151
|
Larson CA, Blair BG, Safaei R, Howell SB. The role of the mammalian copper transporter 1 in the cellular accumulation of platinum-based drugs. Mol Pharmacol 2008; 75:324-30. [PMID: 18996970 DOI: 10.1124/mol.108.052381] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mammalian copper transporter 1 (CTR1) is responsible for the uptake of copper from the extracellular space. In this study, we used an isogenic pair of CTR1(+/+) and CTR1(-/-) mouse embryo fibroblasts to examine the contribution of CTR1 to the influx of cisplatin (DDP), carboplatin (CBDCA), oxaliplatin (L-OHP), and transplatin. Exposure to DDP triggered the rapid degradation of CTR1, suggesting that its contribution to influx was likely to be on the initial phase of drug entry. Loss of CTR1 decreased the initial binding of DDP to cells and reduced influx measured over the first 5 min of drug exposure by 81%. Loss of CTR1 almost completely eliminated the initial influx of CBDCA and reduced the initial uptake of L-OHP by 68% but had no effect on the influx of transplatin. Loss of CTR1 rendered cells resistant to even high concentrations of DDP when measured in vitro, and re-expression of CTR1 in the CTR1(-/-) cells restored both DDP uptake and cytotoxicity. The growth of CTR1(-/-) tumor xenografts in which CTR1 levels were restored by infection with a lentivirus expressing wild-type CTR1 was reduced by a single maximum tolerated dose of DDP in vivo, whereas the CTR1(-/-) xenografts failed to respond at all. We conclude that CTR1 mediates the initial influx of DDP, CBDCA, and L-OHP and is a major determinant of responsiveness to DDP both in vitro and in vivo.
Collapse
Affiliation(s)
- Christopher A Larson
- Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
152
|
Wood LK, Thiele DJ. Transcriptional activation in yeast in response to copper deficiency involves copper-zinc superoxide dismutase. J Biol Chem 2008; 284:404-413. [PMID: 18977757 DOI: 10.1074/jbc.m807027200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Copper is an essential trace element, yet excess copper can lead to membrane damage, protein oxidation, and DNA cleavage. To balance the need for copper with the necessity to prevent accumulation to toxic levels, cells have evolved sophisticated mechanisms to regulate copper acquisition, distribution, and storage. In Saccharomyces cerevisiae, transcriptional responses to copper deficiency are mediated by the copper-responsive transcription factor Mac1. Although Mac1 activates the transcription of genes involved in high affinity copper uptake during periods of deficiency, little is known about the mechanisms by which Mac1 senses or responds to reduced copper availability. Here we show that the copper-dependent enzyme Sod1 (Cu,Zn-superoxide dismutase) and its intracellular copper chaperone Ccs1 function in the activation of Mac1 in response to an external copper deficiency. Genetic ablation of either CCS1 or SOD1 results in a severe defect in the ability of yeast cells to activate the transcription of Mac1 target genes. The catalytic activity of Sod1 is essential for Mac1 activation and promotes a regulated increase in binding of Mac1 to copper response elements in the promoter regions of genomic Mac1 target genes. Although there is precedent for additional roles of Sod1 beyond protection of the cell from oxygen radicals, the involvement of this protein in copper-responsive transcriptional regulation has not previously been observed. Given the presence of both Sod1 and copper-responsive transcription factors in higher eukaryotes, these studies may yield important insights into how copper deficiency is sensed and appropriate cellular responses are coordinated.
Collapse
Affiliation(s)
- L Kent Wood
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710.
| |
Collapse
|
153
|
Rogers MS, Hurtado-Guerrero R, Firbank SJ, Halcrow MA, Dooley DM, Phillips SEV, Knowles PF, McPherson MJ. Cross-link formation of the cysteine 228-tyrosine 272 catalytic cofactor of galactose oxidase does not require dioxygen. Biochemistry 2008; 47:10428-39. [PMID: 18771294 DOI: 10.1021/bi8010835] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Galactose oxidase (GO) belongs to a class of proteins that self-catalyze assembly of their redox-active cofactors from active site amino acids. Generation of enzymatically active GO appears to require at least four sequential post-translational modifications: cleavage of a secretion signal sequence, copper-dependent cleavage of an N-terminal pro sequence, copper-dependent formation of a C228-Y272 thioether bond, and generation of the Y272 radical. The last two processes were investigated using a truncated protein (termed premat-GO) lacking the pro sequence and purified under copper-free conditions. Reactions of premat-GO with Cu(II) were investigated using optical, EPR, and resonance Raman spectroscopy, SDS-PAGE, and X-ray crystallography. Premat-GO reacted anaerobically with excess Cu(II) to efficiently form the thioether bond but not the Y272 radical. A potential C228-copper coordinated intermediate (lambda max = 406 nm) in the processing reaction, which had not yet formed the C228-Y272 cross-link, was identified from the absorption spectrum. A copper-thiolate protein complex, with copper coordinated to C228, H496, and H581, was also observed in a 3 min anaerobic soak by X-ray crystallography, whereas a 24 h soak revealed the C228-Y272 thioether bond. In solution, addition of oxygenated buffer to premat-GO preincubated with excess Cu(II) generated the Y272 radical state. On the basis of these data, a mechanism for the formation of the C228-Y272 bond and tyrosyl radical generation is proposed. The 406 nm complex is demonstrated to be a catalytically competent processing intermediate under anaerobic conditions. We propose a potential mechanism which is in common with aerobic processing by Cu(II) until the step at which the second electron acceptor is required.
Collapse
Affiliation(s)
- Melanie S Rogers
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Lindert U, Leuzinger L, Steiner K, Georgiev O, Schaffner W. Characterization of metal-responsive transcription factor (MTF-1) from the giant rodent capybara reveals features in common with human as well as with small rodents (mouse, rat). Short communication. Chem Biodivers 2008; 5:1485-1494. [PMID: 18729110 DOI: 10.1002/cbdv.200890137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
From mammals to insects, metal-responsive transcription factor 1 (MTF-1) is essential for the activation of metallothionein genes upon heavy-metal load. We have previously found that human MTF-1 induces a stronger metal response than mouse MTF-1. The latter differs from the human one in a number of amino acid positions and is also shorter by 78 aa at its C-terminus. We reasoned that the weaker metal inducibility might be associated with a lesser demand for tight metal homeostasis in a low-weight, short-lived animal, and thus set out to determine the sequence of MTF-1 from the largest living rodent, the Brazilian capybara that can reach 65 kg and also has a considerably longer life span than smaller rodents. An expression clone for capybara MTF-1 was then tested for its activity in both mouse and human cells. Our analysis revealed three unexpected features: i) capybara MTF-1 in terms of amino acid sequence is much more closely related to human than to mouse MTF-1, suggesting an accelerated evolution of MTF-1 in the evolutionary branch leading to small rodents; ii) capybara MTF-1 is even 32 aa shorter at its C-terminus than mouse MTF-1, and iii) in an activity test, it is not more active than mouse MTF-1. The latter two findings might indicate that capybara has evolved in an environment with low heavy-metal load.
Collapse
Affiliation(s)
- Uschi Lindert
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, (fax: +41-44-635 6811)
| | - Lucas Leuzinger
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, (fax: +41-44-635 6811)
| | - Kurt Steiner
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, (fax: +41-44-635 6811)
| | - Oleg Georgiev
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, (fax: +41-44-635 6811)
| | - Walter Schaffner
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, (fax: +41-44-635 6811)
| |
Collapse
|
155
|
Finney L, Vogt S, Fukai T, Glesne D. Copper and angiogenesis: unravelling a relationship key to cancer progression. Clin Exp Pharmacol Physiol 2008; 36:88-94. [PMID: 18505439 DOI: 10.1111/j.1440-1681.2008.04969.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. Angiogenesis, the formation of new capillaries from existing vasculature, is a critical process in normal physiology as well as several physiopathologies. A desire to curb the supportive role angiogenesis plays in the development and metastasis of cancers has driven exploration into anti-angiogenic strategies as cancer therapeutics. Key to this, angiogenesis additionally displays an exquisite sensitivity to bioavailable copper. Depletion of copper has been shown to inhibit angiogenesis in a wide variety of cancer cell and xenograft systems. Several clinical trials using copper chelation as either an adjuvant or primary therapy have been conducted. Yet, the biological basis for the sensitivity of angiogenesis remains unclear. Numerous molecules important to angiogenesis regulation have been shown to be either directly or indirectly influenced by copper, yet a clear probative answer to the connection remains elusive. 2. Measurements of copper in biological systems have historically relied on techniques that, although demonstrably powerful, provide little or no information as to the spatial distribution of metals in a cellular context. Therefore, several new approaches have been developed to image copper in a biological context. One such approach relies on synchrotron-derived X-rays from third-generation synchrotrons and the technique of high resolution X-ray fluorescence microprobe (XFM) analysis. 3. Recent applications of XFM approaches to the role of copper in regulating angiogenesis have provided unique insight into the connection between copper and cellular behaviour. Using XFM, copper has been shown to be highly spatially regulated, as it is translocated from perinuclear areas of the cell towards the tips of extending filopodia and across the cell membrane into the extracellular space during angiogenic processes. Such findings may explain the heightened sensitivity of this cellular process to this transition metal and set a new paradigm for the kinds of regulatory roles that the spatial dynamics of cellular transition metals may play.
Collapse
Affiliation(s)
- Lydia Finney
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | | | | | | |
Collapse
|
156
|
Cellular multitasking: the dual role of human Cu-ATPases in cofactor delivery and intracellular copper balance. Arch Biochem Biophys 2008; 476:22-32. [PMID: 18534184 DOI: 10.1016/j.abb.2008.05.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/06/2008] [Accepted: 05/13/2008] [Indexed: 11/23/2022]
Abstract
The human copper-transporting ATPases (Cu-ATPases) are essential for dietary copper uptake, normal development and function of the CNS, and regulation of copper homeostasis in the body. In a cell, Cu-ATPases maintain the intracellular concentration of copper by transporting copper into intracellular exocytic vesicles. In addition, these P-type ATPases mediate delivery of copper to copper-dependent enzymes in the secretory pathway and in specialized cell compartments such as secretory granules or melanosomes. The multiple functions of human Cu-ATPase necessitate complex regulation of these transporters that is mediated through the presence of regulatory domains in their structure, posttranslational modification and intracellular trafficking, as well as interactions with the copper chaperone Atox1 and other regulatory molecules. In this review, we summarize the current information on the function and regulatory mechanisms acting on human Cu-ATPases ATP7A and ATP7B. Brief comparison with the Cu-ATPase orthologs from other species is included.
Collapse
|
157
|
Feng S, Xu Z, Yan YB. Blocking creatine kinase refolding by trace amounts of copper ions. J Inorg Biochem 2008; 102:928-35. [DOI: 10.1016/j.jinorgbio.2007.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 11/04/2007] [Accepted: 12/16/2007] [Indexed: 11/27/2022]
|
158
|
Nagae M, Nakata M, Takahashi Y. Identification of negative cis-acting elements in response to copper in the chloroplastic iron superoxide dismutase gene of the moss Barbula unguiculata. PLANT PHYSIOLOGY 2008; 146:1687-96. [PMID: 18258690 PMCID: PMC2287343 DOI: 10.1104/pp.107.114868] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Superoxide dismutases (SODs) are ubiquitous metalloenzymes that catalyze the dismutation of superoxide radicals. Chloroplasts have two isozymes, copper/zinc SOD (Cu/ZnSOD) and iron SOD (FeSOD), encoded by nuclear genes. Because bryophytes are considered as the earliest land plants, they are one of the most interesting plant models for adaptation against oxidative stress. In a previous study, we found that the FeSOD gene was expressed under Cu-deficient conditions and repressed under high-Cu-supply conditions; on the other hand, the Cu/ZnSOD gene was induced by Cu in a moss, Barbula unguiculata. The expression of Cu/ZnSOD and FeSOD is coordinately regulated at the transcriptional level depending on metal bioavailability. Here, using transgenic moss plants, we determined that the GTACT motif is a negative cis-acting element of the moss FeSOD gene in response to Cu. Furthermore, we found that a plant-specific transcription factor, PpSBP2 (for SQUAMOSA promoter-binding protein), and its related proteins bound to the GTACT motif repressed the expression of the FeSOD gene. The moss FeSOD gene was negatively regulated by Cu in transgenic Nicotiana tabacum plants, and the Arabidopsis thaliana FeSOD gene promoter containing the GTACT motif was repressed by Cu. Our results suggested that molecular mechanisms of GTACT motif-dependent transcriptional suppression by Cu are conserved in land plants.
Collapse
Affiliation(s)
- Miwa Nagae
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | | | | |
Collapse
|
159
|
Cozzolino M, Ferri A, Carrì MT. Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 2008; 10:405-43. [PMID: 18370853 DOI: 10.1089/ars.2007.1760] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset progressive degeneration of motor neurons occurring both as a sporadic and a familial disease. The etiology of ALS remains unknown, but one fifth of instances are due to specific gene defects, the best characterized of which is point mutations in the gene coding for Cu/Zn superoxide dismutase (SOD1). Because sporadic and familial ALS affect the same neurons with similar pathology, it is hoped that understanding these gene defects will help in devising therapies effective in both forms. A wealth of evidence has been collected in rodents made transgenic for mutant SOD1, which represent the best available models for familial ALS. Mutant SOD1 likely induces selective vulnerability of motor neurons through a combination of several mechanisms, including protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities and defective axonal transport, excitotoxicity, inadequate growth factor signaling, and inflammation. Damage within motor neurons is enhanced by noxious signals originating from nonneuronal neighboring cells, where mutant SOD1 induces an inflammatory response that accelerates disease progression. The clinical implication of these findings is that promising therapeutic approaches can be derived from multidrug treatments aimed at the simultaneous interception of damage in both motor neurons and nonmotor neuronal cells.
Collapse
|
160
|
|
161
|
HEFFETER P, JUNGWIRTH U, JAKUPEC M, HARTINGER C, GALANSKI M, ELBLING L, MICKSCHE M, KEPPLER B, BERGER W. Resistance against novel anticancer metal compounds: Differences and similarities. Drug Resist Updat 2008; 11:1-16. [DOI: 10.1016/j.drup.2008.02.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 11/26/2022]
|
162
|
van Doorn WG, Woltering EJ. Physiology and molecular biology of petal senescence. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:453-80. [PMID: 18310084 DOI: 10.1093/jxb/erm356] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Petal senescence is reviewed, with the main emphasis on gene expression in relation to physiological functions. Autophagy seems to be the major mechanism for large-scale degradation of macromolecules, but it is still unclear if it contributes to cell death. Depending on the species, petal senescence is controlled by ethylene or is independent of this hormone. EIN3-like (EIL) transcription factors are crucial in ethylene-regulated senescence. The presence of adequate sugar levels in the cell delays senescence and prevents an increase in the levels of EIL mRNA and the subsequent up-regulation of numerous senescence-associated genes. A range of other transcription factors and regulators are differentially expressed in ethylene-sensitive and ethylene-insensitive petal senescence. Ethylene-independent senescence is often delayed by cytokinins, but it is still unknown whether these are natural regulators. A role for caspase-like enzymes or metacaspases has as yet not been established in petal senescence, and a role for proteins released by organelles such as the mitochondrion has not been shown. The synthesis of sugars, amino acids, and fatty acids, and the degradation of nucleic acids, proteins, lipids, fatty acids, and cell wall components are discussed. It is claimed that there is not enough experimental support for the widely held view that a gradual increase in cell leakiness, resulting from gradual plasma membrane degradation, is an important event in petal senescence. Rather, rupture of the vacuolar membrane and subsequent rapid, complete degradation of the plasma membrane seems to occur. This review recommends that more detailed analysis be carried out at the level of cells and organelles rather than at that of whole petals.
Collapse
Affiliation(s)
- Wouter G van Doorn
- Wageningen University and Research Centre, PO Box 17, 6700 AA Wageningen, The Netherlands.
| | | |
Collapse
|
163
|
Abstract
In fungal cells, transcriptional regulatory mechanisms play a central role in both the homeostatic regulation of the essential metals iron, copper and zinc and in the detoxification of heavy metal ions such as cadmium. Fungi detect changes in metal ion levels using unique metallo-regulatory factors whose activity is responsive to the cellular metal ion status. New studies have revealed that these factors not only regulate the expression of genes required for metal ion acquisition, storage or detoxification but also globally remodel metabolism to conserve metal ions or protect against metal toxicity. This review focuses on the mechanisms metallo-regulators use to up- and down-regulate gene expression.
Collapse
Affiliation(s)
- Amanda J Bird
- Division of Hematology, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| |
Collapse
|
164
|
Bertini I, Cavallaro G. Metals in the “omics” world: copper homeostasis and cytochrome c oxidase assembly in a new light. J Biol Inorg Chem 2007; 13:3-14. [DOI: 10.1007/s00775-007-0316-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 10/25/2007] [Indexed: 01/20/2023]
|
165
|
Miras R, Morin I, Jacquin O, Cuillel M, Guillain F, Mintz E. Interplay between glutathione, Atx1 and copper. 1. Copper(I) glutathionate induced dimerization of Atx1. J Biol Inorg Chem 2007; 13:195-205. [PMID: 17957393 DOI: 10.1007/s00775-007-0310-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 10/07/2007] [Indexed: 12/30/2022]
Abstract
Copper is both an essential element as a catalytic cofactor and a toxic element because of its redox properties. Once in the cell, Cu(I) binds to glutathione (GSH) and various thiol-rich proteins that sequester and/or exchange copper with other intracellular components. Among them, the Cu(I) chaperone Atx1 is known to deliver Cu(I) to Ccc2, the Golgi Cu-ATPase, in yeast. However, the mechanism for Cu(I) incorporation into Atx1 has not yet been unraveled. We investigated here a possible role of GSH in Cu(I) binding to Atx1. Yeast Atx1 was expressed in Escherichia coli and purified to study its ability to bind Cu(I). We found that with an excess of GSH [at least two GSH/Cu(I)], Atx1 formed a Cu(I)-bridged dimer of high affinity for Cu(I), containing two Cu(I) and two GSH, whereas no dimer was observed in the absence of GSH. The stability constants (log beta) of the Cu(I) complexes measured at pH 6 were 15-16 and 49-50 for CuAtx1 and Cu (2) (I) (GS(-))(2)(Atx1)(2), respectively. Hence, these results suggest that in vivo the high GSH concentration favors Atx1 dimerization and that Cu (2) (I) (GS(-))(2)(Atx1)(2) is the major conformation of Atx1 in the cytosol.
Collapse
Affiliation(s)
- Roger Miras
- Laboratoire de Chimie et Biologie des Métaux, CEA, DSV, iRTSV, 17 rue des Martyrs, Grenoble, 38054, France
| | | | | | | | | | | |
Collapse
|
166
|
Holloway ZG, Grabski R, Szul T, Styers ML, Coventry JA, Monaco AP, Sztul E. Activation of ADP-ribosylation factor regulates biogenesis of the ATP7A-containing trans-Golgi network compartment and its Cu-induced trafficking. Am J Physiol Cell Physiol 2007; 293:C1753-67. [PMID: 17913844 DOI: 10.1152/ajpcell.00253.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP7A (MNK) regulates copper homeostasis by translocating from a compartment localized within the trans-Golgi network to the plasma membrane (PM) in response to increased copper load. The mechanisms that regulate the biogenesis of the MNK compartment and the trafficking of MNK are unclear. Here we show that the architecture of the MNK compartment is linked to the structure of the Golgi ribbon. Depletion of p115 tethering factor, which causes fragmentation of the Golgi ribbon, also disrupts the MNK compartment. In p115-depleted cells, MNK localizes to punctate structures that pattern on Golgi ministacks dispersed throughout the cell. Despite altered localization MNK trafficking still occurs, and MNK relocates from and returns to the fragmented compartment in response to copper. We further show that the biogenesis of the MNK compartment requires activation of ADP-ribosylation factor (Arf)1 GTPase, shown previously to facilitate the biogenesis of the Golgi ribbon. Activation of cellular Arf1 is prevented by 1) expressing an inactive "empty" form of Arf (Arf1/N126I), 2) expressing an inactive form of GBF1 (GBF1/E794K), guanine nucleotide exchange factor for Arf1, or 3) treating cells with brefeldin A, an inhibitor of GBF1 that disrupts MNK into a diffuse pattern. Importantly, preventing Arf activation inhibits copper-responsive trafficking of MNK to the PM. Our findings support a model in which active Arf is essential for the generation of the MNK compartment and for copper-responsive trafficking of MNK from there to the PM. Our findings provide an exciting foundation for identifying Arf1 effectors that facilitate the biogenesis of the MNK compartment and MNK traffic.
Collapse
Affiliation(s)
- Zoe G Holloway
- Wellcome Trust Centre for Human Genetics; University of Oxford, Headington, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
Copper and iron are transition elements essential for life. These metals are required to maintain the brain's biochemistry such that deficiency or excess of either copper or iron results in central nervous system disease. This review focuses on the inherited disorders in humans that directly affect copper or iron homeostasis in the brain. Elucidation of the molecular genetic basis of these rare disorders has provided insight into the mechanisms of copper and iron acquisition, trafficking, storage, and excretion in the brain. This knowledge permits a greater understanding of copper and iron roles in neurobiology and neurologic disease and may allow for the development of therapeutic approaches where aberrant metal homeostasis is implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Erik Madsen
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63130, USA.
| | | |
Collapse
|
168
|
La Fontaine S, Mercer JFB. Trafficking of the copper-ATPases, ATP7A and ATP7B: Role in copper homeostasis. Arch Biochem Biophys 2007; 463:149-67. [PMID: 17531189 DOI: 10.1016/j.abb.2007.04.021] [Citation(s) in RCA: 308] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 01/05/2023]
Abstract
Copper is essential for human health and copper imbalance is a key factor in the aetiology and pathology of several neurodegenerative diseases. The copper-transporting P-type ATPases, ATP7A and ATP7B are key molecules required for the regulation and maintenance of mammalian copper homeostasis. Their absence or malfunction leads to the genetically inherited disorders, Menkes and Wilson diseases, respectively. These proteins have a dual role in cells, namely to provide copper to essential cuproenzymes and to mediate the excretion of excess intracellular copper. A unique feature of ATP7A and ATP7B that is integral to these functions is their ability to sense and respond to intracellular copper levels, the latter manifested through their copper-regulated trafficking from the transGolgi network to the appropriate cellular membrane domain (basolateral or apical, respectively) to eliminate excess copper from the cell. Research over the last decade has yielded significant insight into the enzymatic properties and cell biology of the copper-ATPases. With recent advances in elucidating their localization and trafficking in human and animal tissues in response to physiological stimuli, we are progressing rapidly towards an integrated understanding of their physiological significance at the level of the whole animal. This knowledge in turn is helping to clarify the biochemical and cellular basis not only for the phenotypes conferred by individual Menkes and Wilson disease patient mutations, but also for the clinical variability of phenotypes associated with each of these diseases. Importantly, this information is also providing a rational basis for the applicability and appropriateness of certain diagnostic markers and therapeutic regimes. This overview will provide an update on the current state of our understanding of the localization and trafficking properties of the copper-ATPases in cells and tissues, the molecular signals and posttranslational interactions that govern their trafficking activities, and the cellular basis for the clinical phenotypes associated with disease-causing mutations.
Collapse
Affiliation(s)
- Sharon La Fontaine
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, 221 Burwood Highway, Burwood, Vic. 3125, Australia.
| | | |
Collapse
|
169
|
Abstract
Platinum-based antitumor agents have been effective in the treatments of many human malignancies but the ultimate success of these agents is often compromised by development of drug resistance. One mechanism associated with resistance to platinum drugs is reduced intracellular accumulation owing to impaired drug intake, enhanced outward transport, or both. Mechanisms for transporting platinum drugs were not known until recent demonstrations that import and export transporters involved in maintenance copper homeostasis are also involved in the transport of these drugs. Ctr1, the major copper influx transporter, has been convincingly demonstrated to transport cisplatin and its analogues, carboplatin, and oxaliplatin. Evidence also suggests that the two copper efflux transporters ATP7A and ATP7B regulate the efflux of cisplatin. These observations are intriguing, because conventional thinking of the inorganic physiologic chemistry of cisplatin and copper is quite different. Hence, understanding the underlying mechanistic aspects of these transporters is critically important. While the mechanisms by which hCtr1, ATP7A and ATP7B transport copper ions have been studied extensively, very little is known about the mechanisms by which these transporters shuffle platinum-based antitumor agents. This review discusses the identification of copper transporters as platinum drug transporters, the structural-functional and mechanistic aspects of these transporters, the mechanisms that regulate their expression, and future research directions that may eventually lead to improved efficacy of platinum-based-based drugs in cancer chemotherapy through modulation of their transporters' activities.
Collapse
Affiliation(s)
- Macus Tien Kuo
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
170
|
Beaudoin J, Labbé S. Crm1-mediated nuclear export of the Schizosaccharomyces pombe transcription factor Cuf1 during a shift from low to high copper concentrations. EUKARYOTIC CELL 2007; 6:764-75. [PMID: 17384198 PMCID: PMC1899832 DOI: 10.1128/ec.00002-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 03/15/2007] [Indexed: 01/16/2023]
Abstract
In this study, we examine the fate of the nuclear pool of the Schizosaccharomyces pombe transcription factor Cuf1 in response to variations in copper levels. A nuclear pool of Cuf1-green fluorescent protein (GFP) was generated by expressing a functional cuf1(+)-GFP allele in the presence of a copper chelator. We then extinguished cuf1(+)-GFP expression and tracked the changes in the localization of the nuclear pool of Cuf1-GFP in the presence of low or high copper concentrations. Treating cells with copper as well as silver ions resulted in the nuclear export of Cuf1. We identified a leucine-rich nuclear export signal (NES), (349)LAALNHISAL(358), within the C-terminal region of Cuf1. Mutations in this sequence abrogated Cuf1 export from the nucleus. Furthermore, amino acid substitutions that impair Cuf1 NES function resulted in increased target gene expression and a concomitant cellular hypersensitivity to copper. Export of the wild-type Cuf1 protein was inhibited by leptomycin B (LMB), a specific inhibitor of the nuclear export protein Crm1. We further show that cells expressing a temperature-sensitive mutation in crm1(+) exhibit increased nuclear accumulation of Cuf1 at the nonpermissive temperature. Although wild-type Cuf1 is localized in the nucleus in both conditions, we observed that the protein can still be inactivated by copper, resulting in the repression of ctr4(+) gene expression in the presence of exogenous copper. These results demonstrate that nuclear accumulation of Cuf1 per se is not sufficient to cause the unregulated expression of the copper transport genes like ctr4(+). In addition to nuclear localization, a functional Cys-rich domain or NES element in Cuf1 is required to appropriately regulate copper transport gene expression in response to changes in intracellular copper concentration.
Collapse
Affiliation(s)
- Jude Beaudoin
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, Québec J1H 5N4, Canada
| | | |
Collapse
|
171
|
Zhang XX, Rainey PB. The role of a P1-type ATPase from Pseudomonas fluorescens SBW25 in copper homeostasis and plant colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:581-8. [PMID: 17506335 DOI: 10.1094/mpmi-20-5-0581] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The genome of the plant-colonizing bacterium Pseudomonas fluorescens SBW25 possesses a putative copper-transporting P1-type ATPase (CueA) that is induced on the plant surfaces. Using a chromosomally-integrated cueA-lacZ fusion, we show that transcription of cueA can be induced (in vitro) by ions of copper, silver, gold, and mercury. To investigate the biological significance of cueA, a nonpolar cueA deletion mutant (SBW25 delta cueA) was constructed. This mutant strain displayed a twofold reduction in its tolerance to copper compared with the wild-type strain; however, no change was observed in the sensitivity of the mutant strain to silver, gold, or mercury ions. To obtain insight into the ecological significance of cueA, the competitive ability of SBW25 delta cueA was determined relative to wild-type SBW25 in three environments (none contained added copper): minimal M9 medium, the root of sugar beet (Beta vulgaris), and the root of pea (Pisum sativum). Results showed that the fitness of SBW25 delta cueA was not different from the wild type in laboratory medium but was compromised in the two plant environments. Taken together, these data demonstrate a functional role for CueA in copper homeostasis and reveal an ecologically significant contribution to bacterial fitness in the plant rhizosphere. They also suggest that copper ions accumulate on plant surfaces.
Collapse
Affiliation(s)
- Xue-Xian Zhang
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | |
Collapse
|
172
|
Puig S, Andrés-Colás N, García-Molina A, Peñarrubia L. Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. PLANT, CELL & ENVIRONMENT 2007; 30:271-290. [PMID: 17263774 DOI: 10.1111/j.1365-3040.2007.01642.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plants have developed sophisticated mechanisms to tightly control the acquisition and distribution of copper and iron in response to environmental fluctuations. Recent studies with Arabidopsis thaliana are allowing the characterization of the diverse families and components involved in metal uptake, such as metal-chelate reductases and plasma membrane transporters. In parallel, emerging data on both intra- and intercellular metal distribution, as well as on long-distance transport, are contributing to the understanding of metal homeostatic networks in plants. Furthermore, gene expression analyses are deciphering coordinated mechanisms of regulation and response to copper and iron limitation. Prioritizing the use of metals in essential versus dispensable processes, and substituting specific metalloproteins by other metal counterparts, are examples of plant strategies to optimize copper and iron utilization. The metabolic links between copper and iron homeostasis are well documented in yeast, algae and mammals. In contrast, interactions between both metals in vascular plants remain controversial, mainly owing to the absence of copper-dependent iron acquisition. This review describes putative interactions between both metals at different levels in plants. The characterization of plant copper and iron homeostasis should lead to biotechnological applications aimed at the alleviation of iron deficiency and copper contamination and, thus, have a beneficial impact on agricultural and human health problems.
Collapse
Affiliation(s)
- Sergi Puig
- Departament de Bioquímica i Biologia Molecular. Universitat de València. Av. Doctor Moliner, 50 E-46100 Burjassot, Valencia, Spain
| | - Nuria Andrés-Colás
- Departament de Bioquímica i Biologia Molecular. Universitat de València. Av. Doctor Moliner, 50 E-46100 Burjassot, Valencia, Spain
| | - Antoni García-Molina
- Departament de Bioquímica i Biologia Molecular. Universitat de València. Av. Doctor Moliner, 50 E-46100 Burjassot, Valencia, Spain
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular. Universitat de València. Av. Doctor Moliner, 50 E-46100 Burjassot, Valencia, Spain
| |
Collapse
|
173
|
Abstract
PURPOSE OF REVIEW Reports of the neurologic findings in adults with acquired copper deficiency as well as the development of novel models for Menkes disease have permitted a greater understanding of the role of copper in the central nervous system. A role of mitochondrial copper homeostasis in cellular energy metabolism suggests roles for this metal in cellular differentiation and biochemical adaptation. RECENT FINDINGS Acquired copper deficiency in adults is reported with increasing frequency, often without any identifiable cause. Chemical genetic studies identified a zebrafish model of Menkes disease that can be used for high-throughput therapeutics and revealed a hierarchy of copper distribution during development. Studies in mice reveal that the copper transport protein Ctr1 is essential for intestinal copper absorption and suggest a unique role for copper in axonal extension, excitotoxic cell death and synaptic plasticity in the central nervous system. Lastly, recent biochemical studies indicate a central role for the mitochondrial matrix in cellular copper metabolism. SUMMARY The recent developments in our understanding of copper deficiency and copper homeostasis outlined in this review provide an exciting platform for future investigations intended to elucidate the role of copper in central nervous system development and disease.
Collapse
Affiliation(s)
- Erik Madsen
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
174
|
Balamurugan K, Egli D, Hua H, Rajaram R, Seisenbacher G, Georgiev O, Schaffner W. Copper homeostasis in Drosophila by complex interplay of import, storage and behavioral avoidance. EMBO J 2007; 26:1035-44. [PMID: 17290228 PMCID: PMC1852831 DOI: 10.1038/sj.emboj.7601543] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 12/14/2006] [Indexed: 11/09/2022] Open
Abstract
Copper is an essential but potentially toxic trace element. In Drosophila, the metal-responsive transcription factor (MTF-1) plays a dual role in copper homeostasis: at limiting copper concentrations, it induces the Ctr1B copper importer gene, whereas at high copper concentrations, it mainly induces the metallothionein genes. Here we find that, despite the downregulation of the Ctr1B gene at high copper concentrations, the protein persists on the plasma membrane of intestinal cells for many hours and thereby fills the intracellular copper stores. Drosophila may risk excessive copper accumulation for the potential benefit of overcoming a period of copper scarcity. Indeed, we find that copper-enriched flies donate a vital supply to their offspring, allowing the following generation to thrive on low-copper food. We also describe two additional modes of copper handling: behavioral avoidance of food containing high (>or=0.5 mM) copper levels, as well as the ability of DmATP7, the Drosophila homolog of Wilson/Menkes disease copper exporters, to counteract copper toxicity. Regulated import, storage, export, and avoidance of high-copper food establish an adequate copper homeostasis under variable environmental conditions.
Collapse
Affiliation(s)
| | - Dieter Egli
- Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
| | - Haiqing Hua
- Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
| | - Rama Rajaram
- Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
| | | | - Oleg Georgiev
- Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
| | - Walter Schaffner
- Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
175
|
Huster D, Lutsenko S. Wilson disease: not just a copper disorder. Analysis of a Wilson disease model demonstrates the link between copper and lipid metabolism. MOLECULAR BIOSYSTEMS 2007; 3:816-24. [DOI: 10.1039/b711118p] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|