-MAVS pathway precedes that of endosomal Toll-like receptor pathways, yet both are required for optimal effect.
Collapse
Affiliation(s)
- Claudia Loetsch
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Department of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Joanna Warren
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW 2010, Australia
| | - Adrienne Laskowski
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Rd., Parkville, VIC 3052, Australia
| | - Rodrigo Vazquez-Lombardi
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Department of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Christoph Jandl
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Department of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David B Langley
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Department of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Daniel Christ
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Department of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Rd., Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville VIC 3010, Australia
| | - David K Ryugo
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Department of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Jonathan Sprent
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Department of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Marcel Batten
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Department of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Cecile King
- Department of Immunology, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, Department of Medicine, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|
159
|
Ganguly P, Breen A, Pillai SC. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater Sci Eng 2018; 4:2237-2275. [DOI: 10.1021/acsbiomaterials.8b00068] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Priyanka Ganguly
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Suresh C. Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| |
Collapse
|
160
|
Alturki NA, McComb S, Ariana A, Rijal D, Korneluk RG, Sun SC, Alnemri E, Sad S. Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis. Cell Death Dis 2018; 9:592. [PMID: 29789521 PMCID: PMC5964080 DOI: 10.1038/s41419-018-0672-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022]
Abstract
Understanding the molecular signaling in programmed cell death is vital to a practical understanding of inflammation and immune cell function. Here we identify a previously unrecognized mechanism that functions to downregulate the necrosome, a central signaling complex involved in inflammation and necroptosis. We show that RipK1 associates with RipK3 in an early necrosome, independent of RipK3 phosphorylation and MLKL-induced necroptotic death. We find that formation of the early necrosome activates K48-ubiquitin-dependent proteasomal degradation of RipK1, Caspase-8, and other necrosomal proteins. Our results reveal that the E3-ubiquitin ligase Triad3a promotes this negative feedback loop independently of typical RipK1 ubiquitin editing enzymes, cIAPs, A20, or CYLD. Finally, we show that Triad3a-dependent necrosomal degradation limits necroptosis and production of inflammatory cytokines. These results reveal a new mechanism of shutting off necrosome signaling and may pave the way to new strategies for therapeutic manipulation of inflammatory responses.
Collapse
Affiliation(s)
- Norah A Alturki
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Applied Medical science, King Saud University, Riyadh, Saudi Arabia
| | - Scott McComb
- Human Health and Therapeutics, National Research Council of Canada, Ottawa, Canada
| | - Ardeshir Ariana
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Dikchha Rijal
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert G Korneluk
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ontario, Canada
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emad Alnemri
- Thomas Jefferson University, Philadelphia, PA, USA
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada. .,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ontario, Canada.
| |
Collapse
|
161
|
Soto C, Bergado G, Blanco R, Griñán T, Rodríguez H, Ros U, Pazos F, Lanio ME, Hernández AM, Álvarez C. Sticholysin II-mediated cytotoxicity involves the activation of regulated intracellular responses that anticipates cell death. Biochimie 2018; 148:18-35. [DOI: 10.1016/j.biochi.2018.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/07/2018] [Indexed: 12/12/2022]
|
162
|
Radi ZA, Stewart ZS, O'Neil SP. Accidental and Programmed Cell Death in Investigative and Toxicologic Pathology. ACTA ACUST UNITED AC 2018; 76:e51. [PMID: 30040239 DOI: 10.1002/cptx.51] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cellular development and homeostasis are regulated via programmed cell death (PCD; apoptosis), which is a genetically regulated cellular process. Accidental cell death (ACD; necrosis) can be triggered by chemical, physical, or mechanical stress. Necrosis is the presence of dead tissues or cells in a living organism regardless of the initiating process and can be observed in infectious and non-infectious diseases and toxicities. This article describes tissue-based immunohistotechnical protocols used for assessing PCD and necrosis in formalin-fixed tissues obtained from preclinical species used in investigative and toxicologic pathology. Two commonly employed protocols for the identification of PCD and necrosis are described in this article: immunohistochemistry (IHC) for cleaved caspase 3, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL). TUNEL has been used to detect DNA fragmentation by labeling the terminal ends of nucleic acids in necrotic and apoptotic cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Zaher A Radi
- Drug Safety R&D, Pfizer Inc., Cambridge, Massachusetts
| | | | | |
Collapse
|
163
|
Anisomycin prevents OGD-induced necroptosis by regulating the E3 ligase CHIP. Sci Rep 2018; 8:6379. [PMID: 29686306 PMCID: PMC5913227 DOI: 10.1038/s41598-018-24414-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 03/23/2018] [Indexed: 01/02/2023] Open
Abstract
Necroptosis is an essential pathophysiological process in cerebral ischemia-related diseases. Therefore, targeting necroptosis may prevent cell death and provide a much-needed therapy. Ansiomycin is an inhibitor of protein synthesis which can also activate c-Jun N-terminal kinases. The present study demonstrated that anisomycin attenuated necroptosis by upregulating CHIP (carboxyl terminus of Hsc70-interacting protein) leading to the reduced levels of receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting protein kinase 3 (RIPK3) proteins in two in vitro models of cerebral ischemia. Further exploration in this research revealed that losing neither the co-chaperone nor the ubiquitin E3 ligase function of CHIP could abolish its ability to reduce necroptosis. Collectively, this study identifies a novel means of preventing necroptosis in two in vitro models of cerebral ischemia injury through activating the expression of CHIP, and it may provide a potential target for the further study of the disease.
Collapse
|
164
|
Ye H, Nelson LJ, Gómez del Moral M, Martínez-Naves E, Cubero FJ. Dissecting the molecular pathophysiology of drug-induced liver injury. World J Gastroenterol 2018; 24:1373-1385. [PMID: 29632419 PMCID: PMC5889818 DOI: 10.3748/wjg.v24.i13.1373] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/16/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) has become a major topic in the field of Hepatology and Gastroenterology. DILI can be clinically divided into three phenotypes: hepatocytic, cholestatic and mixed. Although the clinical manifestations of DILI are variable and the pathogenesis complicated, recent insights using improved preclinical models, have allowed a better understanding of the mechanisms that trigger liver damage. In this review, we will discuss the pathophysiological mechanisms underlying DILI. The toxicity of the drug eventually induces hepatocellular damage through multiple molecular pathways, including direct hepatic toxicity and innate and adaptive immune responses. Drugs or their metabolites, such as the common analgesic, acetaminophen, can cause direct hepatic toxicity through accumulation of reactive oxygen species and mitochondrial dysfunction. The innate and adaptive immune responses play also a very important role in the occurrence of idiosyncratic DILI. Furthermore, we examine common forms of hepatocyte death and their association with the activation of specific signaling pathways.
Collapse
Affiliation(s)
- Hui Ye
- Department of Immunology, Ophtalmology and ORL, Complutense University School of Medicine, Madrid 28040, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid 28041, Spain
| | - Leonard J Nelson
- Institute for BioEngineering (Human Liver Tissue Engineering), School of Engineering, Faraday Building, The University of Edinburgh, The Kingâs Buildings, Mayfield Road, Edinburgh EH9 3 JL, Scotland, United Kingdom
| | - Manuel Gómez del Moral
- Department of Cell Biology, Complutense University School of Medicine, Madrid 28040, Spain
| | - Eduardo Martínez-Naves
- Department of Immunology, Ophtalmology and ORL, Complutense University School of Medicine, Madrid 28040, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid 28041, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophtalmology and ORL, Complutense University School of Medicine, Madrid 28040, Spain
- 12 de Octubre Health Research Institute (imas12), Madrid 28041, Spain
| |
Collapse
|
165
|
Horiguchi H, Loftus TJ, Hawkins RB, Raymond SL, Stortz JA, Hollen MK, Weiss BP, Miller ES, Bihorac A, Larson SD, Mohr AM, Brakenridge SC, Tsujimoto H, Ueno H, Moore FA, Moldawer LL, Efron PA. Innate Immunity in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome and Its Implications for Therapy. Front Immunol 2018; 9:595. [PMID: 29670613 PMCID: PMC5893931 DOI: 10.3389/fimmu.2018.00595] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Abstract
Clinical and technological advances promoting early hemorrhage control and physiologic resuscitation as well as early diagnosis and optimal treatment of sepsis have significantly decreased in-hospital mortality for many critically ill patient populations. However, a substantial proportion of severe trauma and sepsis survivors will develop protracted organ dysfunction termed chronic critical illness (CCI), defined as ≥14 days requiring intensive care unit (ICU) resources with ongoing organ dysfunction. A subset of CCI patients will develop the persistent inflammation, immunosuppression, and catabolism syndrome (PICS), and these individuals are predisposed to a poor quality of life and indolent death. We propose that CCI and PICS after trauma or sepsis are the result of an inappropriate bone marrow response characterized by the generation of dysfunctional myeloid populations at the expense of lympho- and erythropoiesis. This review describes similarities among CCI/PICS phenotypes in sepsis, cancer, and aging and reviews the role of aberrant myelopoiesis in the pathophysiology of CCI and PICS. In addition, we characterize pathogen recognition, the interface between innate and adaptive immune systems, and therapeutic approaches including immune modulators, gut microbiota support, and nutritional and exercise therapy. Finally, we discuss the future of diagnostic and prognostic approaches guided by machine and deep-learning models trained and validated on big data to identify patients for whom these approaches will yield the greatest benefits. A deeper understanding of the pathophysiology of CCI and PICS and continued investigation into novel therapies harbor the potential to improve the current dismal long-term outcomes for critically ill post-injury and post-infection patients.
Collapse
Affiliation(s)
- Hiroyuki Horiguchi
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States.,Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Tyler J Loftus
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Russell B Hawkins
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Steven L Raymond
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julie A Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - McKenzie K Hollen
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Brett P Weiss
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Elizabeth S Miller
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Azra Bihorac
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D Larson
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Scott C Brakenridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | | |
Collapse
|
166
|
Coornaert I, Hofmans S, Devisscher L, Augustyns K, Van Der Veken P, De Meyer GRY, Martinet W. Novel drug discovery strategies for atherosclerosis that target necrosis and necroptosis. Expert Opin Drug Discov 2018; 13:477-488. [PMID: 29598451 DOI: 10.1080/17460441.2018.1457644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Formation and enlargement of a necrotic core play a pivotal role in atherogenesis. Since the discovery of necroptosis, which is a regulated form of necrosis, prevention of necrotic cell death has become an attractive therapeutic goal to reduce plaque formation. Areas covered: This review highlights the triggers and consequences of (unregulated) necrosis and necroptosis in atherosclerosis. The authors discuss different pharmacological strategies to inhibit necrotic cell death in advanced atherosclerotic plaques. Expert opinion: Addition of a necrosis or necroptosis inhibitor to standard statin therapy could be a promising strategy for primary prevention of cardiovascular disease. However, a necrosis inhibitor cannot block all necrosis stimuli in atherosclerotic plaques. A necroptosis inhibitor could be more effective, because necroptosis is mediated by specific proteins, termed receptor-interacting serine/threonine-protein kinases (RIPK) and mixed lineage kinase domain-like pseudokinase (MLKL). Currently, only RIPK1 inhibitors have been successfully used in atherosclerotic mouse models to inhibit necroptosis. However, because RIPK1 is involved in both necroptosis and apoptosis, and also RIPK1-independent necroptosis can occur, we feel that targeting RIPK3 and MLKL could be a more attractive therapeutic approach to inhibit necroptosis. Therefore, future challenges will consist of developing RIPK3 and MLKL inhibitors applicable in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Isabelle Coornaert
- a Laboratory of Physiopharmacology , University of Antwerp , Wilrijk , Belgium
| | - Sam Hofmans
- b Laboratory of Medicinal Chemistry , University of Antwerp , Wilrijk , Belgium
| | - Lars Devisscher
- b Laboratory of Medicinal Chemistry , University of Antwerp , Wilrijk , Belgium
| | - Koen Augustyns
- b Laboratory of Medicinal Chemistry , University of Antwerp , Wilrijk , Belgium
| | | | - Guido R Y De Meyer
- a Laboratory of Physiopharmacology , University of Antwerp , Wilrijk , Belgium
| | - Wim Martinet
- a Laboratory of Physiopharmacology , University of Antwerp , Wilrijk , Belgium
| |
Collapse
|
167
|
Wang L, Li H, Yang S, Ma W, Liu M, Guo S, Zhan J, Zhang H, Tsang SY, Zhang Z, Wang Z, Li X, Guo YD, Li X. Cyanidin-3-o-glucoside directly binds to ERα36 and inhibits EGFR-positive triple-negative breast cancer. Oncotarget 2018; 7:68864-68882. [PMID: 27655695 PMCID: PMC5356596 DOI: 10.18632/oncotarget.12025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 09/02/2016] [Indexed: 12/31/2022] Open
Abstract
Anthocyanins have been shown to inhibit the growth and metastatic potential of breast cancer (BC) cells. However, the effects of individual anthocyanins on triple-negative breast cancer (TNBC) have not yet been studied. In this study, we found that cyanidin-3-o-glucoside (Cy-3-glu) preferentially promotes the apoptosis of TNBC cells, which co-express the estrogen receptor alpha 36 (ERα36) and the epidermal growth factor receptor (EGFR). We demonstrated that Cy-3-glu directly binds to the ligand-binding domain (LBD) of ERα36, inhibits EGFR/AKT signaling, and promotes EGFR degradation. We also confirmed the therapeutic efficacy of Cy-3-glu on TNBC in the xenograft mouse model. Our data indicates that Cy-3-glu could be a novel preventive/therapeutic agent against the TNBC co-expressed ERα36/EGFR.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Haifeng Li
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Shiping Yang
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Wenqiang Ma
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Mei Liu
- Department of General Surgery, The 301th Hospital of PLA, Beijing, China
| | - Shichao Guo
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Jun Zhan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Suk Ying Tsang
- School of Life Sciences and State Key Laboratory of Agro-Biotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Ziding Zhang
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Zhaoyi Wang
- Beijing Shenogen Pharma Group, Beijing, China
| | - Xiru Li
- Department of General Surgery, The 301th Hospital of PLA, Beijing, China
| | - Yang-Dong Guo
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Xiangdong Li
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| |
Collapse
|
168
|
Wang B, Bao S, Zhang Z, Zhou X, Wang J, Fan Y, Zhang Y, Li Y, Chen L, Jia Y, Li J, Li M, Zheng W, Mu N, Wang L, Yu Z, Wong DSM, Zhang Y, Kwan J, Ka-Fung Mak H, Ambalavanan A, Zhou S, Cai W, Zheng J, Huang S, Rouleau GA, Yang W, Rogaeva E, Ma X, St George-Hyslop P, Chu LW, Song YQ. A rare variant in MLKL confers susceptibility to ApoE ɛ4-negative Alzheimer's disease in Hong Kong Chinese population. Neurobiol Aging 2018; 68:160.e1-160.e7. [PMID: 29656768 DOI: 10.1016/j.neurobiolaging.2018.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/04/2018] [Accepted: 03/03/2018] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorders in the elderly. To identify rare genetic factors other than apolipoprotein E ɛ4 allele (ApoE ɛ4) contributing to the pathogenesis of late-onset AD (LOAD), we conducted a whole-exome analysis of 246 ApoE ɛ4-negative LOAD cases and 172 matched controls in Hong Kong Chinese population. LOAD patients showed a significantly higher burden of rare loss-of-function variants in genes related to immune function than healthy controls. Among the genes involved in immune function, we identified a rare stop-gain variant (p.Q48X) in mixed lineage kinase domain like pseudokinase (MLKL) gene present exclusively in 6 LOAD cases. MLKL is expressed in neurons, and the its expression levels in the p.Q48X carriers were significantly lower than that in age-matched wild-type controls. The ratio of Aβ42 to Aβ40 significantly increased in MLKL knockdown cells compared to scramble controls. MLKL loss-of-function mutation might contribute to late-onset ApoE ɛ4-negative AD in the Hong Kong Chinese population.
Collapse
Affiliation(s)
- Binbin Wang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Suying Bao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Zhigang Zhang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Xueya Zhou
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Jing Wang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yan Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Yan Li
- Center for Transport Phenomena, Energy Research Institute of Shandong Academy of Sciences, Jinan, Shandong, China
| | - Luhua Chen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yizhen Jia
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Jiang Li
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Miaoxin Li
- Department of Medical Genetics, Center for Genome Research, Center for Precision Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenhua Zheng
- The Faculty of Health Sciences, The University of Macau, Macau, China
| | - Nan Mu
- Guangzhou Brain Hospital, Guangzhou, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| | - Zhe Yu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Dana S M Wong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yalun Zhang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Kwan
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Henry Ka-Fung Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | | | - Sirui Zhou
- Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Wangwei Cai
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, Hainan, China
| | - Jin Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shishu Huang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Xu Ma
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China.
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Leung Wing Chu
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; Centre for Genome Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Hong Kong, China; HKU-SIRI/ZIRI, The University of Hong Kong, Hong Kong, China; HKU-SUSTech Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
169
|
Reunov A, Reunov A, Pimenova E, Reunova Y, Menchinskaiya E, Lapshina L, Aminin D. The study of the calpain and caspase-1 expression in ultrastructural dynamics of Ehrlich ascites carcinoma necrosis. Gene 2018. [PMID: 29518545 DOI: 10.1016/j.gene.2018.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
An expression of calpain and caspase-1 as well as the concomitant ultrastructural alterations were investigated during necrosis of the mouse Ehrlich ascites carcinoma. The calpain expression was registered at 0 h and 1 h although caspase-1 did not induce any signals during these time periods. The rise of the cytoplasmic lytic zones contacted by calpain antibodies was identified as a morphologic event corresponding to the expression of calpain. Lytic zone's distribution followed by the appearance of the calpain/caspase-1 clusters assigned for lysis of the Golgi vesicles and ER. Also, the microapocrine secretion of the vesicles containing the calpain/caspase-1 clusters was detected. Further, the lysis of the plasma membrane occurred due to progression of intracellular lysis. Rupture of the plasma membrane resulted in the termination of secretion and dissemination of cell contents. The nuclei still had their normal shape. Nuclear lysis continued to rise with intranuclear lytic zones, of which the progression was accompanied with the presence of calpain/caspase-1 clusters. The data contribute to the concept of the initial role of calpain for tumor cell destruction, provide first evidence of the calpain/caspase-1 pathway in tumor cells, and highlight microapocrine secretion as a possible tumor cell death signalling mechanism.
Collapse
Affiliation(s)
- Arkadiy Reunov
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada.
| | - Anatoliy Reunov
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Russia
| | - Evgenia Pimenova
- National Scientific Centre of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Yulia Reunova
- National Scientific Centre of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Ekaterina Menchinskaiya
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Russia
| | - Larisa Lapshina
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Russia
| | - Dmitry Aminin
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Russia
| |
Collapse
|
170
|
McDougal CE, Sauer JD. Listeria monocytogenes: The Impact of Cell Death on Infection and Immunity. Pathogens 2018; 7:pathogens7010008. [PMID: 29324702 PMCID: PMC5874734 DOI: 10.3390/pathogens7010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes has evolved exquisite mechanisms for invading host cells and spreading from cell-to-cell to ensure maintenance of its intracellular lifecycle. As such, it is not surprising that loss of the intracellular replication niche through induction of host cell death has significant implications on the development of disease and the subsequent immune response. Although L. monocytogenes can activate multiple pathways of host cell death, including necrosis, apoptosis, and pyroptosis, like most intracellular pathogens L. monocytogenes has evolved a series of adaptations that minimize host cell death to promote its virulence. Understanding how L. monocytogenes modulates cell death during infection could lead to novel therapeutic approaches. In addition, as L. monocytogenes is currently being developed as a tumor immunotherapy platform, understanding how cell death pathways influence the priming and quality of cell-mediated immunity is critical. This review will focus on the mechanisms by which L. monocytogenes modulates cell death, as well as the implications of cell death on acute infection and the generation of adaptive immunity.
Collapse
Affiliation(s)
- Courtney E McDougal
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
171
|
Antitumor activity of HPA3P through RIPK3-dependent regulated necrotic cell death in colon cancer. Oncotarget 2018; 9:7902-7917. [PMID: 29487701 PMCID: PMC5814268 DOI: 10.18632/oncotarget.24083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
The antimicrobial peptide HPA3 shows anticancer activity in gastric cancer and leukaemia. However, how HPA3 exerts its anticancer activity, as well as whether it also exhibits activity in other cancers, remains unknown. Therefore, the aim of this study was to evaluate the anticancer activity of HPA3 and its analogues in colon cancer and to elucidate the mechanisms responsible for this activity. HPA3P decreased cell viability, whereas HPA3 and HPA3P2 did not decrease cell viability in colon cancer cells compared with control cells. This reduction in cell viability occurred through necrosis, a conclusion supported by our observation of the release of cellular contents, our intracellular PI staining results, and our observation of the release of HMGB1. Moreover, RIPK3 inhibition blocks the reduction of cell viability by HPA3P. Consistent with this finding, we found that knocking down RIPK3 and MLKL, key necroptosis proteins, attenuates the reductions in cell viability induced by HPA3P. Furthermore, HPA3P can improve the anticancer activity of chemotherapeutic agents and exhibits anticancer activity in other cancer cells. These results suggest that HPA3P may have potential as an anticancer agent in the treatment of colon cancer.
Collapse
|
172
|
Martínez-Torres AC, Reyes-Ruiz A, Benítez-Londoño M, Franco-Molina MA, Rodríguez-Padilla C. IMMUNEPOTENT CRP induces cell cycle arrest and caspase-independent regulated cell death in HeLa cells through reactive oxygen species production. BMC Cancer 2018; 18:13. [PMID: 29298674 PMCID: PMC5753472 DOI: 10.1186/s12885-017-3954-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Regulated cell death (RCD) is a mechanism by which the cell activates its own machinery to self-destruct. RCD is important for the maintenance of tissue homeostasis and its deregulation is involved in diseases such as cervical cancer. IMMUNEPOTENT CRP (I-CRP) is a dialyzable bovine leukocyte extract that contains transfer factors and acts as an immunomodulator, and can be cytotoxic to cancer cell lines and reduce tumor burden in vivo. Although I-CRP has shown to improve or modulate immune response in inflammation, infectious diseases and cancer, its widespread use has been limited by the absence of conclusive data on the molecular mechanism of its action. METHODS In this study we analyzed the mechanism by which I-CRP induces cytotoxicity in HeLa cells. We assessed cell viability, cell death, cell cycle, nuclear morphology and DNA integrity, caspase dependence and activity, mitochondrial membrane potential, and reactive oxygen species production. RESULTS I-CRP diminishes cell viability in HeLa cells through a RCD pathway and induces cell cycle arrest in the G2/M phase. We show that the I-CRP induces caspase activation but cell death induction is independent of caspases, as observed by the use of a pan-caspase inhibitor, which blocked caspase activity but not cell death. Moreover, we show that I-CRP induces DNA alterations, loss of mitochondrial membrane potential, and production of reactive-oxygen species. Finally, pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger, prevented both ROS generation and cell death induced by I-CRP. CONCLUSIONS Our data indicate that I-CRP treatment induced cell cycle arrest in G2/M phase, mitochondrial damage, and ROS-mediated caspase-independent cell death in HeLa cells. This work opens the way to the elucidation of a more detailed cell death pathway that could potentially work in conjunction with caspase-dependent cell death induced by classical chemotherapies.
Collapse
Affiliation(s)
- Ana Carolina Martínez-Torres
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, 66455 Monterrey, Mexico
| | - Alejandra Reyes-Ruiz
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, 66455 Monterrey, Mexico
| | - Milena Benítez-Londoño
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, 66455 Monterrey, Mexico
| | - Moises Armides Franco-Molina
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, 66455 Monterrey, Mexico
| | - Cristina Rodríguez-Padilla
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, 66455 Monterrey, Mexico
| |
Collapse
|
173
|
Rohne P, Wolf S, Dörr C, Ringen J, Holtz A, Gollan R, Renner B, Prochnow H, Baiersdörfer M, Koch-Brandt C. Exposure of vital cells to necrotic cell lysates induce the IRE1α branch of the unfolded protein response and cell proliferation. Cell Stress Chaperones 2018; 23:77-88. [PMID: 28687980 PMCID: PMC5741583 DOI: 10.1007/s12192-017-0825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/15/2017] [Accepted: 06/16/2017] [Indexed: 10/19/2022] Open
Abstract
Necrosis is a form of cell death that is detrimental to the affected tissue because the cell ruptures and releases its content (reactive oxygen species among others) into the extracellular space. Clusterin (CLU), a cytoprotective extracellular chaperone has been shown to be upregulated in the face of necrosis. We here show that in addition to CLU upregulation, necrotic cell lysates induce JNK/SAPK signaling, the IRE1α branch of the unfolded protein response (UPR), the MAPK/ERK1/2, and the mTOR signaling pathways and results in an enhanced proliferation of the vital surrounding cells. We name this novel response mechanism: Necrosis-induced Proliferation (NiP).
Collapse
Affiliation(s)
- Philipp Rohne
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Steven Wolf
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
- Department of Pathology, The University of Chicago, Chicago, IL USA
| | - Carolin Dörr
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Julia Ringen
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Andrew Holtz
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - René Gollan
- Department of Neurology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Benjamin Renner
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Hans Prochnow
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
- Department of Chemical Biology, Helmholtz Centre for Infection Research GmbH, Braunschweig, Germany
| | - Markus Baiersdörfer
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Claudia Koch-Brandt
- Institute of Pharmacy and Biochemistry - Therapeutical Life Sciences, Johannes Gutenberg University of Mainz, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| |
Collapse
|
174
|
Cong M, Jia J, Kisseleva T, Brenner DA. The Liver's Response to Injury. ZAKIM AND BOYER'S HEPATOLOGY 2018:77-83.e5. [DOI: 10.1016/b978-0-323-37591-7.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
175
|
Lin SY, Hsieh SY, Fan YT, Wei WC, Hsiao PW, Tsai DH, Wu TS, Yang NS. Necroptosis promotes autophagy-dependent upregulation of DAMP and results in immunosurveillance. Autophagy 2017; 14:778-795. [PMID: 29171784 DOI: 10.1080/15548627.2017.1386359] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Programmed necrosis, necroptosis, is considered to be a highly immunogenic activity, often mediated via the release of damage-associated molecular patterns (DAMPs). Interestingly, enhanced macroautophagic/autophagic activity is often found to be accompanied by necroptosis. However, the possible role of autophagy in the immunogenicity of necroptotic death remains largely obscure. In this study, we investigated the possible mechanistic correlation between phytochemical shikonin-induced autophagy and the shikonin-induced necroptosis for tumor immunogenicity. We show that shikonin can instigate RIPK1 (receptor [TNFRSF]-interacting serine-threonine kinase 1)- and RIPK3 (receptor-interacting serine-threonine kinase 3)-dependent necroptosis that is accompanied by enhanced autophagy. Shikonin-induced autophagy can directly contribute to DAMP upregulation. Counterintuitively, among the released and ectoDAMPs, only the latter were shown to be able to activate the cocultured dendritic cells (DCs). Interruption of autophagic flux via chloroquine further upregulated ectoDAMP activity and resultant DC activation. For potential clinical application, DC vaccine preparations treated with tumor cells that were already pretreated with chloroquine and shikonin further enhanced the antimetastatic activity of 4T1 tumors and reduced the effective dosage of doxorubicin. The enhanced immunogenicity and vaccine efficacy obtained via shikonin and chloroquine cotreatment of tumor cells may thus constitute a compelling strategy for developing cancer vaccines via the use of a combinational drug treatment.
Collapse
Affiliation(s)
- Sheng-Yen Lin
- a Agricultural Biotechnology Research Center , Academia Sinica , ROC , Taiwan.,b Graduate Institute of Life Science , National Defense Medical Center , Taipei ROC , Taiwan
| | - Sung-Yuan Hsieh
- c Bioresource Collection and Research Center , Food Industry and Research and Development Institute , Hsinchu , ROC, Taiwan
| | - Yi-Ting Fan
- a Agricultural Biotechnology Research Center , Academia Sinica , ROC , Taiwan
| | - Wen-Chi Wei
- a Agricultural Biotechnology Research Center , Academia Sinica , ROC , Taiwan
| | - Pei-Wen Hsiao
- a Agricultural Biotechnology Research Center , Academia Sinica , ROC , Taiwan.,b Graduate Institute of Life Science , National Defense Medical Center , Taipei ROC , Taiwan
| | - Dai-Hua Tsai
- d Institute for Pharmaceutics , Development Center for Biotechnology , New Taipei City , ROC , Taiwan
| | - Tzong-Shoon Wu
- e Institute of Molecular Biology, Academia Sinica , ROC , Taiwan
| | - Ning-Sun Yang
- a Agricultural Biotechnology Research Center , Academia Sinica , ROC , Taiwan.,b Graduate Institute of Life Science , National Defense Medical Center , Taipei ROC , Taiwan
| |
Collapse
|
176
|
Nurmasitoh T, Sari DCR, Partadiredja G. The effects of black garlic on the working memory and pyramidal cell number of medial prefrontal cortex of rats exposed to monosodium glutamate. Drug Chem Toxicol 2017; 41:324-329. [DOI: 10.1080/01480545.2017.1414833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Titis Nurmasitoh
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Physiology, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Dwi Cahyani Ratna Sari
- Department of Anatomy, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ginus Partadiredja
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
177
|
Senescence and cell death in chronic liver injury: roles and mechanisms underlying hepatocarcinogenesis. Oncotarget 2017; 9:8772-8784. [PMID: 29492237 PMCID: PMC5823588 DOI: 10.18632/oncotarget.23622] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/10/2017] [Indexed: 12/16/2022] Open
Abstract
Chronic liver injury (CLI) is a complex pathological process typically characterized by progressive destruction and regeneration of liver parenchymal cells due to diverse risk factors such as alcohol abuse, drug toxicity, viral infection, and genetic metabolic disorders. When the damage to hepatocytes is mild, the liver can regenerate itself and restore to the normal state; when the damage is irreparable, hepatocytes would undergo senescence or various forms of death including apoptosis, necrosis and necroptosis. These pathological changes not only promote the progression of the existing hepatopathies via various underlying mechanisms but are closely associated with hepatocarcinogenesis. In this review, we discuss the pathological changes that hepatocytes undergo during CLI, and their roles and mechanisms in the progression of hepatopathies and hepatocarcinogenesis. We also give a brief introduction about some animal models currently used for the research of CLI and progress in the research of CLI.
Collapse
|
178
|
Digital-PCR for gene expression: impact from inherent tissue RNA degradation. Sci Rep 2017; 7:17235. [PMID: 29222437 PMCID: PMC5722939 DOI: 10.1038/s41598-017-17619-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/28/2017] [Indexed: 02/03/2023] Open
Abstract
Subtle molecular differences indicate the heterogeneity present in a number of disease settings. Digital-PCR (dPCR) platforms achieve the necessary levels of sensitivity and accuracy over standard quantitative RT-PCR (qPCR) that promote their use for such situations, detecting low abundance transcript and subtle changes from gene expression. An underlying requisite is good quality RNA, principally dictated by appropriate tissue handling and RNA extraction. Here we consider the application of dPCR to measures of gene expression in pathological tissues with inherent necrosis, focusing on rheumatoid subcutaneous nodules. Variable RNA fragmentation is a feature of RNA from such tissues. Increased presence of transcript fragmentation is reflected in a proportionate decrease in Agilent DV200 metric and downstream, a reduction in endogenous control genes' expression, measured by RT-dPCR. We show that normalisation of target gene expression to that for endogenous control genes sufficiently corrects for the variable level of fragmented RNA. Recovery of target gene values was achieved in samples comprising as much as 50 percent fragmented RNA, indicating the suitability and appropriate limitation of such data treatment when applied to samples obtained from inherently necrotic tissues.
Collapse
|
179
|
Li B, Cui Y, Diehn M, Li R. Development and Validation of an Individualized Immune Prognostic Signature in Early-Stage Nonsquamous Non-Small Cell Lung Cancer. JAMA Oncol 2017; 3:1529-1537. [PMID: 28687838 DOI: 10.1001/jamaoncol.2017.1609] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance The prevalence of early-stage non-small cell lung cancer (NSCLC) is expected to increase with recent implementation of annual screening programs. Reliable prognostic biomarkers are needed to identify patients at a high risk for recurrence to guide adjuvant therapy. Objective To develop a robust, individualized immune signature that can estimate prognosis in patients with early-stage nonsquamous NSCLC. Design, Setting, and Participants This retrospective study analyzed the gene expression profiles of frozen tumor tissue samples from 19 public NSCLC cohorts, including 18 microarray data sets and 1 RNA-Seq data set for The Cancer Genome Atlas (TCGA) lung adenocarcinoma cohort. Only patients with nonsquamous NSCLC with clinical annotation were included. Samples were from 2414 patients with nonsquamous NSCLC, divided into a meta-training cohort (729 patients), meta-testing cohort (716 patients), and 3 independent validation cohorts (439, 323, and 207 patients). All patients underwent surgery with a negative surgical margin, received no adjuvant or neoadjuvant therapy, and had publicly available gene expression data and survival information. Data were collected from July 22 through September 8, 2016. Main Outcomes and Measures Overall survival. Results Of 2414 patients (1205 men [50%], 1111 women [46%], and 98 of unknown sex [4%]; median age [range], 64 [15-90] years), a prognostic immune signature of 25 gene pairs consisting of 40 unique genes was constructed using the meta-training data set. In the meta-testing and validation cohorts, the immune signature significantly stratified patients into high- vs low-risk groups in terms of overall survival across and within subpopulations with stage I, IA, IB, or II disease and remained as an independent prognostic factor in multivariate analyses (hazard ratio range, 1.72 [95% CI, 1.26-2.33; P < .001] to 2.36 [95% CI, 1.47-3.79; P < .001]) after adjusting for clinical and pathologic factors. Several biological processes, including chemotaxis, were enriched among genes in the immune signature. The percentage of neutrophil infiltration (5.6% vs 1.8%) and necrosis (4.6% vs 1.5%) was significantly higher in the high-risk immune group compared with the low-risk groups in TCGA data set (P < .003). The immune signature achieved a higher accuracy (mean concordance index [C-index], 0.64) than 2 commercialized multigene signatures (mean C-index, 0.53 and 0.61) for estimation of survival in comparable validation cohorts. When integrated with clinical characteristics such as age and stage, the composite clinical and immune signature showed improved prognostic accuracy in all validation data sets relative to molecular signatures alone (mean C-index, 0.70 vs 0.63) and another commercialized clinical-molecular signature (mean C-index, 0.68 vs 0.65). Conclusions and Relevance The proposed clinical-immune signature is a promising biomarker for estimating overall survival in nonsquamous NSCLC, including early-stage disease. Prospective studies are needed to test the clinical utility of the biomarker in individualized management of nonsquamous NSCLC.
Collapse
Affiliation(s)
- Bailiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California
| | - Yi Cui
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California.,Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California.,Stanford Cancer Institute, Stanford University School of Medicine, Palo Alto, California
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California.,Stanford Cancer Institute, Stanford University School of Medicine, Palo Alto, California
| |
Collapse
|
180
|
Pang Y, Li C, Wang S, Ba W, Yu T, Pei G, Bi D, Liang H, Pan X, Zhu T, Gou M, Han Y, Li Q. A novel protein derived from lamprey supraneural body tissue with efficient cytocidal actions against tumor cells. Cell Commun Signal 2017; 15:42. [PMID: 29037260 PMCID: PMC5644163 DOI: 10.1186/s12964-017-0198-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 10/05/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND In previous research, we found that cell secretion from the adult lamprey supraneural body tissues possesses cytocidal activity against tumor cells, but the protein with cytocidal activity was unidentified. METHODS A novel lamprey immune protein (LIP) as defense molecule was first purified and identified in jawless vertebrates (cyclostomes) using hydroxyapatite column and Q Sepharose Fast Flow column. After LIP stimulation, morphological changes of tumor cells were analysed and measured whether in vivo or in vitro. RESULTS LIP induces remarkable morphological changes in tumor cells, including cell blebbing, cytoskeletal alterations, mitochondrial fragmentation and endoplasmic reticulum vacuolation, and most of the cytoplasmic and organelle proteins are released following treatment with LIP. LIP evokes an elevation of intracellular calcium and inflammatory molecule levels. Our analysis of the cytotoxic mechanism suggests that LIP can upregulate the expression of caspase 1, RIPK1, RIP3 to trigger pyroptosis and necroptosis. To examine the effect of LIP in vivo, tumor xenograft experiments were performed, and the results indicated that LIP inhibits tumor growth without damage to mice. In addition, the cytotoxic action of LIP depended on the phosphatidylserine (PS) content of the cell membrane. CONCLUSIONS These observations suggest that LIP plays a crucial role in tumor cell survival and growth. The findings will also help to elucidate the mechanisms of host defense in lamprey.
Collapse
Affiliation(s)
- Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Changzhi Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Shiyue Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Wei Ba
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Tao Yu
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Guangying Pei
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Dan Bi
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Hongfang Liang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Xiong Pan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Ting Zhu
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China. .,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
181
|
Hypertonic saline solution for modifying tissue ischemia/reperfusion injury: Porcine aortic occlusion model☆. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2017. [DOI: 10.1097/01819236-201710000-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
182
|
Solución salina hipertónica para modificar la lesión tisular por isquemia/reperfusión: modelo porcino de oclusión de aorta. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2017. [DOI: 10.1016/j.rca.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
183
|
Escobar B, Guevara-Cruz OA, Navarro-Vargas JR, Giraldo-Fajardo AF, Dumar-Rodriguez JA, Borrero-Cortés C. Hypertonic saline solution for modifying tissue ischemia/reperfusion injury: Porcine aortic occlusion model. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2017. [DOI: 10.1016/j.rcae.2017.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
184
|
Enhancing internalization of silica particles in myocardial cells through surface modification. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
185
|
Lei-Leston AC, Murphy AG, Maloy KJ. Epithelial Cell Inflammasomes in Intestinal Immunity and Inflammation. Front Immunol 2017; 8:1168. [PMID: 28979266 PMCID: PMC5611393 DOI: 10.3389/fimmu.2017.01168] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022] Open
Abstract
Pattern recognition receptors (PRR), such as NOD-like receptors (NLRs), sense conserved microbial signatures, and host danger signals leading to the coordination of appropriate immune responses. Upon activation, a subset of NLR initiate the assembly of a multimeric protein complex known as the inflammasome, which processes pro-inflammatory cytokines and mediates a specialized form of cell death known as pyroptosis. The identification of inflammasome-associated genes as inflammatory bowel disease susceptibility genes implicates a role for the inflammasome in intestinal inflammation. Despite the fact that the functional importance of inflammasomes within immune cells has been well established, the contribution of inflammasome expression in non-hematopoietic cells remains comparatively understudied. Given that intestinal epithelial cells (IEC) act as a barrier between the host and the intestinal microbiota, inflammasome expression by these cells is likely important for intestinal immune homeostasis. Accumulating evidence suggests that the inflammasome plays a key role in shaping epithelial responses at the host-lumen interface with many inflammasome components highly expressed by IEC. Recent studies have exposed functional roles of IEC inflammasomes in mucosal immune defense, inflammation, and tumorigenesis. In this review, we present the main features of the predominant inflammasomes and their effector mechanisms contributing to intestinal homeostasis and inflammation. We also discuss existing controversies in the field and open questions related to their implications in disease. A comprehensive understanding of the molecular basis of intestinal inflammasome signaling could hold therapeutic potential for clinical translation.
Collapse
Affiliation(s)
- Andrea C Lei-Leston
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alison G Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Kevin J Maloy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
186
|
Carter CA, Oronsky BT, Roswarski J, Oronsky AL, Oronsky N, Scicinski J, Lybeck H, Kim MM, Lybeck M, Reid TR. No patient left behind: The promise of immune priming with epigenetic agents. Oncoimmunology 2017; 6:e1315486. [PMID: 29123948 PMCID: PMC5665084 DOI: 10.1080/2162402x.2017.1315486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
Checkpoint inhibitors, monoclonal antibodies that inhibit PD-1 or CTLA-4, have revolutionized the treatment of multiple cancers. Despite the enthusiasm for the clinical successes of checkpoint inhibitors, and immunotherapy, in general, only a minority of patients with specific tumor types actually benefit from treatment. Emerging evidence implicates epigenetic alterations as a mechanism of clinical resistance to immunotherapy. This review presents evidence for that association, summarizes the epi-based mechanisms by which tumors evade immunogenic cell death, discusses epigenetic modulation as a component of an integrated strategy to boost anticancer T cell effector function in relation to a tumor immunosuppression cycle and, finally, makes the case that the success of this no-patient-left-behind strategy critically depends on the toxicity profile of the epigenetic agent(s).
Collapse
Affiliation(s)
- Corey A Carter
- Walter Reed National Military Medical Center, Murtha Cancer Center, Bethesda, MD, USA
| | | | - Joseph Roswarski
- Walter Reed National Military Medical Center, Murtha Cancer Center, Bethesda, MD, USA
| | | | | | | | - Harry Lybeck
- University of Helsinki, Department of Physiology, Helsinki, Finland
| | - Michelle M Kim
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, USA
| | | | - Tony R Reid
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| |
Collapse
|
187
|
Combination treatment of ergosterol followed by amphotericin B induces necrotic cell death in human hepatocellular carcinoma cells. Oncotarget 2017; 8:72727-72738. [PMID: 29069821 PMCID: PMC5641164 DOI: 10.18632/oncotarget.20285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022] Open
Abstract
The incidence of liver cancer, the second leading cause of cancer-related deaths has increased over the past few decades. Although recent treatments such as sorafenib are promising in patients with advanced hepatocellular carcinoma (HCC), the response rates remain poor thereby warranting the identification of novel therapeutic agents against liver cancer. Herein, we investigated the anti-cancer effect of ergosterol (a secondary metabolite in medicinal fungus) pretreatment followed by amphotericin B (AmB) treatment on liver cancer cell lines. We demonstrated that pretreatment with a nontoxic dose of ergosterol synergistically enhanced the cytotoxicity of AmB in both Hep3B and HepJ5 cells. The combination treatment-mediated suppression of cancer cell viability occurred through necrosis characterized by disrupted cell membrane and significant amounts of debris accumulation. In addition, we also observed a concomitant increase in reactive oxygen species (ROS) and LC3-II levels in HepJ5 cells treated with ergosterol and AmB. Our results suggest that ergosterol-AmB combination treatment effectively induced necrotic cell death in cancer cells, and deserves further evaluation for development as an anti-cancer agent.
Collapse
|
188
|
Relationship between necrotic patterns in glioblastoma and patient survival: fractal dimension and lacunarity analyses using magnetic resonance imaging. Sci Rep 2017; 7:8302. [PMID: 28814802 PMCID: PMC5559591 DOI: 10.1038/s41598-017-08862-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022] Open
Abstract
Necrosis is a hallmark feature of glioblastoma (GBM). This study investigated the prognostic role of necrotic patterns in GBM using fractal dimension (FD) and lacunarity analyses of magnetic resonance imaging (MRI) data and evaluated the role of lacunarity in the biological processes leading to necrosis. We retrospectively reviewed clinical and MRI data of 95 patients with GBM. FD and lacunarity of the necrosis on MRI were calculated by fractal analysis and subjected to survival analysis. We also performed gene ontology analysis in 32 patients with available RNA-seq data. Univariate analysis revealed that FD < 1.56 and lacunarity > 0.46 significantly correlated with poor progression-free survival (p = 0.006 and p = 0.012, respectively) and overall survival (p = 0.008 and p = 0.005, respectively). Multivariate analysis revealed that both parameters were independent factors for unfavorable progression-free survival (p = 0.001 and p = 0.015, respectively) and overall survival (p = 0.002 and p = 0.007, respectively). Gene ontology analysis revealed that genes positively correlated with lacunarity were involved in the suppression of apoptosis and necrosis-associated biological processes. We demonstrate that the fractal parameters of necrosis in GBM can predict patient survival and are associated with the biological processes of tumor necrosis.
Collapse
|
189
|
Campos JF, Espindola PPDT, Torquato HFV, Vital WD, Justo GZ, Silva DB, Carollo CA, de Picoli Souza K, Paredes-Gamero EJ, Dos Santos EL. Leaf and Root Extracts from Campomanesia adamantium (Myrtaceae) Promote Apoptotic Death of Leukemic Cells via Activation of Intracellular Calcium and Caspase-3. Front Pharmacol 2017; 8:466. [PMID: 28855870 PMCID: PMC5558464 DOI: 10.3389/fphar.2017.00466] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022] Open
Abstract
Phytochemical studies are seeking new alternatives to prevent or treat cancer, including different types of leukemias. Campomanesia adamantium, commonly known as guavira or guabiroba, exhibits pharmacological properties including antioxidant, antimicrobial, and antiproliferative activities. Considering the anticancer potential of this plant species, the aim of this study was to evaluate the antileukemic activity and the chemical composition of aqueous extracts from the leaves (AECL) and roots (AECR) of C. adamantium and their possible mechanisms of action. The extracts were analyzed by LC-DAD-MS, and their constituents were identified based on the UV, MS, and MS/MS data. The AECL and AECR showed different chemical compositions, which were identified as main compounds glycosylated flavonols from AECL and ellagic acid and their derivatives from AECR. The cytotoxicity promoted by these extracts were evaluated using human peripheral blood mononuclear cells and Jurkat leukemic cell line. The cell death profile was evaluated using annexin-V-FITC and propidium iodide labeling. Changes in the mitochondrial membrane potential, the activity of caspases, and intracellular calcium levels were assessed. The cell cycle profile was evaluated using propidium iodide. Both extracts caused concentration-dependent cytotoxicity only in Jurkat cells via late apoptosis. This activity was associated with loss of the mitochondrial membrane potential, activation of caspases-9 and -3, changes in intracellular calcium levels, and cell cycle arrest in S-phase. Therefore, the antileukemic activity of the AECL and AECR is mediated by mitochondrial dysfunction and intracellular messengers, which activate the intrinsic apoptotic pathway. Hence, aqueous extracts of the leaves and roots of C. adamantium show therapeutic potential for use in the prevention and treatment of diseases associated the proliferation of tumor cell.
Collapse
Affiliation(s)
- Jaqueline F Campos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande DouradosDourados, Brazil
| | - Priscilla P de Toledo Espindola
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande DouradosDourados, Brazil
| | - Heron F V Torquato
- Department of Biochemistry, Federal University of São PauloSão Paulo, Brazil.,Faculty of Pharmacy, Braz Cubas UniversityMogi das Cruzes, Brazil
| | - Wagner D Vital
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das CruzesMogi das Cruzes, Brazil
| | - Giselle Z Justo
- Department of Biochemistry, Federal University of São PauloSão Paulo, Brazil.,Department of Pharmaceutical Sciences, Federal University of São PauloSão Paulo, Brazil
| | - Denise B Silva
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do SulMato Grosso do Sul, Brazil
| | - Carlos A Carollo
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do SulMato Grosso do Sul, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande DouradosDourados, Brazil
| | - Edgar J Paredes-Gamero
- Department of Biochemistry, Federal University of São PauloSão Paulo, Brazil.,Interdisciplinary Center of Biochemistry Investigation, University of Mogi das CruzesMogi das Cruzes, Brazil
| | - Edson L Dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande DouradosDourados, Brazil
| |
Collapse
|
190
|
Martens S, Jeong M, Tonnus W, Feldmann F, Hofmans S, Goossens V, Takahashi N, Bräsen JH, Lee EW, Van der Veken P, Joossens J, Augustyns K, Fulda S, Linkermann A, Song J, Vandenabeele P. Sorafenib tosylate inhibits directly necrosome complex formation and protects in mouse models of inflammation and tissue injury. Cell Death Dis 2017; 8:e2904. [PMID: 28661484 PMCID: PMC5520944 DOI: 10.1038/cddis.2017.298] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/17/2022]
Abstract
Necroptosis contributes to the pathophysiology of several inflammatory, infectious and degenerative disorders. TNF-induced necroptosis involves activation of the receptor-interacting protein kinases 1 and 3 (RIPK1/3) in a necrosome complex, eventually leading to the phosphorylation and relocation of mixed lineage kinase domain like protein (MLKL). Using a high-content screening of small compounds and FDA-approved drug libraries, we identified the anti-cancer drug Sorafenib tosylate as a potent inhibitor of TNF-dependent necroptosis. Interestingly, Sorafenib has a dual activity spectrum depending on its concentration. In murine and human cell lines it induces cell death, while at lower concentrations it inhibits necroptosis, without affecting NF-κB activation. Pull down experiments with biotinylated Sorafenib show that it binds independently RIPK1, RIPK3 and MLKL. Moreover, it inhibits RIPK1 and RIPK3 kinase activity. In vivo Sorafenib protects against TNF-induced systemic inflammatory response syndrome (SIRS) and renal ischemia–reperfusion injury (IRI). Altogether, we show that Sorafenib can, next to the reported Braf/Mek/Erk and VEGFR pathways, also target the necroptotic pathway and that it can protect in an acute inflammatory RIPK1/3-mediated pathology.
Collapse
Affiliation(s)
- Sofie Martens
- VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Manhyung Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Wulf Tonnus
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Friederike Feldmann
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Sam Hofmans
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Vera Goossens
- VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Nozomi Takahashi
- VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | | | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | | | - Jurgen Joossens
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany
| | - Andreas Linkermann
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| |
Collapse
|
191
|
Calabuig A, Mugnano M, Miccio L, Grilli S, Ferraro P. Investigating fibroblast cells under "safe" and "injurious" blue-light exposure by holographic microscopy. JOURNAL OF BIOPHOTONICS 2017; 10:919-927. [PMID: 27088256 DOI: 10.1002/jbio.201500340] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/26/2016] [Accepted: 03/18/2016] [Indexed: 05/26/2023]
Abstract
The exposure to visible light has been shown to exert various biological effects, such as erythema and retinal degeneration. However, the phototoxicity mechanisms in living cells are still not well understood. Here we report a study on the temporal evolution of cell morphology and volume during blue light exposure. Blue laser irradiation is switched during the operation of a digital holography (DH) microscope between what we call here "safe" and "injurious" exposure (SE & IE). The results reveal a behaviour that is typical of necrotic cells, with early swelling and successive leakage of the intracellular liquids when the laser is set in the "injurious" operation. In the phototoxicity investigation reported here the light dose modulation is performed through the very same laser light source adopted for monitoring the cell's behaviour by digital holographic microscope. We believe the approach may open the route to a deep investigation of light-cell interactions, with information about death pathways and threshold conditions between healthy and damaged cells when subjected to light-exposure. 3D Morphology and quantitative phase information from late stage of necrosis cell death.
Collapse
Affiliation(s)
- Alejandro Calabuig
- National Council of Research, Institute of Applied Science & Intelligent Systems (ISASI) 'E. Caianiello', Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P. le Tecchio 80, 80125, Napoli, Italy
| | - Martina Mugnano
- National Council of Research, Institute of Applied Science & Intelligent Systems (ISASI) 'E. Caianiello', Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, P. le Tecchio 80, 80125, Napoli, Italy
| | - Lisa Miccio
- National Council of Research, Institute of Applied Science & Intelligent Systems (ISASI) 'E. Caianiello', Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Simonetta Grilli
- National Council of Research, Institute of Applied Science & Intelligent Systems (ISASI) 'E. Caianiello', Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Pietro Ferraro
- National Council of Research, Institute of Applied Science & Intelligent Systems (ISASI) 'E. Caianiello', Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| |
Collapse
|
192
|
15-Deoxy-Δ 12,14-prostaglandin J 2 alleviates hepatic ischemia-reperfusion injury in mice via inducing antioxidant response and inhibiting apoptosis and autophagy. Acta Pharmacol Sin 2017; 38:672-687. [PMID: 28216619 DOI: 10.1038/aps.2016.108] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
Hepatic ischemia-reperfusion (I/R) injury is a common clinical impairment that occurs in many circumstances and leads to poor prognosis. Both apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is one of the best-studied anti-inflammatory prostaglandins, which has been verified to exert anti-inflammatory and cell-protective functions in various types of cells and animal models. In this study we explored the effects of 15d-PGJ2 on both apoptosis and autophagy in mouse hepatic I/R injury and its possible mechanisms. A model of segmental (70%) hepatic warm ischemia was established in Balb/c mice, and the pathological changes in serum and liver tissues were detected at 6, 12, and 24 h post-surgery, while 15d-PGJ2 (2.5, 7.5, 15 μg, iv) was administered 30 min prior the surgery. Pretreatment with 15d-PGJ2 (7.5, 15 μg) significantly ameliorated I/R-induced hepatic injury evidenced by dose-dependent reduction of serum ALT and AST levels as well as alleviated tissue damages. 15d-PGJ2 pretreatment significantly decreased the serum TNF-α and IL-1β levels and the hepatic expression of F4/80, a major biomarker of macrophages. 15d-PGJ2 pretreatment upregulated the Bcl-2/Bax ratio, thus reducing the number of apoptotic cells in the livers. 15d-PGJ2 pretreatment considerably suppressed the expression of Beclin-1 and LC3, thus decreasing the number of autophagosomes in the livers. Furthermore, 15d-PGJ2 pretreatment activated Nrf2 and inhibited a ROS/HIF1α/BNIP3 pathway in the livers. Pretreatment with the PPARγ receptor blocker GW9662 (2 μg, ip) partly reversed the protective effects of 15d-PGJ2 on hepatic I/R injury. In conclusion, our results confirm the protective effect of 15d-PGJ2 on hepatic I/R injury, an effect that may rely on a reduction in the activation of Kupffer cells and on activation of the Nrf2 pathway, which lead to inhibition of ROS generation, apoptosis, and autophagy.
Collapse
|
193
|
The human cancer cell active toxin Cry41Aa from Bacillus thuringiensis acts like its insecticidal counterparts. Biochem J 2017; 474:1591-1602. [PMID: 28341807 DOI: 10.1042/bcj20170122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 12/15/2022]
Abstract
Understanding how certain protein toxins from the normally insecticidal bacterium Bacillus thuringiensis (Bt) target human cell lines has implications for both the risk assessment of products containing these toxins and potentially for cancer therapy. This understanding requires knowledge of whether the human cell active toxins work by the same mechanism as their insecticidal counterparts or by alternative ones. The Bt Cry41Aa (also known as Parasporin3) toxin is structurally related to the toxins synthesised by commercially produced transgenic insect-resistant plants, with the notable exception of an additional C-terminal β-trefoil ricin domain. To better understand its mechanism of action, we developed an efficient expression system for the toxin and created mutations in regions potentially involved in the toxic mechanism. Deletion of the ricin domain did not significantly affect the activity of the toxin against the human HepG2 cell line, suggesting that this region was not responsible for the mammalian specificity of Cry41Aa. Various biochemical assays suggested that unlike some other human cell active toxins from Bt Cry41Aa did not induce apoptosis, but that its mechanism of action was consistent with that of a pore-forming toxin. The toxin induced a rapid and significant decrease in metabolic activity. Adenosine triphosphate depletion, cell swelling and membrane damage were also observed. An exposed loop region believed to be involved in receptor binding of insecticidal Cry toxins was shown to be important for the activity of Cry41Aa against HepG2 cells.
Collapse
|
194
|
Hou J, Zhang Z, Huang Q, Yan J, Zhang X, Yu X, Tan G, Zheng C, Xu F, He S. Antiviral activity of PHA767491 against human herpes simplex virus in vitro and in vivo. BMC Infect Dis 2017; 17:217. [PMID: 28320320 PMCID: PMC5358049 DOI: 10.1186/s12879-017-2305-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herpes simplex virus (HSV) is a common human pathogen that causes a variety of diseases, including oral-labial, genital lesions and life-threatening encephalitis. The antiviral nucleoside analogues such as acyclovir are currently used in anti-HSV therapies; however, clinical overuse of these drugs has led to the emergence of drug-resistant viral strains. Hence, there is an urgent need to develop new anti-HSV agents. METHODS To identify novel anti-HSV-1 compounds, we screened the LOPAC small scale library of 1280 bioactive compounds to identify inhibitors of HSV-1-induced necroptosis. Further experiments including western blot analysis, Q-PCR analysis and immunohistochemistry were performed to explore the antiviral mechanism of the compounds. RESULTS Here, we identified PHA767491 as a new inhibitor of HSV. PHA767491 potently blocked the proliferation of HSV in cells, as well as HSV induced cell death. Further, we found that PHA767491 strongly inhibited HSV infection post viral entry. Moreover, PHA767491 reduced the expression of viral genes required for DNA synthesis including UL30/42 DNA polymerase and UL5/8/52 helicase-primase complex. The essential immediate early (IE) genes such as ICP4 and ICP27 are critical for the expression of the early and late genes. Of note, PHA767491 inhibited the expression of all IE genes of both HSV-1 and HSV-2. Importantly, PHA767491 reduced viral titers in the tissues from the mice infected with HSV-1. Consistently, immunohistochemistry analysis showed that PHA767491 dramatically attenuated expression of viral protein gB in the livers. CONCLUSIONS Taken together, PHA767491 has potent anti-HSV activity by inhibiting viral replication both in vitro and in mouse model. Thus, PHA767491 could be a promising agent for the development of new anti-HSV therapy.
Collapse
Affiliation(s)
- Jue Hou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Zili Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Qiang Huang
- Department of emergency medicine, First Affiliated Hospital, Soochow University, 1 Shizhi Rd, Suzhou, Jiangsu, China
| | - Jun Yan
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xiaoliang Yu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Guihua Tan
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Chunfu Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Feng Xu
- Department of emergency medicine, First Affiliated Hospital, Soochow University, 1 Shizhi Rd, Suzhou, Jiangsu, China.
| | - Sudan He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
195
|
Tran AHV, Han SH, Kim J, Grasso F, Kim IS, Han YS. MutY DNA Glycosylase Protects Cells From Tumor Necrosis Factor Alpha-Induced Necroptosis. J Cell Biochem 2017; 118:1827-1838. [PMID: 28059467 DOI: 10.1002/jcb.25866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/04/2017] [Indexed: 12/27/2022]
Abstract
Numerous studies have implied that mutY DNA glycosylase (MYH) is involved in the repair of post-replicative mispairs and plays a critical role in the base excision repair pathway. Recent in vitro studies have shown that MYH interacts with tumor necrosis factor receptor type 1-associated death domain (TRADD), a key effector protein of tumor necrosis factor receptor-1 (TNFR1) signaling. The association between MYH and TRADD is reversed during tumor necrosis factor alpha (TNF-α)- and camptothecin (CPT)-induced apoptosis, and enhanced during TNF-α-induced survival. After investigating the role of MYH interacts with various proteins following TNF-α stimulation, here, we focus on MYH and TRADD interaction functions in necroptosis and its effects to related proteins. We report that the level of the MYH and TRADD complex was also reduced during necroptosis induced by TNF-α and zVAD-fmk. In particular, we also found that MYH is a biologically important necrosis suppressor. Under combined TNF-α and zVAD-fmk treatment, MYH-deficient cells were induced to enter the necroptosis pathway but primary mouse embryonic fibroblasts (MEFs) were not. Necroptosis in the absence of MYH proceeds via the inactivation of caspase-8, followed by an increase in the formation of the kinase receptor- interacting protein 1 (RIP1)-RIP3 complex. Our results suggested that MYH, which interacts with TRADD, inhibits TNF-α necroptotic signaling. Therefore, MYH inactivation is essential for necroptosis via the downregulation of caspase-8. J. Cell. Biochem. 118: 1827-1838, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- An Hue Vy Tran
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Korea
| | - Se Hee Han
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Joon Kim
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology and BioInstitute, Korea University, Seoul, Korea
| | - Francesca Grasso
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Lazio, Italy
| | - In San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Korea
| | - Ye Sun Han
- Department of Advanced Technology Fusion, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| |
Collapse
|
196
|
Goleij Z, Mahmoodzadeh Hosseini H, Amin M, Halabian R, Imani Fooladi AA. Prokaryotic toxins provoke different types of cell deaths in the eukaryotic cells. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1294180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zoleikha Goleij
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | | | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran and
| |
Collapse
|
197
|
Human-Engelbrecht Z, Meijboom R, Cronjé MJ. Apoptosis-inducing ability of silver(I) cyanide-phosphines useful for anti-cancer studies. Cytotechnology 2017; 69:591-600. [PMID: 28188415 DOI: 10.1007/s10616-017-0070-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/17/2017] [Indexed: 11/24/2022] Open
Abstract
Metal-based drugs have shown early promise as anticancer agents suggesting the potential application of silver(I) complexes as apoptosis-inducing agents. The ability of a silver(I) cyanide containing phosphine complex to induce cell death was evaluated in both a malignant (SNO esophageal cancer) and non-malignant (HDF-a skin and HEK293 kidney) cell lines. A dose-dependent decrease in cell viability was observed in the SNO cells. Light microscopy revealed morphological features indicative of apoptotic cell death. The mode of cell death was confirmed as apoptosis by phosphatidylserine externalization, DNA fragmentation and nuclear condensation. Furthermore, both the non-malignant cell lines showed morphological features indicative of apoptosis when exposed to complex 1. We propose the use of this silver(I) cyanide phosphine complex as an highly effective positive apoptosis control for use in anticancer studies of phosphine complexes.
Collapse
Affiliation(s)
- Zelinda Human-Engelbrecht
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
| | - Reinout Meijboom
- Research Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
| | - Marianne J Cronjé
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, 2006, South Africa.
| |
Collapse
|
198
|
Amiri S, Haj-Mirzaian A, Momeny M, Amini-Khoei H, Rahimi-Balaei M, Poursaman S, Rastegar M, Nikoui V, Mokhtari T, Ghazi-Khansari M, Hosseini MJ. Streptozotocin induced oxidative stress, innate immune system responses and behavioral abnormalities in male mice. Neuroscience 2017; 340:373-383. [DOI: 10.1016/j.neuroscience.2016.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/08/2023]
|
199
|
Listeria monocytogenes-Induced Cell Death Inhibits the Generation of Cell-Mediated Immunity. Infect Immun 2016; 85:IAI.00733-16. [PMID: 27821585 DOI: 10.1128/iai.00733-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 01/25/2023] Open
Abstract
The influence of cell death on adaptive immunity has been studied for decades. Despite these efforts, the intricacies of how various cell death pathways shape immune responses in the context of infection remain unclear, particularly with regard to more recently discovered pathways such as pyroptosis. The emergence of Listeria monocytogenes as a promising immunotherapeutic platform demands a thorough understanding of how cell death induced in the context of infection influences the generation of CD8+ T-cell-mediated immune responses. To begin to address this question, we designed strains of L. monocytogenes that robustly activate necrosis, apoptosis, or pyroptosis. We hypothesized that proinflammatory cell death such as necrosis would be proimmunogenic while apoptosis would be detrimental, as has previously been reported in the context of sterile cell death. Surprisingly, we found that the activation of any host cell death in the context of L. monocytogenes infection inhibited the generation of protective immunity and specifically the activation of antigen-specific CD8+ T cells. Importantly, the mechanism of attenuation was unique for each type of cell death, ranging from deficits in costimulation in the context of necrosis to a suboptimal inflammatory milieu in the case of pyroptosis. Our results suggest that cell death in the context of infection is different from sterile-environment-induced cell death and that inhibition of cell death or its downstream consequences is necessary for developing effective cell-mediated immune responses using L. monocytogenes-based immunotherapeutic platforms.
Collapse
|
200
|
Insights on Molecular Mechanisms of Chondrocytes Death in Osteoarthritis. Int J Mol Sci 2016; 17:ijms17122146. [PMID: 27999417 PMCID: PMC5187946 DOI: 10.3390/ijms17122146] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a joint pathology characterized by progressive cartilage degradation. Medical care is mainly based on alleviating pain symptoms. Compelling studies report the presence of empty lacunae and hypocellularity in cartilage with aging and OA progression, suggesting that chondrocyte cell death occurs and participates to OA development. However, the relative contribution of apoptosis per se in OA pathogenesis appears complex to evaluate. Indeed, depending on technical approaches, OA stages, cartilage layers, animal models, as well as in vivo or in vitro experiments, the percentage of apoptosis and cell death types can vary. Apoptosis, chondroptosis, necrosis, and autophagic cell death are described in this review. The question of cell death causality in OA progression is also addressed, as well as the molecular pathways leading to cell death in response to the following inducers: Fas, Interleukin-1β (IL-1β), Tumor Necrosis factor-α (TNF-α), leptin, nitric oxide (NO) donors, and mechanical stresses. Furthermore, the protective role of autophagy in chondrocytes is highlighted, as well as its decline during OA progression, enhancing chondrocyte cell death; the transition being mainly controlled by HIF-1α/HIF-2α imbalance. Finally, we have considered whether interfering in chondrocyte apoptosis or promoting autophagy could constitute therapeutic strategies to impede OA progression.
Collapse
|