151
|
Tsujimoto H, Kotsyfakis M, Francischetti IMB, Eum JH, Strand MR, Champagne DE. Simukunin from the salivary glands of the black fly Simulium vittatum inhibits enzymes that regulate clotting and inflammatory responses. PLoS One 2012; 7:e29964. [PMID: 22383955 PMCID: PMC3285612 DOI: 10.1371/journal.pone.0029964] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 12/09/2011] [Indexed: 01/08/2023] Open
Abstract
Background Black flies (Diptera: Simuliidae) feed on blood, and are important vectors of Onchocerca volvulus, the etiolytic agent of River Blindness. Blood feeding depends on pharmacological properties of saliva, including anticoagulation, but the molecules responsible for this activity have not been well characterized. Methodology/Principal Findings Two Kunitz family proteins, SV-66 and SV-170, were identified in the sialome of the black fly Simulium vittatum. As Kunitz proteins are inhibitors of serine proteases, we hypothesized that SV-66 and/or −170 were involved in the anticoagulant activity of black fly saliva. Our results indicated that recombinant (r) SV-66 but not rSV-170 inhibited plasma coagulation. Mutational analysis suggested that SV-66 is a canonical BPTI-like inhibitor. Functional assays indicated that rSV66 reduced the activity of ten serine proteases, including several involved in mammalian coagulation. rSV-66 most strongly inhibited the activity of Factor Xa, elastase, and cathepsin G, exhibited lesser inhibitory activity against Factor IXa, Factor XIa, and plasmin, and exhibited no activity against Factor XIIa and thrombin. Surface plasmon resonance studies indicated that rSV-66 bound with highest affinity to elastase (KD = 0.4 nM) and to the active site of FXa (KD = 3.07 nM). We propose the name “Simukunin” for this novel protein. Conclusions We conclude that Simukunin preferentially inhibits Factor Xa. The inhibition of elastase and cathepsin G further suggests this protein may modulate inflammation, which could potentially affect pathogen transmission.
Collapse
Affiliation(s)
- Hitoshi Tsujimoto
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, Georgia, United States of America
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Center of the Academy of Sciences of Czech Republic, Ceske Budejovice, Czech Republic
| | - Ivo M. B. Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jai Hoon Eum
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
| | - Michael R. Strand
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, Georgia, United States of America
| | - Donald E. Champagne
- Department of Entomology, The University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
152
|
Dubois AV, Gauthier A, Bréa D, Varaigne F, Diot P, Gauthier F, Attucci S. Influence of DNA on the activities and inhibition of neutrophil serine proteases in cystic fibrosis sputum. Am J Respir Cell Mol Biol 2012; 47:80-6. [PMID: 22343221 DOI: 10.1165/rcmb.2011-0380oc] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Uncontrolled proteolysis by neutrophil serine proteases (NSPs) in lung secretions is a hallmark of cystic fibrosis (CF). We have shown that the active neutrophil elastase, protease 3, and cathepsin G in CF sputum resist inhibition in part by exogenous protease inhibitors. This resistance may be due to their binding to neutrophil extracellular traps (NETs) secreted by the activated neutrophils in CF sputum and to genomic DNA released from senescent and dead neutrophils. Treating CF sputum with DNase dramatically increases its elastase activity, which can then be stoichiometrically inhibited by exogenous elastase inhibitors. However, DNase treatment does not increase the activities of protease 3 and cathepsin G, indicating their different distribution and/or binding in CF sputum. Purified blood neutrophils secrete NETs when stimulated by the opportunistic CF bacteria Pseudomonas aeruginosa and Staphylococcus aureus. The activities of the three proteases were unchanged in these conditions, but subsequent DNase treatment produced a dramatic increase in all three proteolytic activities. Neutrophils activated with a calcium ionophore did not secrete NETs but released huge amounts of active proteases whose activities were not modified by DNase. We conclude that NETs are reservoirs of active proteases that protect them from inhibition and maintain them in a rapidly mobilizable status. Combining the effects of protease inhibitors with that of DNA-degrading agents could counter the deleterious proteolytic effects of NSPs in CF lung secretions.
Collapse
Affiliation(s)
- Alice V Dubois
- INSERM U "Pathologies Respiratoires: protéolyse & aérosolthérapie," Tours, France
| | | | | | | | | | | | | |
Collapse
|
153
|
SLPI and trappin-2 as therapeutic agents to target airway serine proteases in inflammatory lung diseases: current and future directions. Biochem Soc Trans 2012; 39:1441-6. [PMID: 21936830 DOI: 10.1042/bst0391441] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is now clear that NSPs (neutrophil serine proteases), including elastase, Pr3 (proteinase 3) and CatG (cathepsin G) are major pathogenic determinants in chronic inflammatory disorders of the lungs. Two unglycosylated natural protease inhibitors, SLPI (secretory leucocyte protease inhibitor) and elafin, and its precursor trappin-2 that are found in the lungs, have therapeutic potential for reducing the protease-induced inflammatory response. This review examines the multifaceted roles of SLPI and elafin/trappin-2 in the context of their possible use as inhaled drugs for treating chronic lung diseases such as CF (cystic fibrosis) and COPD (chronic obstructive pulmonary disease).
Collapse
|
154
|
Schreiber A, Pham CTN, Hu Y, Schneider W, Luft FC, Kettritz R. Neutrophil serine proteases promote IL-1β generation and injury in necrotizing crescentic glomerulonephritis. J Am Soc Nephrol 2012; 23:470-82. [PMID: 22241891 DOI: 10.1681/asn.2010080892] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated necrotizing crescentic GN (NCGN) is incompletely understood. Dipeptidyl peptidase I (DPPI) is a cysteine protease required for the activation of neutrophil serine proteases (NSPs) cathepsin G, neutrophil elastase, and proteinase 3, which are enzymes that modulate inflammation. We used a mouse model of anti-myeloperoxidase (MPO) antibody-induced NCGN to determine whether active NSPs contribute to its pathogenesis. MPO-deficient animals immunized with murine MPO, irradiated, and transplanted with wild-type bone marrow developed NCGN. In contrast, transplantation with bone marrow that lacked DPPI or lacked both neutrophil elastase and proteinase 3 protected mice from NCGN induced by anti-MPO antibody. The kidneys of mice reconstituted with DPPI-deficient bone marrow generated significantly less IL-1β than did those of mice reconstituted with wild-type bone marrow; similarly, in vitro, DPPI-deficient monocytes produced significantly less IL-1β in response to anti-MPO antibody than did wild-type monocytes. This reduction in IL-1β was NSP dependent; exogenous addition of PR3 restored IL-β production in DPPI-deficient monocytes. Last, the IL-1 receptor antagonist anakinra protected animals against anti-MPO antibody-induced NCGN (16.7%±6.0% versus 2.4%±1.7% crescents), suggesting that IL-1β is a critical inflammatory mediator in this model. These data suggest that the development of anti-MPO antibody-induced NCGN requires NSP-dependent IL-1β generation and that these processes may provide therapeutic targets for ANCA-mediated diseases in humans.
Collapse
Affiliation(s)
- Adrian Schreiber
- Max Delbrück Center for Molecular Medicine, Charité Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
155
|
Laugisch O, Schacht M, Guentsch A, Kantyka T, Sroka A, Stennicke HR, Pfister W, Sculean A, Potempa J, Eick S. Periodontal pathogens affect the level of protease inhibitors in gingival crevicular fluid. Mol Oral Microbiol 2011; 27:45-56. [PMID: 22230465 DOI: 10.1111/j.2041-1014.2011.00631.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In periodontitis, an effective host-response is primarily related to neutrophils loaded with serine proteases, including elastase (NE) and protease 3 (PR3), the extracellular activity of which is tightly controlled by endogenous inhibitors. In vitro these inhibitors are degraded by gingipains, cysteine proteases produced by Porphyromonas gingivalis. The purpose of this study was to determine the level of selected protease inhibitors in gingival crevicular fluid (GCF) in relation to periodontal infection. The GCF collected from 31 subjects (nine healthy controls, seven with gingivitis, five with aggressive periodontitis and 10 with chronic periodontitis) was analyzed for the levels of elafin and secretory leukocyte protease inhibitor (SLPI), two main tissue-derived inhibitors of neutrophil serine proteases. In parallel, activity of NE, PR3 and arginine-specific gingipains (Rgps) in GCF was measured. Finally loads of P. gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola were determined. The highest values of elafin were found in aggressive periodontitis and the lowest in controls. The quantity of elafin correlated positively with the load of P. gingivalis, Ta. forsythia and Tr. denticola, as well as with Rgps activity. In addition, NE activity was positively associated with the counts of those bacterial species, but not with the amount of elafin. In contrast, the highest concentrations of SLPI were found in periodontally healthy subjects whereas amounts of this inhibitor were significantly decreased in patients infected with P. gingivalis. Periodontopathogenic bacteria stimulate the release of NE and PR3, which activities escape the control through degradation of locally produced inhibitors (SLPI and elafin) by host-derived and bacteria-derived proteases.
Collapse
Affiliation(s)
- O Laugisch
- Department of Periodontology, Dental School, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Serine protease inhibitor, 4-(2-aminoethyl)-benzene sulfonyl fluoride, impairs IL-12-induced activation of pSTAT4β, NFκB, and select pro-inflammatory mediators from estrogen-treated mice. Immunobiology 2011; 216:1264-73. [DOI: 10.1016/j.imbio.2011.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 07/03/2011] [Indexed: 11/23/2022]
|
157
|
Abstract
Neutrophils (also called polymorphonuclear leukocytes) are the most abundant leukocytes whose primary purpose as anti-microbial professional phagocytes is to kill extracellular pathogens. Neutrophils and macrophages are phagocytic cell types that along with other cells effectively link the innate and adaptive arms of the immune response, and help promote inflammatory resolution and tissue healing. Found extensively within the gingival crevice and epithelium, neutrophils are considered the key protective cell type in the periodontal tissues. Histopathology of periodontal lesions indicates that neutrophils form a 'wall' between the junctional epithelium and the pathogen-rich dental plaque which functions as a robust anti-microbial secretory structure and as a unified phagocytic apparatus. However, neutrophil protection is not without cost and is always considered a two-edged sword in that overactivity of neutrophils can cause tissue damage and prolong the extent and severity of inflammatory periodontal diseases. This review will cover the innate and inflammatory functions of neutrophils, and describe the importance and utility of neutrophils to the host response and the integrity of the periodontium in health and disease.
Collapse
Affiliation(s)
- David A Scott
- Center for Oral Health and Systemic Disease, University of Louisville, Louisville, KY, USA.
| | | |
Collapse
|
158
|
Estácio SG, Moreira R, Guedes RC. Characterizing the Dynamics and Ligand-Specific Interactions in the Human Leukocyte Elastase through Molecular Dynamics Simulations. J Chem Inf Model 2011; 51:1690-702. [DOI: 10.1021/ci200076k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sílvia G. Estácio
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rita C. Guedes
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
159
|
Lucas SD, Costa E, Guedes RC, Moreira R. Targeting COPD: advances on low-molecular-weight inhibitors of human neutrophil elastase. Med Res Rev 2011; 33 Suppl 1:E73-101. [PMID: 21681767 DOI: 10.1002/med.20247] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major increasing health problem and the World Health Organization (WHO) reports COPD as the fifth leading cause of death worldwide. COPD refers to a condition of inflammation and progressive weakening of the structure of the lung as well as irreversible narrowing of the airways. Current treatment is only palliative and no available drug halts the progression of the disease. Human neutrophil elastase (HNE) is a serine protease, which plays a major role in the COPD inflammatory process. The protease/anti-protease imbalance leads to an excess of extracellular HNE hydrolyzing elastin, the structural protein that confers elasticity to the lung tissue. Although HNE was identified as a therapeutic target for COPD more than 30 years ago, only Sivelestat (ONO-5046), an HNE inhibitor from Ono Pharmaceutical, has been approved for clinical use. Nevertheless, Sivelestat is only approved in Japan and its development in the USA was terminated in 2003. Other inhibitors in pre-clinical or phase I trials were discontinued for various reasons. Hence, there is an urgent need for low-molecular-weight synthetic elastase inhibitors and the present review discusses the recent advances on this field covering acylating agents, transition-state inhibitors, mechanism-based inhibitors, relevant natural products, and major patent disclosures.
Collapse
Affiliation(s)
- Susana D Lucas
- Research Institute for Medicines and Pharmaceutical Sciences, iMed UL, Faculty of Pharmacy, University of Lisbon, Av Prof Gama Pinto, 1649-003 Lisbon, Portugal
| | | | | | | |
Collapse
|
160
|
Antitussive activity of Pseudostellaria heterophylla (Miq.) Pax extracts and improvement in lung function via adjustment of multi-cytokine levels. Molecules 2011; 16:3360-70. [PMID: 21512444 PMCID: PMC6260644 DOI: 10.3390/molecules16043360] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 01/19/2023] Open
Abstract
Pseudostellaria heterophylla (Miq.) Pax is one of the most widespread herbal and healthcare products in China. Extensive clinical use has shown that it has functions which “strengthens qi and generates saliva, moistens the lung and relieves cough”. The ethyl acetate fraction extracted from the roots of the plant Pseudostellaria heterophylla exhibited a dose-dependent antitussive effect between 100 to 500 mg/kg. At a dose of 400 mg/kg, the ethyl acetate fraction treatment markedly prolonged the cough latent period and reduced the number of coughs in a guinea pig model induced by citric acid. Fall lung airway resistance, rise in dynamic lung compliance, decreased serum levels of IL-8, GM-CSF, TNF-α, and ET-1 in rat model of stable phase chronic obstructive pulmonary disease induced by cigarette smoke exposure were also observed. These results suggest that ethyl acetate fraction has antitussive activity related to its improvement in lung function via attenuation of airway inflammation by adjustment of multi-cytokine levels.
Collapse
|
161
|
Barnes TC, Cross A, Anderson ME, Edwards SW, Moots RJ. Relative α₁-anti-trypsin deficiency in systemic sclerosis. Rheumatology (Oxford) 2011; 50:1373-8. [PMID: 21454304 PMCID: PMC3133481 DOI: 10.1093/rheumatology/ker123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objective. Neutrophil elastase is secreted by neutrophils during activation and circulates in the plasma where it can play a role in inflammation and fibrosis. This study examines the role of neutrophil elastase in SSc, a systemic CTD that is typified by vascular dysfunction, tissue fibrosis and inflammation. Methods. Serum neutrophil elastase and α1-anti-trypsin concentrations were assessed in SSc patients and healthy controls by ELISA. Serum neutrophil elastase activity was assessed by the elastase-dependent conversion of methoxy-succinyl-alanyl-alanyl-prolyl-valyl-p-nitroanilide to p-nitroanilide using a colourimetric assay. Elastase concentration and activity were correlated with clinical disease features. Results. Serum neutrophil elastase concentration and activity were equivalent in patients and controls; however, in SSc serum, there was an increase in elastase activity for each unit of elastase concentration (P = 0.03). This was due to a decrease in serum α1-anti-trypsin concentrations (P = 0.04). Serum elastase concentration (P = 0.03) and activity (P = 0.02) were significantly lower in RNP-positive patients and serum elastase concentrations were lower in ANA-positive patients (P = 0.003). Conclusions. Relative deficiency in serum α1-anti-trypsin concentrations in SSc could have important and pathogenically relevant effects since elastase has pro-inflammatory and pro-fibrotic roles. Elastase inhibitors are available in clinical practice and could represent potential therapeutic options in SSc.
Collapse
Affiliation(s)
- Theresa C. Barnes
- Department of Rheumatology, Institute of Chronic Disease and Ageing, Clinical Sciences Centre, Aintree University Hospital and Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Andy Cross
- Department of Rheumatology, Institute of Chronic Disease and Ageing, Clinical Sciences Centre, Aintree University Hospital and Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Marina E. Anderson
- Department of Rheumatology, Institute of Chronic Disease and Ageing, Clinical Sciences Centre, Aintree University Hospital and Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Steven W. Edwards
- Department of Rheumatology, Institute of Chronic Disease and Ageing, Clinical Sciences Centre, Aintree University Hospital and Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Robert J. Moots
- Department of Rheumatology, Institute of Chronic Disease and Ageing, Clinical Sciences Centre, Aintree University Hospital and Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
162
|
Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev 2011; 62:726-59. [PMID: 21079042 DOI: 10.1124/pr.110.002733] [Citation(s) in RCA: 604] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polymorphonuclear neutrophils are the first cells recruited to inflammatory sites and form the earliest line of defense against invading microorganisms. Neutrophil elastase, proteinase 3, and cathepsin G are three hematopoietic serine proteases stored in large quantities in neutrophil cytoplasmic azurophilic granules. They act in combination with reactive oxygen species to help degrade engulfed microorganisms inside phagolysosomes. These proteases are also externalized in an active form during neutrophil activation at inflammatory sites, thus contributing to the regulation of inflammatory and immune responses. As multifunctional proteases, they also play a regulatory role in noninfectious inflammatory diseases. Mutations in the ELA2/ELANE gene, encoding neutrophil elastase, are the cause of human congenital neutropenia. Neutrophil membrane-bound proteinase 3 serves as an autoantigen in Wegener granulomatosis, a systemic autoimmune vasculitis. All three proteases are affected by mutations of the gene (CTSC) encoding dipeptidyl peptidase I, a protease required for activation of their proform before storage in cytoplasmic granules. Mutations of CTSC cause Papillon-Lefèvre syndrome. Because of their roles in host defense and disease, elastase, proteinase 3, and cathepsin G are of interest as potential therapeutic targets. In this review, we describe the physicochemical functions of these proteases, toward a goal of better delineating their role in human diseases and identifying new therapeutic strategies based on the modulation of their bioavailability and activity. We also describe how nonhuman primate experimental models could assist with testing the efficacy of proposed therapeutic strategies.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM U-618 Protéases et Vectorisation Pulmonaires, Université François Rabelais, Faculté de médecine, 10 Boulevard Tonnellé, Tours, France.
| | | | | | | |
Collapse
|
163
|
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) constitutes a worldwide health problem. There is currently an urgent and unmet need for the development of small molecule therapeutics capable of blocking and/or reversing the progression of the disorder. Recent studies have greatly illuminated our understanding of the multiple pathogenic processes associated with COPD. Of paramount importance is the key role played by proteases, oxidative stress, apoptosis and inflammation. Insights gained from these studies have made possible the exploration of new therapeutic approaches. AREAS COVERED An overview of major developments in COPD research with emphasis on low-molecular mass neutrophil elastase inhibitors is described in this review. EXPERT OPINION Great strides have been made toward our understanding of the biochemical and cellular events associated with COPD. However, our knowledge regarding the inter-relationships among the multiple pathogenic mechanisms and their mediators involved is still limited. The problem is further compounded by the unavailability of suitable validated biomarkers for assessing the efficacy of potential therapeutic interventions. The complexity of COPD suggests that effective therapeutic interventions may require the administration of more than one agent such as a human neutrophil elastase or MMP-12 inhibitor with an anti-inflammatory agent such as a PDE4 inhibitor or a dual function agent capable of disrupting the cycle of proteolysis, apoptosis, inflammation and oxidative stress.
Collapse
Affiliation(s)
- William C Groutas
- Wichita State University, Department of Chemistry, Wichita, KS 67260, USA.
| | | | | |
Collapse
|
164
|
Guan B, Magenau A, Kilian KA, Ciampi S, Gaus K, Reece PJ, Gooding JJ. Mesoporous silicon photonic crystal microparticles: towards single-cell optical biosensors. Faraday Discuss 2011; 149:301-17; discussion 333-56. [DOI: 10.1039/c005340f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
165
|
Dou D, He G, Alliston KR, Groutas WC. Dual function inhibitors of relevance to chronic obstructive pulmonary disease. Bioorg Med Chem Lett 2010; 21:3177-80. [PMID: 21511470 DOI: 10.1016/j.bmcl.2010.12.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/03/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
The general strategy and rationale underlying the design of COPD therapeutics that possess protease inhibitory activity and are also capable of releasing a species that attenuates inflammation by inhibiting caspase-1, are described. The synthesis and in vitro biochemical evaluation of a dual function molecule that sequentially inhibits HNE and caspase-1 in a time-dependent manner is reported.
Collapse
Affiliation(s)
- Dengfeng Dou
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | | | | |
Collapse
|
166
|
Thong B, Pilling J, Ainscow E, Beri R, Unitt J. Development and validation of a simple cell-based fluorescence assay for dipeptidyl peptidase 1 (DPP1) activity. ACTA ACUST UNITED AC 2010; 16:36-43. [PMID: 21088147 DOI: 10.1177/1087057110385228] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dipeptidyl peptidase 1 (DPP1) (EC 3.4.14.1; also known as cathepsin C, cathepsin J, dipeptidyl aminopeptidase, and dipeptidyl aminotransferase) is a lysosomal cysteinyl protease of the papain family involved in the intracellular degradation of proteins. Isolated enzyme assays for DPP1 activity using a variety of synthetic substrates such as dipeptide or peptide linked to amino-methyl-coumarin (AMC) or other fluorophores are well established. There is, however, no report of a simple whole-cell-based assay for measuring lysosomal DPP1 activity other than the use of flow cytometry (fluorescence-activated cell sorting) or the use of invasive activity-based probes or the production of physiological products such as neutrophil elastase. The authors investigated a number of DPP1 fluorogenic substrates that have the potential to access the lysosome and enable the measurement of DPP1 enzyme activity in situ. They describe the development and evaluation of a simple noninvasive fluorescence assay for measuring DPP1 activity in fresh or cryopreserved human THP-1 cells using the substrate H-Gly-Phe-AFC (amino-fluoro-coumarin). This cell-based fluorescence assay can be performed in a 96-well plate format and is ideally suited for determining the cell potency of potential DPP1 enzyme inhibitors.
Collapse
Affiliation(s)
- Bob Thong
- Bioscience Department, AstraZeneca R&D Charnwood, Loughborough, Leicestershire, UK.
| | | | | | | | | |
Collapse
|
167
|
Lung protease/anti-protease network and modulation of mucus production and surfactant activity. Biochimie 2010; 92:1608-17. [DOI: 10.1016/j.biochi.2010.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/14/2010] [Indexed: 12/27/2022]
|
168
|
Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med 2010; 17:293-307. [PMID: 21046059 DOI: 10.2119/molmed.2010.00138] [Citation(s) in RCA: 966] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/18/2010] [Indexed: 12/27/2022] Open
Abstract
Treatment of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain unsolved problems of intensive care medicine. ALI/ARDS are characterized by lung edema due to increased permeability of the alveolar-capillary barrier and subsequent impairment of arterial oxygenation. Lung edema, endothelial and epithelial injury are accompanied by an influx of neutrophils into the interstitium and broncheoalveolar space. Hence, activation and recruitment of neutrophils are regarded to play a key role in progression of ALI/ARDS. Neutrophils are the first cells to be recruited to the site of inflammation and have a potent antimicrobial armour that includes oxidants, proteinases and cationic peptides. Under pathological circumstances, however, unregulated release of these microbicidal compounds into the extracellular space paradoxically can damage host tissues. This review focuses on the mechanisms of neutrophil recruitment into the lung and on the contribution of neutrophils to tissue damage in ALI.
Collapse
Affiliation(s)
- Jochen Grommes
- Department of Vascular Surgery, University Hospital, RWTH Aachen, Germany.
| | | |
Collapse
|
169
|
Kumar V, Sharma A. Neutrophils: Cinderella of innate immune system. Int Immunopharmacol 2010; 10:1325-34. [PMID: 20828640 DOI: 10.1016/j.intimp.2010.08.012] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 12/24/2022]
Abstract
Neutrophils are the first line of innate immune defense against infectious diseases. However, since their discovery by Elie Metchnikoff, they have always been considered tissue-destructive cells responsible for inflammatory tissue damage occurring during acute infections. Now, extensive research in the field of neutrophil cell biology and their role skewing the immune response in various infections or inflammatory disorders revealed their importance in the regulation of immune response. Along with releasing various antimicrobial molecules, neutrophils also release neutrophil extracellular traps (NETs) for the containment of infection and inflammation. Activated neutrophils provide signals for the activation and maturation of macrophages as well as dendritic cells. Neutrophils are also involved in the regulation of T-cell immune response against various pathogens and tumor antigens. Thus, the present review is intended to highlight the emerging role of neutrophils in the regulation of both innate and adaptive immunity during acute infectious or inflammatory conditions.
Collapse
Affiliation(s)
- V Kumar
- Department of Pediatrics, Faculty of Medicine, Sainte-Justine Hospital, University of Montreal, Montreal, Canada.
| | | |
Collapse
|
170
|
Mortier A, Loos T, Gouwy M, Ronsse I, Van Damme J, Proost P. Posttranslational modification of the NH2-terminal region of CXCL5 by proteases or peptidylarginine Deiminases (PAD) differently affects its biological activity. J Biol Chem 2010; 285:29750-9. [PMID: 20630876 DOI: 10.1074/jbc.m110.119388] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Posttranslational modifications, e.g. proteolysis, glycosylation, and citrullination regulate chemokine function, affecting leukocyte migration during inflammatory responses. Here, modification of CXCL5/epithelial cell-derived neutrophil-activating protein-78 (ENA-78) by proteases or peptidylarginine deiminases (PAD) was evaluated. Slow CXCL5(1-78) processing by the myeloid cell marker aminopeptidase N/CD13 into CXCL5(2-78) hardly affected its in vitro activity, but slowed down the activation of CXCL5 by the neutrophil protease cathepsin G. PAD, an enzyme with a potentially important function in autoimmune diseases, site-specifically deiminated Arg(9) in CXCL5 to citrulline, generating [Cit(9)]CXCL5(1-78). Compared with CXCL5(1-78), [Cit(9)]CXCL5(1-78) less efficiently induced intracellular calcium signaling, phosphorylation of extracellular signal-regulated kinase, internalization of CXCR2, and in vitro neutrophil chemotaxis. In contrast, conversion of CXCL5 into the previously reported natural isoform CXCL5(8-78) provided at least 3-fold enhanced biological activity in these tests. Citrullination, but not NH(2)-terminal truncation, reduced the capacity of CXCL5 to up-regulate the expression of the integrin α-chain CD11b on neutrophils. Truncation nor citrullination significantly affected the ability of CXCL5 to up-regulate CD11a expression or shedding of CD62L. In line with the in vitro results, CXCL5(8-78) and CXCL5(9-78) induced a more pronounced neutrophil influx in vivo compared with CXCL5(1-78). Administration of 300 pmol of either CXCL5(1-78) or [Cit(9)]CXCL5(1-78) failed to attract neutrophils to the peritoneal cavity. Citrullination of the more potent CXCL5(9-78) lowers its chemotactic potency in vivo and confirms the tempering effect of citrullination in vitro. The highly divergent effects of modifications of CXCL5 on neutrophil influx underline the potential importance of tissue-specific interactions between chemokines and PAD or proteases.
Collapse
Affiliation(s)
- Anneleen Mortier
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
171
|
Hajjar E, Broemstrup T, Kantari C, Witko-Sarsat V, Reuter N. Structures of human proteinase 3 and neutrophil elastase--so similar yet so different. FEBS J 2010; 277:2238-54. [PMID: 20423453 DOI: 10.1111/j.1742-4658.2010.07659.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proteinase 3 and neutrophil elastase are serine proteinases of the polymorphonuclear neutrophils, which are considered to have both similar localization and ligand specificity because of their high sequence similarity. However, recent studies indicate that they might have different and yet complementary physiologic roles. Specifically, proteinase 3 has intracellular specific protein substrates resulting in its involvement in the regulation of intracellular functions such as proliferation or apoptosis. It behaves as a peripheral membrane protein and its membrane expression is a risk factor in chronic inflammatory diseases. Moreover, in contrast to human neutrophil elastase, proteinase 3 is the preferred target antigen in Wegener's granulomatosis, a particular type of vasculitis. We review the structural basis for the different ligand specificities and membrane binding mechanisms of both enzymes, as well as the putative anti-neutrophil cytoplasm autoantibody epitopes on human neutrophil elastase 3. We also address the differences existing between murine and human enzymes, and their consequences with respect to the development of animal models for the study of human proteinase 3-related pathologies. By integrating the functional and the structural data, we assemble many pieces of a complicated puzzle to provide a new perspective on the structure-function relationship of human proteinase 3 and its interaction with membrane, partner proteins or cleavable substrates. Hence, precise and meticulous structural studies are essential tools for the rational design of specific proteinase 3 substrates or competitive ligands that modulate its activities.
Collapse
Affiliation(s)
- Eric Hajjar
- Dipartimento di Fisica, University of Cagliari (CA), Italy
| | | | | | | | | |
Collapse
|
172
|
Lixuan Z, Jingcheng D, Wenqin Y, Jianhua H, Baojun L, Xiaotao F. Baicalin attenuates inflammation by inhibiting NF-kappaB activation in cigarette smoke induced inflammatory models. Pulm Pharmacol Ther 2010; 23:411-9. [PMID: 20566376 DOI: 10.1016/j.pupt.2010.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 04/30/2010] [Accepted: 05/07/2010] [Indexed: 12/29/2022]
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) is a key player in the inflammatory response. Baicalin is an extract from roots of the plant scutellaria baicalensis. Many studies show that baicalin has anti-inflammatory, anti-bacterial and antiviral activities. Here we investigated the influence of baicalin on COPD inflammation and the mechanism of anti-inflammatory effect in vivo and in vitro. In vivo, COPD rat model was established by cigarette smoke (CS) exposure. Thirty-six Sprague-Dawley (SD) rats were randomly assigned to six experimental groups: control, CS, dexamethasone (DXM), and baicalin (20 mg/kg, 40 mg/kg, 80 mg/kg). The lung pathology was observed and leukocytes in bronchoalveolar lavage fluid (BALF) were counted by Optical microscope. Pulmonary function was measured by using an animal plethysmograph. The production of cytokines was measured by ELISA and the expression levels of NF-kappaB p65 protein were detected by immunohistochemistry. The results in vivo show CS exposure significantly increased the expression of IL-8, IL-6 and TNF-alpha in plasma and BALF and enhanced NF-kappaB p65 expression in the lungs. Baicalin treatment markedly attenuated the inflammatory effects of CS. In vitro, cell model was established by using cigarette smoke extract (CSE) to stimulate type II pneumocytes. Type II pneumocytes were also divided into six groups: control, CSE, pyrrolidine dithiocarbamate (PDTC), and baicalin (5 mumol, 10 mumol, 20 mumol). Cytokines levels were measured by ELISA. Expression of IkappaB and p65 phosphorylation was detected by western blotting. NF-kappaB DNA-binding activity was detected by EMSA. The results show that CSE resulted in increasing IL-8, IL-6 and TNF-alpha expression and activation of NF-kappaB. The proinflammatory effects of CSE were inhibited by treatment of baicalin in a dose-dependent manner. It can be concluded that baicalin has significant anti-inflammatory effects on CS induced COPD rat models and CSE-induced cell models, and the effectiveness increases with increasing baicalin dosage. The anti-inflammatory effect is likely achieved by inhibiting the NF-kappaB pathway.
Collapse
Affiliation(s)
- Zeng Lixuan
- Department of Integrated TCM and Western Medicine, Huashan Hospital Affiliated Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
173
|
Sallenave JM. Secretory leukocyte protease inhibitor and elafin/trappin-2: versatile mucosal antimicrobials and regulators of immunity. Am J Respir Cell Mol Biol 2010; 42:635-43. [PMID: 20395631 DOI: 10.1165/rcmb.2010-0095rt] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Elafin and secretory leukocyte protease inhibitor (SLPI) are pleiotropic molecules chiefly synthesized at the mucosal surface that have a fundamental role in the surveillance against microbial infections. Their initial discovery as anti-proteases present in the inflammatory milieu in chronic pathologies such as those of the lung suggested that they may play a role in keeping in check extracellular proteases released during the excessive activation of innate immune cells such as neutrophils. This soon proved to be a simplistic explanation, as other functions were also soon ascribed to these molecules (antimicrobial, modulation of innate and adaptive immunity, regulation of tissue repair). Data emanating from patients with chronic pathologies (in the lung and elsewhere) have shown that SLPI and elafin are often inactivated in inflammatory secretions, either through the action of host or microbial products, justifying attempts at antiprotease supplementation in clinical protocols. Although these have been sparse, proof of principle has been demonstrated, and future challenges will undoubtedly rest with improvements in methods of delivery in the context of tissue inflammation and in careful selection of patients more likely to benefit from SLPI/elafin augmentation.
Collapse
|
174
|
Wysocka M, Lesner A, Majkowska G, Łęgowska A, Guzow K, Rolka K, Wiczk W. The new fluorogenic substrates of neutrophil proteinase 3 optimized in prime site region. Anal Biochem 2010; 399:196-201. [DOI: 10.1016/j.ab.2010.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 01/06/2010] [Accepted: 01/08/2010] [Indexed: 02/02/2023]
|
175
|
Yi D, Xu L, Yan R, Li X. Haemonchus contortus: cloning and characterization of serpin. Exp Parasitol 2010; 125:363-70. [PMID: 20214897 DOI: 10.1016/j.exppara.2010.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 02/27/2010] [Accepted: 03/02/2010] [Indexed: 02/08/2023]
Abstract
The serpin gene of Haemonchus contortus (hc-serpin) was cloned and characterized in this study. Specific primers for rapid amplification cDNA ends (RACE) were designed based on the expression sequence tag (EST, BM173953) to amplify the 3'- and 5'-ends of hc-serpin. The full length of the cDNA of this gene was obtained by overlapping the sequences of 3'- and 5'-extremities and amplification by reverse transcription-PCR. The biochemical activities of the recombinant protein (rHc-Serpin), which was expressed in prokaryotic cells and purified by affinity chromatography and size-exclusion chromatography, were analyzed by assays of trypsin inhibition, anti-coagulation activity, and stability to temperature and pH. The results showed that the cloned full-length cDNA comprised 1317bp and encoded a peptide with 367 amino acid residues which showed sequence similarity to several known serpins. The rHc-Serpin inhibited trypsin activity effectively and prolonged the coagulation time of rabbit blood in vitro. The rHc-Serpin was stable from pH 2.0-10.0 and kept activity at high temperature until 75 degrees C. Optimal pH of rHc-Serpin protein to inhibit trypsin activity was at pH 7.6. The natural serpin of H. contortus detected by immunoblot assay was about 63kDa, and the rHc-Serpin was recognized strongly by serum from naturally infected goats. By immunohistochemistry, the serpin was localised exclusively in the epithelial cells of gastrointestinal tract in adult H. contortus. The results indicated that the cloned gene was serpin and that the protein may play important roles in the biological functions of H. contortus.
Collapse
Affiliation(s)
- Daosheng Yi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | | | | |
Collapse
|
176
|
Voisin MB, Pröbstl D, Nourshargh S. Venular basement membranes ubiquitously express matrix protein low-expression regions: characterization in multiple tissues and remodeling during inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:482-95. [PMID: 20008148 PMCID: PMC2797906 DOI: 10.2353/ajpath.2010.090510] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/04/2009] [Indexed: 11/20/2022]
Abstract
The venular basement membrane plays a critical role in maintaining the integrity of blood vessels and through its dense and highly organized network of matrix proteins also acts as a formidable barrier to macromolecules and emigrating leukocytes. Leukocytes can however penetrate the venular basement membrane at sites of inflammation, though the associated in vivo mechanisms are poorly understood. Using whole mount immunostained tissues and confocal microscopy, we demonstrate that the venular basement membrane of multiple organs expresses regions of low matrix protein (laminin-511 and type IV collagen) deposition that have been termed low-expression regions (LERs). In the multiple tissues analyzed (eg, cremaster muscle, skin, mesenteric tissue), LERs were directly aligned with gaps between adjacent pericytes and were more prevalent in small venules. As predicted by their permissive nature, LERs acted as "gates" for transmigrating neutrophils in all inflammatory reactions investigated (elicited by leukotriene B(4) [LTB(4)], CXCL1, tumor necrosis factor [TNF]alpha, endotoxin, and ischemia/reperfusion [I/R] injury), and this response was associated with an enhancement of the size of laminin-511 and type IV collagen LERs. Transmigrated neutrophils stained positively for laminins but not type IV collagen, suggesting that different mechanisms exist in remodeling of different basement membrane networks. Collectively the findings provide further insight into characteristics of specialized regions within venular basement membranes that are preferentially used and remodeled by transmigrating neutrophils.
Collapse
Affiliation(s)
| | | | - Sussan Nourshargh
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, William Harvey Research Institute, London, United Kingdom
| |
Collapse
|
177
|
Mulchande J, Oliveira R, Carrasco M, Gouveia L, Guedes RC, Iley J, Moreira R. 4-Oxo-β-lactams (Azetidine-2,4-diones) Are Potent and Selective Inhibitors of Human Leukocyte Elastase. J Med Chem 2009; 53:241-53. [DOI: 10.1021/jm901082k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jalmira Mulchande
- iMed.UL, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rudi Oliveira
- iMed.UL, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Marta Carrasco
- iMed.UL, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Luís Gouveia
- iMed.UL, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rita C. Guedes
- iMed.UL, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Jim Iley
- Department of Chemistry and Analytical Sciences, The Open University, Milton Keynes, MK7 6AA, U.K
| | - Rui Moreira
- iMed.UL, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
178
|
Burster T, Macmillan H, Hou T, Boehm BO, Mellins ED. Cathepsin G: roles in antigen presentation and beyond. Mol Immunol 2009; 47:658-65. [PMID: 19910052 DOI: 10.1016/j.molimm.2009.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/02/2009] [Accepted: 10/06/2009] [Indexed: 12/19/2022]
Abstract
Contributions from multiple cathepsins within endosomal antigen processing compartments are necessary to process antigenic proteins into antigenic peptides. Cysteine and aspartyl cathepsins have been known to digest antigenic proteins. A role for the serine protease, cathepsin G (CatG), in this process has been described only recently, although CatG has long been known to be a granule-associated proteolytic enzyme of neutrophils. In line with a role for this enzyme in antigen presentation, CatG is found in endocytic compartments of a variety of antigen presenting cells. CatG is found in primary human monocytes, B cells, myeloid dendritic cells 1 (mDC1), mDC2, plasmacytoid DC (pDC), and murine microglia, but is not expressed in B cell lines or monocyte-derived DC. Purified CatG can be internalized into endocytic compartments in CatG non-expressing cells, widening the range of cells where this enzyme may play a role in antigen processing. Functional assays have implicated CatG as a critical enzyme in processing of several antigens and autoantigens. In this review, historical and recent data on CatG expression, distribution, function and involvement in disease will be summarized and discussed, with a focus on its role in antigen presentation and immune-related events.
Collapse
Affiliation(s)
- Timo Burster
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, Ulm University, Ulm, Germany.
| | | | | | | | | |
Collapse
|
179
|
Zani ML, Baranger K, Guyot N, Dallet-Choisy S, Moreau T. Protease inhibitors derived from elafin and SLPI and engineered to have enhanced specificity towards neutrophil serine proteases. Protein Sci 2009; 18:579-94. [PMID: 19241385 DOI: 10.1002/pro.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The secretory leukocyte protease inhibitor (SLPI), elafin, and its biologically active precursor trappin-2 are endogeneous low-molecular weight inhibitors of the chelonianin family that control the enzymatic activity of neutrophil serine proteases (NSPs) like elastase, proteinase 3, and cathepsin G. These inhibitors may be of therapeutic value, since unregulated NSP activities are linked to inflammatory lung diseases. However SLPI inhibits elastase and cathepsin G but not proteinase 3, while elafin targets elastase and proteinase 3 but not cathepsin G. We have used two strategies to design polyvalent inhibitors of NSPs that target all three NSPs and may be used in the aerosol-based treatment of inflammatory lung diseases. First, we fused the elafin domain with the second inhibitory domain of SLPI to produce recombinant chimeras that had the inhibitory properties of both parent molecules. Second, we generated the trappin-2 variant, trappin-2 A62L, in which the P1 residue Ala is replaced by Leu, as in the corresponding position in SLPI domain 2. The chimera inhibitors and trappin-2 A62L are tight-binding inhibitors of all three NSPs with subnanomolar K(i)s, similar to those of the parent molecules for their respective target proteases. We have also shown that these molecules inhibit the neutrophil membrane-bound forms of all three NSPs. The trappin-2 A62L and elafin-SLPI chimeras, like wild-type elafin and trappin-2, can be covalently cross-linked to fibronectin or elastin by a tissue transglutaminase, while retaining their polypotent inhibition of NSPs. Therefore, the inhibitors described herein have the appropriate properties to be further evaluated as therapeutic anti-inflammatory agents.
Collapse
Affiliation(s)
- Marie-Louise Zani
- Inserm U618 Protéases et Vectorisation Pulmonaires, IFR 135 Imagerie Fonctionnelle, University of Tours, France
| | | | | | | | | |
Collapse
|