151
|
Biernat MM, Urbaniak-Kujda D, Dybko J, Kapelko-Słowik K, Prajs I, Wróbel T. Fecal microbiota transplantation in the treatment of intestinal steroid-resistant graft-versus-host disease: two case reports and a review of the literature. J Int Med Res 2021; 48:300060520925693. [PMID: 32527171 PMCID: PMC7294377 DOI: 10.1177/0300060520925693] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute graft-versus-host disease (aGvHD) reduces the efficiency and safety of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In recent years, attempts have been made to transplant fecal microbiota from healthy donors to treat intestinal GvHD. This study presented two cases of patients undergoing allo-HSCT who were later selected for fecal microbiota transplantation (FMT). In the first patient, FMT resulted in the complete resolution of symptoms, whereas therapeutic efficacy was not achieved in the second patient. FMT eliminated drug-resistant pathogens, namely very drug-resistant Enterococcus spp., but not multidrug-resistant Acinetobacter baumannii or Candida spp. Further research is needed, particularly on the safety of FMT in patients with intestinal steroid-resistant GvHD and on the distant impact of transplanted microflora on the outcomes of allo-HSCT. FMT appears promising for the treatment of patients with steroid-resistant GvHD.
Collapse
Affiliation(s)
- Monika Maria Biernat
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Donata Urbaniak-Kujda
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Jarosław Dybko
- Department and Clinic of Internal and Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Kapelko-Słowik
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Iwona Prajs
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Wróbel
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
152
|
Henig I, Yehudai-Ofir D, Zuckerman T. The clinical role of the gut microbiome and fecal microbiota transplantation in allogeneic stem cell transplantation. Haematologica 2021; 106:933-946. [PMID: 33241674 PMCID: PMC8017815 DOI: 10.3324/haematol.2020.247395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/28/2020] [Indexed: 12/26/2022] Open
Abstract
Outcomes of allogeneic hematopoietic stem cell transplantation (allo- HSCT) have improved in the recent decade; however, infections and graft-versus-host disease remain two leading complications significantly contributing to early transplant-related mortality. In past years, the human intestinal microbial composition (microbiota) has been found to be associated with various disease states, including cancer, response to cancer immunotherapy and to modulate the gut innate and adaptive immune response. In the setting of allo-HSCT, the intestinal microbiota diversity and composition appear to have an impact on infection risk, mortality and overall survival. Microbial metabolites have been shown to contribute to the health and integrity of intestinal epithelial cells during inflammation, thus mitigating graft-versus-host disease in animal models. While the cause-andeffect relationship between the intestinal microbiota and transplant-associated complications has not yet been fully elucidated, the above findings have already resulted in the implementation of various interventions aiming to restore the intestinal microbiota diversity and composition. Among others, these interventions include the administration of fecal microbiota transplantation. The present review, based on published data, is intended to define the role of the latter approach in the setting of allo-HSCT.
Collapse
Affiliation(s)
- Israel Henig
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa
| | - Dana Yehudai-Ofir
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa
| | - Tsila Zuckerman
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa.
| |
Collapse
|
153
|
Lind ML, Mooney SJ, Carone M, Althouse BM, Liu C, Evans LE, Patel K, Vo PT, Pergam SA, Phipps AI. Development and Validation of a Machine Learning Model to Estimate Bacterial Sepsis Among Immunocompromised Recipients of Stem Cell Transplant. JAMA Netw Open 2021; 4:e214514. [PMID: 33871619 PMCID: PMC8056279 DOI: 10.1001/jamanetworkopen.2021.4514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
IMPORTANCE Sepsis disproportionately affects recipients of allogeneic hematopoietic cell transplant (allo-HCT), and timely detection is crucial. However, the atypical presentation of sepsis within this population makes detection challenging, and existing clinical sepsis tools have limited prognostic value among this high-risk population. OBJECTIVE To develop a full risk factor (demographic, transplant, clinical, and laboratory factors) and clinical factor-specific automated bacterial sepsis decision support tool for recipients of allo-HCT with potential bloodstream infections (PBIs). DESIGN, SETTING, AND PARTICIPANTS This prognostic study used data from adult recipients of allo-HCT transplanted at the Fred Hutchinson Cancer Research Center, Seattle, Washington, between June 2010 and June 2019 randomly divided into 70% modeling and 30% validation data sets. Tools were developed using the area under the curve (AUC) optimized SuperLearner, and their performance was compared with existing clinical sepsis tools: National Early Warning Score (NEWS), quick Sequential Organ Failure Assessment (qSOFA), and Systemic Inflammatory Response Syndrome (SIRS), using the validation data set. Data were analyzed between January and October of 2020. MAIN OUTCOMES AND MEASURES The primary outcome was high-sepsis risk bacteremia (culture confirmed gram-negative species, Staphylococcus aureus, or Streptococcus spp bacteremia), and the secondary outcomes were 10- and 28-day mortality. Tool discrimination and calibration were examined using accuracy metrics and expected vs observed probabilities. RESULTS Between June 2010 and June 2019, 1943 recipients of allo-HCT received their first transplant, and 1594 recipients (median [interquartile range] age at transplant, 54 [43-63] years; 911 [57.2%] men; 1242 individuals [77.9%] identifying as White) experienced at least 1 PBI. Of 8131 observed PBIs, 238 (2.9%) were high-sepsis risk bacteremia. Compared with high-sepsis risk bacteremia, the full decision support tool had the highest AUC (0.85; 95% CI, 0.81-0.89), followed by the clinical factor-specific tool (0.72; 95% CI, 0.66-0.78). SIRS had the highest AUC of existing tools (0.64; 95% CI, 0.57-0.71). The full decision support tool had the highest AUCs for PBIs identified in inpatient (0.82; 95% CI, 0.76-0.89) and outpatient (0.82; 95% CI, 0.75-0.89) settings and for 10-day (0.85; 95% CI, 0.79-0.91) and 28-day (0.80; 95% CI, 0.75-0.84) mortality. CONCLUSIONS AND RELEVANCE These findings suggest that compared with existing tools and the clinical factor-specific tool, the full decision support tool had superior prognostic accuracy for the primary (high-sepsis risk bacteremia) and secondary (short-term mortality) outcomes in inpatient and outpatient settings. If used at the time of culture collection, the full decision support tool may inform more timely sepsis detection among recipients of allo-HCT.
Collapse
Affiliation(s)
- Margaret L. Lind
- Department of Epidemiology, University of Washington, Seattle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephen J. Mooney
- Department of Epidemiology, University of Washington, Seattle
- Harborview Injury Prevention and Research Center, Seattle, Washington
| | - Marco Carone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle
- Department of Statistics, University of Washington, Seattle
| | - Benjamin M. Althouse
- Institute for Disease Modeling, Bellevue, Washington
- Information School, University of Washington, Seattle
- Department of Biology, New Mexico State University, Las Cruces
| | - Catherine Liu
- Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Antimicrobial and Outpatient Parenteral Antimicrobial Therapy Program, Seattle Cancer Care Alliance, Seattle, Washington
| | - Laura E. Evans
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle
| | - Kevin Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle
- Oncology and Bone Marrow Transplant Intensive Care Unit, University of Washington, Seattle
- Medical Intensive Care Unit, University of Washington, Seattle
| | - Phuong T. Vo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Medical Oncology, University of Washington, Seattle
| | - Steven A. Pergam
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- School of Medicine, University of Washington, Seattle
| | - Amanda I. Phipps
- Department of Epidemiology, University of Washington, Seattle
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
154
|
Glucagon-like peptide 2 for intestinal stem cell and Paneth cell repair during graft-versus-host disease in mice and humans. Blood 2021; 136:1442-1455. [PMID: 32542357 DOI: 10.1182/blood.2020005957] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
Acute graft-versus-host disease (GVHD) is a life-threatening complication after allogeneic hematopoietic cell transplantation (allo-HCT). Although currently used GVHD treatment regimens target the donor immune system, we explored here an approach that aims at protecting and regenerating Paneth cells (PCs) and intestinal stem cells (ISCs). Glucagon-like-peptide-2 (GLP-2) is an enteroendocrine tissue hormone produced by intestinal L cells. We observed that acute GVHD reduced intestinal GLP-2 levels in mice and patients developing GVHD. Treatment with the GLP-2 agonist, teduglutide, reduced de novo acute GVHD and steroid-refractory GVHD, without compromising graft-versus-leukemia (GVL) effects in multiple mouse models. Mechanistically GLP-2 substitution promoted regeneration of PCs and ISCs, which enhanced production of antimicrobial peptides and caused microbiome changes. GLP-2 expanded intestinal organoids and reduced expression of apoptosis-related genes. Low numbers of L cells in intestinal biopsies and high serum levels of GLP-2 were associated with a higher incidence of nonrelapse mortality in patients undergoing allo-HCT. Our findings indicate that L cells are a target of GVHD and that GLP-2-based treatment of acute GVHD restores intestinal homeostasis via an increase of ISCs and PCs without impairing GVL effects. Teduglutide could become a novel combination partner for immunosuppressive GVHD therapy to be tested in clinical trials.
Collapse
|
155
|
Khan N, Lindner S, Gomes ALC, Devlin SM, Shah GL, Sung AD, Sauter CS, Landau HJ, Dahi PB, Perales MA, Chung DJ, Lesokhin AM, Dai A, Clurman A, Slingerland JB, Slingerland AE, Brereton DG, Giardina PA, Maloy M, Armijo GK, Rondon-Clavo C, Fontana E, Bohannon L, Ramalingam S, Bush AT, Lew MV, Messina JA, Littmann E, Taur Y, Jenq RR, Chao NJ, Giralt S, Markey KA, Pamer EG, van den Brink MRM, Peled JU. Fecal microbiota diversity disruption and clinical outcomes after auto-HCT: a multicenter observational study. Blood 2021; 137:1527-1537. [PMID: 33512409 PMCID: PMC7976512 DOI: 10.1182/blood.2020006923] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
We previously described clinically relevant reductions in fecal microbiota diversity in patients undergoing allogeneic hematopoietic cell transplantation (allo-HCT). Recipients of high-dose chemotherapy and autologous HCT (auto-HCT) incur similar antibiotic exposures and nutritional alterations. To characterize the fecal microbiota in the auto-HCT population, we analyzed 1161 fecal samples collected from 534 adult recipients of auto-HCT for lymphoma, myeloma, and amyloidosis in an observational study conducted at 2 transplantation centers in the United States. By using 16S ribosomal gene sequencing, we assessed fecal microbiota composition and diversity, as measured by the inverse Simpson index. At both centers, the diversity of early pretransplant fecal microbiota was lower in patients than in healthy controls and decreased further during the course of transplantation. Loss of diversity and domination by specific bacterial taxa occurred during auto-HCT in patterns similar to those with allo-HCT. Above-median fecal intestinal diversity in the periengraftment period was associated with decreased risk of death or progression (progression-free survival hazard ratio, 0.46; 95% confidence interval, 0.26-0.82; P = .008), adjusting for disease and disease status. This suggests that further investigation into the health of the intestinal microbiota in auto-HCT patients and posttransplant outcomes should be undertaken.
Collapse
Affiliation(s)
- Niloufer Khan
- Adult Bone Marrow Transplantation Service, Department of Medicine
| | - Sarah Lindner
- Department of Immunology, Sloan Kettering Institute, and
| | | | - Sean M Devlin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gunjan L Shah
- Adult Bone Marrow Transplantation Service, Department of Medicine
- Weill Cornell Medical College, New York, NY
| | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Craig S Sauter
- Adult Bone Marrow Transplantation Service, Department of Medicine
- Weill Cornell Medical College, New York, NY
| | - Heather J Landau
- Adult Bone Marrow Transplantation Service, Department of Medicine
- Weill Cornell Medical College, New York, NY
| | - Parastoo B Dahi
- Adult Bone Marrow Transplantation Service, Department of Medicine
- Weill Cornell Medical College, New York, NY
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine
- Weill Cornell Medical College, New York, NY
| | - David J Chung
- Adult Bone Marrow Transplantation Service, Department of Medicine
- Weill Cornell Medical College, New York, NY
| | - Alexander M Lesokhin
- Weill Cornell Medical College, New York, NY
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anqi Dai
- Department of Immunology, Sloan Kettering Institute, and
| | - Annelie Clurman
- Adult Bone Marrow Transplantation Service, Department of Medicine
| | | | | | | | - Paul A Giardina
- Adult Bone Marrow Transplantation Service, Department of Medicine
| | - Molly Maloy
- Adult Bone Marrow Transplantation Service, Department of Medicine
| | | | | | - Emily Fontana
- Department of Immunology, Sloan Kettering Institute, and
| | - Lauren Bohannon
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Sendhilnathan Ramalingam
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Amy T Bush
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Meagan V Lew
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Julia A Messina
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Eric Littmann
- Duchossois Family Institute, University of Chicago, Chicago, IL
| | - Ying Taur
- Weill Cornell Medical College, New York, NY
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Robert R Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Sergio Giralt
- Adult Bone Marrow Transplantation Service, Department of Medicine
- Weill Cornell Medical College, New York, NY
| | - Kate A Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine
- Weill Cornell Medical College, New York, NY
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine
- Department of Immunology, Sloan Kettering Institute, and
- Weill Cornell Medical College, New York, NY
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine
- Weill Cornell Medical College, New York, NY
| |
Collapse
|
156
|
Hong T, Wang R, Wang X, Yang S, Wang W, Gao Q, Zhang X. Interplay Between the Intestinal Microbiota and Acute Graft-Versus-Host Disease: Experimental Evidence and Clinical Significance. Front Immunol 2021; 12:644982. [PMID: 33815399 PMCID: PMC8010685 DOI: 10.3389/fimmu.2021.644982] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for many hematological disorders and autoimmune diseases, but acute graft-versus-host disease (aGVHD) has remained a major obstacle that limits allo-HSCT and exhibits a daunting mortality rate. The gastrointestinal system is among the most common sites affected by aGVHD. Experimental advances in the field of intestinal microbiota research enhanced our understanding - not only of the quantity and diversity of intestinal microbiota - but also their association with homeostasis of the immune system and disease pathogenesis, including that of aGVHD. Meanwhile, ever-growing clinical evidence suggest that the intestinal microbiota is dysregulated in patients who develop aGVHD and that the imbalance may affect clinical outcomes, indicating a potential predictive role for microbiota dysregulation in aGVHD severity and prognosis. The current animal and human studies investigating the intestinal microbiota in aGVHD and the understanding of the influence and management of the microbiota in the clinic are reviewed herein. Taken together, monitoring and remodeling the intestinal microecology following allo-HSCT may provide us with promising avenues for diagnosing, preventing or treating aGVHD in the clinic.
Collapse
Affiliation(s)
- Tao Hong
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weihao Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
157
|
Abstract
The management of febrile neutropenia is a backbone of treating patients with hematologic malignancies and has evolved over the past decades. This article reviews my approach to the evaluation and treatment of febrile neutropenic patients. Key topics discussed include antibacterial and antifungal prophylaxis, the initial workup for fever, the choice of the empiric antibiotic regimen and its modifications, and criteria for discontinuation. For each of these questions, I review the literature and present my perspective.
Collapse
|
158
|
Immunopathology and biology-based treatment of steroid-refractory graft-versus-host disease. Blood 2021; 136:429-440. [PMID: 32526035 DOI: 10.1182/blood.2019000953] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Acute graft-versus-host disease (GVHD) is 1 of the major life-threating complications after allogeneic cell transplantation. Although steroids remain first-line treatment, roughly one-half of patients will develop steroid-refractory GVHD (SR-GVHD), which portends an extremely poor prognosis. Many agents that have shown encouraging response rates in early phase 1/2 trials for prevention and treatment have been unsuccessful in demonstrating a survival advantage when applied in the setting of SR-GVHD. The discovery of novel treatments has been further complicated by the absence of clinically informative animal models that address what may reflect a distinct pathophysiology. Nonetheless, the combined knowledge of established bone marrow transplantation models and recent human trials in SR-GVHD patients are beginning to illuminate novel mechanisms for inhibiting T-cell signaling and promoting tissue tolerance that provide an increased understanding of the underlying biology of SR-GVHD. Here, we discuss recent findings of newly appreciated cellular and molecular mechanisms and provide novel translational opportunities for advancing the effectiveness of treatment in SR-GVHD.
Collapse
|
159
|
Wang J, Li X, Wu X, Wang Z, Zhang C, Cao G, Liu S, Yan T. Gut microbiota alterations associated with antibody-mediated rejection after kidney transplantation. Appl Microbiol Biotechnol 2021; 105:2473-2484. [PMID: 33625548 DOI: 10.1007/s00253-020-11069-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
Antibody-mediated rejection (AMR) has become the major challenge for kidney transplantation, and the efficacy of existing therapies was limited to prevent AMR. Increasing evidences have demonstrated the link between gut microbiota alterations and allograft outcome. However, there has been no comprehensive analysis to profile the gut microbiota associated with AMR after kidney transplantation. We performed this study to characterize the gut microbiota possibly associated with AMR. Fecal specimens were collected from 24 kidney transplantation recipients with AMR and 29 controls. DNA extracted from the specimens was processed for 16S rRNA gene sequencing using Illumina MiSeq. Gut microbial community of recipients with AMR was significantly different from that of controls based on unweighted (P = 0.001) and weighted (P = 0.02) UniFrac distances, and the bacterial richness (observed species: P = 0.0448; Chao1 index: P = 0.0450; ACE index: P = 0.0331) significantly decreased in the AMR group. LEfSe showed that 1 phylum, 5 classes, 7 families, and 10 genera were increased, whereas 1 class, 2 order, 3 families, and 4 genera were decreased in the AMR group. Specific taxa such as Clostridiales could be potentially used as biomarkers to distinguish the recipients with AMR from the controls (AUC = 0.77). PICRUSt analysis illustrated that 16 functional pathways were with significantly different abundances in the AMR and control groups. Our findings provide a foundation for further investigation on the role of gut microbiota in AMR after kidney transplantation, and potentially support novel diagnostic biomarkers and therapeutic options for AMR. KEY POINTS: • Gut microbial community of kidney recipients with AMR was different from that of controls. • Clostridiales is a potential marker to distinguish recipients with AMR from controls.
Collapse
Affiliation(s)
- Junpeng Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China.,Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Li
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, 450001, China.,Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoqiang Wu
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Zhiwei Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Chan Zhang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Guanghui Cao
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Shun Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Tianzhong Yan
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China.
| |
Collapse
|
160
|
Ma J, Zhu W, Liu B. Role of gut microbiome in the outcome of cancer immunotherapy. Int J Cancer 2021; 149:760-768. [PMID: 33600603 DOI: 10.1002/ijc.33524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/20/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
Nearly 3 × 1013 types of bacteria colonize the human intestine. These colonized bacteria help in maintaining intestinal homeostasis by establishing a complex relationship with the intestinal epithelium and lymphoid tissue. Alteration in the composition of the intestinal microbiota is associated with susceptibility to various pathological conditions, such as autoimmune disorders, diabetes, inflammation and cancer. Of late, several researchers have focused on examining the effects of gut microbiota on the outcome of various cancer treatment protocols. Side effects and complications of traditional chemotherapy and allogeneic hematopoietic cell transplantation are associated with intestinal dysbiosis. Gut microbiota affects the efficacy of immune checkpoint inhibitor-based immunotherapy. The gut is inhabited by diverse resident bacteria, of which, few enhance, while others inhibit the host response to immunotherapy. This review focuses on the correlation between intestinal microbiota and the outcome of tumor immunotherapy. Additionally, the molecular mechanisms underlying the effects of gut microbiota on the efficacy of cancer immunotherapy have been reviewed. Further studies are needed for the identification of distinct gut microbiota and their efficacy in tumor immunotherapy as certain types of intestinal bacteria could function as novel adjuvant drugs to enhance the effectiveness of antitumor therapy in humans.
Collapse
Affiliation(s)
- Junting Ma
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, China
- Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Wenwen Zhu
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, China
| | - Beixing Liu
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
161
|
Zhou Z, Shang T, Li X, Zhu H, Qi YB, Zhao X, Chen X, Shi ZX, Pan G, Wang YF, Fan G, Gao X, Zhu Y, Feng Y. Protecting Intestinal Microenvironment Alleviates Acute Graft-Versus-Host Disease. Front Physiol 2021; 11:608279. [PMID: 33643058 PMCID: PMC7907526 DOI: 10.3389/fphys.2020.608279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
Acute gut graft-versus-host disease (aGVHD) is a leading threat to the survival of allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Abnormal gut microbiota is correlated with poor prognosis in allo-HSCT recipients. A disrupted intestinal microenvironment exacerbates dysbiosis in GVHD patients. We hypothesized that maintaining the integrity of the intestinal barrier may protect gut microbiota and attenuate aGVHD. This hypothesis was tested in a murine aGVHD model and an in vitro intestinal epithelial culture. Millipore cytokine array was utilized to determine the expression of proinflammatory cytokines in the serum. The 16S rRNA sequencing was used to determine the abundance and diversity of gut microbiota. Combining Xuebijing injection (XBJ) with a reduced dose of cyclosporine A (CsA) is superior to CsA alone in improving the survival of aGVHD mice and delayed aGVHD progression. This regimen also reduced interleukin 6 (IL-6) and IL-12 levels in the peripheral blood. 16S rRNA analysis revealed the combination treatment protected gut microbiota in aGVHD mice by reversing the dysbiosis at the phylum, genus, and species level. It inhibited enterococcal expansion, a hallmark of GVHD progression. It inhibited enterococcal expansion, a hallmark of GVHD progression. Furthermore, Escherichia coli expansion was inhibited by this regimen. Pathology analysis revealed that the combination treatment improved the integrity of the intestinal tissue of aGVHD mice. It also reduced the intestinal permeability in aGVHD mice. Besides, XBJ ameliorated doxorubicin-induced intestinal epithelial death in CCK-8 assay. Overall, combining XBJ with CsA protected the intestinal microenvironment to prevent aGVHD. Our findings suggested that protecting the intestinal microenvironment could be a novel strategy to manage aGVHD. Combining XBJ with CsA may reduce the side effects of current aGVHD prevention regimens and improve the quality of life of allo-HSCT recipients.
Collapse
Affiliation(s)
- Zhengcan Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Ting Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Xiurong Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hongyan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yu-Bo Qi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xi Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhe-Xin Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guixiang Pan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yue-Fei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yuxin Feng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
162
|
Associations between the Gut Microbiota, Immune Reconstitution, and Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation. ACTA ACUST UNITED AC 2021; 3. [PMID: 33552594 PMCID: PMC7864222 DOI: 10.20900/immunometab20210004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immune reconstitution following allogeneic hematopoietic stem cell transplantation (allo-HSCT) sets the stage for the goal of a successful transplant—the prevention of disease relapse without graft versus host disease (GVHD) and opportunistic infection. In both epidemiologic studies and in controlled animal studies, it is known that the gut microbiome (GM) can profoundly influence normal innate and adaptive immune development and can be altered by microbial transfer and antibiotics. Following allo-HSCT the GM has been shown to influence clinical outcomes but published associations between the GM and immune reconstitution post-allo-HSCT are lacking. In this viewpoint we propose that the extensive knowledge garnered from studying normal immune development can serve as a framework for studying immune development post-allo-HSCT. We summarize existing studies addressing the effect of the GM on immune ontogeny and draw associations with immune reconstitution and the GM post-allo-HSCT.
Collapse
|
163
|
Sofi MH, Wu Y, Ticer T, Schutt S, Bastian D, Choi HJ, Tian L, Mealer C, Liu C, Westwater C, Armeson KE, Alekseyenko AV, Yu XZ. A single strain of Bacteroides fragilis protects gut integrity and reduces GVHD. JCI Insight 2021; 6:136841. [PMID: 33554953 PMCID: PMC7934839 DOI: 10.1172/jci.insight.136841] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a pathological process caused by an exaggerated donor lymphocyte response to host antigens after allogeneic hematopoietic cell transplantation (allo-HCT). Donor T cells undergo extensive clonal expansion and differentiation, which culminate in damage to recipient target organs. Damage to the gastrointestinal tract is a main contributor to morbidity and mortality. The loss of diversity among intestinal bacteria caused by pretransplant conditioning regimens leads to an outgrowth of opportunistic pathogens and exacerbated GVHD after allo-HCT. Using murine models of allo-HCT, we found that an increase of Bacteroides in the intestinal microbiota of the recipients was associated with reduced GVHD in mice given fecal microbial transplantation. Administration of Bacteroides fragilis through oral gavage increased gut microbiota diversity and beneficial commensal bacteria and significantly ameliorated acute and chronic GVHD development. Preservation of gut integrity following B. fragilis exposure was likely attributed to increased short chain fatty acids, IL-22, and regulatory T cells, which in turn improved gut tight junction integrity and reduced inflammatory cytokine production of pathogenic T cells. The current study provides a proof of concept that a single strain of commensal bacteria can be a safe and effective means to protect gut integrity and ameliorate GVHD after allo-HCT.
Collapse
Affiliation(s)
- M Hanief Sofi
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yongxia Wu
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Taylor Ticer
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Steven Schutt
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David Bastian
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hee-Jin Choi
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Linlu Tian
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Corey Mealer
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Caroline Westwater
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kent E Armeson
- Biomedical Informatics Center and Department of Public Health Sciences, College of Medicine, and Department of Healthcare Leadership & Management, College of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alexander V Alekseyenko
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Biomedical Informatics Center and Department of Public Health Sciences, College of Medicine, and Department of Healthcare Leadership & Management, College of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
164
|
Bossù G, Di Sario R, Argentiero A, Esposito S. Antimicrobial Prophylaxis and Modifications of the Gut Microbiota in Children with Cancer. Antibiotics (Basel) 2021; 10:antibiotics10020152. [PMID: 33546312 PMCID: PMC7913491 DOI: 10.3390/antibiotics10020152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
In children with cancer, chemotherapy can produce cytotoxic effects, resulting in immunosuppression and an augmented risk of febrile neutropenia and bloodstream infections. This has led to widespread use of antibiotic prophylaxis which, combined with intensive chemotherapy treatment, could have a long-term effect on the gastrointestinal microbiome. In this review, we aimed to analyze the current literature about the widespread use of antibiotic prophylaxis in children experiencing infectious complications induced by chemotherapy and its effects on the gut microbiome. Our review of the literature shows that antimicrobial prophylaxis in children with cancer is still a trending topic and, at the moment, there are not enough data to define universal guidelines. Children with cancer experience long and painful medical treatments and side effects, which are associated with great economic and social burdens, important psychological consequences, and dysbiosis induced by antibiotics and also by chemotherapy. Considering the importance of a healthy gut microbiota, studies are needed to understand the impact of dysbiosis in response to therapy in these children and to define how to modulate the microbiome to favor a positive therapeutic outcome.
Collapse
|
165
|
Tanigawa T, Watanabe T, Higashimori A, Shimada S, Kitamura H, Kuzumoto T, Nadatani Y, Otani K, Fukunaga S, Hosomi S, Tanaka F, Kamata N, Nagami Y, Taira K, Shiba M, Suda W, Hattori M, Fujiwara Y. Rebamipide ameliorates indomethacin-induced small intestinal damage and proton pump inhibitor-induced exacerbation of this damage by modulation of small intestinal microbiota. PLoS One 2021; 16:e0245995. [PMID: 33507971 PMCID: PMC7842908 DOI: 10.1371/journal.pone.0245995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) induce small intestinal damage. It has been reported that rebamipide, a mucoprotective drug, exerts a protective effect against NSAID-induced small intestinal damage; however, the underlying mechanism remains unknown. In this study, we investigated the significance of the small intestinal microbiota in the protective effect of rebamipide against indomethacin-induced small intestinal damage in mice. A comprehensive analysis of the 16S rRNA gene sequencing revealed an alteration in the composition of the small intestinal microbiota at the species level, modulated by the administration of rebamipide and omeprazole. The transplantation of the small intestinal microbiota of the mice treated with rebamipide suppressed the indomethacin-induced small intestinal damage. Omeprazole, a proton pump inhibitor, exacerbated the indomethacin-induced small intestinal damage, which was accompanied by the alteration of the small intestinal microbiota. We found that the transplantation of the small intestinal microbiota of the rebamipide-treated mice ameliorated indomethacin-induced small intestinal damage and the omeprazole-induced exacerbation of the damage. These results suggest that rebamipide exerts a protective effect against NSAID-induced small intestinal damage via the modulation of the small intestinal microbiota, and that its ameliorating effect extends also to the exacerbation of NSAID-induced small intestinal damage by proton pump inhibitors.
Collapse
Affiliation(s)
- Tetsuya Tanigawa
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterology, Osaka City Juso Hospital, Osaka, Japan
- * E-mail:
| | - Toshio Watanabe
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akira Higashimori
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Sunao Shimada
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Gastroenterology, Osaka City Juso Hospital, Osaka, Japan
| | - Hiroyuki Kitamura
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takuya Kuzumoto
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuji Nadatani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koji Otani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shusei Fukunaga
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Hosomi
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Fumio Tanaka
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Noriko Kamata
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuaki Nagami
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koichi Taira
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masatsugu Shiba
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
166
|
Associations between urinary 3-indoxyl sulfate, a gut microbiome-derived biomarker, and patient outcomes after intensive care unit admission. J Crit Care 2021; 63:15-21. [PMID: 33549909 DOI: 10.1016/j.jcrc.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/26/2020] [Accepted: 01/15/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE 3-indoxyl sulfate (3-IS) is an indole metabolism byproduct produced by commensal gut bacteria and excreted in the urine; low urinary 3-IS has been associated with increased mortality in bone marrow transplant recipients. This study investigated urinary 3-IS and patient outcomes in the ICU. MATERIALS AND METHODS Prospective study that collected urine samples, rectal swabs, and clinical data on 78 adult ICU patients at admission and again 72 h later. Urine was analyzed for 3-IS by mass spectrometry. RESULTS Median urinary 3-IS levels were 17.1 μmol/mmol creatinine (IQR 9.5 to 26.2) at admission and 15.6 (IQR 4.2 to 30.7) 72 h later. 22% of patients had low 3-IS (≤6.9 μmol/mmol) on ICU admission and 28% after 72 h. Low 3-IS at 72 h was associated with fewer ICU-free days (22.5 low versus 26 high, p = 0.03) and with death during one year of follow-up (36% low versus 9% high 3-IS, p < 0.01); there was no detectable difference in 30-day mortality (18% low versus 5% high, p = 0.07). CONCLUSIONS Low urinary 3-IS level 72 h after ICU admission was associated with fewer ICU-free days and with increased one-year but not 30-day mortality. Further studies should investigate urinary 3-IS as an ICU biomarker.
Collapse
|
167
|
Gut Microbiota Influence in Hematological Malignancies: From Genesis to Cure. Int J Mol Sci 2021; 22:ijms22031026. [PMID: 33498529 PMCID: PMC7864170 DOI: 10.3390/ijms22031026] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Hematological malignancies, including multiple myeloma, lymphoma, and leukemia, are a heterogeneous group of neoplasms that affect the blood, bone marrow, and lymph nodes. They originate from uncontrolled growth of hematopoietic and lymphoid cells from different stages in their maturation/differentiation and account for 6.5% of all cancers around the world. During the last decade, it has been proven that the gut microbiota, more specifically the gastrointestinal commensal bacteria, is implicated in the genesis and progression of many diseases. The immune-modulating effects of the human microbiota extend well beyond the gut, mostly through the small molecules they produce. This review aims to summarize the current knowledge of the role of the microbiota in modulating the immune system, its role in hematological malignancies, and its influence on different therapies for these diseases, including autologous and allogeneic stem cell transplantation, chemotherapy, and chimeric antigen receptor T cells.
Collapse
|
168
|
Chang CC, Hayase E, Jenq RR. The role of microbiota in allogeneic hematopoietic stem cell transplantation. Expert Opin Biol Ther 2021; 21:1121-1131. [PMID: 33412949 DOI: 10.1080/14712598.2021.1872541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) is commonly performed to treat a variety of benign and malignant hematological diseases. Acute graft-versus-host disease (GVHD) is a major life-threatening complication that often occurs following allo-HSCT. Recently, improvements in methods to characterize the microbiota have led to a greater appreciation for how frequently and profoundly an alteration in microbial composition, or dysbiosis, can occur in allo-HSCT recipients to better decipher the complex interplay between microbiota and allo-HSCT outcomes. AREAS COVERED This article reviews the current knowledge of the microbiota's impact on allo-HSCT outcomes, including effects of microbiota-derived metabolites, and crosstalk between commensals and the allogeneic immune response. This article also summarizes the effects of HSCT and transplant-related procedures on microbiota, and recent developments in interventional strategies. EXPERT OPINION A growing body of literature indicates that the composition of the intestinal microbiota can function as a predictive biomarker for the risk and severity of acute GVHD, as well as overall survival, in patients undergoing allo-HSCT. Mechanisms underpinning these associations, however, are not well understood, and clinical strategies that modulate the microbiome to improve outcomes have yet to be fully developed. There is an unmet need to determine mechanisms to improve the efficacy of allo-HSCT.
Collapse
Affiliation(s)
- Chia-Chi Chang
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eiko Hayase
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert R Jenq
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
169
|
Zhang F, Zuo T, Yeoh YK, Cheng FWT, Liu Q, Tang W, Cheung KCY, Yang K, Cheung CP, Mo CC, Hui M, Chan FKL, Li CK, Chan PKS, Ng SC. Longitudinal dynamics of gut bacteriome, mycobiome and virome after fecal microbiota transplantation in graft-versus-host disease. Nat Commun 2021; 12:65. [PMID: 33397897 PMCID: PMC7782528 DOI: 10.1038/s41467-020-20240-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Fecal microbiota transplant (FMT) has emerged as a potential treatment for severe colitis associated with graft-versus-host disease (GvHD) following hematopoietic stem cell transplant. Bacterial engraftment from FMT donor to recipient has been reported, however the fate of fungi and viruses after FMT remains unclear. Here we report longitudinal dynamics of the gut bacteriome, mycobiome and virome in a teenager with GvHD after receiving four doses of FMT at weekly interval. After serial FMTs, the gut bacteriome, mycobiome and virome of the patient differ from compositions before FMT with variable temporal dynamics. Diversity of the gut bacterial community increases after each FMT. Gut fungal community initially shows expansion of several species followed by a decrease in diversity after multiple FMTs. In contrast, gut virome community varies substantially over time with a stable rise in diversity. The bacterium, Corynebacterium jeikeium, and Torque teno viruses, decrease after FMTs in parallel with an increase in the relative abundance of Caudovirales bacteriophages. Collectively, FMT may simultaneously impact on the various components of the gut microbiome with distinct effects.
Collapse
Affiliation(s)
- Fen Zhang
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Zuo
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun Kit Yeoh
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Frankie W T Cheng
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Qin Liu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Whitney Tang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kitty C Y Cheung
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Keli Yang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun Pan Cheung
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chow Chung Mo
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Mamie Hui
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K L Chan
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Kong Li
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul K S Chan
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Siew C Ng
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
170
|
Singh S, Singh K, Singh J, Paul D, Jain K. Altered oral intake during hematopoietic stem cell transplantation: Patterns and countermeasures. INDIAN JOURNAL OF MEDICAL SPECIALITIES 2021. [DOI: 10.4103/injms.injms_173_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
171
|
Khuat LT, Dave M, Murphy WJ. The emerging roles of the gut microbiome in allogeneic hematopoietic stem cell transplantation. Gut Microbes 2021; 13:1966262. [PMID: 34455917 PMCID: PMC8436969 DOI: 10.1080/19490976.2021.1966262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 02/04/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is used for the treatment of hematologic cancers and disorders. However, graft-versus-host disease (GVHD) in which the donor immune cells attack the genetically-disparate recipient is a significant cause of morbidity. Acute GVHD is an inflammatory condition and the gastrointestinal system is a major organ affected but is also tied to beneficial graft-versus-tumor (GVT) effects. There is increasing interest on the role of the microbiome on immune function as well as on cancer progression and immunotherapy outcomes. However, there are still significant unanswered questions on the role the microbiome plays in GVHD progression or how to exploit the microbiome in GVHD prevention or treatment. In this review, concepts of HSCT with the focus on GVHD pathogenesis as well as issues in preclinical models used to study GVHD will be discussed with an emphasis on the impact of the microbiome. Factors affecting the microbiome and GVHD outcome such as obesity are also examined. The bridging of preclinical models and clinical outcomes in relation to the role of the microbiome will also be discussed along with possibilities for therapeutic exploitation.
Collapse
Affiliation(s)
- Lam T. Khuat
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA
| | - Maneesh Dave
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of California, Davis, CA, USA
| | - William J. Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA, USAs
| |
Collapse
|
172
|
Nguyen CL, Docampo MD, van den Brink MR, Markey KA. The role of the intestinal microbiota in allogeneic HCT: clinical associations and preclinical mechanisms. Curr Opin Genet Dev 2020; 66:25-35. [PMID: 33388483 DOI: 10.1016/j.gde.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/15/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a curative-intent therapy for patients with hematological malignancies, but despite advances in the field in recent years, there is still a significant risk of post-transplant mortality. In addition to relapse of the underlying malignancy, the key contributors to this high mortality are graft-versus-host disease (GVHD) and infection. The intestinal microbiota is the collective term describing the community of bacteria, fungi, viruses and protozoa that resides in the human gastrointestinal tract. Bacterial communities have been studied most comprehensively, and disruption of these communities has been associated with the development of a variety of medical conditions in large clinical associative studies. Preclinical studies suggest a mechanistic role for the intestinal microbiota in the instruction and maintenance of both intestinal and systemic immune cell function. This review outlines our current understanding of the relationship between gut bacteria and allo-HCT outcomes, including infection, immune reconstitution, GVHD and relapse, drawing on evidence from both clinical associative studies and preclinical mechanistic studies.
Collapse
Affiliation(s)
- Chi L Nguyen
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melissa D Docampo
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcel Rm van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Division of Medicine, Weill Cornell Medical College, New York, NY, USA; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kate A Markey
- Division of Medicine, Weill Cornell Medical College, New York, NY, USA; Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
173
|
D'Angelo CR, Sudakaran S, Callander NS. Clinical effects and applications of the gut microbiome in hematologic malignancies. Cancer 2020; 127:679-687. [PMID: 33369893 DOI: 10.1002/cncr.33400] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022]
Abstract
The gut microbiome and its effects on host immunity have exciting implications for cancer prognosis and therapy. Examples in allogeneic hematopoietic stem cell transplantation (allo-SCT) demonstrate the role of the gut microbiome as a biomarker for clinical outcomes, and animal models demonstrate how microbiota manipulation may augment therapeutic responses. There are multiple mechanisms that gut microbiota may have in affecting distant tumor environments, including control of cytokine release, dendritic cell activation, and T-cell lymphocyte stimulation. Recently, there has been a marked interest in understanding interactions between host and microbiome in hematologic malignancies. This review summarizes the current understanding of the gut microbiome and its impact on leukemia, lymphoma, multiple myeloma, and allo-SCT and highlights several broad methods for targeting the gut microbiome in therapeutic trials.
Collapse
Affiliation(s)
- Christopher R D'Angelo
- Division of Hematology/Oncology, Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sailendharan Sudakaran
- Microbiome Hub, Wisconsin Institute of Discovery, University of Wisconsin, Madison, Wisconsin
| | - Natalie S Callander
- Section of Hematology/Oncology and Bone Marrow Transplantation, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
174
|
Targeting the gut microbiome: An emerging trend in hematopoietic stem cell transplantation. Blood Rev 2020; 48:100790. [PMID: 33573867 DOI: 10.1016/j.blre.2020.100790] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/09/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Mounting evidence has demonstrated the critical role of the gut microbiome in different cancer treatment modalities showing intensive crosstalk between microbiota and the host immune system. In cancer patients receiving hematopoietic stem cell transplantation (HSCT), conditioning regimens including chemotherapy, radiotherapy, and immunosuppressive therapy, as well as antimicrobial prophylaxis, result in intestinal barrier disruption and massive changes in microbiota composition. According to clinical studies, a drastic loss of microbial diversity during HSCT is associated with enhanced pro-inflammatory immune response and an increased risk of transplant-related complications such as graft-versus-host disease (GvHD) and mortality. In this review, we outline the current understanding of the role of microbiota diversity in the patient response to cancer therapies and highlight the impact of changes in the gut microbiome on clinical outcomes in post-HSCT patients. Moreover, the therapeutic implications of microbiota modulation by probiotics, prebiotics, and fecal microbiota transplantation (FMT) in hematologic cancer patients receiving HSCT are discussed.
Collapse
|
175
|
Giaccone L, Faraci DG, Butera S, Lia G, Di Vito C, Gabrielli G, Cerrano M, Mariotti J, Dellacasa C, Felicetti F, Brignardello E, Mavilio D, Bruno B. Biomarkers for acute and chronic graft versus host disease: state of the art. Expert Rev Hematol 2020; 14:79-96. [PMID: 33297779 DOI: 10.1080/17474086.2021.1860001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Despite significant advances in treatment and prevention, graft-versus-host disease (GVHD) still represents the main cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Thus, considerable research efforts have been made to find and validate reliable biomarkers for diagnosis, prognosis, and risk stratification of GVHD. AREAS COVERED In this review the most recent evidences on different types of biomarkers studied for GVHD, such as genetic, plasmatic, cellular markers, and those associated with microbiome, were summarized. A comprehensive search of peer-review literature was performed in PubMed including meta-analysis, preclinical and clinical trials, using the terms: cellular and plasma biomarkers, graft-versus-host disease, cytokines, and allogeneic hematopoietic stem cell transplantation. EXPERT OPINION In the near future, several validated biomarkers will be available to help clinicians in the diagnosis of GVHD, the identification of patients at high risk of GVHD development and in patients' stratification according to its severity. Then, immunosuppressive treatment could be tailored to each patient's real needs. However, more efforts are needed to achieve this goal. Although most of the proposed biomarkers currently lack validation with large-scale clinical data, their study led to improved knowledge of the biological basis of GVHD, and ultimately to implementation of GHVD treatment.
Collapse
Affiliation(s)
- Luisa Giaccone
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Danilo Giuseppe Faraci
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Sara Butera
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Giuseppe Lia
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (Biometra), University of Milan , Milan, Italy
| | - Giulia Gabrielli
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Marco Cerrano
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Jacopo Mariotti
- Bone Marrow Transplant Unit, Humanitas Clinical and Research Center, IRCCS , Rozzano, Italy
| | - Chiara Dellacasa
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy
| | - Francesco Felicetti
- Transition Unit for Childhood Cancer Survivors, A.O.U. Città Della Salute E Della Scienza Di Torino , University of Torino , Torino, Italy
| | - Enrico Brignardello
- Transition Unit for Childhood Cancer Survivors, A.O.U. Città Della Salute E Della Scienza Di Torino , University of Torino , Torino, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (Biometra), University of Milan , Milan, Italy
| | - Benedetto Bruno
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| |
Collapse
|
176
|
Crossland RE, Perutelli F, Bogunia-Kubik K, Mooney N, Milutin Gašperov N, Pučić-Baković M, Greinix H, Weber D, Holler E, Pulanić D, Wolff D, Dickinson AM, Inngjerdingen M, Grce M. Potential Novel Biomarkers in Chronic Graft-Versus-Host Disease. Front Immunol 2020; 11:602547. [PMID: 33424849 PMCID: PMC7786047 DOI: 10.3389/fimmu.2020.602547] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Prognostic, diagnostic or predictive biomarkers are urgently needed for assessment of chronic graft-versus-host disease (cGvHD), a major risk for patients undergoing allogeneic hematopoietic stem cell transplantation. The main goal of this review generated within the COST Action EUROGRAFT "Integrated European Network on Chronic Graft Versus Host Disease" was to identify potential novel biomarkers for cGvHD besides the widely accepted molecular and cellular biomarkers. Thus, the focus was on cellular biomarkers, alloantibodies, glycomics, endothelial derived particles, extracellular vesicles, microbiome, epigenetic and neurologic changes in cGvHD patients. Both host-reactive antibodies in general, and particularly alloantibodies have been associated with cGvHD and require further consideration. Glycans attached to IgG modulate its activity and represent a promising predictive and/or stratification biomarker for cGVHD. Furthermore, epigenetic changes such as microRNAs and DNA methylation represent potential biomarkers for monitoring cGvHD patients and novel targets for developing new treatment approaches. Finally, the microbiome likely affects the pathophysiology of cGvHD; bacterial strains as well as microbial metabolites could display potential biomarkers for dysbiosis and risk for the development of cGvHD. In summary, although there are no validated biomarkers currently available for clinical use to better inform on the diagnosis, prognosis or prediction of outcome for cGvHD, many novel sources of potential markers have shown promise and warrant further investigation using well characterized, multi-center patient cohorts.
Collapse
Affiliation(s)
- Rachel E. Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Francesca Perutelli
- Department of Molecular Biotechnology and Health Sciences, School of Medicine, University of Torino, Torino, Italy
| | - Katarzyna Bogunia-Kubik
- Department of Clinical Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Nuala Mooney
- INSERM U976, Human Immunology, Pathophysiology and Immunotherapies, Hôpital Saint Louis, Paris, France
| | | | | | - Hildegard Greinix
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Daniela Weber
- Department of Internal Medicine III, Faculty of Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III, Faculty of Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Dražen Pulanić
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Medical School, University of Zagreb, Zagreb, Croatia
| | - Daniel Wolff
- Department of Internal Medicine III, Faculty of Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Anne M. Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
177
|
Abedin S, Hamadani M. Experimental Pharmaceuticals for Steroid-Refractory Acute Graft-versus-Host Disease. J Exp Pharmacol 2020; 12:549-557. [PMID: 33273867 PMCID: PMC7705269 DOI: 10.2147/jep.s259290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/16/2020] [Indexed: 01/19/2023] Open
Abstract
Acute GVHD (aGVHD) is a significant complication after allogeneic hematopoietic cell transplantation (HCT), occurring in up to 70% of HCT recipients. Steroid-refractory aGVHD represents a subset of patients failing initial therapy and is particularly morbid, with only 30% of patients surviving long term. Better therapies are urgently required for these patients. Here, we discuss recent advancements in the management of SR-aGVHD. We review the currently available therapies for SR-aGVHD including the results of the REACH1 and REACH2 trials, which provide the basis for the use of ruxolitinib for the treatment of SR-aGVHD. We additionally discuss newer agents under clinical investigation and will highlight the niche these agents may fill to further improve outcomes in aGVHD patient care.
Collapse
Affiliation(s)
- Sameem Abedin
- Blood & Marrow Transplantation and Cellular Therapy Program, Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mehdi Hamadani
- Blood & Marrow Transplantation and Cellular Therapy Program, Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
178
|
Yu J, Sun H, Cao W, Han L, Song Y, Wan D, Jiang Z. Applications of gut microbiota in patients with hematopoietic stem-cell transplantation. Exp Hematol Oncol 2020; 9:35. [PMID: 33292670 PMCID: PMC7716583 DOI: 10.1186/s40164-020-00194-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Studies of the gut microbiota (GM) have demonstrated the close link between human wellness and intestinal commensal bacteria, which mediate development of the host immune system. The dysbiosis, a disruption of the microbiome natural balance, can cause serious health problems. Patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) may cause significant changes in GM due to their underlying malignancies and exposure to extensive chemotherapy and systemic antibiotics, which may lead to different disorders. There are complex and multi-directional interactions among intestinal inflammation, GM and immune reactivity after HSCT. There is considerable effect of the human intestinal microbiome on clinical course following HSCT. Some bacteria in the intestinal ecosystem may be potential biomarkers or therapeutic targets for preventing relapse and improving survival rate after HSCT. Microbiota can be used as predictor of mortality in allo-HSCT. Two different strategies with targeted modulation of GM, preemptive and therapeutic, have been used for preventing or treating GM dysbiosis in patients with HSCT. Preemptive strategies include enteral nutrition (EN), prebiotic, probiotic, fecal microbiota transplantation (FMT) and antibiotic strategies, while therapeutic strategies include FMT, probiotic and lactoferrine usages. In this review, we summarize the advance of therapies targeting GM in patients with HSCT.
Collapse
Affiliation(s)
- Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Academy of Medical and Pharmaceutical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Sun
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lijie Han
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yongping Song
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Dingming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
179
|
Masetti R, Zama D, Leardini D, Muratore E, Turroni S, Prete A, Brigidi P, Pession A. The gut microbiome in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation. Pediatr Blood Cancer 2020; 67:e28711. [PMID: 32939928 DOI: 10.1002/pbc.28711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
The gut microbiome (GM) has been associated with different clinical outcomes in the context of allogeneic hematopoietic stem cell transplantation (HSCT). Large multicenter cohort studies in adults have found significant correlations with overall survival, relapse, and incidence of complications. Moreover, GM is already a promising target for therapeutic interventions. However, few data are available in children, a population presenting unique features and challenges. During childhood, the GM evolves rapidly with large structural fluctuations, alongside with the maturation of the immune system. Furthermore, the HSCT procedure presents significant differences in children. These considerations underline the importance of a specific focus on the pediatric setting, and the role of GM and its age-dependent trajectory in influencing the immunity reconstitution and clinical outcomes. This review provides a comprehensive overview of the available evidence in the field of GM and pediatric HSCT, highlighting age-specific issues and discussing GM-based therapeutic approaches.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli," Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Daniele Zama
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli," Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli," Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Edoardo Muratore
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli," Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli," Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Patrizia Brigidi
- Department of Medicine and Surgery (DIMEC), University of Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli," Department of Pediatrics, University of Bologna, Sant'Orsola Malpighi Hospital, Bologna, Italy
| |
Collapse
|
180
|
Innao V, Allegra AG, Musolino C, Allegra A. New Frontiers about the Role of Human Microbiota in Immunotherapy: The Immune Checkpoint Inhibitors and CAR T-Cell Therapy Era. Int J Mol Sci 2020; 21:ijms21238902. [PMID: 33255336 PMCID: PMC7727716 DOI: 10.3390/ijms21238902] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiota is considered an independent organ with the capability to modulate tumor growth and response to therapies. In the chemo-free era, the use of new immunotherapies, more selective and effective and less toxic, led to the extension of overall survival of patients, subject to their ability to not stop treatment. This has focused scientists’ attention to optimize responses by understanding and changing microbiota composition. While we have obtained abundant data from studies in oncologic and hematologic patients receiving conventional chemotherapy, we have less data about alterations in intestinal flora in those undergoing immunotherapy, especially based on Chimeric Antigen Receptor (CAR) T-cells. Actually, we know that the efficacy of Programmed Cell Death 1 (PD-1), PD-1 ligand, and Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) is improved by probiotics rich in Bifidobacterium spp., while compounds of Bacteroidales and Burkholderiales protect from the development of the anti-CTLA-4-induced colitis in mouse models. CAR T-cell therapy seems to not be interfering with microbiota; however, the numerous previous therapies may have caused permanent damage, thus obscuring the data we might have obtained. Therefore, this review opens a new chapter to transfer known acquisitions to a typology of patients destined to grow.
Collapse
Affiliation(s)
- Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood, University of Messina, 98122 Messina, Italy;
- Correspondence: (V.I.); (A.A.)
| | - Andrea Gaetano Allegra
- Radiation Oncology Unit, Department of Biomedical, Experimental, and Clinical Sciences “Mario Serio”, Azienda Ospedaliero-Universitaria Careggi, University of Florence, 50100 Florence, Italy;
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood, University of Messina, 98122 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood, University of Messina, 98122 Messina, Italy;
- Correspondence: (V.I.); (A.A.)
| |
Collapse
|
181
|
Ilett EE, Jørgensen M, Noguera-Julian M, Nørgaard JC, Daugaard G, Helleberg M, Paredes R, Murray DD, Lundgren J, MacPherson C, Reekie J, Sengeløv H. Associations of the gut microbiome and clinical factors with acute GVHD in allogeneic HSCT recipients. Blood Adv 2020; 4:5797-5809. [PMID: 33232475 PMCID: PMC7686902 DOI: 10.1182/bloodadvances.2020002677] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is a leading cause of transplantation-related mortality after allogeneic hematopoietic stem cell transplantation (aHSCT). 16S ribosomal RNA (16S rRNA) gene-based studies have reported that lower gut bacterial diversity and the relative abundance of certain bacteria after aHSCT are associated with aGVHD. Using shotgun metagenomic sequencing and a large cohort, we aimed to confirm and extend these observations. Adult aHSCT recipients with stool samples collected from day -30 to day 100 relative to aHSCT were included. One sample was selected per patient per period (pre-aHSCT (day -30 to day 0), early post-aHSCT (day 1 to day 28), and late post-aHSCT (day 29 to day 100)), resulting in 150 aHSCT recipients and 259 samples. Microbial and clinical factors were tested for differences between time periods and an association with subsequent aGVHD. Patients showed a decline in gut bacterial diversity posttransplant, with several patients developing a dominance of Enterococcus. A total of 36 recipients developed aGVHD at a median of 34 days (interquartile range, 26-50 days) post-aHSCT. Lower microbial gene richness (P = .02), a lower abundance of the genus Blautia (P = .05), and a lower abundance of Akkermansia muciniphila (P = .01) early post-aHSCT was observed in those who developed aGVHD. Myeloablative conditioning was associated with aGVHD along with a reduction in gene richness and abundance of Blautia and A muciniphila. These results confirm low diversity and Blautia being associated with aGVHD. Crucially, we add that pretransplant conditioning is associated with changes in gut microbiota. Investigations are warranted to determine the interplay of gut microbiota and conditioning in the development of aGVHD.
Collapse
Affiliation(s)
- Emma E Ilett
- PERSIMUNE Centre of Excellence, Rigshospitalet, Copenhagen, Denmark
| | - Mette Jørgensen
- PERSIMUNE Centre of Excellence, Rigshospitalet, Copenhagen, Denmark
| | - Marc Noguera-Julian
- Institut de Recerca de la Sida-IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
- University of Vic-Central University of Catalonia, Barcelona, Spain
| | | | | | - Marie Helleberg
- PERSIMUNE Centre of Excellence, Rigshospitalet, Copenhagen, Denmark
| | - Roger Paredes
- Institut de Recerca de la Sida-IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain; and
| | - Daniel D Murray
- PERSIMUNE Centre of Excellence, Rigshospitalet, Copenhagen, Denmark
| | - Jens Lundgren
- PERSIMUNE Centre of Excellence, Rigshospitalet, Copenhagen, Denmark
| | | | - Joanne Reekie
- PERSIMUNE Centre of Excellence, Rigshospitalet, Copenhagen, Denmark
| | - Henrik Sengeløv
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
182
|
de Mooij CEM, van Groningen LFJ, de Haan AFJ, Biemond BJ, Bakker M, van der Velden WJFM, Blijlevens NMA. Anakinra: efficacy in the management of fever during neutropenia and mucositis in autologous stem cell transplantation (AFFECT-2)-study protocol for a multicenter randomized double-blind placebo-controlled trial. Trials 2020; 21:948. [PMID: 33225965 PMCID: PMC7681989 DOI: 10.1186/s13063-020-04847-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 02/02/2023] Open
Abstract
Background Since decades, fever and infections have been the most important complications of intensive chemotherapy and hematopoietic stem cell transplantation (HSCT) in the treatment of hematologic malignancies. Neutropenia has long been considered to be the most important risk factor for these complications. However, recent studies have shown that not neutropenia, but the development of mucositis is the most important cause of these complications. Currently, limited options for the prevention and treatment of mucositis are available, of which most are only supportive. The pro-inflammatory cytokine interleukin-1 (IL-1) plays a crucial role in the pathogenesis of mucositis. Pre-clinical studies of chemotherapy-induced mucositis have shown that recombinant human IL-1 receptor antagonist anakinra significantly ameliorated intestinal mucositis. In our pilot study AFFECT-1, we examined the safety and maximal tolerated dose of anakinra in patients with multiple myeloma, treated with high-dose melphalan (HDM) and autologous HSCT, selecting a dose of 300 mg daily for the phase IIb trial. The aim of the AFFECT-2 study is to determine the efficacy of anakinra in preventing fever during neutropenia (FN) and mucositis in this study population. Methods/design A multicenter, randomized, placebo-controlled, double-blind phase IIb trial will be conducted. Ninety patients with multiple myeloma scheduled for treatment with HDM and autologous HSCT will be included. Patients will be randomized between intravenous treatment with anakinra (300 mg) or placebo. Each group will be treated from day − 2 (day of HDM; day 0 is HSCT) up until day + 12. Outcome measures will be assessed at baseline, during admission, at discharge or day + 30, at day + 90, and + 1 year. The primary outcome will be reduction of FN. Secondary outcome measures include mucositis scores, bloodstream infections, citrulline levels, quality of life, and fatigue severity. Discussion The AFFECT-2 trial will examine the efficacy of anakinra in the management of fever during neutropenia and mucositis in patients with multiple myeloma treated with HDM and autologous HSCT. The results of this study may provide a new treatment option for these important complications. Also, this study will give us more insight in the pathophysiology of mucositis, including the role of IL-1 and the role of the microbiota in mucositis. Trial registration Clinicaltrials.gov NCT04099901. Registered on September 23, 2019. EudraCT: 2018-005046-10.
Collapse
Affiliation(s)
- Charlotte E M de Mooij
- Radboud Institute of Health Sciences, Department of Hematology, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, the Netherlands.
| | - Lenneke F J van Groningen
- Radboud Institute of Health Sciences, Department of Hematology, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Anton F J de Haan
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bart J Biemond
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Martijn Bakker
- Department of Hematology, University Medical Center Groningen, Groningen, the Netherlands
| | - Walter J F M van der Velden
- Radboud Institute of Health Sciences, Department of Hematology, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Nicole M A Blijlevens
- Radboud Institute of Health Sciences, Department of Hematology, Radboud University Medical Center, PO Box 9101, 6500, HB, Nijmegen, the Netherlands
| |
Collapse
|
183
|
Kumari R, Palaniyandi S, Strattan E, Hildebrandt GC. Microbiome: an emerging new frontier in graft‑versus‑host disease. Inflamm Res 2020; 70:1-5. [PMID: 33185704 PMCID: PMC7661320 DOI: 10.1007/s00011-020-01419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/06/2020] [Accepted: 10/26/2020] [Indexed: 11/27/2022] Open
Affiliation(s)
- Reena Kumari
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-093 USA
| | - Senthilnathan Palaniyandi
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-093 USA
| | - Ethan Strattan
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-093 USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536-093 USA
| | - Gerhard C. Hildebrandt
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, Lexington, KY 40536-093 USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536-093 USA
| |
Collapse
|
184
|
Li X, Lin Y, Li X, Xu X, Zhao Y, Xu L, Gao Y, Li Y, Tan Y, Qian P, Huang H. Tyrosine supplement ameliorates murine aGVHD by modulation of gut microbiome and metabolome. EBioMedicine 2020; 61:103048. [PMID: 33039712 PMCID: PMC7553238 DOI: 10.1016/j.ebiom.2020.103048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Microbial communities and their metabolic components in the gut are of vital importance for immune homeostasis and have an influence on the susceptibility of the host to a number of immune-mediated diseases like acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, little is known about the functional connections between microbiome and metabolome in aGVHD due to the complexity of the gastrointestinal environment. METHOD Initially, gut microbiota and fecal metabolic phenotype in aGVHD murine models were unleashed by performing 16S ribosomal DNA gene sequencing and ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS)-based metabolomics. FINDINGS The group with aGVHD experienced a significant drop in Lachnospiraceae_unclassified but an increase in the relative abundance of Clostridium XI, Clostridium XIVa and Enterococcus. Meanwhile, a lower content of tyrosine was observed in the gut of aGVHD mice. The correlation analysis revealed that tyrosine-related metabolites were inversely correlated with Clostridium XIVa, besides, Blautia and Enterococcus also displayed the negative tendency in aGVHD condition. Apart from exploring the importance and function of tyrosine, different tyrosine diets were offered to mice during transplantation. Additional tyrosine supplements can improve overall survival, ameliorate symptoms at the early stage of aGVHD and change the structure and composition of gut microbiota and fecal metabolic phenotype. In addition, aGVHD mice deprived from tyrosine displayed worse manifestations than the vehicle diet group. INTERPRETATION The results demonstrated the roles and mechanisms of gut microbiota, indispensable metabolites and tyrosine in the progression of aGVHD, which can be an underlying biomarker for aGVHD diagnosis and treatment. FUNDING This research was funded by the International Cooperation and Exchange Program (81520108002), the National Key R&D Program of China, Stem Cell and Translation Research (2018YFA0109300), National Natural Science Foundation of China (81670169, 81670148, 81870080 and 91949115) and Natural Science Foundation of Zhejiang Province (LQ19H080006).
Collapse
Affiliation(s)
- Xiaoqing Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Yu Lin
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Xue Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Xiaoxiao Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Lin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Yang Gao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd., Hangzhou 310016, Zhejiang, PR China
| | - Yixue Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Yamin Tan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Pengxu Qian
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou 310012, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China; Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China; Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
185
|
Gut microbiota profiles of treatment-naïve adult acute myeloid leukemia patients with neutropenic fever during intensive chemotherapy. PLoS One 2020; 15:e0236460. [PMID: 33112882 PMCID: PMC7592783 DOI: 10.1371/journal.pone.0236460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
The intestinal bacterial flora of febrile neutropenic patients has been found to be significantly diverse. However, there are few reports of alterations of in adult acute myeloid leukemia (AML) patients. Stool samples of each treatment-naïve AML patient were collected the day before initiation of induction chemotherapy (pretreatment), on the first date of neutropenic fever and first date of bone marrow recovery. Bacterial DNA was extracted from stool samples and bacterial 16s ribosomal RNA genes were sequenced by next-generation sequencing. Relative abundance, overall richness, Shannon's diversity index and Simpson's diversity index were calculated. No antimicrobial prophylaxis was in placed in all participants. Ten cases of AML patients (4 male and 6 female) were included with a median age of 39 years (range: 19–49) and all of patients developed febrile neutropenia. Firmicutes dominated during the period of neutropenic fever, subsequently declining after bone marrow recovery a pattern in contrast to that shown by Bacteroidetes and Proteobacteria. Enterococcus was more abundant in the febrile neutropenia period compared to pretreatment (mean difference +20.2; p < 0.0001) while Escherichia notably declined during the same period (mean difference -11.2; p = 0.0064). At the operational taxonomic unit (OTU) level, there was a significantly higher level of overall richness in the pretreatment period than in the febrile neutropenic episode (mean OTU of 203.1 vs. 131.7; p = 0.012). Both of the diversity indexes of Shannon and Simpson showed a significant decrease during the febrile neutropenic period. Adult AML patients with a first episode of febrile neutropenia after initial intensive chemotherapy demonstrated a significant decrease in gut microbiota diversity and the level of diversity remained constant despite recovery of bone marrow.
Collapse
|
186
|
Allogenic stem cell transplant-associated acute graft versus host disease: a computational drug discovery text mining approach using oral and gut microbiome signatures. Support Care Cancer 2020; 29:1765-1779. [PMID: 33094358 DOI: 10.1007/s00520-020-05821-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE Acute graft versus host disease (aGVHD) is a major cause of non-relapse morbidity and mortality post-allogenic hematopoietic stem cell transplant (HSCT). Using conventional literature search and computational approaches, our objective was to identify oral and gut bacterial species associated with aGVHD, potentially affecting drug treatment via lipopolysaccharide (LPS) pathways. METHODS Medline, PubMed, PubMed Central, and Google Scholar were searched using MeSH terms. The top 100 hits per database were curated, and 25 research articles were selected to examine oral and gut microbiomes associated with health, HSCT, and aGVHD. Literature search validation, aGVHD drug targets, and microbial metabolic pathway identification were completed using BioReader, MACADAM, KEGG, and STRING programs. RESULTS Our review determined that (1) oral genera Rothia, Solobacterium, and Veillonella were identified in HSCT patients' stool and associated with aGVHD; (2) shifts in gut enterococci profiles were determined in HSCT-associated aGVHD; (3) gut microbiome dysbiosis prior or during HSCT and lower Shannon diversity index at time of HSCT were also associated with increased risk of aGVHD and transplant related death; and (4) Coriobacteriaceae family was negatively correlated with gut aGVHD, whereas Eubacterium limosum was associated with decreased risk of chronic GVHD relapse. Additionally, we identified molecular pathways related to TLR4/ LPS, including candidate aGVHD drug targets, impacted by oral and gut bacterial taxa. CONCLUSION Reduced microbial diversity reflects higher severity and mortality rate in HSCT patients with aGVHD. Multi-omics approaches to decipher oral and gut microbiome associations will be critical for developing aGVHD preventive therapies.
Collapse
|
187
|
Vandenhove B, Canti L, Schoemans H, Beguin Y, Baron F, Graux C, Kerre T, Servais S. How to Make an Immune System and a Foreign Host Quickly Cohabit in Peace? The Challenge of Acute Graft- Versus-Host Disease Prevention After Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2020; 11:583564. [PMID: 33193397 PMCID: PMC7609863 DOI: 10.3389/fimmu.2020.583564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (alloHCT) has been used as cellular immunotherapy against hematological cancers for more than six decades. Its therapeutic efficacy relies on the cytoreductive effects of the conditioning regimen but also on potent graft-versus-tumor (GVT) reactions mediated by donor-derived immune cells. However, beneficial GVT effects may be counterbalanced by acute GVHD (aGVHD), a systemic syndrome in which donor immune cells attack healthy tissues of the recipient, resulting in severe inflammatory lesions mainly of the skin, gut, and liver. Despite standard prophylaxis regimens, aGVHD still occurs in approximately 20–50% of alloHCT recipients and remains a leading cause of transplant-related mortality. Over the past two decades, advances in the understanding its pathophysiology have helped to redefine aGVHD reactions and clinical presentations as well as developing novel strategies to optimize its prevention. In this review, we provide a brief overview of current knowledge on aGVHD immunopathology and discuss current approaches and novel strategies being developed and evaluated in clinical trials for aGVHD prevention. Optimal prophylaxis of aGVHD would prevent the development of clinically significant aGVHD, while preserving sufficient immune responsiveness to maintain beneficial GVT effects and immune defenses against pathogens.
Collapse
Affiliation(s)
- Benoît Vandenhove
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium
| | - Lorenzo Canti
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium
| | - Hélène Schoemans
- Department of Clinical Hematology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Yves Beguin
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Hematology, CHU of Liège, University of Liège, Liège, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Hematology, CHU of Liège, University of Liège, Liège, Belgium
| | - Carlos Graux
- Department of Clinical Hematology, CHU UCL Namur (Godinne), Université Catholique de Louvain, Yvoir, Belgium
| | - Tessa Kerre
- Hematology Department, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sophie Servais
- Laboratory of Hematology, GIGA-I3, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Hematology, CHU of Liège, University of Liège, Liège, Belgium
| |
Collapse
|
188
|
Optimization of nutrition support practices early after hematopoietic cell transplantation. Bone Marrow Transplant 2020; 56:314-326. [PMID: 33040076 DOI: 10.1038/s41409-020-01078-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 01/04/2023]
Abstract
Nutrition support is often required during hematopoietic cell transplant (HCT) given the gastrointestinal toxicity that frequently precludes adequate protein-calorie intake. This article reviews the latest evidence for enteral versus parenteral nutrition in the adult and pediatric HCT population and addresses key considerations as well as barriers to implement this in practice. Registered Dietitian Nutritionists are key members of the interdisciplinary team to proactively manage enteral nutrition support to provide timely, adequate protein and calories to help prevent malnutrition, loss of lean body mass, and functional decline as well as provide evidence-based diet recommendations. This article also reviews emerging research supporting the role of luminal nutrients to maintain microbiotal diversity.
Collapse
|
189
|
Yafour N, Serradj F, Osmani S, Brahimi M, Bouhass R, Arabi A, Bazarbachi A, Bekadja MA. Improving survival rates for patients with acute myeloid leukemia: Impacts of fludarabine/busulfan and antithymocyte globulin as reduced toxicity myeloablative conditioning for matched related donor allo-HCT. Curr Res Transl Med 2020; 68:145-148. [PMID: 33028507 DOI: 10.1016/j.retram.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Nabil Yafour
- Service d'hématologie et de thérapie cellulaire, établissement hospitalier et universitaire 1er Novembre 1954, BP 4166, 31000 Ibn Rochd, Oran, Algeria; Université d'Oran 1, Ahmed Ben Bella, faculté de médecine, Oran, Algeria.
| | - Faiza Serradj
- Service d'hématologie et de thérapie cellulaire, établissement hospitalier et universitaire 1er Novembre 1954, BP 4166, 31000 Ibn Rochd, Oran, Algeria; Université d'Oran 1, Ahmed Ben Bella, faculté de médecine, Oran, Algeria.
| | - Soufi Osmani
- Service d'hématologie et de thérapie cellulaire, établissement hospitalier et universitaire 1er Novembre 1954, BP 4166, 31000 Ibn Rochd, Oran, Algeria; Université d'Oran 1, Ahmed Ben Bella, faculté de médecine, Oran, Algeria.
| | - Mohamed Brahimi
- Service d'hématologie et de thérapie cellulaire, établissement hospitalier et universitaire 1er Novembre 1954, BP 4166, 31000 Ibn Rochd, Oran, Algeria; Université d'Oran 1, Ahmed Ben Bella, faculté de médecine, Oran, Algeria.
| | - Rachid Bouhass
- Service d'hématologie et de thérapie cellulaire, établissement hospitalier et universitaire 1er Novembre 1954, BP 4166, 31000 Ibn Rochd, Oran, Algeria; Université d'Oran 1, Ahmed Ben Bella, faculté de médecine, Oran, Algeria.
| | - Abdessamad Arabi
- Service d'hématologie et de thérapie cellulaire, établissement hospitalier et universitaire 1er Novembre 1954, BP 4166, 31000 Ibn Rochd, Oran, Algeria; Université d'Oran 1, Ahmed Ben Bella, faculté de médecine, Oran, Algeria.
| | - Ali Bazarbachi
- American University of Beirut, Medical Center, 113-6044, Beirut, Lebanon.
| | - Mohamed Amine Bekadja
- Service d'hématologie et de thérapie cellulaire, établissement hospitalier et universitaire 1er Novembre 1954, BP 4166, 31000 Ibn Rochd, Oran, Algeria; Université d'Oran 1, Ahmed Ben Bella, faculté de médecine, Oran, Algeria.
| |
Collapse
|
190
|
Chen S, Zeiser R. Novel Biomarkers for Outcome After Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:1854. [PMID: 33013836 PMCID: PMC7461883 DOI: 10.3389/fimmu.2020.01854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a well-established curative treatment for various malignant hematological diseases. However, its clinical success is substantially limited by major complications including graft-vs.-host disease (GVHD) and relapse of the underlying disease. Although these complications are known to lead to significant morbidity and mortality, standardized pathways for risk stratification of patients undergoing allo-HSCT are lacking. Recent advances in the development of diagnostic and prognostic tools have allowed the identification of biomarkers in order to predict outcome after allo-HSCT. This review will provide a summary of clinically relevant biomarkers that have been studied to predict the development of acute GVHD, the responsiveness of affected patients to immunosuppressive treatment and the risk of non-relapse mortality. Furthermore, biomarkers associated with increased risk of relapse and subsequent mortality will be discussed.
Collapse
Affiliation(s)
- Sophia Chen
- Department of Immunology, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, United States.,Department of Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
191
|
Bidirectional interaction between intestinal microbiome and cancer: opportunities for therapeutic interventions. Biomark Res 2020; 8:31. [PMID: 32817793 PMCID: PMC7424681 DOI: 10.1186/s40364-020-00211-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota composition influences the balance between human health and disease. Increasing evidence suggests the involvement of microbial factors in regulating cancer development, progression, and therapeutic response. Distinct microbial species have been implicated in modulating gut environment and architecture that affects cancer therapy outcomes. While some microbial species offer enhanced cancer therapy response, others diminish cancer treatment efficacy. In addition, use of antibiotics, often to minimize infection risks in cancer, causes intestinal dysbiosis and proves detrimental. In this review we discuss the role of gut microbiota in cancer development and therapy. We also provide insights into future strategies to manipulate the microbiome and gut epithelial barrier to augment therapeutic responses while minimizing toxicity or infection risks.
Collapse
|
192
|
Ramakrishna C, Mendonca S, Ruegger PM, Kim JH, Borneman J, Cantin EM. Herpes simplex virus infection, Acyclovir and IVIG treatment all independently cause gut dysbiosis. PLoS One 2020; 15:e0237189. [PMID: 32760124 PMCID: PMC7410316 DOI: 10.1371/journal.pone.0237189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Herpes simplex virus 1 (HSV) is a ubiquitous human virus resident in a majority of the global population as a latent infection. Acyclovir (ACV), is the standard of care drug used to treat primary and recurrent infections, supplemented in some patients with intravenous immunoglobulin (IVIG) treatment to suppress infection and deleterious inflammatory responses. As many diverse medications have recently been shown to change composition of the gut microbiome, we used Illumina 16S rRNA gene sequencing to determine the effects of ACV and IVIG on the gut bacterial community. We found that HSV, ACV and IVIG can all independently disrupt the gut bacterial community in a sex biased manner when given to uninfected C57BL/6 mice. Treatment of HSV infected mice with ACV or IVIG alone or together revealed complex interactions between these drugs and infection that caused pronounced sex biased dysbiosis. ACV reduced Bacteroidetes levels in male but not female mice, while levels of the Anti-inflammatory Clostridia (AIC) were reduced in female but not male mice, which is significant as these taxa are associated with protection against the development of graft versus host disease (GVHD) in hematopoietic stem cell transplant (HSCT) patients. Gut barrier dysfunction is associated with GVHD in HSCT patients and ACV also decreased Akkermansia muciniphila, which is important for maintaining gut barrier functionality. Cumulatively, our data suggest that long-term prophylactic ACV treatment of HSCT patients may contribute to GVHD and also potentially impact immune reconstitution. These data have important implications for other clinical settings, including HSV eye disease and genital infections, where ACV is given long-term.
Collapse
Affiliation(s)
- Chandran Ramakrishna
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Stacee Mendonca
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Paul M. Ruegger
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - Jane Hannah Kim
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, United States of America
- * E-mail: (EMC); (JB)
| | - Edouard M. Cantin
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
- * E-mail: (EMC); (JB)
| |
Collapse
|
193
|
Rearigh L, Stohs E, Freifeld A, Zimmer A. De-escalation of empiric broad spectrum antibiotics in hematopoietic stem cell transplant recipients with febrile neutropenia. Ann Hematol 2020; 99:1917-1924. [PMID: 32556455 PMCID: PMC7340662 DOI: 10.1007/s00277-020-04132-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Febrile neutropenia (FN) is a common serious complication in patients undergoing hematopoietic stem cell transplantation (HSCT) requiring urgent evaluation and initiation of empiric broad spectrum antibiotics (BSA). The appropriate duration of BSA for FN in patients with negative cultures and no identifiable infection remains undefined. We retrospectively analyzed allogenic and autologous HSCT patients with FN and negative infectious work-up at our facility from 2012 to 2018. The early de-escalation group (EDG) included those who had BSA de-escalation to fluoroquinolone prophylaxis at least 24 h prior to absolute neutrophil count (ANC) recovery after the patient was fever-free for at least 48 h. Among 297 patients undergoing their first HSCT who experienced FN with negative infectious work-up, 83 patients were de-escalated early with the remaining 214 in the standard of care group (SCG) whose BSA were continued until ANC was > 500. Duration of broad-spectrum antibiotics was shorter in EDG compared to SCG (3.86 days vs. 4.62 days, p = 0.03). Rates of mortality, new infections, and clinical decompensation requiring intensive care unit transfer and/or pressor use within 30 days were all similar between the two groups (0% vs. 0.4% p = 1.00, 0% vs. 1.4% p = 0.56, 13.2% vs. 8.4% p = 0.27). This indicates that it is safe to de-escalate antibiotics prior to ANC recovery, leading to less BSA exposure.
Collapse
Affiliation(s)
- Lindsey Rearigh
- Division of Infectious Diseases, Department of Internal Medicine, University of Nebraska Medical Center, 985400 Nebraska Medical Center, Omaha, NE, 68198-5400, USA
| | - Erica Stohs
- Division of Infectious Diseases, Department of Internal Medicine, University of Nebraska Medical Center, 985400 Nebraska Medical Center, Omaha, NE, 68198-5400, USA
| | - Alison Freifeld
- Division of Infectious Diseases, Department of Internal Medicine, University of Nebraska Medical Center, 985400 Nebraska Medical Center, Omaha, NE, 68198-5400, USA
| | - Andrea Zimmer
- Division of Infectious Diseases, Department of Internal Medicine, University of Nebraska Medical Center, 985400 Nebraska Medical Center, Omaha, NE, 68198-5400, USA.
| |
Collapse
|
194
|
Murthy HS, Gharaibeh RZ, Al-Mansour Z, Kozlov A, Trikha G, Newsome RC, Gauthier J, Farhadfar N, Wang Y, Kelly DL, Lybarger J, Jobin C, Wang GP, Wingard JR. Baseline Gut Microbiota Composition Is Associated with Major Infections Early after Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2020; 26:2001-2010. [PMID: 32717434 DOI: 10.1016/j.bbmt.2020.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 01/03/2023]
Abstract
Infection is a major cause of morbidity and mortality after hematopoietic cell transplantation (HCT). Gut microbiota (GM) composition and metabolites provide colonization resistance against dominance of potential pathogens, and GM dysbiosis following HCT can be deleterious to immune reconstitution. Little is known about the composition, diversity, and evolution of GM communities in HCT patients and their association with subsequent febrile neutropenia (FN) and infection. Identification of markers before HCT that predict subsequent infection could be useful in developing individualized antimicrobial strategies. Fecal samples were collected prospectively from 33 HCT recipients at serial time points: baseline, post-conditioning regimen, neutropenia onset, FN onset (if present), and hematologic recovery. GM was assessed by 16S rRNA sequencing. FN and major infections (ie, bloodstream infection, typhlitis, invasive fungal infection, pneumonia, and Clostridium difficile enterocolitis) were identified. Significant shifts in GM composition and diversity were observed during HCT, with the largest alterations occurring after initiation of antibiotics. Loss of diversity persisted without a return to baseline at hematologic recovery. GM in patients with FN was enriched in Mogibacterium, Bacteroides fragilis, and Parabacteroides distasonis, whereas increased abundance of Prevotella, Ruminococcus, Dorea, Blautia, and Collinsella was observed in patients without fever. A baseline protective GM profile (BPGMP) was predictive of protection from major infection. The BPGMP was associated with subsequent major infections with 77% accuracy and an area under the curve of 79%, with sensitivity, specificity, and positive and negative predictive values of 0.71, 0.91, 0.77, and 0.87, respectively. Our data show that large shifts in GM composition occur early after HCT, and differences in baseline GM composition are associated with the development of subsequent major infections.
Collapse
Affiliation(s)
- Hemant S Murthy
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida; UF Health Cancer Center, Gainesville, Florida
| | - Raad Z Gharaibeh
- UF Health Cancer Center, Gainesville, Florida; Division of Gastroenterology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Zeina Al-Mansour
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida; UF Health Cancer Center, Gainesville, Florida
| | - Andrew Kozlov
- Division of Infectious Disease and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Gaurav Trikha
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Rachel C Newsome
- Division of Gastroenterology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Josee Gauthier
- Division of Gastroenterology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Nosha Farhadfar
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida; UF Health Cancer Center, Gainesville, Florida
| | - Yu Wang
- Division of Quantitative Sciences And Biostatistics, University of Florida Health Cancer Center, Gainesville, Florida
| | - Debra Lynch Kelly
- UF Health Cancer Center, Gainesville, Florida; College of Nursing, University of Florida, Gainesville, Florida
| | - John Lybarger
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Christian Jobin
- UF Health Cancer Center, Gainesville, Florida; Division of Gastroenterology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Gary P Wang
- Division of Infectious Disease and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - John R Wingard
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida; UF Health Cancer Center, Gainesville, Florida.
| |
Collapse
|
195
|
Rafei H, Jenq RR. Microbiome-intestine cross talk during acute graft-versus-host disease. Blood 2020; 136:401-409. [PMID: 32526029 PMCID: PMC7378453 DOI: 10.1182/blood.2019000950] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-SCT) offers cure for a variety of conditions, in particular, but not limited to, hematologic malignancies. However, it can be associated with life-threatening complications, including graft-versus-host disease (GVHD) and infections, which are factors limiting its widespread use. Technical advances in the field of microbiome research have allowed for a better understanding of the microbial flora of the human intestine, as well as dissection of their interactions with the host immune system in allo-SCT and posttransplant complications. There is growing evidence that the commensal microbiome is frequently dysregulated following allo-SCT and that this dysbiosis can predispose to adverse clinical outcomes, especially including acute intestinal GVHD and reduced overall survival. In this review, we discuss the interactions between the microbiome and the components of the immune system that play a major role in the pathways leading to the inflammatory state of acute intestinal GVHD. We also discuss the microbiome-centered strategies that have been devised or are actively being investigated to improve the outcomes of allo-SCT patients in regard to acute intestinal GVHD.
Collapse
Affiliation(s)
| | - Robert R Jenq
- Department of Genomic Medicine, and
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX; and
- Cancer Prevention and Research Institute of Texas, Houston, TX
| |
Collapse
|
196
|
Devaux CA, Million M, Raoult D. The Butyrogenic and Lactic Bacteria of the Gut Microbiota Determine the Outcome of Allogenic Hematopoietic Cell Transplant. Front Microbiol 2020; 11:1642. [PMID: 32793150 PMCID: PMC7387665 DOI: 10.3389/fmicb.2020.01642] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Graft versus host disease (GVHD) is a post-transplant pathology in which donor-derived T cells present in the Peyer's patches target the cell-surface alloantigens of the recipient, causing host tissue damages. Therefore, the GVHD has long been considered only a purely immunological process whose prevention requires an immunosuppressive treatment. However, since the early 2010s, the impact of gut microbiota on GVHD has received increased attention. Both a surprising fall in gut microbiota diversity and a shift toward Enterobacteriaceae were described in this disease. Recently, unexpected results were reported that further link GVHD with changes in bacterial composition in the gut and disruption of intestinal epithelial tight junctions leading to abnormal intestinal barrier permeability. Patients receiving allogenic hematopoietic stem cell transplant (allo-HCT) as treatment of hematologic malignancies showed a decrease of the overall diversity of the gut microbiota that affects Clostridia and Blautia spp. and a predominance of lactic acid bacteria (LAB) of the Enterococcus genus, in particular the lactose auxotroph Enterococcus faecium. The reduced microbiota diversity (likely including Actinobacteria, such as Bifidobacterium adolescentis that cross feed butyrogenic bacteria) deprives the butyrogenic bacteria (such as Roseburia intestinalis or Eubacterium) of their capacity to metabolize acetate to butyrate. Indeed, administration of butyrate protects against the GVHD. Here, we review the data highlighting the possible link between GVHD and lactase defect, accumulation of lactose in the gut lumen, reduction of Reg3 antimicrobial peptides, narrower enzyme equipment of bacteria that predominate post-transplant, proliferation of En. faecium that use lactose as metabolic fuels, induction of innate and adaptive immune response against these bacteria which maintains an inflammatory process, elevated expression of myosin light chain kinase 210 (MLCK210) and subsequent disruption of intestinal barrier, and translocation of microbial products (lactate) or transmigration of LAB within the liver. The analysis of data from the literature confirms that the gut microbiota plays a major role in the GVHD. Moreover, the most recent publications uncover that the LAB, butyrogenic bacteria and bacterial cross feeding were the missing pieces in the puzzle. This opens new bacteria-based strategies in the treatment of GVHD.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Matthieu Million
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
197
|
Jiménez-Jorge S, Labrador-Herrera G, Rosso-Fernández CM, Rodríguez-Torres N, Pachón-Ibáñez ME, Smani Y, Márquez-Malaver FJ, Limón Ramos C, Solano C, Vázquez-López L, Kwon M, Mora Barrios JM, Aguilar-Guisado M, Espigado I. Assessing the impact on intestinal microbiome and clinical outcomes of antibiotherapy optimisation strategies in haematopoietic stem cell transplant recipients: study protocol for the prospective multicentre OptimBioma study. BMJ Open 2020; 10:e034570. [PMID: 32690735 PMCID: PMC7375627 DOI: 10.1136/bmjopen-2019-034570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION Haematopoietic stem cell transplantation (HSCT) is a life-saving treatment for a number of haematological diseases. Graft versus host disease (GVHD) is its main complication and hampers survival. There is strong evidence that intestinal microbiota diversity of the recipient may increase the risk of GVHD worsening survival. Antibiotic regimens used during the early phase of the transplant may influence clinical outcomes by reducing intestinal microbiota diversity. Present guidelines of European Conference on Infections in Leukaemia exhort to optimising antibiotic use in haematological patients including HSCT recipients. The present study aims to investigate if, in HSCT recipients, the optimisation of antibacterial use may preserve intestinal microbiota composition reducing the incidence and severity of acute GVHD and improving relevant clinical outcomes. METHODS AND ANALYSIS This is a prospective longitudinal observational study of two cohorts of HSCT recipients: (1) the intervention cohort includes patients treated in centres in which a predefined strategy of antibiotherapy optimisation is implemented, with the objective of optimising and reducing antibiotic administration according to clinical criteria and (2) the control cohort includes patients treated in centres in which a classic permissive strategy of antibiotic prophylaxis and treatment is used. Adult patient receiving a first HSCT as a treatment for any haematological condition are included. Clinical variables are prospectively recorded and up to five faecal samples are collected for microbiota characterisation at prestablished peritransplant time points. Patients are followed since the preconditioning phase throughout 1-year post-transplant and four follow-up visits are scheduled. Faecal microbiota composition and diversity will be compared between both cohorts along with acute GVHD incidence and severity, severe infections rate, mortality and overall and disease-free survival. ETHICS AND DISSEMINATION The study was approved between 2017 and 2018 by the Ethical Committees of participant centres. Study results will be disseminated through peer-reviewed journals and national and international scientific conferences. TRIAL REGISTRATION NUMBER NCT03727113.
Collapse
Affiliation(s)
- Silvia Jiménez-Jorge
- Clinical Trial Unit, University Hospital Virgen del Rocío/University of Seville/CSIC/Institute of Biomedicine of Seville, Seville, Spain
| | - Gema Labrador-Herrera
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, University Hospital Virgen del Rocío/University of Seville/CSIC/Institute of Biomedicine of Seville, Seville, Spain
| | - Clara M Rosso-Fernández
- Clinical Trial Unit, University Hospital Virgen del Rocío/University of Seville/CSIC/Institute of Biomedicine of Seville, Seville, Spain
- Clinical Pharmacology Department, University Hospital Virgen del Rocío, Seville, Spain
| | - Nancy Rodríguez-Torres
- Department of Hematology, University Hospital Virgen del Rocío/University of Seville/CSIC/Institute of Biomedicine of Seville, Seville, Spain
| | - María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, University Hospital Virgen del Rocío/University of Seville/CSIC/Institute of Biomedicine of Seville, Seville, Spain
- Department of Medicine, School of Medicine, University of Seville, Seville, Spain
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, University Hospital Virgen del Rocío/University of Seville/CSIC/Institute of Biomedicine of Seville, Seville, Spain
| | - Francisco José Márquez-Malaver
- Department of Hematology, University Hospital Virgen del Rocío/University of Seville/CSIC/Institute of Biomedicine of Seville, Seville, Spain
| | - Carmen Limón Ramos
- Department of Hematology, University Hospital Virgen del Rocío/University of Seville/CSIC/Institute of Biomedicine of Seville, Seville, Spain
| | - Carlos Solano
- Department of Hematology, Hospital Clínico Universitario, Institute for Research INCLIVA, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | | | - Mi Kwon
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | - Manuela Aguilar-Guisado
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine, University Hospital Virgen del Rocío/University of Seville/CSIC/Institute of Biomedicine of Seville, Seville, Spain
| | - Ildefonso Espigado
- Department of Hematology, University Hospital Virgen del Rocío/University of Seville/CSIC/Institute of Biomedicine of Seville, Seville, Spain
| |
Collapse
|
198
|
Tanaka JS, Young RR, Heston SM, Jenkins K, Spees LP, Sung AD, Corbet K, Thompson JC, Bohannon L, Martin PL, Stokhuyzen A, Vinesett R, Ward DV, Bhattarai SK, Bucci V, Arshad M, Seed PC, Kelly MS. Anaerobic Antibiotics and the Risk of Graft-versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2020; 26:2053-2060. [PMID: 32682948 DOI: 10.1016/j.bbmt.2020.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 01/10/2023]
Abstract
Certain anaerobic bacteria are important for maintenance of gut barrier integrity and immune tolerance and may influence the risk of graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (HSCT). We conducted a single-center retrospective cohort study of allogeneic HSCT recipients to evaluate associations between receipt of antibiotics with an anaerobic spectrum of activity and GVHD outcomes. We identified 1214 children and adults who developed febrile neutropenia between 7 days before and 28 days after HSCT and compared GVHD risk and mortality among patients who received anaerobic antibiotics (piperacillin-tazobactam or carbapenems; n = 491) to patients who received only antibiotics with minimal activity against anaerobes (aztreonam, cefepime, or ceftazidime; n = 723). We performed metagenomic sequencing of serial fecal samples from 36 pediatric patients to compare the effects of specific antibiotics on the gut metagenome. Receipt of anaerobic antibiotics was associated with higher hazards of acute gut/liver GVHD (hazard ratio [HR], 1.26; 95% confidence interval [CI], 1.03 to 1.54) and acute GVHD mortality (HR, 1.63; 95% CI, 1.08 to 2.46), but not chronic GVHD diagnosis (HR, 1.04; 95% CI: .84 to 1.28) or chronic GVHD mortality (HR, .88; 95% CI, .53 to 1.45). Anaerobic antibiotics resulted in decreased gut bacterial diversity, reduced abundances of Bifidobacteriales and Clostridiales, and loss of bacterial genes encoding butyrate biosynthesis enzymes from the gut metagenome. Acute gut/liver GVHD was preceded by a sharp decline in bacterial butyrate biosynthesis genes with antibiotic treatment. Our findings demonstrate that exposure to anaerobic antibiotics is associated with increased risks of acute gut/liver GVHD and acute GVHD mortality after allogeneic HSCT. Use of piperacillin-tazobactam or carbapenems should be reserved for febrile neutropenia cases in which anaerobic or multidrug-resistant infections are suspected.
Collapse
Affiliation(s)
- John S Tanaka
- Duke University School of Medicine, Durham, North Carolina
| | - Rebecca R Young
- Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Sarah M Heston
- Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Kirsten Jenkins
- Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Lisa P Spees
- Department of Health Policy and Management, University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina
| | - Kelly Corbet
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina
| | - Jillian C Thompson
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina
| | - Lauren Bohannon
- Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, North Carolina
| | - Paul L Martin
- Division of Pediatric Blood and Marrow Transplant, Duke University Medical Center, Durham, North Carolina
| | - Andre Stokhuyzen
- Division of Pediatric Blood and Marrow Transplant, Duke University Medical Center, Durham, North Carolina
| | - Richard Vinesett
- Division of Pediatric Blood and Marrow Transplant, Duke University Medical Center, Durham, North Carolina
| | - Doyle V Ward
- Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Shakti K Bhattarai
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Mehreen Arshad
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Patrick C Seed
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Matthew S Kelly
- Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
199
|
Bowerman KL, Varelias A, Lachner N, Kuns RD, Hill GR, Hugenholtz P. Continuous pre- and post-transplant exposure to a disease-associated gut microbiome promotes hyper-acute graft-versus-host disease in wild-type mice. Gut Microbes 2020; 11:754-770. [PMID: 31928131 PMCID: PMC7524395 DOI: 10.1080/19490976.2019.1705729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE The gut microbiome plays a key role in the development of acute graft-versus-host disease (GVHD) following allogeneic hematopoietic stem cell transplantation. Here we investigate the individual contribution of the pre- and post-transplant gut microbiome to acute GVHD using a well-studied mouse model. DESIGN Wild-type mice were cohoused with IL-17RA-/ - mice, susceptible to hyperacute GVHD, either pre- or post-transplant alone or continuously (i.e., pre- and post-transplant). Fecal samples were collected from both WT and IL-17RA-/ - mice pre- and post-cohousing and post-transplant and the microbiome analyzed using metagenomic sequencing. RESULTS Priming wild-type mice via cohousing pre-transplant only is insufficient to accelerate GVHD, however, accelerated disease is observed in WT mice cohoused post-transplant only. When mice are cohoused continuously, the effect of priming and exacerbation is additive, resulting in a greater acceleration of disease in WT mice beyond that seen with cohousing post-transplant only. Metagenomic analysis of the microbiome revealed pre-transplant cohousing is associated with the transfer of specific species within two as-yet-uncultured genera of the bacterial family Muribaculaceae; CAG-485 and CAG-873. Post-transplant, we observed GVHD-associated blooms of Enterobacteriaceae members Escherichia coli and Enterobacter hormaechei subsp. steigerwaltii, and hyperacute GVHD gut microbiome distinct from that associated with delayed-onset disease (>10 days post-transplant). CONCLUSION These results clarify the importance of the peri-transplant microbiome in the susceptibility to acute GVHD post-transplant and demonstrate the species-specific nature of this association.
Collapse
Affiliation(s)
- Kate L Bowerman
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Australia,Faculty of Medicine, The University of Queensland, St Lucia, Australia
| | - Nancy Lachner
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Australia,Faculty of Medicine, The University of Queensland, St Lucia, Australia,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia,CONTACT Philip Hugenholtz School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia4072, Australia
| |
Collapse
|
200
|
Emerging role of microbiota in immunomodulation and cancer immunotherapy. Semin Cancer Biol 2020; 70:37-52. [PMID: 32580024 DOI: 10.1016/j.semcancer.2020.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023]
Abstract
Gut microbiota is emerging as a key modulator of the immune system. Alteration of gut microbiota impacts functioning of the immune system and pathophysiology of several diseases, including cancer. Growing evidence indicates that gut microbiota is not only involved in carcinogenesis but also has an impact on the efficacy and toxicity of cancer therapy. Recently, several pre-clinical and clinical studies across diverse cancer types reported the influence of gut microbiota on the host immune response to immunotherapy. Advancement in our understanding of the mechanism behind microbiota-mediated modulation of immune response is paramount for their utilization as cancer therapeutics. These microbial therapies in combination with conventional immunotherapeutic methods have the potential to transform the pre-existing treatment strategies to personalized cancer therapy. In this review, we have summarized the current status of research in the field and discussed the role of microbiota as an immune system modulator in context of cancer and their impact on immunotherapy.
Collapse
|