151
|
Borthakur A, Bhattacharyya S, Dudeja PK, Tobacman JK. Carrageenan induces interleukin-8 production through distinct Bcl10 pathway in normal human colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2007; 292:G829-38. [PMID: 17095757 DOI: 10.1152/ajpgi.00380.2006] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carrageenan is a high molecular weight sulfated polygalactan used to improve the texture of commercial food products. Its use increased markedly during the last half century, although carrageenan is known to induce inflammation in rheumatological models and in intestinal models of colitis. We performed studies to determine its direct effects on human intestinal cells, including normal human intestinal epithelial cells from colonic surgeries, the normal intestinal epithelial cell line NCM460, and normal rat ileal epithelial cells. Cells were treated with high molecular weight lambda-carrageenan at a concentration of 1 mug/ml for 1-96 h. IL-8, IL-8 promoter activity, total and nuclear NF-kappaB, IkappaBalpha, phospho-IkappaBalpha, and Bcl10 were assessed by immunohistochemistry, Western blot, ELISA, and cDNA microarray. Increased Bcl10, nuclear and cytoplasmic NF-kappaB, IL-8 promoter activation, and IL-8 secretion were detected following carrageenan exposure. Knockdown of Bcl10 by siRNA markedly reduced the increase in IL-8 that followed carrageenan exposure in the NCM460 cells. These results show, for the first time, that exposure of human intestinal epithelial cells to carrageenan triggers a distinct inflammatory pathway via activation of Bcl10 with NF-kappaB activation and upregulation of IL-8 secretion. Since Bcl10 contains a caspase-recruitment domain, similar to that found in NOD2/CARD15 and associated with genetic predisposition to Crohn's disease, the study findings may represent a link between genetic and environmental etiologies of inflammatory bowel disease. Because of the high use of carrageenan as a food additive in the diet, the findings may have clinical significance.
Collapse
Affiliation(s)
- Alip Borthakur
- Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
152
|
Malo MS, Biswas S, Abedrapo MA, Yeh L, Chen A, Hodin RA. The pro-inflammatory cytokines, IL-1beta and TNF-alpha, inhibit intestinal alkaline phosphatase gene expression. DNA Cell Biol 2007; 25:684-95. [PMID: 17233117 DOI: 10.1089/dna.2006.25.684] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
High levels of the pro-inflammatory cytokines, interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), are present in the gut mucosa of patients suffering form various diseases, most notably inflammatory bowel diseases (IBD). Since the inflammatory milieu can cause important alterations in epithelial cell function, we examined the cytokine effects on the expression of the enterocyte differentiation marker, intestinal alkaline phosphatase (IAP), a protein that detoxifies bacterial lipopolysaccharides (LPS) and limits fat absorption. Sodium butyrate (NaBu), a short-chain fatty acid and histone deacetylase (HDAC) inhibitor, was used to induce IAP expression in HT-29 cells and the cells were also treated +/- the cytokines. Northern blots confirmed IAP induction by NaBu, however, pretreatment (6 h) with either cytokine showed a dose-dependent inhibition of IAP expression. IAP Western analyses and alkaline phosphatase enzyme assays corroborated the Northern data and confirmed that the cytokines inhibit IAP induction. Transient transfections with a reporter plasmid carrying the human IAP promoter showed significant inhibition of NaBu-induced IAP gene activation by the cytokines (100 and 60% inhibition with IL-1beta and TNF-alpha, respectively). Western analyses showed that NaBu induced H4 and H3 histone acetylation, and pretreatment with IL-1beta or TNF-alpha did not change this global acetylation pattern. In contrast, chromatin immunoprecipitation showed that local histone acetylation of the IAP promoter region was specifically inhibited by either cytokine. We conclude that IL-1beta and TNF-alpha inhibit NaBu-induced IAP gene expression, likely by blocking the histone acetylation within its promoter. Cytokine-mediated IAP gene silencing may have important implications for gut epithelial function in the setting of intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Madhu S Malo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
153
|
Rosato RR, Grant S. Histone deacetylase inhibitors: insights into mechanisms of lethality. Expert Opin Ther Targets 2007; 9:809-24. [PMID: 16083344 DOI: 10.1517/14728222.9.4.809] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Histone deacetylases (HDACs) have recently emerged as an important target for therapeutic intervention in cancer and potentially other human diseases. By modulating the acetylation status of histones, histone deacetylase inhibitors (HDACIs) alter the transcription of genes involved in cell growth, maturation, survival and apoptosis, among other processes. Early clinical results suggest a potentially useful role for HDACIs in the treatment of certain forms of lymphoma (e.g., cutaneous T cell lymphoma) and acute leukaemia. An unresolved question is how HDACIs induce cell death in tumour cells. Recent studies suggest that acetylation of nonhistone proteins may play an important role in the biological effects of this class of compounds, and may explain lack of correlation between histone acetylation and induction of cell death by HDACIs in some circumstances. Recently, attention has focussed on the effects of HDACIs on disruption of co-repressor complexes, induction of oxidative injury, upregulation of the expression of death receptors, generation of lipid second messengers such as ceramide, interference with the function of chaperone proteins and modulation of the activity of NF-kappaB as critical determinants of lethality. Aside from providing critical insights into the mechanism of action of HDACIs in neoplastic disease, these findings may provide a foundation for the rational development of combination studies, involving HDACIs in combination with either conventional cytotoxic drugs as well as more novel targeted agents.
Collapse
Affiliation(s)
- Roberto R Rosato
- Department of Medicine, Virginia Commonwealth University, Medical College of Virginia, Richmond, VA 23298, USA
| | | |
Collapse
|
154
|
Du Z, Wei L, Murti A, Pfeffer SR, Fan M, Yang CH, Pfeffer LM. Non-conventional signal transduction by type 1 interferons: The NF-κB pathway. J Cell Biochem 2007; 102:1087-94. [PMID: 17910035 DOI: 10.1002/jcb.21535] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Type I interferons (IFNs) regulate diverse cellular functions by modulating the expression of IFN-stimulated genes (ISGs) through the activation of the well established signal transduction pathway of the Janus Kinase (JAK) and signal transducers and activators of transcription (STAT) proteins. Although the JAK-STAT signal transduction pathway is critical in mediating IFN's antiviral and antiproliferative activities, other signaling pathways are activated by IFNs and regulate cellular response to IFN. The NF-kappaB transcription factor regulates the expression of genes involved in cell survival and immune responses. We have identified a novel IFN mediated signal pathway that leads to NF-kappaB activation and demonstrate that a subset of ISGs that play key roles in cellular response to IFN is regulated by NF-kappaB. This review focuses on the IFN-induced NF-kappaB activation pathway and the role of NF-kappaB in ISG expression, antiviral activity and apoptosis, and the therapeutic application of IFN in cancer and infectious disease.
Collapse
Affiliation(s)
- Ziyun Du
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, University of Tennessee Cancer Institute, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
Perkins ND. Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene 2006; 25:6717-30. [PMID: 17072324 DOI: 10.1038/sj.onc.1209937] [Citation(s) in RCA: 526] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diverse cellular and biological functions of the nuclear factor kappa B (NF-kappaB) pathway, together with the catastrophic consequences of its aberrant regulation, demand specific and highly regulated control of its activity. As described in this review, regulation of the NF-kappaB pathway is brought about through multiple post-translational modifications that control the activity of the core components of NF-kappaB signaling: the IkappaB kinase (IKK) complex, the IkappaB proteins and the NF-kappaB subunits themselves. These regulatory modifications, which include phosphorylation, ubiquitination, acetylation, sumoylation and nitrosylation, can vary, depending on the nature of the NF-kappaB-inducing stimulus. Moreover, they frequently have distinct, sometimes antagonistic, functional consequences and the same modification can have different effects depending on the context. Given the important role of NF-kappaB in human health and disease, understanding these pathways will not only provide valuable insights into mechanism and function, but could also lead to new drug targets and the development of diagnostic and prognostic biomarkers for many pathological conditions.
Collapse
Affiliation(s)
- N D Perkins
- Division of Gene Regulation and Expression, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
156
|
Abstract
Histone deacetylase (HDAC) is recognized as one of the promising targets for cancer treatment as many HDAC inhibitors have entered clinical trials for both solid and liquid tumors. Nevertheless, the mechanisms underlying the antiproliferative effects of HDAC inhibitors remain elusive. Although they have been shown to regulate the transcription of a defined set of genes through chromatin remodeling, increasing evidence suggests that modifications of the epigenetic histone code may not be the primary mechanism for HDAC inhibitor-mediated growth inhibition and apoptosis in cancer cells. While histones still represent a primary target for the physiological function of HDACs, the antitumor effect of HDAC inhibitors might also be attributed to transcription-independent mechanisms by modulating the acetylation status of a series of nonhistone targets. Also noteworthy is the effect of HDAC inhibitors on Akt downregulation through the alteration of protein phosphatase 1 (PP1) complex formation. To provide an overview of the use of HDAC inhibitors in cancer treatment, this review addresses the following subjects: (1) the physiological relevance of HDAC-mediated acetylation of histone and nonhistone substrates, (2) the chemical biology of HDACs and development of a novel class of HDAC inhibitors, and (3) the protein acetylation-independent effect of HDAC inhibitors on the activation status of signaling kinases.
Collapse
Affiliation(s)
- Hsiang-Yu Lin
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
157
|
Mittal R, Peak-Chew SY, McMahon HT. Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc Natl Acad Sci U S A 2006; 103:18574-9. [PMID: 17116858 PMCID: PMC1654131 DOI: 10.1073/pnas.0608995103] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To overcome host defenses, bacterial pathogens of the genus Yersinia inject specific effector proteins into colonized mammalian cells. One such virulence factor, YopJ, inhibits the host inflammatory response and induces apoptosis of immune cells by blocking multiple signaling pathways, including the MAPK and NF-kappaB pathways. In this study, we show that YopJ exerts its deleterious effects by catalyzing the acetylation of two serine residues in the activation loop of the MAP kinase kinase, MEK2. This covalent modification prevents the phosphorylation of these serine residues that is required for activation of MEK2 and downstream signal propagation. We also show that YopJ causes acetylation of a threonine residue in the activation loop of both the alpha and beta subunits of the NF-kappaB pathway kinase, IKK. These results establish a hitherto uncharacterized mode of action for bacterial toxins and suggest the possibility that serine/threonine acetylation may occur even under nonpathogenic conditions and may be a widespread protein modification regulating protein function in eukaryotic cells.
Collapse
Affiliation(s)
- Rohit Mittal
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
| | | | | |
Collapse
|
158
|
Inoue K, Kobayashi M, Yano K, Miura M, Izumi A, Mataki C, Doi T, Hamakubo T, Reid PC, Hume DA, Yoshida M, Aird WC, Kodama T, Minami T. Histone deacetylase inhibitor reduces monocyte adhesion to endothelium through the suppression of vascular cell adhesion molecule-1 expression. Arterioscler Thromb Vasc Biol 2006; 26:2652-9. [PMID: 17008592 DOI: 10.1161/01.atv.0000247247.89787.e7] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Tumor necrosis factor (TNF)-alpha initiates numerous changes in endothelial cell (EC) gene expression that contributes to the pathology of various diseases including inflammation. We hypothesized that TNF-alpha-mediated gene induction involves multiple signaling pathways, and that inhibition of one or more of these pathways may selectively target subsets of TNF-alpha-responsive genes and functions. METHODS AND RESULTS Human umbilical vein endothelial cells (ECs) were preincubated with inhibitors of PI3 kinase (LY294002), histone deacetylases (HDAC) (trichostatin A [TSA]), de novo protein synthesis (CHX), proteasome (MG-132), and GATA factors (K-11430) before exposure to TNF-alpha at 4 hours and analyzed by microarray. TNF-alpha-mediated induction of vascular cell adhesion molecule-1 (VCAM-1) was attenuated by all of these inhibitors, whereas in contrast, stimulation of intercellular adhesion molecule-1 (ICAM-1) was blocked by MG-132 alone. Moreover TSA blocked TNF-alpha-mediated induction of monocyte adhesion both in vitro and in vivo through the suppression of VCAM-1. Further analysis demonstrated that HDAC3 plays a significant role in the regulation of TNF-alpha-mediated VCAM-1 expression. CONCLUSIONS TNF-alpha activates ECs via multiple signaling pathways, and these pathways may be selectively targeted to modulate EC function. Moreover, TSA treatment reduced monocyte adhesion via VCAM-1 suppression in vitro and in vivo, suggesting that TSA might be useful for the attenuation of the inflammatory response in EC.
Collapse
Affiliation(s)
- Kenji Inoue
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro, Tokyo, 153-8904, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Huang WH, Chen CW, Wu HL, Chen PJ. Post-translational modification of delta antigen of hepatitis D virus. Curr Top Microbiol Immunol 2006; 307:91-112. [PMID: 16903222 DOI: 10.1007/3-540-29802-9_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis delta virus (HDV) genome has only one open reading frame, which encodes the viral small delta antigen. After RNA editing, the same open reading frame is extended 19 amino acids at the carboxyl terminus and encodes the large delta antigen. These two viral proteins escort the HDV genome through different cellular compartments for the complicated phases of replication, transcription and, eventually, the formation of progeny virions. To orchestrate these events, the delta antigens have to take distinct cues to traffic to the right compartments and make correct molecular contacts. In eukaryotes, post-translational modification (PTM) is a major mechanism of dictating the multiple functions of a single protein. Multiple PTMs, including phosphorylation, isoprenylation, acetylation, and methylation, have been identified on hepatitis delta antigens. In this chapter we review these PTMs and discuss their functions in regulating and coordinating the life cycle of HDV.
Collapse
Affiliation(s)
- W H Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, and Hepatitis Research Center, National Taiwan University Hospital, Taipei
| | | | | | | |
Collapse
|
160
|
Savickiene J, Borutinskaite VV, Treigyte G, Magnusson KE, Navakauskiene R. The novel histone deacetylase inhibitor BML-210 exerts growth inhibitory, proapoptotic and differentiation stimulating effects on the human leukemia cell lines. Eur J Pharmacol 2006; 549:9-18. [PMID: 16978604 DOI: 10.1016/j.ejphar.2006.08.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 07/25/2006] [Accepted: 08/02/2006] [Indexed: 11/17/2022]
Abstract
Histone deacetylase inhibitors have a potent role in the strategy for the treatment of leukemias. BML-210 (N-(2-Aminophenyl)-N' phenyloctanol diamine) is the novel histone deacetylase inhibitor, and its mechanism of action has not been characterized. In this study, we examined the in vitro effects of BML-210 on the human leukemia cell lines (NB4, HL-60, THP-1, and K562). We found that BML-210 inhibits the growth of all cell lines and promotes apoptosis in a dose- and time-dependent manner. BML-210 alone induces HL-60 and K562 cell differentiation (up to 30%) to granulocytes and erythrocytes, respectively, and in combination with differentiation agents - all-trans retinoic acid and hemin, markedly potentates it. Those treatments cause G1 arrest and histone H4 acetylation, affects transcription factor NF-kappaB and Sp1 binding activity to their consensus sequences, the p21 or the FasL promoters, and influences expression of Sp1, NF-kappaB, p21 and FasL. These findings suggest that BML-210 could be a promising antileukemic agent to induce apoptosis and to modulate differentiation through the modulation of histone acetylation and gene expression.
Collapse
Affiliation(s)
- Jurate Savickiene
- Department of Developmental Biology, Institute of Biochemistry, LT-08662 Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
161
|
Armstrong K, Robson CN, Leung HY. NF-kappaB activation upregulates fibroblast growth factor 8 expression in prostate cancer cells. Prostate 2006; 66:1223-34. [PMID: 16683270 DOI: 10.1002/pros.20376] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Fibroblast growth factor 8 (FGF8) is over-expressed in prostate cancer (CaP) correlating with high-grade disease and reduced survival. The role of acetylation in transcriptional regulation of FGF8 was investigated using the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA). METHODS FGF8 transcriptional response to TSA was investigated by gene reporter assays, RT-PCR, and Western blotting. Chromatin immunoprecipitation (ChIP) assays were also performed. RESULTS FGF8 is upregulated in response to TSA treatment along with NF-kappaB transcriptional activity. Over-expression of p65 activated FGF8 transcription. ChIP assays revealed p65 recruitment to the fgf8 promoter, containing putative NF-kappaB binding sites, post TSA stimulation. PI-3K activity is required for TSA mediated FGF8 upregulation. CONCLUSION Using TSA treatment in prostate cancer cells, a requirement of PI-3K activity in mediating TSA function is demonstrated and a novel role for NF-kappaB in the regulation of FGF8 expression is uncovered.
Collapse
Affiliation(s)
- Kelly Armstrong
- Urology Research Group, Northern Institute for Cancer Research, University of Newcastle upon Tyne, Medical School, Framlington Place, Newcastle upon Tyne, United Kingdom
| | | | | |
Collapse
|
162
|
Imre G, Gekeler V, Leja A, Beckers T, Boehm M. Histone Deacetylase Inhibitors Suppress the Inducibility of Nuclear Factor-κB by Tumor Necrosis Factor-α Receptor-1 Down-regulation. Cancer Res 2006; 66:5409-18. [PMID: 16707469 DOI: 10.1158/0008-5472.can-05-4225] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, the inhibition of histone deacetylase (HDAC) enzymes has attracted attention in the oncologic community as a new therapeutic opportunity for hematologic and solid tumors including non-small cell lung cancer (NSCLC). In hematologic malignancies, such as diffuse large B-cell lymphoma, the HDAC inhibitor (HDI), suberoylanilide hydroxamic acid (SAHA), has recently entered phase II and III clinical trials. To further advance our understanding of their action on tumor cells, we investigated the possible effect of HDI treatment on the functionality of the nuclear factor-kappaB (NF-kappaB) pathway in NSCLC. We found that in the NSCLC cell lines, A549 and NCI-H460, the NF-kappaB pathway was strongly inducible, for example, by stimulation with tumor necrosis factor-alpha (TNF-alpha). Incubation of several NSCLC cell lines with HDIs resulted in greatly reduced gene expression of TNF-alpha receptor-1. HDI-treated A549 and NCI-H460 cells down-regulated TNF-alpha receptor-1 mRNA and protein levels as well as surface exposure, and consequently responded to TNF-alpha treatment with reduced IKK phosphorylation and activation, delayed IkappaB-alpha phosphorylation, and attenuated NF-kappaB nuclear translocation and DNA binding. Accordingly, stimulation of NF-kappaB target gene expression by TNF-alpha was strongly decreased. In addition, we observed that SAHA displayed antitumor efficacy in vivo against A549 xenografts grown on nude mice. HDIs, therefore, might beneficially contribute to tumor treatment, possibly by reducing the responsiveness of tumor cells to the TNF-alpha-mediated activation of the NF-kappaB pathway. These findings also hint at a possible use of HDIs in inflammatory diseases, which are associated with the overproduction of TNF-alpha, such as rheumatoid arthritis or Crohn's disease.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/enzymology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Growth Processes/drug effects
- Cell Line, Tumor
- DNA, Neoplasm/metabolism
- Down-Regulation/drug effects
- Enzyme Inhibitors/pharmacology
- Female
- Histone Deacetylase Inhibitors
- Humans
- Hydroxamic Acids/pharmacology
- I-kappa B Kinase/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/metabolism
- Mice
- Mice, Nude
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/biosynthesis
- Phosphorylation/drug effects
- Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor, Type I/biosynthesis
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Vorinostat
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Gabriele Imre
- Therapeutic Area Oncology, ALTANA Pharma AG, Konstanz, Germany
| | | | | | | | | |
Collapse
|
163
|
Gloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 2006; 72:1493-505. [PMID: 16723122 DOI: 10.1016/j.bcp.2006.04.011] [Citation(s) in RCA: 1161] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/05/2006] [Accepted: 04/07/2006] [Indexed: 02/06/2023]
Abstract
The transcription factor NF-kappaB plays a major role in coordinating innate and adaptative immunity, cellular proliferation, apoptosis and development. Since the discovery in 1991 that NF-kappaB may be activated by H(2)O(2), several laboratories have put a considerable effort into dissecting the molecular mechanisms underlying this activation. Whereas early studies revealed an atypical mechanism of activation, leading to IkappaBalpha Y42 phosphorylation independently of IkappaB kinase (IKK), recent findings suggest that H(2)O(2) activates NF-kappaB mainly through the classical IKK-dependent pathway. The molecular mechanisms leading to IKK activation are, however, cell-type specific and will be presented here. In this review, we also describe the effect of other ROS (HOCl and (1)O(2)) and reactive nitrogen species on NF-kappaB activation. Finally, we critically review the recent data highlighting the role of ROS in NF-kappaB activation by proinflammatory cytokines (TNF-alpha and IL-1beta) and lipopolysaccharide (LPS), two major components of innate immunity.
Collapse
Affiliation(s)
- Geoffrey Gloire
- Center for Biomedical Integrated Genoproteomics (CBIG), Virology and Immunology Unit, University of Liège, 4000 Liège, Belgium
| | | | | |
Collapse
|
164
|
Radhakrishnan SK, Kamalakaran S. Pro-apoptotic role of NF-kappaB: implications for cancer therapy. Biochim Biophys Acta Rev Cancer 2006; 1766:53-62. [PMID: 16563635 DOI: 10.1016/j.bbcan.2006.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 02/07/2006] [Accepted: 02/07/2006] [Indexed: 01/15/2023]
Abstract
Nuclear factor-kappaB (NF-kappaB) is generally viewed as anti-apoptotic and oncogenic, leading to a quest for its inhibitors. However, recent evidence suggests that in some situations NF-kappaB may promote apoptosis. Depending on the specific cell type and the stimulus involved, NF-kappaB activation may lead to either anti- or pro-apoptotic response. Both these effects can be mediated by NF-kappaB in a context-dependent manner by selectively regulating its target genes. In this review, we discuss the evidence for NF-kappaB's pro-apoptotic role and explore the possible mechanisms behind it. We emphasize that rather than trying to inhibit NF-kappaB in cancer therapy, agents should be developed to unleash its pro-apoptotic ability.
Collapse
|
165
|
Yu Z, Kone BC. Targeted histone H4 acetylation via phosphoinositide 3-kinase- and p70s6-kinase-dependent pathways inhibits iNOS induction in mesangial cells. Am J Physiol Renal Physiol 2006; 290:F496-502. [PMID: 16174862 DOI: 10.1152/ajprenal.00316.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inducible nitric oxide synthase (iNOS) gene plays an important role in the response to and propagation of injury in glomerular mesangial cells. Although several cis and trans regulatory factors have been characterized, epigenetic regulation of the iNOS gene has not been considered extensively. In this report, we explored the role of histone acetylation in interleukin (IL)-1β-mediated iNOS induction in cultured murine mesangial cells. Treatment of cells with the histone deacetylase inhibitor trichostatin A (TSA, 200 nM) resulted in a time-dependent, selective increase in histone H4 acetylation. TSA treatment of cells stably transfected with an iNOS promoter-luciferase construct inhibited IL-1β induction of endogenous nitric oxide and iNOS protein production and iNOS promoter-luciferase activity. Chromatin immunoprecipitation assays revealed that, under basal conditions, acetylated histone H4 associated with the region −978 to −710 of the iNOS promoter, a region rich in gene control elements and that IL-1β significantly increased this binding, which was further accentuated by cotreatment with TSA. Blockade of the phosphoinositide 3-kinase pathway with LY-294002 or the p70s6-kinase pathway with rapamycin in the presence of TSA and IL-1β inhibited389Thr phosphorylation of p70s6 kinase, promoted binding of acetylated histone H4 to the iNOS promoter, and further suppressed iNOS protein expression and iNOS promoter activity. Thus TSA diminishes IL-1β-induced iNOS transcription through phosphoinositide 3-kinase- and p70s6 kinase-dependent pathways that increase site-specific histone H4 acetylation at the −978 to −710 region of the iNOS promoter. This novel epigenetic control mechanism extends the network of regulatory controls governing NO production in mesangial cells.
Collapse
Affiliation(s)
- Zhiyuan Yu
- Department of Internal Medicine, The University of Texas Medical School at Houston, 6431 Fannin, MSB 1.150, Houston, TX 77030, USA
| | | |
Collapse
|
166
|
Lin MW, Tsao LT, Huang LJ, Kuo SC, Weng JR, Ko HH, Lin CN, Lee MR, Wang JP. Inhibition of lipopolysaccharide-stimulated NO production by crotafuran B in RAW 264.7 macrophages involves the blockade of NF-κB activation through the increase in IκBα synthesis. Toxicol Appl Pharmacol 2006; 210:108-15. [PMID: 16087206 DOI: 10.1016/j.taap.2005.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 06/28/2005] [Accepted: 07/11/2005] [Indexed: 11/28/2022]
Abstract
Crotafuran B, a natural pterocarpanoid isolated from Crotalaria pallida, inhibited the lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production (IC50 16.4+/-0.7 microM) and inducible nitric oxide synthase (iNOS) protein and mRNA expression (IC50 11.5+/-0.6 microM and 11.8+/-2.2 microM, respectively), but not via its cytotoxicity or the inhibition of iNOS enzyme activity, in RAW 264.7 macrophages. Crotafuran B also reduced the iNOS promoter activity (IC50 13.4+/-0.1 microM) in piNOS-LUC-transfected cells. Crotafuran B treatment inhibited the p65 nuclear translocation and the nuclear factor-kappaB (NF-kappaB) DNA binding activity in LPS-activated macrophages. Crotafuran B also reduced the NF-kappaB transcriptional activity in pNF-kappaB-LUC-transfected cells. Crotafuran B had no effect on the LPS-induced phosphorylation of inhibitory kappaBalpha (IkappaBalpha), but enhanced the cellular level of IkappaBalpha that rebounded to the basal levels and increased the IkappaBalpha mRNA expression. These results indicate that the crotafuran B inhibition of NO production involves a decrease in the iNOS gene expression via the inhibition of NF-kappaB activation through the increase in IkappaBalpha synthesis.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Shapira S, Harb OS, Margarit J, Matrajt M, Han J, Hoffmann A, Freedman B, May MJ, Roos DS, Hunter CA. Initiation and termination of NF-kappaB signaling by the intracellular protozoan parasite Toxoplasma gondii. J Cell Sci 2005; 118:3501-8. [PMID: 16079291 DOI: 10.1242/jcs.02428] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signaling via the NF-kappaB cascade is critical for innate recognition of microbial products and immunity to infection. As a consequence, this pathway represents a strong selective pressure on infectious agents and many parasitic, bacterial and viral pathogens have evolved ways to subvert NF-kappaB signaling to promote their survival. Although the mechanisms utilized by microorganisms to modulate NF-kappaB signaling are diverse, a common theme is targeting of the steps that lead to IkappaB degradation, a major regulatory checkpoint of this pathway. The data presented here demonstrate that infection of mammalian cells with Toxoplasma gondii results in the activation of IKK and degradation of IkappaB. However, despite initiation of these hallmarks of NF-kappaB signaling, neither nuclear accumulation of NF-kappaB nor NF-kappaB-driven gene expression is observed in infected cells. However, this defect was not due to a parasite-mediated block in nuclear import, as general nuclear import and constitutive nuclear-cytoplasmic shuttling of NF-kappaB remain intact in infected cells. Rather, in T. gondii-infected cells, the termination of NF-kappaB signaling is associated with reduced phosphorylation of p65/RelA, an event involved in the ability of NF-kappaB to translocate to the nucleus and bind DNA. Thus, these studies demonstrate for the first time that the phosphorylation of p65/RelA represents an event downstream of IkappaB degradation that may be targeted by pathogens to subvert NF-kappaB signaling.
Collapse
Affiliation(s)
- Sagi Shapira
- Department of Pathobiology, University of Pennsylvania, Philadelphia PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Maecker H, Varfolomeev E, Kischkel F, Lawrence D, LeBlanc H, Lee W, Hurst S, Danilenko D, Li J, Filvaroff E, Yang B, Daniel D, Ashkenazi A. TWEAK Attenuates the Transition from Innate to Adaptive Immunity. Cell 2005; 123:931-44. [PMID: 16325585 DOI: 10.1016/j.cell.2005.09.022] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 08/02/2005] [Accepted: 09/08/2005] [Indexed: 12/11/2022]
Abstract
Innate immunity is the first line of defense against infection, protecting the host during the development of adaptive immunity and critically affecting the nature of the adaptive response. We show that, in contrast to tumor necrosis factor alpha (TNF-alpha), the related protein TWEAK attenuates the transition from innate to adaptive mechanisms. TWEAK-/- mice had overabundant natural killer (NK) cells and displayed hypersensitivity to bacterial endotoxin, with their innate immune cells producing excess interferon (IFN)-gamma and interleukin (IL)-12. TWEAK inhibited stimulation of the transcriptional activator STAT-1 and induced p65 nuclear factor (NF)-kappaB association with histone deacetylase 1, repressing cytokine production. TWEAK-/- mice developed oversized spleens with expanded memory and T helper 1 (TH1) subtype cells upon aging and mounted stronger innate and adaptive TH1-based responses against tumor challenge. Thus, TWEAK suppresses production of IFN-gamma and IL-12, curtailing the innate response and its transition to adaptive TH1 immunity.
Collapse
Affiliation(s)
- Heather Maecker
- Department of Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Cui W, Ke JZ, Zhang Q, Ke HZ, Chalouni C, Vignery A. The intracellular domain of CD44 promotes the fusion of macrophages. Blood 2005; 107:796-805. [PMID: 16195325 PMCID: PMC1473173 DOI: 10.1182/blood-2005-05-1902] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Macrophages seed all tissues in which they have the ability, in specific and rare instances, to fuse with themselves and to differentiate into osteoclasts in bone or into giant cells in chronic inflammatory reactions. Although these cells play a central role in osteoporosis and in foreign body rejection, respectively, the molecular mechanism used by macrophages to fuse remains poorly understood. Macrophages might also fuse with somatic and tumor cells to promote tissue repair and metastasis, respectively. We reported that CD44 expression is highly induced in macrophages at the onset of fusion in which it plays a role. We report now that the intracellular domain of CD44 (CD44ICD) is cleaved in macrophages undergoing fusion and that presenilin inhibitors prevent the release of CD44ICD and fusion. We also show that CD44ICD promotes the fusion of tissue macrophages and bone marrow-derived macrophages. Finally, we report that CD44ICD is localized in the nucleus of macrophages in which it promotes the activation of NF-kappaB. These observations open avenues to study the role of CD44ICD in blood cells and tumors.
Collapse
Affiliation(s)
- Weiguo Cui
- Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, 333 Cedar St, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
170
|
Gupta P, Huq MDM, Khan SA, Tsai NP, Wei LN. Regulation of co-repressive activity of and HDAC recruitment to RIP140 by site-specific phosphorylation. Mol Cell Proteomics 2005; 4:1776-84. [PMID: 16093479 DOI: 10.1074/mcp.m500236-mcp200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Receptor interacting protein 140 (RIP140) is a versatile transcriptional co-repressor that contains several autonomous repressive domains (RDs). The N-terminal RD acts by recruiting histone deacetylases (HDACs). In a comprehensive proteomic analysis of RIP140 by MS, 11 phosphorylation sites of RIP140 are identified; among them five sites are located in the N-terminal RD including Ser104, Thr202, Thr207, Ser358, and Ser380. The role of phosphorylation of RIP140 in regulating its biological activity and the underlying mechanism are examined using a site-directed mutagenesis approach. Mutations mimicking constitutive phosphorylation or dephosphorylation are introduced. The N-terminal RD phosphorylation, mediated by the mitogen-activated protein kinase (MAPK), enhances its repressive activity through increased recruitment of HDAC. Mutations mimicking constitutive dephosphorylation at Thr202 or Thr207 significantly impair its repressive activity and HDAC recruitment, whereas mutation at Ser358 only slightly affects its HDAC recruitment and the repressive activity. Consistently, mutations mimicking constitutive phosphorylation at either Thr202 or Thr207 convert RIP140 into a more potent repressor, which is less responsive to a disturbance in the MAPK system. Furthermore, constitutive phosphorylation at both Thr202 and Thr207 residues renders RIP140 fully repressive and strongly interacting with HDAC. The activity of this mutant is resistant to the MAPK inhibitor, indicating an essential role for Thr202 and Thr207 in MAPK-mediated modulation of RIP140 function. The study provides insights into the modulation of RIP140 biological activity through a specific cellular signaling pathway that augments phosphorylation at specific residues of RIP140 molecule and alters its cofactor recruitment.
Collapse
Affiliation(s)
- Pawan Gupta
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
171
|
Nusinzon I, Horvath CM. Histone deacetylases as transcriptional activators? Role reversal in inducible gene regulation. Sci Signal 2005; 2005:re11. [PMID: 16091625 DOI: 10.1126/stke.2962005re11] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Histone deacetylation enzymes have often been associated with the suppression of eukaryotic gene transcription. In contrast, recent studies of inducible gene regulation indicate that protein deacetylation can also be required as a transcriptional activation signal. The concept of protein deacetylation as a requirement for transcription activation seems to contradict earlier conclusions about the function of deacetylation in gene suppression. However, in the context of a more global interpretation, these opposing effects of deacetylation imply its dynamic role in the overall control of gene expression. The exact requirement for deacetylation differs among promoters, depending on their specific architecture and regulation scenario.
Collapse
Affiliation(s)
- Inna Nusinzon
- Department of Medicine, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
172
|
Huq MDM, Wei LN. Post-translational modification of nuclear co-repressor receptor-interacting protein 140 by acetylation. Mol Cell Proteomics 2005; 4:975-83. [PMID: 15879431 DOI: 10.1074/mcp.m500015-mcp200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Receptor-interacting protein 140 (RIP140) is a versatile co-regulator for nuclear receptors and many transcription factors and contains several autonomous repressive domains. RIP140 can be acetylated, and acetylation affects its biological activity. In this study, a comprehensive proteomic analysis using liquid chromatography-tandem mass spectroscopy was conducted to identify the in vivo acetylation sites on RIP140 purified from Sf21 insect cells. Eight acetylation sites were found within the amino-terminal and the central regions, including Lys111, Lys158, Lys287, Lys311, Lys482, Lys529, Lys607, and Lys932. Reporter assays were conducted to examine the effects of acetylation on various domains of RIP140. Green fluorescent protein-tagged fusion proteins were used to demonstrate the effect on nuclear translocation of these domains. A general inhibitor of reversible protein deacetylation was used to enrich the acetylated population of RIP140. The amino-terminal region (amino acids (aa) 1-495) was more repressive and accumulated more in the nuclei under hyperacetylated conditions, whereas hyperacetylation reduced the repressive activity and nuclear translocation of the central region (aa 336-1006). The deacetylase inhibitor had no effect on the carboxyl-terminal region (aa 977-1161) where no acetylation sites were found. Hyperacetylation also enhanced the repressive activity of the full-length protein but triggered its export into the cytosol in a small population of cells. This study revealed differential effects of post-translational modification on various domains of RIP140 through acetylation, including its effects on repressive activity and nuclear translocation of the full-length protein and its subdomains.
Collapse
Affiliation(s)
- M D Mostaqul Huq
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
173
|
Leung CH, Grill SP, Lam W, Han QB, Sun HD, Cheng YC. Novel Mechanism of Inhibition of Nuclear Factor-κB DNA-Binding Activity by Diterpenoids Isolated from Isodon rubescens. Mol Pharmacol 2005; 68:286-97. [PMID: 15872117 DOI: 10.1124/mol.105.012765] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The development of specific inhibitors that can block nuclear factor-kappaB (NF-kappaB) activation is an approach for the treatment of cancer, autoimmune, and inflammatory diseases. Several diterpenoids, oridonin, ponicidin, xindongnin A, and xindongnin B were isolated from the herb Isodon rubescens. These compounds were found to be potent inhibitors of NF-kappaB transcription activity and the expression of its downstream targets, cyclooxygenase-2 and inducible nitric-oxide synthase. The mechanisms of action of the diterpenoids against NF-kappaB are similar, but significant differences were also identified. All of the diterpenoids directly interfere with the DNA-binding activity of NF-kappaB to its response DNA sequence. Oridonin and ponicidin have an additional impact on the translocation of NF-kappaB from the cytoplasm to nuclei without affecting IkappaB-alpha phosphorylation and degradation. The effect of these compounds on the interaction of NF-kappaB with consensus DNA sequences is unique. Different inhibitory effects were observed when NF-kappaB bound to various DNA sequences. Both p65/p65 and p50/p50 homodimers, as well as p65/p50 heterodimer association with their responsive DNA, were inhibited. Kinetic studies on NF-kappaB-DNA interaction indicate that the diterpenoids decrease the B(max app) but have no effect on K(d app). This suggests that this class of compounds interacts with both p65 and p50 subunits at a site other than the DNA binding site and subsequently modulates the binding affinity of the transcription factor toward DNA with different NF-kappaB binding sequences. The diterpenoid structure could therefore serve as a scaffold for the development of more potent and selective NF-kappaB inhibitors that target regulated gene transcription.
Collapse
Affiliation(s)
- Chung-Hang Leung
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520-8066, USA
| | | | | | | | | | | |
Collapse
|
174
|
O'Shea JJ, Kanno Y, Chen X, Levy DE. Cell signaling. Stat acetylation--a key facet of cytokine signaling? Science 2005; 307:217-8. [PMID: 15653493 DOI: 10.1126/science.1108164] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- John J O'Shea
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
175
|
Abstract
Oscillatory behavior is very common in many cellular responses. Recently, two pathways involved in response to cell stress, the p53 and nuclear factor kappa B signaling pathways, have been found to show oscillatory behavior. At first sight, there would seem to be no reason for signaling pathways of this type to require oscillations. Recent single-cell studies indicate that oscillatory behavior may be used to allow repeated testing for the continued existence of a signal. I argue that oscillations increase cellular response sensitivity and flexibility by allowing the cell to integrate the results of many periodical evaluations of the signal before making an eventual decision about cell fate, thus reducing the risk of premature commitment.
Collapse
Affiliation(s)
- Galit Lahav
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|