151
|
Capasso C, Supuran CT. Sulfa and trimethoprim-like drugs – antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. J Enzyme Inhib Med Chem 2013; 29:379-87. [DOI: 10.3109/14756366.2013.787422] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Claudiu T. Supuran
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Firenze
Polo Scientifico, Sesto Fiorentino (Florence)Italy
| |
Collapse
|
152
|
Arooj M, Sakkiah S, Cao GP, Lee KW. An innovative strategy for dual inhibitor design and its application in dual inhibition of human thymidylate synthase and dihydrofolate reductase enzymes. PLoS One 2013; 8:e60470. [PMID: 23577115 PMCID: PMC3618229 DOI: 10.1371/journal.pone.0060470] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/26/2013] [Indexed: 11/26/2022] Open
Abstract
Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs.
Collapse
Affiliation(s)
- Mahreen Arooj
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Sugunadevi Sakkiah
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Guang ping Cao
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science(RINS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| |
Collapse
|
153
|
Schrider DR, Navarro FCP, Galante PAF, Parmigiani RB, Camargo AA, Hahn MW, de Souza SJ. Gene copy-number polymorphism caused by retrotransposition in humans. PLoS Genet 2013; 9:e1003242. [PMID: 23359205 PMCID: PMC3554589 DOI: 10.1371/journal.pgen.1003242] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/28/2012] [Indexed: 01/05/2023] Open
Abstract
The era of whole-genome sequencing has revealed that gene copy-number changes caused by duplication and deletion events have important evolutionary, functional, and phenotypic consequences. Recent studies have therefore focused on revealing the extent of variation in copy-number within natural populations of humans and other species. These studies have found a large number of copy-number variants (CNVs) in humans, many of which have been shown to have clinical or evolutionary importance. For the most part, these studies have failed to detect an important class of gene copy-number polymorphism: gene duplications caused by retrotransposition, which result in a new intron-less copy of the parental gene being inserted into a random location in the genome. Here we describe a computational approach leveraging next-generation sequence data to detect gene copy-number variants caused by retrotransposition (retroCNVs), and we report the first genome-wide analysis of these variants in humans. We find that retroCNVs account for a substantial fraction of gene copy-number differences between any two individuals. Moreover, we show that these variants may often result in expressed chimeric transcripts, underscoring their potential for the evolution of novel gene functions. By locating the insertion sites of these duplicates, we are able to show that retroCNVs have had an important role in recent human adaptation, and we also uncover evidence that positive selection may currently be driving multiple retroCNVs toward fixation. Together these findings imply that retroCNVs are an especially important class of polymorphism, and that future studies of copy-number variation should search for these variants in order to illuminate their potential evolutionary and functional relevance. Recent studies of human genetic variation have revealed that, in addition to differing at single nucleotide polymorphisms, individuals differ in copy-number at many regions of the genome. These copy-number variants (CNVs) are caused by duplication or deletion events and often affect functional sequences such as genes. Efforts to reveal the functional impact of CNVs have identified many variants increasing the risk of various disorders, and some that are adaptive. However, these studies mostly fail to detect gene duplications caused by retrotransposition, in which an mRNA transcript is reverse-transcribed and reinserted into the genome, yielding a new intron-less gene copy. Here we describe a method leveraging next-generation sequence data to accurately detect gene copy-number variants caused by retrotransposition, or retroCNVs, and apply this method to hundreds of whole-genome sequences from three different human subpopulations. We find that these variants account for a substantial number of gene copy-number differences between individuals, and that gene retrotransposition may often result in both deleterious and beneficial mutations. Indeed, we present evidence that two of these new gene duplications may be adaptive. These results imply that retroCNVs are an especially important class of CNV and should be included in future studies of human copy-number variation.
Collapse
Affiliation(s)
- Daniel R. Schrider
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, Indiana, United States of America
- * E-mail: (DRS); (FCPN)
| | - Fabio C. P. Navarro
- São Paulo Branch, Ludwig Institute for Cancer Research, São Paulo, Brazil
- Departamento de Bioquímica, Universidade de São Paulo, São Paulo, Brazil
- Centro de Oncologia Molecular–Hospital Sírio-Libanês, São Paulo, Brazil
- * E-mail: (DRS); (FCPN)
| | - Pedro A. F. Galante
- São Paulo Branch, Ludwig Institute for Cancer Research, São Paulo, Brazil
- Centro de Oncologia Molecular–Hospital Sírio-Libanês, São Paulo, Brazil
| | - Raphael B. Parmigiani
- São Paulo Branch, Ludwig Institute for Cancer Research, São Paulo, Brazil
- Centro de Oncologia Molecular–Hospital Sírio-Libanês, São Paulo, Brazil
| | - Anamaria A. Camargo
- São Paulo Branch, Ludwig Institute for Cancer Research, São Paulo, Brazil
- Centro de Oncologia Molecular–Hospital Sírio-Libanês, São Paulo, Brazil
| | - Matthew W. Hahn
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, Indiana, United States of America
| | - Sandro J. de Souza
- São Paulo Branch, Ludwig Institute for Cancer Research, São Paulo, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
154
|
Zhou W, Scocchera EW, Wright DL, Anderson AC. Antifolates as effective antimicrobial agents: new generations of trimethoprim analogs. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00104k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
155
|
Rapolu S, Alla M, Ganji RJ, Saddanapu V, Kishor C, Bommena VR, Addlagatta A. Synthesis, cytotoxicity and hDHFR inhibition studies of 2H-pyrido[1,2-a]pyrimidin-2-ones. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00013c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
156
|
Nerukh D, Okimoto N, Suenaga A, Taiji M. Ligand Diffusion on Protein Surface Observed in Molecular Dynamics Simulation. J Phys Chem Lett 2012; 3:3476-3479. [PMID: 26290975 DOI: 10.1021/jz301635h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The process of binding of small ligands to dihydrofolate reductase protein has been investigated using all-atom molecular dynamics simulations. The existence of a mechanism that facilitates the search of the binding site by the ligand is demonstrated. The mechanism consists of ligand diffusing on the protein's surface. It has been discussed in the literature before, but has not been explicitly confirmed for realistic molecular systems. The strength of this nonspecific binding is roughly estimated and found to be essential for the binding kinetics.
Collapse
Affiliation(s)
- Dmitry Nerukh
- †Nonlinearity and Complexity Research Group, Aston University, Birmingham, B4 7ET, U.K
| | - Noriaki Okimoto
- ‡RIKEN Advanced Institute for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | | | - Makoto Taiji
- ‡RIKEN Advanced Institute for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
157
|
Procházková E, Jansa P, Březinová A, Čechová L, Mertlíková-Kaiserová H, Holý A, Dračínský M. Compound instability in dimethyl sulphoxide, case studies with 5-aminopyrimidines and the implications for compound storage and screening. Bioorg Med Chem Lett 2012; 22:6405-9. [DOI: 10.1016/j.bmcl.2012.08.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 10/28/2022]
|
158
|
Nammalwar B, Bunce RA, Berlin KD, Bourne CR, Bourne PC, Barrow EW, Barrow WW. Synthesis and biological activity of substituted 2,4-diaminopyrimidines that inhibit Bacillus anthracis. Eur J Med Chem 2012; 54:387-96. [PMID: 22703705 PMCID: PMC3408765 DOI: 10.1016/j.ejmech.2012.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/26/2012] [Accepted: 05/11/2012] [Indexed: 12/01/2022]
Abstract
A series of substituted 2,4-diaminopyrimidines 1 has been prepared and evaluated for activity against Bacillus anthracis using previously reported (±)-3-{5-[(2,4-diamino-5-pyrimidinyl)methyl]-2,3-dimethoxyphenyl}-1-(1-propyl-2(1H)-phthalazinyl)-2-propen-1-one (1a), with a minimum inhibitory concentration (MIC) value of 1-3 μg/mL, as the standard. In the current work, the corresponding isobutenyl (1e) and phenyl (1h) derivatives displayed the most significant activity in terms of the lowest MICs with values of 0.5 μg/mL and 0.375-1.5 μg/mL, respectively. It is likely that the S isomers of 1 will bind the substrate-binding pocket of dihydrofolate reductase (DHFR) as in B. anthracis was found for (S)-1a. The final step in the convergent synthesis of target systems 1 from (±)-1-(1-substituted-2(1H)-phthalazinyl)-2-propen-1-ones 6 with 2,4-diamino-5-(5-iodo-3,4-dimethoxybenzyl)pyrimidine (13) was accomplished via a novel Heck coupling reaction under sealed-tube conditions.
Collapse
Affiliation(s)
- Baskar Nammalwar
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078
| | - Richard A. Bunce
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078
| | - K. Darrell Berlin
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078
| | - Christina R. Bourne
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078
| | - Philip C. Bourne
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078
| | - Esther W. Barrow
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078
| | - William W. Barrow
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078
| |
Collapse
|
159
|
Anand N, Singh P, Sharma A, Tiwari S, Singh V, Singh DK, Srivastava KK, Singh BN, Tripathi RP. Synthesis and evaluation of small libraries of triazolylmethoxy chalcones, flavanones and 2-aminopyrimidines as inhibitors of mycobacterial FAS-II and PknG. Bioorg Med Chem 2012; 20:5150-63. [PMID: 22854194 DOI: 10.1016/j.bmc.2012.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/25/2022]
Abstract
A synthetic strategy to access small libraries of triazolylmethoxy chalcones 4{1-20}, triazolylmethoxy flavanones 5{1-10} and triazolylmethoxy aminopyrimidines 6{1-17} from a common substrate 4-propargyloxy-2-hydroxy acetophenone using a set of different reactions has been developed. The chalcones and flavanones were screened against mycobacterial FAS-II pathway using a recombinant mycobacterial strain, against which the most potent compound showed ∼88% inhibition in bacterial growth and substantially induction of reporter gene activity at 100 μM concentration. The triazolylmethoxy aminopyrimdines were screened against PknG of Mycobaceterium tuberculosis displaying moderate to good activity (23-53% inhibition at 100 μM), comparable to the action of a standard inhibitor.
Collapse
Affiliation(s)
- Namrata Anand
- Medicinal & Process Chemistry Division, Central Drug Research Institute, CSIR, PO Box 173, Chattar Manzil, Mahatma Gandhi Marg, Lucknow 226001, India
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Kumar A, Zhang M, Zhu L, Liao RP, Mutai C, Hafsat S, Sherman DR, Wang MW. High-throughput screening and sensitized bacteria identify an M. tuberculosis dihydrofolate reductase inhibitor with whole cell activity. PLoS One 2012; 7:e39961. [PMID: 22768185 PMCID: PMC3386958 DOI: 10.1371/journal.pone.0039961] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 05/30/2012] [Indexed: 01/26/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a bacterial pathogen that claims roughly 1.4 million lives every year. Current drug regimens are inefficient at clearing infection, requiring at least 6 months of chemotherapy, and resistance to existing agents is rising. There is an urgent need for new drugs that are more effective and faster acting. The folate pathway has been successfully targeted in other pathogens and diseases, but has not yielded a lead drug against tuberculosis. We developed a high-throughput screening assay against Mtb dihydrofolate reductase (DHFR), a critical enzyme in the folate pathway, and screened a library consisting of 32,000 synthetic and natural product-derived compounds. One potent inhibitor containing a quinazoline ring was identified. This compound was active against the wild-type laboratory strain H37Rv (MIC99 = 207 µM). In addition, an Mtb strain with artificially lowered DHFR levels showed increased sensitivity to this compound (MIC99 = 70.7 µM), supporting that the inhibition was target-specific. Our results demonstrate the potential to identify Mtb DHFR inhibitors with activity against whole cells, and indicate the power of using a recombinant strain of Mtb expressing lower levels of DHFR to facilitate the discovery of antimycobacterial agents. With these new tools, we highlight the folate pathway as a potential target for new drugs to combat the tuberculosis epidemic.
Collapse
Affiliation(s)
- Anuradha Kumar
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Meng Zhang
- The National Center for Drug Screening and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Linyun Zhu
- The National Center for Drug Screening and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Reiling P. Liao
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Charles Mutai
- The National Center for Drug Screening and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Shittu Hafsat
- The National Center for Drug Screening and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - David R. Sherman
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail: (DRS); (MWW)
| | - Ming-Wei Wang
- The National Center for Drug Screening and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
- * E-mail: (DRS); (MWW)
| |
Collapse
|
161
|
Dihydrofolate reductase as a therapeutic target for infectious diseases: opportunities and challenges. Future Med Chem 2012; 4:1335-65. [DOI: 10.4155/fmc.12.68] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Infectious diseases caused by parasites continue to take a massive toll on human health in the poor regions of the world. Filling the anti-infective drug-discovery pipeline has never been as challenging as it is now. The organisms responsible for these diseases have interesting biology with many potential biochemical targets. Inhibition of metabolic enzymes has been established as an attractive strategy for anti-infectious drug development. In this field, dihydrofolate reductase (DHFR) is an important enzyme in nucleic and amino acid synthesis and an extensively studied drug target over the past 50 years. The challenges for novel DHFR inhibition-based chemotherapeutics for the treatment of infectious diseases are now focused on overcoming the resistance problem as well as cost–effectiveness. Each year, the large number of literature citations attest the continued popularity of DHFR. It becomes truly the ‘enzyme of choice for all seasons and almost all reasons’. Herein, we summarize the opportunities and challenges in developing novel lead based on this target.
Collapse
|
162
|
Assessment of Pseudomonas aeruginosa N5,N10-methylenetetrahydrofolate dehydrogenase-cyclohydrolase as a potential antibacterial drug target. PLoS One 2012; 7:e35973. [PMID: 22558288 PMCID: PMC3338484 DOI: 10.1371/journal.pone.0035973] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/24/2012] [Indexed: 01/28/2023] Open
Abstract
The bifunctional enzyme methylenetetrahydrofolate dehydrogenase - cyclohydrolase (FolD) is identified as a potential drug target in Gram-negative bacteria, in particular the troublesome Pseudomonas aeruginosa. In order to provide a comprehensive and realistic assessment of the potential of this target for drug discovery we generated a highly efficient recombinant protein production system and purification protocol, characterized the enzyme, carried out screening of two commercial compound libraries by differential scanning fluorimetry, developed a high-throughput enzyme assay and prosecuted a screening campaign against almost 80,000 compounds. The crystal structure of P. aeruginosa FolD was determined at 2.2 Å resolution and provided a template for an assessment of druggability and for modelling of ligand complexes as well as for comparisons with the human enzyme. New FolD inhibitors were identified and characterized but the weak levels of enzyme inhibition suggest that these compounds are not optimal starting points for future development. Furthermore, the close similarity of the bacterial and human enzyme structures suggest that selective inhibition might be difficult to attain. In conclusion, although the preliminary biological data indicates that FolD represents a valuable target for the development of new antibacterial drugs, indeed spurred us to investigate it, our screening results and structural data suggest that this would be a difficult enzyme to target with respect to developing the appropriate lead molecules required to underpin a serious drug discovery effort.
Collapse
|
163
|
Prospective screening of novel antibacterial inhibitors of dihydrofolate reductase for mutational resistance. Antimicrob Agents Chemother 2012; 56:3556-62. [PMID: 22491688 DOI: 10.1128/aac.06263-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to trimethoprim (TMP) resulting from point mutations in the enzyme drug target dihydrofolate reductase (DHFR) drives the development of new antifolate inhibitors effective against methicillin-resistant Staphylococcus aureus (MRSA). For the past several years we have used structure-based design to create propargyl-linked antifolates that are highly potent antibacterial agents. In order to focus priority on the development of lead compounds with a low propensity to induce resistance, we prospectively evaluated resistance profiles for two of these inhibitors in an MRSA strain. By selection with the lead inhibitors, we generated resistant strains that contain single point mutations F98Y and H30N associated with TMP resistance and one novel mutation, F98I, in DHFR. Encouragingly, the pyridyl propargyl-linked inhibitor selects mutants at low frequency (6.85 × 10(-10) to 1.65 × 10(-9)) and maintains a low MIC (2.5 μg/ml) and a low mutant prevention concentration (1.25 μg/ml), strongly supporting its position as a lead compound. Results from this prospective screening method inform the continued design of antifolates effective against mutations at the Phe 98 position. Furthermore, the method can be used broadly to incorporate ideas for overcoming resistance early in the development process.
Collapse
|
164
|
Al-Deeb OA, El-Emam AA, Al-Turkistani AA, Ng SW, Tiekink ERT. 6-(2-Methyl-prop-yl)-4-oxo-2-sulfanyl-idene-1,2,3,4-tetra-hydro-pyrimidine-5-carbonitrile. Acta Crystallogr Sect E Struct Rep Online 2012; 68:o676-7. [PMID: 22412573 PMCID: PMC3295462 DOI: 10.1107/s1600536812005119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 02/06/2012] [Indexed: 11/11/2022]
Abstract
The title thio-uracil derivative, C(9)H(11)N(3)OS, exists in the thione form. The six atoms comprising the ring are almost coplanar [r.m.s. deviation = 0.015 Å] and the 2-methyl-propyl group lies approximately perpendicular to this plane [the N-C-C-C torsion angle is 72.88 (14)°]. Linear supra-molecular chains along [001] sustained by N-H⋯O and N-H⋯S hydrogen bonding feature in the crystal packing.
Collapse
Affiliation(s)
- Omar A. Al-Deeb
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali A. El-Emam
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Seik Weng Ng
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
| | | |
Collapse
|
165
|
Viswanathan K, Frey KM, Scocchera EW, Martin BD, Swain III PW, Alverson JB, Priestley ND, Anderson AC, Wright DL. Toward new therapeutics for skin and soft tissue infections: propargyl-linked antifolates are potent inhibitors of MRSA and Streptococcus pyogenes. PLoS One 2012; 7:e29434. [PMID: 22347365 PMCID: PMC3274548 DOI: 10.1371/journal.pone.0029434] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 11/28/2011] [Indexed: 01/22/2023] Open
Abstract
Hospital- and community-acquired, complicated skin and soft tissue infections, often attributed to Staphylococcus aureus and Streptococcus pyogenes, present a significant health burden that is associated with increased health care costs and mortality. As these two species are difficult to discern on diagnosis and are associated with differential profiles of drug resistance, the development of an efficacious antibacterial agent that targets both organisms is a high priority. Herein we describe a structure-based drug development effort that has produced highly potent inhibitors of dihydrofolate reductase from both species. Optimized propargyl-linked antifolates containing a key pyridyl substituent display antibacterial activity against both methicillin-resistant S. aureus and S. pyogenes at MIC values below 0.1 µg/mL and minimal cytotoxicity against mammalian cells. Further evaluation against a panel of clinical isolates shows good efficacy against a range of important phenotypes such as hospital- and community-acquired strains as well as strains resistant to vancomycin.
Collapse
Affiliation(s)
- Kishore Viswanathan
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Kathleen M. Frey
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Eric W. Scocchera
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Brooke D. Martin
- Promiliad Biopharma Inc., Alberton, Montana, United States of America
| | | | | | | | - Amy C. Anderson
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (ACA) (AA); (DLW) (DW)
| | - Dennis L. Wright
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (ACA) (AA); (DLW) (DW)
| |
Collapse
|
166
|
Walsh CT, Haynes SW, Ames BD. Aminobenzoates as building blocks for natural productassembly lines. Nat Prod Rep 2012; 29:37-59. [DOI: 10.1039/c1np00072a] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
167
|
Procházková E, Jansa P, Dračínský M, Holý A, Mertlíková-Kaiserová H. Determination of the antioxidative activity of substituted 5-aminopyrimidines. Free Radic Res 2011; 46:61-7. [DOI: 10.3109/10715762.2011.638292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
168
|
Mattenberger Y, Mattson S, Métrailler J, Silva F, Belin D. 55.1, a gene of unknown function of phage T4, impacts on Escherichia coli folate metabolism and blocks DNA repair by the NER. Mol Microbiol 2011; 82:1406-21. [PMID: 22029793 DOI: 10.1111/j.1365-2958.2011.07897.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phage T4, the archetype of lytic bacterial viruses, needs only 62 genes to propagate under standard laboratory conditions. Interestingly, the T4 genome contains more than 100 putative genes of unknown function, with few detectable homologues in cellular genomes. To characterize this uncharted territory of genetic information, we have identified several T4 genes that prevent bacterial growth when expressed from plasmids under inducible conditions. Here, we report on the various phenotypes and molecular characterization of 55.1, one of the genes of unknown function. High-level expression from the arabinose-inducible P(BAD) promoter is toxic to the bacteria and delays the intracellular accumulation of phage without affecting the final burst size. Low-level expression from T4 promoter(s) renders bacteria highly sensitive to UV irradiation and hypersensitive to trimethoprim, an inhibitor of dihydrofolate reductase. The delay in intracellular phage accumulation requires UvsW, a T4 helicase that is also a suppressor of 55.1-induced toxicity and UV sensitivity. Genetic and biochemical experiments demonstrate that gp55.1 binds to FolD, a key enzyme of the folate metabolism and suppressor of 55.1. Finally, we show that gp55.1 prevents the repair of UV-induced DNA photoproducts by the nucleotide excision repair (NER) pathway through interaction with the UvrA and UvrB proteins.
Collapse
Affiliation(s)
- Yves Mattenberger
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
169
|
El-Emam AA, Al-Deeb OA, Al-Turkistani AA, Ng SW, Tiekink ERT. 2-Benzyl-sulfanyl-4-pentyl-6-(phenyl-sulfan-yl)pyrimidine-5-carbonitrile. Acta Crystallogr Sect E Struct Rep Online 2011; 67:o3126. [PMID: 22220128 PMCID: PMC3247510 DOI: 10.1107/s1600536811044746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 10/26/2011] [Indexed: 11/10/2022]
Abstract
In the title pyrimidine derivative, C23H23N3S2, the phenylsulfanyl and benzylsulfanyl benzene rings are orientated away from the carbonitrile group and are twisted out of the plane of the central ring with dihedral angles of 77.66 (6) and 64.73 (5)°, respectively. The n-pentyl group has an extended trans conformation. In the crystal, supramolecular layers in the ab plane are sustained by C—H⋯π and π–π interactions [pyrimidine–phenylsulfanyl centroid–centroid distance = 3.8087 (7) Å].
Collapse
|
170
|
Wang H, Claveau D, Vaillancourt JP, Roemer T, Meredith TC. High-frequency transposition for determining antibacterial mode of action. Nat Chem Biol 2011; 7:720-9. [DOI: 10.1038/nchembio.643] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/29/2011] [Indexed: 11/09/2022]
|
171
|
Ma X, Tan ST, Khoo CL, Sim HM, Chan LW, Chui WK. Synthesis and antimicrobial activity of N1-benzyl or N1-benzyloxy-1,6-dihydro-1,3,5-triazine-2,4-diamines. Bioorg Med Chem Lett 2011; 21:5428-31. [DOI: 10.1016/j.bmcl.2011.06.125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 06/28/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
|
172
|
Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch. Proc Natl Acad Sci U S A 2011; 108:14801-6. [PMID: 21873197 DOI: 10.1073/pnas.1111701108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tetrahydrofolate (THF), a biologically active form of the vitamin folate (B(9)), is an essential cofactor in one-carbon transfer reactions. In bacteria, expression of folate-related genes is controlled by feedback modulation in response to specific binding of THF and related compounds to a riboswitch. Here, we present the X-ray structures of the THF-sensing domain from the Eubacterium siraeum riboswitch in the ligand-bound and unbound states. The structure reveals an "inverted" three-way junctional architecture, most unusual for riboswitches, with the junction located far from the regulatory helix P1 and not directly participating in helix P1 formation. Instead, the three-way junction, stabilized by binding to the ligand, aligns the riboswitch stems for long-range tertiary pseudoknot interactions that contribute to the organization of helix P1 and therefore stipulate the regulatory response of the riboswitch. The pterin moiety of the ligand docks in a semiopen pocket adjacent to the junction, where it forms specific hydrogen bonds with two moderately conserved pyrimidines. The aminobenzoate moiety stacks on a guanine base, whereas the glutamate moiety does not appear to make strong interactions with the RNA. In contrast to other riboswitches, these findings demonstrate that the THF riboswitch uses a limited number of available determinants for ligand recognition. Given that modern antibiotics target folate metabolism, the THF riboswitch structure provides insights on mechanistic aspects of riboswitch function and may help in manipulating THF levels in pathogenic bacteria.
Collapse
|
173
|
Calvaresi M, Zerbetto F. In Silico Carborane Docking to Proteins and Potential Drug Targets. J Chem Inf Model 2011; 51:1882-96. [DOI: 10.1021/ci200216z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Matteo Calvaresi
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy
| | - Francesco Zerbetto
- Dipartimento di Chimica “G. Ciamician”, Università di Bologna, V. F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
174
|
Singh N, Pandey SK, Anand N, Dwivedi R, Singh S, Sinha SK, Chaturvedi V, Jaiswal N, Srivastava AK, Shah P, Siddiqui MI, Tripathi RP. Synthesis, molecular modeling and bio-evaluation of cycloalkyl fused 2-aminopyrimidines as antitubercular and antidiabetic agents. Bioorg Med Chem Lett 2011; 21:4404-8. [DOI: 10.1016/j.bmcl.2011.06.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
|
175
|
Microsecond Subdomain Folding in Dihydrofolate Reductase. J Mol Biol 2011; 410:329-42. [DOI: 10.1016/j.jmb.2011.04.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/19/2011] [Accepted: 04/21/2011] [Indexed: 11/15/2022]
|
176
|
Synthesis and antimicrobial activity of some novel 5-alkyl-6-substituted uracils and related derivatives. Molecules 2011; 16:4764-74. [PMID: 21654581 PMCID: PMC6264406 DOI: 10.3390/molecules16064764] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 11/16/2022] Open
Abstract
6-chloro-5-ethyl-, n-propyl- and isopropyluracils 5a-c were efficiently prepared from the corresponding 5-alkybarbituric acids 3a-c via treatment with phosphorus oxychloride and N,N-dimethylaniline to yield the corresponding 5-alkyl-2,4,6-trichloro-pyrimidines 4a-c, which were selectively hydrolyzed by heating in 10% aqueous sodium hydroxide for 30 minutes. The reaction of compounds 5a-c with 1-substituted piperazines yielded the corresponding 5-alkyl-6-(4-substituted-1-piperazinyl)uracils 6a-j. The target 8-alkyltetrazolo[1,5-f]pyrimidine-5,7(3H,6H)-diones 7a-c were prepared via the reaction of 5a-c with sodium azide. Compounds 6a-j and 7a-c were tested for in vitro activities against a panel of Gram-positive and Gram-negative bacteria and the yeast-like pathogenic fungus Candida albicans. Compound 6h displayed potent broad-spectrum antibacterial activity, while compound 6b showed moderate activity against the Gram-positive bacteria. All the tested compounds were practically inactive against Candida albicans.
Collapse
|
177
|
|
178
|
McHenry CS. Breaking the rules: bacteria that use several DNA polymerase IIIs. EMBO Rep 2011; 12:408-14. [PMID: 21475246 DOI: 10.1038/embor.2011.51] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/16/2011] [Indexed: 02/02/2023] Open
Abstract
Studies using Escherichia coli DNA polymerase (Pol) III as the prototype for bacterial DNA replication have suggested that--in contrast to eukaryotes--one replicase performs all of the main functions at the replication fork. However, recent studies have revealed that replication in other bacteria requires two forms of Pol III, one of which seems to extend RNA primers by only a few nucleotides before transferring the product to the other polymerase--an arrangement analogous to that in eukaryotes. Yet another group of bacteria encode a second Pol III (ImuC), which apparently replaces a Pol Y-type polymerase (Pol V) that is required for induced mutagenesis in E. coli. A complete understanding of complex bacterial replicases will allow the simultaneous biochemical screening of all their components and, thus, the identification of new antibacterial compounds.
Collapse
Affiliation(s)
- Charles S McHenry
- Department of Chemistry and Biochemistry, University of Colorado, Chemistry 76, UCB 215, Boulder, Colorado 80309, USA.
| |
Collapse
|
179
|
Synthesis and antibacterial evaluation of novel 8-fluoro Norfloxacin derivatives as potential probes for methicillin and vancomycin-resistant Staphylococcus aureus. Eur J Med Chem 2011; 46:1232-44. [DOI: 10.1016/j.ejmech.2011.01.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/17/2011] [Accepted: 01/25/2011] [Indexed: 11/15/2022]
|
180
|
Pereira MP, Kelley SO. Maximizing the therapeutic window of an antimicrobial drug by imparting mitochondrial sequestration in human cells. J Am Chem Soc 2011; 133:3260-3. [PMID: 21322645 DOI: 10.1021/ja110246u] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The number of antimicrobial agents available for use in humans is limited by the difficulty of discovering chemical agents with selective toxicity to bacterial targets. Numerous small molecule inhibitors have potential as antimicrobial agents, yet their use has been prevented by high levels of toxic cross-reactivity in human cells. For example, methotrexate (Mtx) is an effective antimetabolite that exerts its effects by inhibiting DHFR. It is a potent antibacterial when accumulated intracellularly, but toxicity in human cells limits clinical utility in infectious disease treatment. Here, we describe peptide conjugates of Mtx that are sequestered into the mitochondria of human cells (mt-Mtx). This alteration in localization of Mtx, which directs it away from its enzyme target, decreases its toxicity in human cells by a factor of 10(3). Mt-Mtx, however, maintains activity against a variety of pathogenic gram-positive organisms, including methicillin-resistant Staphylococcus aureus (MRSA). The results from this proof-of-principle study describe a novel methodology for augmenting the antibacterial efficacy of drugs amenable to peptide conjugation while simultaneously decreasing their toxicity to the host organism.
Collapse
Affiliation(s)
- Mark P Pereira
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
181
|
Characterization and in vivo efficacy of inclusion complexes of sulphadoxine with β-cyclodextrin: calorimetric and spectroscopic studies. J INCL PHENOM MACRO 2011. [DOI: 10.1007/s10847-010-9919-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
182
|
Abstract
The discovery of novel small-molecule antibacterial drugs has been stalled for many years. The purpose of this review is to underscore and illustrate those scientific problems unique to the discovery and optimization of novel antibacterial agents that have adversely affected the output of the effort. The major challenges fall into two areas: (i) proper target selection, particularly the necessity of pursuing molecular targets that are not prone to rapid resistance development, and (ii) improvement of chemical libraries to overcome limitations of diversity, especially that which is necessary to overcome barriers to bacterial entry and proclivity to be effluxed, especially in Gram-negative organisms. Failure to address these problems has led to a great deal of misdirected effort.
Collapse
Affiliation(s)
- Lynn L Silver
- LL Silver Consulting, LLC, 955 S. Springfield Ave., Unit C403, Springfield, NJ 07081, USA.
| |
Collapse
|
183
|
|
184
|
Brötz-Oesterhelt H, Sass P. Postgenomic strategies in antibacterial drug discovery. Future Microbiol 2010; 5:1553-79. [DOI: 10.2217/fmb.10.119] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During the last decade the field of antibacterial drug discovery has changed in many aspects including bacterial organisms of primary interest, discovery strategies applied and pharmaceutical companies involved. Target-based high-throughput screening had been disappointingly unsuccessful for antibiotic research. Understanding of this lack of success has increased substantially and the lessons learned refer to characteristics of targets, screening libraries and screening strategies. The ‘genomics’ approach was replaced by a diverse array of discovery strategies, for example, searching for new natural product leads among previously abandoned compounds or new microbial sources, screening for synthetic inhibitors by targeted approaches including structure-based design and analyses of focused libraries and designing resistance-breaking properties into antibiotics of established classes. Furthermore, alternative treatment options are being pursued including anti-virulence strategies and immunotherapeutic approaches. This article summarizes the lessons learned from the genomics era and describes discovery strategies resulting from that knowledge.
Collapse
Affiliation(s)
- Heike Brötz-Oesterhelt
- AiCuris, Wuppertal, Germany, Institute for Pharmaceutical Biology, University of Duesseldorf, Universitätsstrasse 1, Building 26.23.U1, Germany
| | - Peter Sass
- Institute of Medical Microbiology, Immunology & Parasitology, Pharmaceutical Microbiology Section, University of Bonn, Germany
| |
Collapse
|
185
|
Jayaraman P, Sakharkar MK, Lim CS, Tang TH, Sakharkar KR. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int J Biol Sci 2010; 6:556-68. [PMID: 20941374 PMCID: PMC2952406 DOI: 10.7150/ijbs.6.556] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 09/16/2010] [Indexed: 11/15/2022] Open
Abstract
In this study the in vitro activities of seven antibiotics (ciprofloxacin, ceftazidime, tetracycline, trimethoprim, sulfamethoxazole, polymyxin B and piperacillin) and six phytochemicals (protocatechuic acid, gallic acid, ellagic acid, rutin, berberine and myricetin) against five P. aeruginosa isolates, alone and in combination are evaluated. All the phytochemicals under investigation demonstrate potential inhibitory activity against P. aeruginosa. The combinations of sulfamethoxazole plus protocatechuic acid, sulfamethoxazole plus ellagic acid, sulfamethoxazole plus gallic acid and tetracycline plus gallic acid show synergistic mode of interaction. However, the combinations of sulfamethoxazole plus myricetin shows synergism for three strains (PA01, DB5218 and DR3062). The synergistic combinations are further evaluated for their bactericidal activity against P. aeruginosa ATCC strain using time-kill method. Sub-inhibitory dose responses of antibiotics and phytochemicals individually and in combination are presented along with their interaction network to suggest on the mechanism of action and potential targets for the phytochemicals under investigation. The identified synergistic combinations can be of potent therapeutic value against P. aeruginosa infections. These findings have potential implications in delaying the development of resistance as the antibacterial effect is achieved with lower concentrations of both drugs (antibiotics and phytochemicals).
Collapse
Affiliation(s)
- Premkumar Jayaraman
- Biomedical Engineering Research Centre, Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|
186
|
Jayaraman P, Sakharkar KR, Sing LC, Chow VTK, Sakharkar MK. Insights into antifolate activity of phytochemicals against Pseudomonas aeruginosa. J Drug Target 2010; 19:179-88. [PMID: 20429775 DOI: 10.3109/10611861003801867] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic drug resistant pathogen. Drug interaction studies for phytochemicals (protocatechuic acid (PA), gallic acid (GA), quercetin (QUER), and myricetin (MYR)) in combination with antifolates (sulfamethoxazole (SMX) and trimethoprim (TMP)) are presented. Our results show that the combinations of SMX and phytochemicals are synergistic, whereas TMP in combination with phytochemicals results in additive mode of interaction. Molecular docking of phytochemicals in the active site of modeled P. aeruginosa dihydrofolate reductase (DHFR), an important enzyme in the folic acid biosynthesis pathway, shows that the phytochemicals QUER and MYR dock in the active site of P. aeruginosa DHFR with promoted binding at the NADP site, PA, and GA dock in the active site of P. aeruginosa DHFR with promoted binding at the folate binding site. Possible mode of action of these phytochemicals as anti-DHFR compounds in this bacterium is suggested. Taken together, the above findings provide novel insights to mode of interactions of these phytochemicals with antibiotics and may have significance as prospective leads in the development of antipseudomonal drug developments.
Collapse
Affiliation(s)
- Premkumar Jayaraman
- Biomedical Engineering Research Centre, Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|
187
|
Abstract
About 20 proteins are known to modify their activity upon interaction with C60. Their structures are present in a database that includes more than 1200 protein structures selected as possible targets for drugs and to represent the entire Protein Data Bank. The set was examined with an algorithm that appraises quantitatively the interaction of C60 and the surface of each protein. The redundancy of the set allows to establish the predictive power of the approach that finds explicitly the most probable site where C60 docks on each protein. About 80% of the known fullerene binding proteins fall in the top 10% of scorers. The close match between the model and experiments vouches for the accuracy of the model and validates its predictions. The sites of docking are shown and discussed in view of the existing experimental data available for protein-C60 interaction. A closer exam of the 10 top scorers is discussed in detail. New proteins that can interact with C60 are identified and discussed for possible future applications as drug targets and fullerene derivatives bioconjugate materials.
Collapse
Affiliation(s)
- Matteo Calvaresi
- Dipartimento di Chimica "G. Ciamician", Universita' di Bologna, V. F. Selmi 2, 40126 Bologna, Italy.
| | | |
Collapse
|
188
|
Dallmann HG, Fackelmayer OJ, Tomer G, Chen J, Wiktor-Becker A, Ferrara T, Pope C, Oliveira MT, Burgers PMJ, Kaguni LS, McHenry CS. Parallel multiplicative target screening against divergent bacterial replicases: identification of specific inhibitors with broad spectrum potential. Biochemistry 2010; 49:2551-62. [PMID: 20184361 DOI: 10.1021/bi9020764] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Typically, biochemical screens that employ pure macromolecular components focus on single targets or a small number of interacting components. Researches rely on whole cell screens for more complex systems. Bacterial DNA replicases contain multiple subunits that change interactions with each stage of a complex reaction. Thus, the actual number of targets is a multiple of the proteins involved. It is estimated that the overall replication reaction includes up to 100 essential targets, many suitable for discovery of antibacterial inhibitors. We have developed an assay, using purified protein components, in which inhibitors of any of the essential targets can be detected through a common readout. Use of purified components allows each protein to be set within the linear range where the readout is proportional to the extent of inhibition of the target. By performing assays against replicases from model Gram-negative and Gram-positive bacteria in parallel, we show that it is possible to distinguish compounds that inhibit only a single bacterial replicase from those that exhibit broad spectrum potential.
Collapse
Affiliation(s)
- H Garry Dallmann
- Department of Chemistry and Biochemistry, University of Colorado, Campus Box 215, Boulder, Colorado 80309, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Devasahayam G, Scheld WM, Hoffman PS. Newer antibacterial drugs for a new century. Expert Opin Investig Drugs 2010; 19:215-34. [PMID: 20053150 DOI: 10.1517/13543780903505092] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
IMPORTANCE OF THE FIELD Antibacterial drug discovery and development has slowed considerably in recent years, with novel classes discovered decades ago and regulatory approvals tougher to get. Traditional approaches and the newer genomic mining approaches have not yielded novel classes of antibacterial compounds. Instead, improved analogues of existing classes of antibacterial drugs have been developed by improving potency, minimizing resistance and alleviating toxicity. AREAS COVERED IN THIS REVIEW This article is a comprehensive review of newer classes of antibacterial drugs introduced or approved after year 2000. WHAT THE READER WILL GAIN It describes their mechanisms of action/resistance, improved analogues, spectrum of activity and clinical trials. It also discusses new compounds in development with novel mechanisms of action, as well as novel unexploited bacterial targets and strategies that may pave the way for combating drug resistance and emerging pathogens in the twenty-first century. TAKE HOME MESSAGE The outlook of antibacterial drug discovery, though challenging, may not be insurmountable in the years ahead, with legislation on incentives and funding introduced for developing an antimicrobial discovery program and efforts to conserve antibacterial drug use.
Collapse
Affiliation(s)
- Gina Devasahayam
- University of Virginia, Department of Medicine, Room 2146 MR4 Bldg, 409 Lane Rd, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
190
|
Lee J, Yennawar NH, Gam J, Benkovic SJ. Kinetic and structural characterization of dihydrofolate reductase from Streptococcus pneumoniae. Biochemistry 2010; 49:195-206. [PMID: 19950924 DOI: 10.1021/bi901614m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drug resistance associated with dihydrofolate reductase (DHFR) has emerged as a critical issue in the treatment of bacterial infections. In our efforts to understand the mechanism of a drug-resistant dihydrofolate reductase (DHFR) from a pathogenic bacterial source, we report the first kinetic characterization of Streptococcus pneumoniae DHFR (spDHFR) along with its X-ray structure. This study revealed that the kinetic properties of spDHFR were significantly different from those of Escherichia coli DHFR. The product (tetrahydrofolate) dissociation step that is the rate-limiting step in E. coli DHFR is significantly accelerated in spDHFR so that hydride transfer or a preceding step is rate-limiting. Comparison of the binding parameters of this enzyme to those of a mutant spDHFR (Sp9) confirmed that the Leu100 residue in spDHFR is the critical element for the trimethoprim (TMP) resistance. Steady-state kinetics exhibited a pH dependence in k(cat), which prompted us to elucidate the role of the new catalytic residue (His33) in the active site of spDHFR. Structural data of the Sp9 mutant in complex with NADPH and methotrexate confirmed the participation of His33 in a hydrogen bonding network involving a water molecule, the hydroxyl group of Thr119, and the carboxylate ion of Glu30. Sequence analysis of the DHFR superfamily revealed that the His residue is the major amino acid component at this position and is found mostly in pathogenic bacterial DHFRs. A mutation of Val100 to Leu demonstrated a steric clash of the leucine side chain with the side chains of Ile8 and Phe34, rationalizing weaker binding of trimethoprim to Leu100 DHFR. Understanding the role of specific amino acids in the active site coupled with detailed structural analysis will inform us on how to better design inhibitors targeting drug-resistant pathogenic bacterial DHFRs.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Department of Chemistry, 414 Wartik Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
191
|
Singh RK, Rai D, Yadav D, Bhargava A, Balzarini J, De Clercq E. Synthesis, antibacterial and antiviral properties of curcumin bioconjugates bearing dipeptide, fatty acids and folic acid. Eur J Med Chem 2010; 45:1078-86. [PMID: 20034711 PMCID: PMC7115498 DOI: 10.1016/j.ejmech.2009.12.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 12/01/2009] [Accepted: 12/04/2009] [Indexed: 12/25/2022]
Abstract
Curcumin bioconjugates, viz. di-O-tryptophanylphenylalanine curcumin (2), di-O-decanoyl curcumin (3), di-O-pamitoyl curcumin (4), di-O-bis-(γ,γ)folyl curcumin (6), C4-ethyl-O-γ-folyl curcumin (8) and 4-O-ethyl-O-γ-folyl curcumin (10) have been synthesized and tested for their antibacterial and antiviral activities. The conjugates 2, 3, 4, 6 and 8 have shown very promising antibacterial activity with MIC ranging between 0.09 and 0.67 μM against Gram-positive cocci and Gram-negative bacilli. Further, the conjugates 2, 3, 6, 8 and 10 have been screened for their antiviral activities against HSV, VSV, FIPV, PIV-3, RSV and FHV and the molecules 2 and 3 have shown good results with EC50 0.011 μM and 0.029 μM against VSV and FIPV/FHV, respectively. However, the molecules did not show expected results against HIV-1 IIIB and ROD strains in MTT assay.
Collapse
Affiliation(s)
- Ramendra K. Singh
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad 211002, India
- Corresponding author. Tel./fax: +91 0532 2461005.
| | - Diwakar Rai
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad 211002, India
| | - Dipti Yadav
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad 211002, India
| | - A. Bhargava
- Department of Microbiology, MLN Medical College, Allahabad, India
| | - J. Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| | - E. De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
192
|
Van Bambeke F, Glupczynski Y, Mingeot-Leclercq MP, Tulkens PM. Mechanisms of action. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00130-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
193
|
Kairys V, Gilson MK, Lather V, Schiffer CA, Fernandes MX. Toward the design of mutation-resistant enzyme inhibitors: further evaluation of the substrate envelope hypothesis. Chem Biol Drug Des 2009; 74:234-45. [PMID: 19703025 DOI: 10.1111/j.1747-0285.2009.00851.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies have shown the usefulness of the substrate envelope concept in the analysis and prediction of drug resistance profiles for human immunodeficiency virus protease mutants. This study tests its applicability to several other therapeutic targets: Abl kinase, chitinase, thymidylate synthase, dihydrofolate reductase, and neuraminidase. For the targets where many (> or =6) mutation data are available to compute the average mutation sensitivity of inhibitors, the total volume of an inhibitor molecule that projects outside the substrate envelope V(out), is found to correlate with average mutation sensitivity. Analysis of a locally computed volume suggests that the same correlation would hold for the other targets, if more extensive mutation data sets were available. It is concluded that the substrate envelope concept offers a promising and easily implemented computational tool for the design of drugs that will tend to resist mutations. Software implementing these calculations is provided with the 'Supporting Information'.
Collapse
Affiliation(s)
- Visvaldas Kairys
- Centro de Química da Madeira, Departamento de Química, Universidade da Madeira, 9000-390 Funchal, Portugal
| | | | | | | | | |
Collapse
|
194
|
Abstract
Timely provision of adequate antimicrobial coverage in an initial anti-infective treatment regimen results in optimal outcomes for bacterial and fungal infections. However, selection of appropriate antimicrobial regimens for treatment of infections in the intensive care unit (ICU) can be challenging due to expansion of resistance, which typically requires use of multidrug anti-infective regimens to provide adequate coverage of important pathogens commonly seen in the ICU setting. Indeed, a recent additional call to action by the Infectious Diseases Society of America (IDSA) has enforced the impact that antimicrobial-resistant pathogens can have on patient care. The term ESKAPE has been coined by this IDSA group to refer to Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter species, the etiologic causes of the majority of hospital-acquired infections in the United States that are able to effectively "escape" our antibiotic arsenal and that also mandate discovery of new antimicrobial agents. This article reviews select antibacterial agents and an antifungal agent in late stages of clinical development that appear to have potential for treatment of infections in the ICU.
Collapse
|
195
|
Gangjee A, Li W, Kisliuk RL, Cody V, Pace J, Piraino J, Makin J. Design, synthesis, and X-ray crystal structure of classical and nonclassical 2-amino-4-oxo-5-substituted-6-ethylthieno[2,3-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors and as potential antitumor agents. J Med Chem 2009; 52:4892-902. [PMID: 19719239 DOI: 10.1021/jm900490a] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-{4-[(2-Amino-6-ethyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-5-yl)thio]benzoyl}-L-glutamic acid 2 and 13 nonclassical analogues 2a-2m were synthesized as potential dual thymidylate synthase (TS) and dihydrofolate reductase (DHFR) inhibitors and as antitumor agents. The key intermediate in the synthesis was 2-amino-6-ethyl-5-iodothieno[2,3-d]pyrimidin-4(3H)-one, 7, to which various arylthiols were attached at the 5-position. Coupling 8 with L-glutamic acid diethyl ester and saponification afforded 2. X-ray crystal structures of 2 and 1 (the 6-methyl analogue of 2), DHFR, and NADPH showed for the first time that the thieno[2,3-d]pyrimidine ring binds in a "folate" mode. Compound 2 was an excellent dual inhibitor of human TS (IC50 = 54 nM) and human DHFR (IC50 = 19 nM) and afforded nanomolar GI50 values against tumor cells in culture. The 6-ethyl substitution in 2 increases both the potency (by 2-3 orders of magnitude) as well as the spectrum of tumor inhibition in vitro compared to the 6-methyl analogue 1. Some of the nonclassical analogues were potent and selective inhibitors of DHFR from Toxoplasma gondii.
Collapse
Affiliation(s)
- Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA.
| | | | | | | | | | | | | |
Collapse
|
196
|
In vitro activities of three new dihydrofolate reductase inhibitors against clinical isolates of gram-positive bacteria. Antimicrob Agents Chemother 2009; 53:4949-52. [PMID: 19738027 DOI: 10.1128/aac.00845-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BAL0030543, BAL0030544, and BAL0030545 are dihydrophthalazine inhibitors with in vitro potency against gram-positive pathogens. The MIC(50)s for methicillin (meticillin)-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, hetero-vancomycin-resistant Staphylococcus aureus, and vancomycin-resistant Staphylococcus aureus (VISA) range from 0.015 to 0.25 microg/ml (MIC(90)s < or = 0.5 microg/ml). MIC(50)s for beta-hemolytic streptococci range from 0.03 to 0.06 microg/ml, MIC(50)s for Streptococcus pneumoniae range from 0.06 to 0.12 microg/ml, MIC(50)s for Listeria monocytogenes range from 0.015 to 0.06 microg/ml, and MIC(50)s for Streptococcus mitis are < or = 0.015 microg/ml. These three dihydrophthalazine antifolates have improved potency compared to that of trimethoprim and activity against gram-positive pathogens resistant to other drug classes. (This work was presented in part at the 48th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC, 2008.).
Collapse
|
197
|
Cattoir V, Huynh TM, Bourdon N, Auzou M, Leclercq R. Trimethoprim resistance genes in vancomycin-resistant Enterococcus faecium clinical isolates from France. Int J Antimicrob Agents 2009; 34:390-2. [PMID: 19619988 DOI: 10.1016/j.ijantimicag.2009.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
|
198
|
Krievins D, Brandt R, Hawser S, Hadvary P, Islam K. Multicenter, randomized study of the efficacy and safety of intravenous iclaprim in complicated skin and skin structure infections. Antimicrob Agents Chemother 2009; 53:2834-40. [PMID: 19414572 PMCID: PMC2704699 DOI: 10.1128/aac.01383-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/29/2008] [Accepted: 04/29/2009] [Indexed: 01/22/2023] Open
Abstract
Iclaprim is a novel antibacterial agent that is currently in development for the treatment of complicated skin and skin structure infections (cSSSI). Iclaprim specifically and selectively inhibits bacterial dihydrofolate reductase, a critical enzyme in the bacterial folate pathway, and exhibits an extended spectrum of activity against various resistant pathogens, including methicillin (meticillin)-resistant Staphylococcus aureus (MRSA). The objective of this randomized, double-blind phase II study was to compare the efficacy and safety of iclaprim to those of vancomycin in patients with cSSSI. Patients were randomized to receive 0.8 mg iclaprim/kg of body weight, 1.6 mg/kg iclaprim, or 1 g vancomycin twice a day for 10 days. Clinical cure rates for the 0.8- and 1.6-mg/kg-iclaprim treatment groups were comparable to that for the vancomycin treatment group (26/28 patients [92.9%], 28/31 patients [90.3%], and 26/28 patients [92.9%], respectively). Iclaprim also showed high microbiological eradication rates. Iclaprim exhibited an eradication rate of 80% and 72% versus 59% observed with vancomycin for S. aureus, the pathogen most frequently isolated at baseline. Five MRSA cases were observed, four in the 0.8-mg/kg-iclaprim arm and one in the vancomycin arm, and all were both clinically and microbiologically cured. Iclaprim exhibited a safety profile similar to that of vancomycin, an established drug for the treatment of cSSSI. Results from this study indicate that iclaprim is a promising new therapy for the treatment of cSSSI, in particular those caused by S. aureus, including MRSA.
Collapse
Affiliation(s)
- D Krievins
- Arpida Ltd., Duggingerstrasse 23, Reinach, Switzerland
| | | | | | | | | |
Collapse
|
199
|
Bourne CR, Bunce RA, Bourne PC, Berlin KD, Barrow EW, Barrow WW. Crystal structure of Bacillus anthracis dihydrofolate reductase with the dihydrophthalazine-based trimethoprim derivative RAB1 provides a structural explanation of potency and selectivity. Antimicrob Agents Chemother 2009; 53:3065-73. [PMID: 19364848 PMCID: PMC2704665 DOI: 10.1128/aac.01666-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/03/2009] [Accepted: 04/06/2009] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis possesses an innate resistance to the antibiotic trimethoprim due to poor binding to dihydrofolate reductase (DHFR); currently, there are no commercial antibacterials that target this enzyme in B. anthracis. We have previously reported a series of dihydrophthalazine-based trimethoprim derivatives that are inhibitors for this target. In the present work, we have synthesized one compound (RAB1) displaying favorable 50% inhibitory concentration (54 nM) and MIC (< or =12.8 microg/ml) values. RAB1 was cocrystallized with the B. anthracis DHFR in the space group P2(1)2(1)2(1), and X-ray diffraction data were collected to a 2.3-A resolution. Binding of RAB1 causes a conformational change of the side chain of Arg58 and Met37 to accommodate the dihydrophthalazine moiety. Unlike the natural substrate or trimethoprim, the dihydrophthalazine group provides a large hydrophobic anchor that embeds within the DHFR active site and accounts for its selective inhibitory activity against B. anthracis.
Collapse
Affiliation(s)
- Christina R Bourne
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | |
Collapse
|
200
|
Efficacy of iclaprim against wild-type and thymidine kinase-deficient methicillin-resistant Staphylococcus aureus isolates in an in vitro fibrin clot model. Antimicrob Agents Chemother 2009; 53:3635-41. [PMID: 19564362 DOI: 10.1128/aac.00325-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iclaprim is a novel diaminopyrimidine antibiotic that is active against methicillin-resistant Staphylococcus aureus (MRSA). However, it is known that the activity of diaminopyrimidines against S. aureus is antagonized by thymidine through uptake and conversion to thymidylate by thymidine kinase. Unlike with humans, for whom thymidine levels are low, thymidine levels in rodents are high, thus precluding the accurate evaluation of iclaprim efficacy in animal models. We have studied the bactericidal activity of iclaprim against an isogenic pair of MRSA isolates, the wild-type parent AW6 and its thymidine kinase-deficient mutant AH1252, in an in vitro fibrin clot model. Clots, which were aimed at mimicking vegetation structure, were made from human or rat plasma containing either the parent AW6 or the mutant AH1252, and they were exposed to homologous serum supplemented with iclaprim (3.5 microg/ml), trimethoprim-sulfamethoxazole (TMP-SMX; 8/40 microg/ml), vancomycin (40 microg/ml), or saline, each of which was added one time for 48 h. In rat clots, iclaprim and TMP-SMX were bacteriostatic against the parent, AW6. In contrast, they were bactericidal (> or = 3 log10 CFU/clot killing of the original inoculum) against the mutant AH1252. Vancomycin was the most active drug against AW6 (P < 0.05), but it showed an activity similar those of iclaprim and TMP-SMX against AH1252. In human clots, iclaprim was bactericidal against both AW6 and AH1252 strains and was as effective as TMP-SMX and vancomycin (P > 0.05). Future studies of animals using simulated human kinetics of iclaprim and thymidine kinase-deficient MRSA, which eliminate the thymidine-induced confounding effect, are warranted to support the use of iclaprim in the treatment of severe MRSA infections in humans.
Collapse
|