151
|
Wang Y, Wang L, Yan M, Feng L, Dong S, Hao J. Drug Implants of Hydrogels via Collective Behavior of Microgel Colloids for On-Demand Cancer Therapy. ACS APPLIED BIO MATERIALS 2019; 2:1531-1541. [DOI: 10.1021/acsabm.8b00823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| | - Ling Wang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| | - Miaomiao Yan
- Department of Pharmacy, Binzhou Medical College, Yantai 264003, P. R. China
| | - Lei Feng
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| |
Collapse
|
152
|
Portillo-Lara R, Spencer AR, Walker BW, Shirzaei Sani E, Annabi N. Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation. Biomaterials 2019; 198:78-94. [PMID: 30201502 PMCID: PMC11044891 DOI: 10.1016/j.biomaterials.2018.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
Bioengineered tissues have become increasingly more sophisticated owing to recent advancements in the fields of biomaterials, microfabrication, microfluidics, genetic engineering, and stem cell and developmental biology. In the coming years, the ability to engineer artificial constructs that accurately mimic the compositional, architectural, and functional properties of human tissues, will profoundly impact the therapeutic and diagnostic aspects of the healthcare industry. In this regard, bioengineered cardiac tissues are of particular importance due to the extremely limited ability of the myocardium to self-regenerate, as well as the remarkably high mortality associated with cardiovascular diseases worldwide. As novel microphysiological systems make the transition from bench to bedside, their implementation in high throughput drug screening, personalized diagnostics, disease modeling, and targeted therapy validation will bring forth a paradigm shift in the clinical management of cardiovascular diseases. Here, we will review the current state of the art in experimental in vitro platforms for next generation diagnostics and therapy validation. We will describe recent advancements in the development of smart biomaterials, biofabrication techniques, and stem cell engineering, aimed at recapitulating cardiovascular function at the tissue- and organ levels. In addition, integrative and multidisciplinary approaches to engineer biomimetic cardiovascular constructs with unprecedented human and clinical relevance will be discussed. We will comment on the implementation of these platforms in high throughput drug screening, in vitro disease modeling and therapy validation. Lastly, future perspectives will be provided on how these biomimetic platforms will aid in the transition towards patient centered diagnostics, and the development of personalized targeted therapeutics.
Collapse
Affiliation(s)
- Roberto Portillo-Lara
- Department of Chemical Engineering, Northeastern University, Boston, USA; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Zapopan, JAL, Mexico
| | - Andrew R Spencer
- Department of Chemical Engineering, Northeastern University, Boston, USA
| | - Brian W Walker
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
| | - Ehsan Shirzaei Sani
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
153
|
Engineering a naturally-derived adhesive and conductive cardiopatch. Biomaterials 2019; 207:89-101. [PMID: 30965152 DOI: 10.1016/j.biomaterials.2019.03.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
Abstract
Myocardial infarction (MI) leads to a multi-phase reparative process at the site of damaged heart that ultimately results in the formation of non-conductive fibrous scar tissue. Despite the widespread use of electroconductive biomaterials to increase the physiological relevance of bioengineered cardiac tissues in vitro, there are still several limitations associated with engineering biocompatible scaffolds with appropriate mechanical properties and electroconductivity for cardiac tissue regeneration. Here, we introduce highly adhesive fibrous scaffolds engineered by electrospinning of gelatin methacryloyl (GelMA) followed by the conjugation of a choline-based bio-ionic liquid (Bio-IL) to develop conductive and adhesive cardiopatches. These GelMA/Bio-IL adhesive patches were optimized to exhibit mechanical and conductive properties similar to the native myocardium. Furthermore, the engineered patches strongly adhered to murine myocardium due to the formation of ionic bonding between the Bio-IL and native tissue, eliminating the need for suturing. Co-cultures of primary cardiomyocytes and cardiac fibroblasts grown on GelMA/Bio-IL patches exhibited comparatively better contractile profiles compared to pristine GelMA controls, as demonstrated by over-expression of the gap junction protein connexin 43. These cardiopatches could be used to provide mechanical support and restore electromechanical coupling at the site of MI to minimize cardiac remodeling and preserve normal cardiac function.
Collapse
|
154
|
Montaser A, Rehan M, El-Naggar ME. pH-Thermosensitive hydrogel based on polyvinyl alcohol/sodium alginate/N-isopropyl acrylamide composite for treating re-infected wounds. Int J Biol Macromol 2019; 124:1016-1024. [DOI: 10.1016/j.ijbiomac.2018.11.252] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/15/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
|
155
|
Xu Y, Cui M, Patsis PA, Günther M, Yang X, Eckert K, Zhang Y. Reversibly Assembled Electroconductive Hydrogel via a Host-Guest Interaction for 3D Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7715-7724. [PMID: 30714715 DOI: 10.1021/acsami.8b19482] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The study of cells responding to an electroconductive environment is impeded by the lack of a method, which would allow the encapsulation of cells in an extracellular matrix-like 3D electroactive matrix, and more challengingly, permit a simple mechanism to release cells for further characterization. Herein, we report a polysaccharide-based conductive hydrogel system formed via a β-cyclodextrin-adamantane host-guest interaction. Oxidative polymerization of 3,4-ethylenedioxythiophene (EDOT) in the presence of adamantyl-modified sulfated alginate (S-Alg-Ad) results in bio-electroconductive polymer PEDOT:S-Alg-Ad, which can form hydrogel with poly-β-cyclodextrin (Pβ-CD). The PEDOT:S-Alg-Ad/Pβ-CD hydrogels can be tuned on aspects of mechanical and electrical properties, exhibit self-healing feature, and are injectable. Electron microscopy suggested that the difference in stiffness and conductivity is associated with the nacre-like layered nanostructures when different sizes of PEDOT:S-Alg-Ad nanoparticles were used. Myoblast C2C12 cells were encapsulated in the conductive hydrogel and exhibited proliferation rate comparable to that in nonconductive S-Alg-Ad/Pβ-CD hydrogel. The cells could be released from the hydrogels by adding the β-CD monomer. Astonishingly, the conductive hydrogel can dramatically promote myotube-like structure formation, which is not in the non-electroconductive hydrogel. The ability to embed and release cells in an electroconductive environment will open new doors for cell culture and tissue engineering.
Collapse
Affiliation(s)
- Yong Xu
- B CUBE Center for Molecular Bioengineering , Technische Universität Dresden , 01307 Dresden , Germany
| | - Meiying Cui
- B CUBE Center for Molecular Bioengineering , Technische Universität Dresden , 01307 Dresden , Germany
| | - Panagiotis A Patsis
- B CUBE Center for Molecular Bioengineering , Technische Universität Dresden , 01307 Dresden , Germany
| | - Markus Günther
- Department of Biology, Institute of Botany, Faculty of Science , Technische Universität Dresden , 01062 Dresden , Germany
| | - Xuegeng Yang
- Institute of Fluid Dynamics , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , 01328 Dresden , Germany
| | - Kerstin Eckert
- Institute of Fluid Dynamics , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , 01328 Dresden , Germany
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering , Technische Universität Dresden , 01307 Dresden , Germany
| |
Collapse
|
156
|
Donnelly PE, Imbert L, Culley KL, Warren RF, Chen T, Maher SA. Self-assembled monolayers of phosphonates promote primary chondrocyte adhesion to silicon dioxide and polyvinyl alcohol materials. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2019; 30:215-232. [PMID: 30588859 PMCID: PMC6375775 DOI: 10.1080/09205063.2018.1563847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/22/2018] [Indexed: 10/27/2022]
Abstract
The optimal solution for articular cartilage repair has not yet been identified, in part because of the challenges in achieving integration with the host. Coatings have the potential to transform the adhesive features of surfaces, but their application to cartilage repair has been limited. Self-assembled monolayer of phosphonates (SAMPs) have been demonstrated to increase the adhesion of various immortalized cell types to metal and polymer surfaces, but their effect on primary chondrocyte adhesion has not been studied. The objective of this study was to investigate the response of primary chondrocytes to SAMP coatings. We hypothesized a SAMP terminated with an α,ω-bisphosphonic acid, in particular butane-1,4-diphosphonic acid, would increase the number of adherent primary chondrocytes to polyvinyl alcohol (PVA). To test our hypothesis, we first established our ability to successfully modify silicon dioxide (SiO2) surfaces to enable chondrocytes to attach to the surface, without substantial changes in gene expression. Secondly, we applied identical chemistry to PVA, and quantified chondrocyte adhesion. SAMP modification to SiO2 increased chondrocyte adhesion by ×3 after 4 hr and ×4.5 after 24 hr. PVA modification with SAMPs increased chondrocyte adhesion by at least ×31 after 4 and 24 hours. Changes in cell morphology indicated that SAMP modification led to improved chondrocyte adhesion and spreading, without changes in gene expression. In summary, we modified SiO2 and PVA with SAMPs and observed an increase in the number of adherent primary bovine chondrocytes at 4 and 24 hr post-seeding. Mechanisms of chondrocyte interaction with SAMP-modified surfaces require further investigation.
Collapse
Affiliation(s)
- Patrick E. Donnelly
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, USA
| | - Laurianne Imbert
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Kirsty L. Culley
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Russell F. Warren
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Tony Chen
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, USA
| | - Suzanne A. Maher
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
157
|
Qi X, Wei W, Shen J, Dong W. Salecan polysaccharide-based hydrogels and their applications: a review. J Mater Chem B 2019; 7:2577-2587. [PMID: 32254990 DOI: 10.1039/c8tb03312a] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review systematically summarizes for the first time the recent progress on hydrogels containing salecan polysaccharides.
Collapse
Affiliation(s)
- Xiaoliang Qi
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou
- China
| | - Wei Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine
- and Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province
- First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou
| | - Jianliang Shen
- School of Ophthalmology & Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou
- China
| | - Wei Dong
- Center for Molecular Metabolism
- Nanjing University of Science & Technology
- Nanjing 210094
- China
| |
Collapse
|
158
|
|
159
|
Isolation and characterization of an antioxidant exopolysaccharide produced by Bacillus sp. S-1 from Sichuan Pickles. Carbohydr Polym 2019; 204:9-16. [DOI: 10.1016/j.carbpol.2018.09.069] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/06/2018] [Accepted: 09/27/2018] [Indexed: 12/30/2022]
|
160
|
Ding C, Li Y, Wang L, Luo X. Ratiometric Electrogenerated Chemiluminescence Cytosensor Based on Conducting Polymer Hydrogel Loaded with Internal Standard Molecules. Anal Chem 2018; 91:983-989. [PMID: 30499299 DOI: 10.1021/acs.analchem.8b04116] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A sensitive and reliable bimodal electrochemiluminescent (ECL) system based on CdTe quantum dots (QDs) and luminol as double luminophores is constructed. CdTe QDs tagged with the aptamer (CdTe-Apt 2) of cancer cells are used as the detection signals, while luminol molecules are used as internal standards. The electrodeposited polyaniline-based conducting polymer hydrogel (CPH) on the electrode surfaces improves the biocompatibility and conductivity of the sensing interfaces effectively. Furthermore, electron transfer is probably much easier when luminol and coreactant potassium persulfate (K2S2O8) are immobilized in the CPH in comparison to that in solution. Cancer cells are captured to the electrode surface by another aptamer linked to the Au nanoparticles immobilized in the CPH through Au-S bonds. In the developed bimodal ECL system, an internal standard method is used to quantify cancer cells by comparing the differences in sensitivity of the double-peak ECL signals with that of target analytes. The internal standard method of ECL strategy can provide very accurate detection results in a complex environment because interferences in the system can be eliminated through the self-calibration of two emission spectra. A linear relation is found on the basis of a plot of the ΔECLCdTe/ΔECLluminol against the concentration of cancer cells within 100-6500 cells mL-1 under optimized conditions. The developed ratiometric ECL cytosensor with internal standard can significantly improve the accuracy and reliability of cell assays in complex biological media, demonstrating promising applications in healthcare monitoring and clinical diagnostics.
Collapse
Affiliation(s)
- Caifeng Ding
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| | - Yunxia Li
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| | - Lei Wang
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , People's Republic of China
| |
Collapse
|
161
|
Zhou L, Fan L, Yi X, Zhou Z, Liu C, Fu R, Dai C, Wang Z, Chen X, Yu P, Chen D, Tan G, Wang Q, Ning C. Soft Conducting Polymer Hydrogels Cross-Linked and Doped by Tannic Acid for Spinal Cord Injury Repair. ACS NANO 2018; 12:10957-10967. [PMID: 30285411 DOI: 10.1021/acsnano.8b04609] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mimicking soft tissue mechanical properties and the high conductivity required for electrical transmission in the native spinal cord is critical in nerve tissue regeneration scaffold designs. However, fabricating scaffolds of high conductivity, tissue-like mechanical properties, and excellent biocompatibility simultaneously remains a great challenge. Here, a soft, highly conductive, biocompatible conducting polymer hydrogel (CPH) based on a plant-derived polyphenol, tannic acid (TA), cross-linking and doping conducting polypyrrole (PPy) chains is developed to explore its therapeutic efficacy after a spinal cord injury (SCI). The developed hydrogels exhibit an excellent electronic conductivity (0.05-0.18 S/cm) and appropriate mechanical properties (0.3-2.2 kPa), which can be achieved by controlling TA concentration. In vitro, a CPH with a higher conductivity accelerated the differentiation of neural stem cells (NSCs) into neurons while suppressing the development of astrocytes. In vivo, with relatively high conductivity, the CPH can activate endogenous NSC neurogenesis in the lesion area, resulting in significant recovery of locomotor function. Overall, our findings evidence that the CPHs without being combined with any other therapeutic agents have stimulated tissue repair following an SCI and thus have important implications for future biomaterial designs for SCI therapy.
Collapse
Affiliation(s)
| | - Lei Fan
- Department of Spine Surgery , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
| | | | - Zhengnan Zhou
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | - Can Liu
- Department of Spine Surgery , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
| | | | - Cong Dai
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | | | - Xiuxing Chen
- VIP Inpatient Department , Sun Yat-sen University Cancer Center , Guangzhou 510060 , China
| | | | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Orthopaedics and Traumatology , Beijing JiShuiTan Hospital , Beijing 100035 , China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | - Qiyou Wang
- Department of Spine Surgery , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630 , China
| | | |
Collapse
|
162
|
Arteshi Y, Aghanejad A, Davaran S, Omidi Y. Biocompatible and electroconductive polyaniline-based biomaterials for electrical stimulation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
163
|
Tajau R, Rohani R, Wan Isahak WNR, Salleh MZ, Ghazali Z. Development of new bio-based polyol ester from palm oil for potential polymeric drug carrier. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.22139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rida Tajau
- Department of Chemical and Process Engineering; Faculty of Engineering and Built Environment; National University of Malaysia; Selangor Malaysia
| | - Rosiah Rohani
- Department of Chemical and Process Engineering; Faculty of Engineering and Built Environment; National University of Malaysia; Selangor Malaysia
| | - Wan Nor Roslam Wan Isahak
- Department of Chemical and Process Engineering; Faculty of Engineering and Built Environment; National University of Malaysia; Selangor Malaysia
| | - Mek Zah Salleh
- Division of Radiation Processing Technology; Malaysia Nuclear Agency; Bangi Kajang Selangor Malaysia
| | - Zulkafli Ghazali
- Division of Radiation Processing Technology; Malaysia Nuclear Agency; Bangi Kajang Selangor Malaysia
| |
Collapse
|
164
|
Kim S, Jang Y, Jang M, Lim A, Hardy JG, Park HS, Lee JY. Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights. Acta Biomater 2018; 80:258-268. [PMID: 30266636 DOI: 10.1016/j.actbio.2018.09.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023]
Abstract
Electrically conductive polypyrrole (PPy) is an intriguing biomaterial capable of efficient electrical interactions with biological systems. Especially, biomimetic PPy-based biomaterials incorporating biomolecules, such as hyaluronic acid (HA), can impart the characteristic biological interactions with living cells/tissues to the conductive biomaterials. Here we report the effects of the molecular weight (MW) of HA on PPy-based biomaterials. We utilized HA of a wide range of MW (35 × 103 Da-3 × 106 Da) as dopants during the electrochemical production of PPy/HA films and their characterization of materials and cellular interactions. With increases in the MWs of HA dopants, PPy/HA exhibited more hydrophilic, higher electrochemical activity and lower impedance. In vitro studies revealed that PPy films doped with low MW HA were supportive to cell adhesion and growth, while PPy films doped with high MW HA were resistant to cell attachment. Subcutaneous implantation of the PPy/HA films for 4 weeks revealed that all the PPy/HA films were tissue compatible. We successfully demonstrate the importance of HA dopant MWs in modulating the chemical and electrical properties of the materials and cellular responses to the materials. Such materials have potential for various biomedical applications, including as tissue engineering scaffolds and as electrodes for neural recording and neuromodulation. STATEMENT OF SIGNIFICANCE: Hyaluronic acid (HA)-doped polypyrrole (PPy) films were electrochemically synthesized as novel biomimetic conductive materials capable of efficient electrical signaling and preferential biological interactions. Molecular weights (MWs) of HA varied in a wide range (35 × 103-2 × 106 Da) and critically determine chemical, electrochemical, and biological properties of PPy/HA. Especially, PPy films with low MW HA markedly support cell adhesion and growth, while PPy films with high MW HA are resistant to cell attachment. Furthermore, PPy/HA exhibits greatly improved tissue compatibility and in vivo EMG signal recording ability. We for the first time demonstrate that biomimetic PPy/HA-based biomaterials can serve as versatile and effective platforms for various biomedical applications, such as tissue engineering scaffolds and bioelectrodes.
Collapse
Affiliation(s)
- Semin Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yohan Jang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Minsu Jang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ahyoun Lim
- Korea Institute of Science and Technology, Fuel Cell Research Center, Hwarangro 14-gil 5, Seoul 02792, Republic of Korea
| | - John G Hardy
- Department of Chemistry and Materials Science Institute, Lancaster University, Lancaster, Lancashire LA1 4YB, United Kingdom
| | - Hyun S Park
- Korea Institute of Science and Technology, Fuel Cell Research Center, Hwarangro 14-gil 5, Seoul 02792, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
165
|
Meng X, Zhang K, Dai W, Cao Y, Yang F, Dong H, Zhang X. Multiplex microRNA imaging in living cells using DNA-capped-Au assembled hydrogels. Chem Sci 2018; 9:7419-7425. [PMID: 30542546 PMCID: PMC6237120 DOI: 10.1039/c8sc02858c] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
Non-invasively imaging multiplex microRNAs (miRNAs) in living cells is pivotal to understanding their physiological functions and pathological development due to the key regulatory roles of miRNAs in gene expression. However, developing smart delivery systems with large gene loading capacity, biocompatibility and responsiveness remains a significant challenge. Herein, we successfully incorporated DNA-capped Au nanoparticles (NPs) and their complementary fluorescent DNA sequences into a porous 3D hydrogel network (AuDH), in which hairpin-locked DNAzyme strands and active metal ions were loaded (AuDH/M n+/H) for simultaneously imaging multiplex miRNAs in living cells. After transfection into cells, the specific miRNAs trigger the strand-displacement reaction and sequentially activate the DNAzyme-assisted target recycling, leading to a strong increase in the corresponding fluorescence intensity for imaging. This enables simultaneous assessment of the abundance of multiplex cancer-related miRNAs, even if at a very low expression level, in different cells through the different fluorescence intensities due to the dual signal amplification, and the change in abundance of miRNAs induced by siRNA or miRNA mimics in living cells can also be efficiently monitored. The versatile and responsive DNA hydrogel system holds great potential for miRNA biomedical applications.
Collapse
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology , Research Center for Bioengineering and Sensing Technology , School of Chemistry and Biological Engineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Kai Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology , Research Center for Bioengineering and Sensing Technology , School of Chemistry and Biological Engineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology , Research Center for Bioengineering and Sensing Technology , School of Chemistry and Biological Engineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Yu Cao
- Beijing Key Laboratory for Bioengineering and Sensing Technology , Research Center for Bioengineering and Sensing Technology , School of Chemistry and Biological Engineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Fan Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology , Research Center for Bioengineering and Sensing Technology , School of Chemistry and Biological Engineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology , Research Center for Bioengineering and Sensing Technology , School of Chemistry and Biological Engineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology , Research Center for Bioengineering and Sensing Technology , School of Chemistry and Biological Engineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ;
- Beijing Advanced Innovation Center for Materials Genome Engineering , University of Science and Technology Beijing , Beijing 100083 , P. R. China
| |
Collapse
|
166
|
Rasool A, Ata S, Islam A. Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application. Carbohydr Polym 2018; 203:423-429. [PMID: 30318231 DOI: 10.1016/j.carbpol.2018.09.083] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/13/2018] [Accepted: 09/29/2018] [Indexed: 12/18/2022]
Abstract
Stimuli responsive chitosan (CS) and poly (N-vinyl-2-pyrrolidone) (PVP) have attained hydrogel properties in the presence of 74% neutralized poly acrylic acid (PAA) which can be exploited for wound healing applications. The FTIR spectra confirmed the presence of all specific functional groups and the developed interactions in the hydrogels. The thermal analysis explained that the hydrogel samples are thermally more stable than individual chitosan and PVP. The antimicrobial analysis revealed that all the samples show antibacterial activity against E. coli and the biodegradation analysis is performed to confirm the hydrogels degradation. The hydrogels showed enhanced responsive swelling behavior against different media depending upon the amount of PVP. The %age swelling in water is decreased with the increase in the amount of PVP. The most considerable swelling behavior is observed against pH, as they manifested low swelling at acidic pH and high swelling at neutral pH while at pH 8, the prominent values are obtained. This distinctive behavior of hydrogels and their biocompatibility made them pertinent to drug delivery and their release profile is examined spectrophotometrically using silver sulfadiazine (antibiotic for burnt wounds) showed 91.2% of drug release for a period of 1 h in phosphate buffer saline (PBS) in a consistent and controlled manner.
Collapse
Affiliation(s)
- Atta Rasool
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan; Department of Polymer Engineering and Technology, University of the Punjab, Lahore, Pakistan
| | - Sadia Ata
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan.
| | - Atif Islam
- Department of Polymer Engineering and Technology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
167
|
Li J, Cha R, Mou K, Zhao X, Long K, Luo H, Zhou F, Jiang X. Nanocellulose-Based Antibacterial Materials. Adv Healthc Mater 2018; 7:e1800334. [PMID: 29923342 DOI: 10.1002/adhm.201800334] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/18/2018] [Indexed: 11/12/2022]
Abstract
In recent years, nanocellulose-based antimicrobial materials have attracted a great deal of attention due to their unique and potentially useful features. In this review, several representative types of nanocellulose and modification methods for antimicrobial applications are mainly focused on. Recent literature related with the preparation and applications of nanocellulose-based antimicrobial materials is reviewed. The fabrication of nanocellulose-based antimicrobial materials for wound dressings, drug carriers, and packaging materials is the focus of the research. The most important additives employed in the preparation of nanocellulose-based antimicrobial materials are presented, such as antibiotics, metal, and metal oxide nanoparticles, as well as chitosan. These nanocellulose-based antimicrobial materials can benefit many applications including wound dressings, drug carriers, and packaging materials. Finally, the challenges of industrial production and potentials for development of nanocellulose-based antimicrobial materials are discussed.
Collapse
Affiliation(s)
- Juanjuan Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences (Beijing); Beijing 100083 China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
| | - Ruitao Cha
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
| | - Kaiwen Mou
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; University of Chinese Academy of Sciences; Qingdao 266101 China
| | - Xiaohui Zhao
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
| | - Keying Long
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
| | - Huize Luo
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences (Beijing); Beijing 100083 China
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences (Beijing); Beijing 100083 China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
- Sino-Danish College, University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
168
|
Seo JY, Lee B, Kang TW, Noh JH, Kim MJ, Ji YB, Ju HJ, Min BH, Kim MS. Electrostatically Interactive Injectable Hydrogels for Drug Delivery. Tissue Eng Regen Med 2018; 15:513-520. [PMID: 30603575 PMCID: PMC6171702 DOI: 10.1007/s13770-018-0146-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/03/2018] [Accepted: 07/15/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Several injectable hydrogels have been developed extensively for a broad range of biomedical applications. Injectable hydrogels forming in situ through the change in external stimuli have the distinct properties of easy management and minimal invasiveness, and thus provide the advantage of bypassing surgical procedures for administration resulting in better patient compliance. METHODS The injectable in situ-forming hydrogels can be formed irreversibly or reversibly under physiological stimuli. Among several external stimuli that induce formation of hydrogels in situ, in this review, we focused on the electrostatic interactions as the most simple and interesting stimulus. RESULTS Currently, numerous polyelectrolytes have been reported as potential electrostatically interactive in situ-forming hydrogels. In this review, a comprehensive overview of the rapidly developing electrostatically interactive in situ-forming hydrogels, which are produced by various anionic and cationic polyelectrolytes such as chitosan, celluloses, and alginates, has been outlined and summarized. Further, their biomedical applications have also been discussed. CONCLUSION The review concludes with perspectives on the future of electrostatically interactive in situ-forming hydrogels.
Collapse
Affiliation(s)
- Ji Young Seo
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Bong Lee
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Tae Woong Kang
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Jung Hyun Noh
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Min Ju Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Byoung Hyun Min
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
- Cell Therapy Center, Ajou University Medical Center, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongton-gu, Suwon, 16499 Republic of Korea
| |
Collapse
|
169
|
Poovaiah N, Davoudi Z, Peng H, Schlichtmann B, Mallapragada S, Narasimhan B, Wang Q. Treatment of neurodegenerative disorders through the blood-brain barrier using nanocarriers. NANOSCALE 2018; 10:16962-16983. [PMID: 30182106 DOI: 10.1039/c8nr04073g] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Neurodegenerative diseases refer to disorders of the central nervous system (CNS) that are caused by neuronal degradations, dysfunctions, or death. Alzheimer's disease, Parkinson's disease, and Huntington's disease (APHD) are regarded as the three major neurodegenerative diseases. There is a vast body of literature on the causes and treatments of these neurodegenerative diseases. However, the main obstacle in developing an effective treatment strategy is the permeability of the treatment components at the blood-brain barrier (BBB). Several strategies have been developed to improve this obstruction. For example, nanomaterials facilitate drug delivery to the BBB due to their size. They have been used widely in nanomedicine and as nanoprobes for diagnosis purposes among others in neuroscience. Nanomaterials in different forms, such as nanoparticles, nanoemulsions, solid lipid nanoparticles (SLN), and liposomes, have been used to treat neurodegenerative diseases. This review will cover the basic concepts and applications of nanomaterials in the therapy of APHD.
Collapse
Affiliation(s)
- N Poovaiah
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | | | |
Collapse
|
170
|
Xu L, Cui L, Jia M, Li Y, Gao J, Jin X. Self-assembly of flexible graphene hydrogel electrode based on crosslinked pectin-cations. Carbohydr Polym 2018; 195:593-600. [DOI: 10.1016/j.carbpol.2018.04.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 01/31/2023]
|
171
|
Xia G, Zhang H, Cheng R, Wang H, Song Z, Deng L, Huang X, Santos HA, Cui W. Localized Controlled Delivery of Gemcitabine via Microsol Electrospun Fibers to Prevent Pancreatic Cancer Recurrence. Adv Healthc Mater 2018; 7:e1800593. [PMID: 30062854 DOI: 10.1002/adhm.201800593] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/29/2018] [Indexed: 12/13/2022]
Abstract
The low radical surgery rate of pancreatic cancer leads to increased local recurrence and poor prognosis. Gemcitabine (GEM) is the preferred chemotherapeutic for pancreatic cancer. However, systemic chemotherapy with GEM has reached a bottleneck due to its serious side effects after frequent injections. In this study, GEM is successfully enwrapped into electrospun fibers via microsol electrospinning technology to form a stable core-shell fibrous structure. The GEM release rate can be adjusted by altering the thickness of the hyaluronan-sol inner fiber and the quantity of loaded GEM, and the release can be sustained for as long as three weeks. In vitro assays show that these electrospun fibers effectively inhibit pancreatic cancer cells and promote apoptosis. In vivo studies show that the fibrous membranes are better for inhibiting the growth of residual tumors than that of integrated tumors. Furthermore, immunohistochemistry results show that GEM-loaded fibers promote a higher cell apoptosis rate than does systemically injected GEM in residual tumors. In addition, the local delivery of GEM with fibers significantly reduces liver toxicity. In summary, a core-shell electrospun fiber for the controlled and localized delivery of GEM, which greatly improves the treatment of residual tumors and prevents pancreatic tumor recurrence, is developed.
Collapse
Affiliation(s)
- Guanggai Xia
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Hongbo Zhang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Pharmaceutical Sciences Laboratory, Turku Centre for Biotechnology, Åbo Akademi University, 20520, Turku, Finland
| | - Ruoyu Cheng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Hongcheng Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Ziliang Song
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xinyu Huang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Helsinki, FI-00014, Finland
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, No. 220 Handan Road, Shanghai, 200433, China
| |
Collapse
|
172
|
Gilshteyn EP, Lin S, Kondrashov VA, Kopylova DS, Tsapenko AP, Anisimov AS, Hart AJ, Zhao X, Nasibulin AG. A One-Step Method of Hydrogel Modification by Single-Walled Carbon Nanotubes for Highly Stretchable and Transparent Electronics. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28069-28075. [PMID: 30052424 DOI: 10.1021/acsami.8b08409] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electrically conductive hydrogels (ECHs) are attracting much interest in the field of biomaterials science because of their unique properties. However, effective incorporation and dispersion of conductive materials in the matrices of polymeric hydrogels for improved conductivity remains a great challenge. Here, we demonstrate highly transparent, electrically conductive, stretchable tough hydrogels modified by single-walled carbon nanotubes (SWCNTs). Two different approaches for the fabrication of SWCNT/hydrogel structures are examined: a simple SWCNT film transfer onto the as-prepared hydrogel and the film deposition onto the pre-stretched hydrogel. Functionality of our method is confirmed by scanning electron microscopy along with optical and electrical measurements of our structures while subjecting them to different strains. Since the hydrogel-based structures are intrinsically soft, stretchable, wet, and sticky, they conform well to a human skin. We demonstrate applications of our material as skin-like passive electrodes and active finger-mounted joint motion sensors. Our technique shows promise to accelerate the development of biointegrated wearable electronics.
Collapse
Affiliation(s)
- Evgenia P Gilshteyn
- Center for Photonics and Quantum Materials, Laboratory of Nanomaterials , Skolkovo Institute of Science and Technology , Nobel St., 3 , Moscow 121205 , Russia
| | - Shaoting Lin
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Vladislav A Kondrashov
- Center for Photonics and Quantum Materials, Laboratory of Nanomaterials , Skolkovo Institute of Science and Technology , Nobel St., 3 , Moscow 121205 , Russia
| | - Daria S Kopylova
- Center for Photonics and Quantum Materials, Laboratory of Nanomaterials , Skolkovo Institute of Science and Technology , Nobel St., 3 , Moscow 121205 , Russia
| | - Alexey P Tsapenko
- Center for Photonics and Quantum Materials, Laboratory of Nanomaterials , Skolkovo Institute of Science and Technology , Nobel St., 3 , Moscow 121205 , Russia
| | | | - A John Hart
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Albert G Nasibulin
- Center for Photonics and Quantum Materials, Laboratory of Nanomaterials , Skolkovo Institute of Science and Technology , Nobel St., 3 , Moscow 121205 , Russia
- Department of Applied Physics , Aalto University , P.O. Box 15100, FI-00076 Aalto, Espoo , Finland
| |
Collapse
|
173
|
Mohammadzadeh Pakdel P, Peighambardoust SJ. Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr Polym 2018; 201:264-279. [PMID: 30241819 DOI: 10.1016/j.carbpol.2018.08.070] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 12/23/2022]
Abstract
Recently, chitosan has been used as a raw material for synthesis of hydrogels in a wide range of potential and practical applications like wastewater treatment, drug delivery, and tissue engineering. This review represents an overview of the application of chitosan-based hydrogels for wastewater treatment and helps researchers to better understand the potential of these adsorbents for wastewater treatment. It covers recently used and prospected methods for synthesis and modification of these hydrogels. Chitosan-based hydrogels are modified physically and chemically through crosslinking, grafting, impregnation, incorporating of hard fillers, blending, interpenetrating, and ion-imprinting methods to improve adsorption and mechanical properties. Understanding of these methods provides useful information in the design of efficient chitosan-based hydrogels and the select of appropriate pollutants for removal. This review provides a brief outlook on future prospects of chitosan-based hydrogels for wastewater application.
Collapse
|
174
|
Kaya D, Alemdar N. Electroconductive hyaluronic acid/gelatin/poly(ethylene oxide) polymeric film reinforced by reduced graphene oxide. J Appl Polym Sci 2018. [DOI: 10.1002/app.46905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Duygu Kaya
- Marmara University; Department of Chemical Engineering; 34722 Istanbul Turkey
- T. C. Atasehir Adiguzel Vocational School; 34779 Istanbul Turkey
| | - Neslihan Alemdar
- Marmara University; Department of Chemical Engineering; 34722 Istanbul Turkey
| |
Collapse
|
175
|
Kucharczyk K, Weiss M, Jastrzebska K, Luczak M, Ptak A, Kozak M, Mackiewicz A, Dams-Kozlowska H. Bioengineering the spider silk sequence to modify its affinity for drugs. Int J Nanomedicine 2018; 13:4247-4261. [PMID: 30050299 PMCID: PMC6055833 DOI: 10.2147/ijn.s168081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Silk is a biocompatible and biodegradable material, able to self-assemble into different morphological structures. Silk structures may be used for many biomedical applications, including carriers for drug delivery. The authors designed a new bioengineered spider silk protein, EMS2, and examined its property as a carrier of chemotherapeutics. MATERIALS AND METHODS To obtain EMS protein, the MS2 silk monomer (that was based on the MaSp2 spidroin of Nephila clavipes) was modified by the addition of a glutamic acid residue. Both bioengineered silks were produced in an Escherichia coli expression system and purified by thermal method. The silk spheres were produced by mixing with potassium phosphate buffer. The physical properties of the particles were characterized using scanning electron microscopy, atomic force microscopy, Fourier-transform infrared spectroscopy, and zeta potential measurements. The MTT assay was used to examine the cytotoxicity of spheres. The loading and release profiles of drugs were studied spectrophotometrically. RESULTS The bioengineered silk variant, EMS2, was constructed, produced, and purified. The EMS2 silk retained the self-assembly property and formed spheres. The spheres made of EMS2 and MS2 silks were not cytotoxic and had a similar secondary structure content but differed in morphology and zeta potential values; EMS2 particles were more negatively charged than MS2 particles. Independently of the loading method (pre- or post-loading), the loading of drugs into EMS2 spheres was more efficient than the loading into MS2 spheres. The advantageous loading efficiency and release rate made EMS2 spheres a good choice to deliver neutral etoposide (ETP). Despite the high loading efficiency of positively charged mitoxantrone (MTX) into EMS2 particles, the fast release rate made EMS2 unsuitable for the delivery of this drug. A faster release rate from EMS2 particles compared to MS2 particles was observed for positively charged doxorubicin (DOX). CONCLUSION By modifying its sequence, silk affinity for drugs can be controlled.
Collapse
Affiliation(s)
- Kamil Kucharczyk
- Department of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland,
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland,
| | - Marek Weiss
- Division of Computational Physics and Nanomechanics, Institute of Physics, Faculty of Technical Physics, Poznan University of Technology, Poznan, Poland
| | - Katarzyna Jastrzebska
- Department of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland,
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland,
| | - Magdalena Luczak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Organic Chemistry, Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Arkadiusz Ptak
- Division of Computational Physics and Nanomechanics, Institute of Physics, Faculty of Technical Physics, Poznan University of Technology, Poznan, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Adam Mickiewicz University, Poznan, Poland
- Joint Laboratory for SAXS Studies, Adam Mickiewicz University, Poznan, Poland
| | - Andrzej Mackiewicz
- Department of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland,
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland,
| | - Hanna Dams-Kozlowska
- Department of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland,
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland,
| |
Collapse
|
176
|
Mohammadzadeh Pakdel P, Peighambardoust SJ. A review on acrylic based hydrogels and their applications in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:123-143. [PMID: 29602074 DOI: 10.1016/j.jenvman.2018.03.076] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/26/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
The acrylic based hydrogels have attracted the attention of many researchers in the field of pollutants adsorption such as dyes and metal cations due to their high swelling and adsorption capacities. This review introduces acrylic based hydrogels and focuses on their adsorption properties. We first described the methods for synthesizing hydrogels. Usual methods of characterization of acrylic based hydrogels such as swelling, adsorption capacity and desorption efficiency of the pollutants have been investigated. In addition, the adsorption isotherm and kinetic models which determine the mechanism of pollutants' adsorption by hydrogels have been introduced and relations that determine the values of thermodynamic parameters which define accomplishment of adsorption process have been investigated. In the following sections, a perfect insight has been provided on natural and synthetic acrylic based hydrogels. The effective parameters of swelling and adsorption by acrylic based hydrogels have been reviewed and the mechanism of pollutant's adsorption by acrylic based hydrogels has been discussed.
Collapse
|
177
|
Le Feuvre RA, Scrutton NS. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials. Synth Syst Biotechnol 2018; 3:105-112. [PMID: 29900423 PMCID: PMC5995479 DOI: 10.1016/j.synbio.2018.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/27/2022] Open
Abstract
Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials, where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal.
Collapse
Affiliation(s)
- Rosalind A. Le Feuvre
- BBSRC/EPSRC Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- BBSRC/EPSRC Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemistry, The University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
178
|
Xu Y, Yang X, Thomas AK, Patsis PA, Kurth T, Kräter M, Eckert K, Bornhäuser M, Zhang Y. Noncovalently Assembled Electroconductive Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14418-14425. [PMID: 29644843 DOI: 10.1021/acsami.8b01029] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cross-linking biomolecules with electroconductive nanostructures through noncovalent interactions can result in modular networks with defined biological functions and physical properties such as electric conductivity and viscoelasticity. Moreover, the resulting matrices can exhibit interesting features caused by the dynamic assembly process, such as self-healing and molecular ordering. In this paper, we present a physical hydrogel system formed by mixing peptide-polyethylene glycol and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate. This combinatorial approach, which uses different modular building blocks, could lead to high tunability on aspects of rheology and electrical impedance. The proposed physical hydrogel system is characterized by both a self-healing ability and injectability. Interestingly, the formation of hydrogels at relatively low concentrations led to a network of closer molecular packing of poly(3,4-ethylenedioxythiophene) nanoparticles, reflected by the enhanced conductivity. The biopolymer system can be used to develop three-dimensional cell cultures with incorporated electric stimuli, as evidenced by its contribution to the survival and proliferation of encapsulated mesenchymal stromal cells and their differentiation upon electrical stimulation.
Collapse
Affiliation(s)
| | - Xuegeng Yang
- Institute of Fluid Dynamics , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , 01328 Dresden , Germany
| | | | | | | | - Martin Kräter
- Medizinische Klinik und Poliklinik I , University Hospital Carl Gustav Carus der Technischen Universität Dresden , Fetscherstraße 74 , 01307 Dresden , Germany
| | - Kerstin Eckert
- Institute of Fluid Dynamics , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , 01328 Dresden , Germany
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik I , University Hospital Carl Gustav Carus der Technischen Universität Dresden , Fetscherstraße 74 , 01307 Dresden , Germany
| | | |
Collapse
|
179
|
Hussain I, Sayed SM, Liu S, Oderinde O, Yao F, Fu G. Glycogen-based self-healing hydrogels with ultra-stretchable, flexible, and enhanced mechanical properties via sacrificial bond interactions. Int J Biol Macromol 2018; 117:648-658. [PMID: 29679673 DOI: 10.1016/j.ijbiomac.2018.04.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
Abstract
The development of hydrogel materials with enhanced mechanical properties is the primary focus in designing autonomous self-healable hydrogel materials. Here, we present a facile and cost-effective method for the autonomous self-healing hydrogel based on Glycogen (Gly/PAA-Fe3+) with enhanced mechanical properties by simple insertion of ferric ions in the physically cross-linked network via metal-ligand interactions. This dual physically cross-linked hydrogel has an excellent elongation at break and self-healing properties due to the dynamic ionic cross-linking point. This work will encourage researchers to focus on this facile technique for the synthesis of self-healing hydrogel materials with enhanced mechanical properties.
Collapse
Affiliation(s)
- Imtiaz Hussain
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Sayed Mir Sayed
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Shunli Liu
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Olayinka Oderinde
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Fang Yao
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China.
| |
Collapse
|
180
|
Wang Y, Zhu Y, Hu Y, Zeng G, Zhang Y, Zhang C, Feng C. How to Construct DNA Hydrogels for Environmental Applications: Advanced Water Treatment and Environmental Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703305. [PMID: 29450972 DOI: 10.1002/smll.201703305] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/23/2017] [Indexed: 06/08/2023]
Abstract
With high binding affinity, porous structures, safety, green, programmability, etc., DNA hydrogels have gained increasing recognition in the environmental field, i.e., advanced treatment technology of water and analysis of specific pollutants. DNA hydrogels have been demonstrated as versatile potential adsorbents, immobilization carriers of bioactive molecules, catalysts, sensors, etc. Moreover, altering components or choosing appropriate functional DNA optimizes environment-oriented hydrogels. However, the lack of comprehensive information hinders the continued optimization. The principle used to fabricate the most suitable hydrogels in terms of the requirements is the focus of this Review. First, different fabrication strategies are introduced and the ideal characteristic for environmental applications is in focus. Subsequently, recent environmental applications and the development of diverse DNA hydrogels regarding their synthesis mechanism are summarized. Finally, the Review provides an insight into the remaining challenging and future perspectives in environmental applications.
Collapse
Affiliation(s)
- Yingrong Wang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Lushan South Road, Changsha, 410082, P. R. China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Lushan South Road, Changsha, 410082, P. R. China
| | - Yi Hu
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Lushan South Road, Changsha, 410082, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Lushan South Road, Changsha, 410082, P. R. China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Lushan South Road, Changsha, 410082, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Lushan South Road, Changsha, 410082, P. R. China
| | - Chongling Feng
- Research Center of Environmental Science and Engineering, Center South University of Forestry and Technology, Shaoshan South Road, Changsha, 410004, China
| |
Collapse
|
181
|
Sun T, Zhu C, Xu J. Multiple stimuli-responsive selenium-functionalized biodegradable starch-based hydrogels. SOFT MATTER 2018; 14:921-926. [PMID: 29309083 DOI: 10.1039/c7sm02137b] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Novel biodegradable diselenide cross-linked starch-based hydrogels were synthesized via free radical copolymerization, which serve as stimuli-responsive drug release materials composed of starch chain backbones with an enzyme hydrolysis property and selenium-containing cross-linkers with a redox responsive cleavage property. Rhodamine B (RB) loaded starch-based hydrogels were prepared in order to investigate their stimuli-responsive release behaviours. In the presence of external redox agents, the enzyme stimuli as well as the mixture of the above stimuli, the prepared starch-based hydrogels exhibit controlled multi-responsive release behavior of RB. Overall, the merits of good biodegradation and multi-stimuli responsiveness make these kinds of starch-based hydrogels promising biomedical candidates for the realization of controlled drug delivery.
Collapse
Affiliation(s)
- Tongbing Sun
- College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong Province, China. and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, China.
| | - Caizhen Zhu
- College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong Province, China.
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, China.
| |
Collapse
|
182
|
Three-dimensional printing of alginate-gelatin-agar scaffolds using free-form motor assisted microsyringe extrusion system. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1455-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
183
|
Aljohani W, Ullah MW, Zhang X, Yang G. Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol 2018; 107:261-275. [DOI: 10.1016/j.ijbiomac.2017.08.171] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/16/2023]
|
184
|
Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications. Int J Biol Macromol 2018; 107:865-873. [DOI: 10.1016/j.ijbiomac.2017.09.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/07/2017] [Accepted: 09/17/2017] [Indexed: 12/19/2022]
|
185
|
Zhao Y, Liu H, Wang Z, Zhang Q, Li Y, Tian W, Tong Z, Wang Y, Huselstein C, Shi X, Chen Y. Electrodeposition to construct mechanically robust chitosan-based multi-channel conduits. Colloids Surf B Biointerfaces 2018; 163:412-418. [PMID: 29408165 DOI: 10.1016/j.colsurfb.2018.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 12/11/2022]
Abstract
A series of electrodeposited chitosan-based multi-channel conduits (ECMC) with potential for peripheral nerve tissue engineering were constructed using a novel electrodeposition method combined with homemade molds. The structural and mechanical properties of the ECMC were characterized by scanning electron microscopy, Fourier-transformed infrared spectroscopy, X-ray diffraction patterns and mechanical testing. The results showed that the electrodeposition process did not change the chemical structure of the chitosan molecules, but endowed the ECMC with high levels of flexibility and elasticity. Hemocompatibility and cytocompatibility of the ECMC were evaluated by hemolysis assay, MTT assay and live/dead assay. The results indicated that the ECMC had a low hemolysis rate, and can promote cell proliferation and support cell adhesion. This work provides a safe and feasible electrodeposition method to construct chitosan-based conduits with potential applications for peripheral nerve tissue engineering.
Collapse
Affiliation(s)
- Yanan Zhao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hongyu Liu
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Zijian Wang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiang Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yinping Li
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Weiqun Tian
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zan Tong
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yingying Wang
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Céline Huselstein
- CNRS UMR 7561 and FR CNRS-INSERM 32.09 Nancy University, Vandœuvre-lès-Nancy, France
| | - Xiaowen Shi
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| | - Yun Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Province Key Laboratory of Allergy and Immune Related Diseases, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
186
|
Techno-Economic Analysis of Chitosan-Based Hydrogels Production. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2018. [DOI: 10.1007/978-3-319-76573-0_58-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
187
|
Abdalla AM, Xiao L, Ullah MW, Yu M, Ouyang C, Yang G. Current Challenges of Cancer Anti-angiogenic Therapy and the Promise of Nanotherapeutics. Theranostics 2018; 8:533-548. [PMID: 29290825 PMCID: PMC5743565 DOI: 10.7150/thno.21674] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023] Open
Abstract
With growing interest in cancer therapeutics, anti-angiogenic therapy has received considerable attention and is widely administered in several types of human cancers. Nonetheless, this type of therapy may induce multiple signaling pathways compared with cytotoxics and lead to worse outcomes in terms of resistance, invasion, metastasis, and overall survival (OS). Moreover, there are important challenges that limit the translation of promising biomarkers into clinical practice to monitor the efficiency of anti-angiogenic therapy. These pitfalls emphasize the urgent need for discovering alternative angiogenic inhibitors that target multiple angiogenic factors or developing a new drug delivery system for the current inhibitors. The great advantages of nanoparticles are their ability to offer effective routes that target the biological system and regulate different vital processes based on their unique features. Limited studies so far have addressed the effectiveness of nanoparticles in the normalization of the delicate balance between stimulating (pro-angiogenic) and inhibiting (anti-angiogenic) factors. In this review, we shed light on tumor vessels and their microenvironment and consider the current directions of anti-angiogenic and nanotherapeutic treatments. To the best of our knowledge, we consider an important effort in the understanding of anti-angiogenic agents (often a small volume of metals, nonmetallic molecules, or polymers) that can control the growth of new vessels.
Collapse
Affiliation(s)
- Ahmed M.E. Abdalla
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum 1660/11111, Sudan
| | - Lin Xiao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Miao Yu
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, Beijing 100037, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
188
|
Zhou Z, Liu X, Wu W, Park S, Miller II AL, Terzic A, Lu L. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds. Biomater Sci 2018; 6:2375-2385. [DOI: 10.1039/c8bm00553b] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biomimetic biomaterials require good biocompatibility and bioactivity to serve as appropriate scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Zifei Zhou
- Department of Physiology and Biomedical Engineering and Department of Orthopedic Surgery
- Mayo Clinic
- Rochester
- USA
- Department of Orthopedic Surgery
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering and Department of Orthopedic Surgery
- Mayo Clinic
- Rochester
- USA
| | - Wei Wu
- Department of Physiology and Biomedical Engineering and Department of Orthopedic Surgery
- Mayo Clinic
- Rochester
- USA
- Department of Orthopedics Surgery
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine
- Mayo Clinic
- Rochester
- USA
| | - A. Lee Miller II
- Department of Physiology and Biomedical Engineering and Department of Orthopedic Surgery
- Mayo Clinic
- Rochester
- USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine
- Mayo Clinic
- Rochester
- USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering and Department of Orthopedic Surgery
- Mayo Clinic
- Rochester
- USA
| |
Collapse
|
189
|
Galante R, Pinto TJA, Colaço R, Serro AP. Sterilization of hydrogels for biomedical applications: A review. J Biomed Mater Res B Appl Biomater 2017; 106:2472-2492. [PMID: 29247599 DOI: 10.1002/jbm.b.34048] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/04/2017] [Accepted: 11/12/2017] [Indexed: 12/19/2022]
Abstract
Despite the beneficial properties and outstanding potential of hydrogels for biomedical applications, several unmet challenges must be overcome, especially regarding to their known sensitivity to conventional sterilization methods. It is crucial for any biomaterial to withstand an efficient sterilization to obtain approval from regulatory organizations and to safely proceed to clinical trials. Sterility assurance minimizes the incidence of medical device-related infections, which still constitute a major concern in health care. In this review, we provide a detailed and comprehensive description of the published work from the past decade regarding the effects of sterilization on different types of hydrogels for biomedical applications. Advances in hydrogel production methods with simultaneous sterilization are also reported. Terminal sterilization methods can induce negative or positive effects on several material properties (e.g., aspect, size, color, chemical structure, mechanical integrity, and biocompatibility). Due to the complexity of factors involved (e.g., material properties, drug stability, sterilization conditions, and parameters), it is important to note the virtual impossibility of predicting the outcome of sterilization methods to determine a set of universal rules. Each system requires case-by-case testing to select the most suitable, effective method that allows for the main properties to remain unaltered. The impact of sterilization methods on the intrinsic properties of these systems is understudied, and further research is needed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2472-2492, 2018.
Collapse
Affiliation(s)
- Raquel Galante
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, Brazil.,Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Terezinha J A Pinto
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, Brazil
| | - Rogério Colaço
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Engenharia Mecânica and IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, Quinta da Granja, Monte de Caparica, Caparica, Portugal
| |
Collapse
|
190
|
Novel metronidazole-loaded hydrogel as a gastroretentive drug delivery system. IRANIAN POLYMER JOURNAL 2017. [DOI: 10.1007/s13726-017-0575-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
191
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 486] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
192
|
Electrodeposition to construct free-standing chitosan/layered double hydroxides hydro-membrane for electrically triggered protein release. Colloids Surf B Biointerfaces 2017; 158:474-479. [DOI: 10.1016/j.colsurfb.2017.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 11/17/2022]
|
193
|
Liu Z, Zhang C, Xu H, Ma X, Shi Z, Yin J. A Facile Method Synthesizing Hydrogel Using Hybranched Polyether Amine (hPEA) as Coinitiator and Crosslinker. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhiyong Liu
- School of Chemistry & Chemical Engineering; State Key Laboratory for Metal Matrix; Composite Materials; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Changxu Zhang
- School of Chemistry & Chemical Engineering; State Key Laboratory for Metal Matrix; Composite Materials; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Hongjie Xu
- School of Chemistry & Chemical Engineering; State Key Laboratory for Metal Matrix; Composite Materials; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Xiaodong Ma
- School of Chemistry & Chemical Engineering; State Key Laboratory for Metal Matrix; Composite Materials; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Zixing Shi
- School of Chemistry & Chemical Engineering; State Key Laboratory for Metal Matrix; Composite Materials; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Jie Yin
- School of Chemistry & Chemical Engineering; State Key Laboratory for Metal Matrix; Composite Materials; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| |
Collapse
|
194
|
Choi JS, Park JS, Kim B, Lee BT, Yim JH. In vitro biocompatibility of vapour phase polymerised conductive scaffolds for cell lines. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
195
|
Di Z, Shi Z, Ullah MW, Li S, Yang G. A transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl methacrylate). Int J Biol Macromol 2017; 105:638-644. [PMID: 28716748 DOI: 10.1016/j.ijbiomac.2017.07.075] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
Abstract
The current study was aimed to develop a transparent wound dressing comprised of bacterial cellulose (BC) and poly (2-hydroxyethyl methacrylate) (PHEMA) hydrogel coated with silver (Ag) nanoparticles. Briefly, different concentrations of BC whiskers (BCWs) were added into the HEMA solution to form PHEMA/BCWs hydrogel with volume ratio of monomer HEMA and BCWs as 7:3 and 1:1. The addition of BCWs into PHEMA matrix improved its equilibrium water content and light transmittance about 20%-40% and 10%, respectively. The Young's modulus for PHEMA was found to be 0.72MPa, which was improved to 0.57MPa and 0.50MPa for PHEMA/BCWs 7:3 and PHEMA/BCWs 1:1, respectively. Further, immersion of PHEMA/BCWs hydrogel in the AgNO3 and NaBH4 solutions bestowed it with antibacterial property and produced inhibition zones of 0.5±0.15cm and 0.25±0.15cm against Escherichia coli and Staphylococcus aureus, respectively. Similarly, PHEMA/BCWs prepared with 0.001M AgNO3 and 0.001M NaBH4 solutions showed 99% and 90% reduction in colony forming unit (CFU) for E. coli and S. aureus, respectively, after 24h. The PHEMA/BCWs/Ag hydrogel facilitated the growth of NIH3T3 fibroblast, showing their low toxicity. These results demonstrate the suitability of PHEMA/BCWs/Ag hydrogel for its application as potential transparent wound dressing material for skin repair.
Collapse
Affiliation(s)
- Zeng Di
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sixiang Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
196
|
Abstract
Reconstructive urologists are constantly facing diverse and complex pathologies that require structural and functional restoration of urinary organs. There is always a demand for a biocompatible material to repair or substitute the urinary tract instead of using patient's autologous tissues with its associated morbidity. Biomimetic approaches are tissue-engineering tactics aiming to tailor the material physical and biological properties to behave physiologically similar to the urinary system. This review highlights the different strategies to mimic urinary tissues including modifications in structure, surface chemistry, and cellular response of a range of biological and synthetic materials. The article also outlines the measures to minimize infectious complications, which might lead to graft failure. Relevant experimental and preclinical studies are discussed, as well as promising biomimetic approaches such as three-dimensional bioprinting.
Collapse
Affiliation(s)
- Moustafa M Elsawy
- Division of Surgery and Interventional Science, Royal Free Hospital, NHS Trust, University College London (UCL)
- Division of Reconstructive Urology, University College London Hospitals (uclh), London, UK
- Urology Department, School of Medicine, Alexandria University, Alexandria, Egypt
| | - Achala de Mel
- Division of Surgery and Interventional Science, Royal Free Hospital, NHS Trust, University College London (UCL)
| |
Collapse
|
197
|
Islam MU, Ullah MW, Khan S, Shah N, Park JK. Strategies for cost-effective and enhanced production of bacterial cellulose. Int J Biol Macromol 2017; 102:1166-1173. [PMID: 28487196 DOI: 10.1016/j.ijbiomac.2017.04.110] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/15/2022]
Abstract
Bacterial cellulose (BC) has received substantial attention because of its high purity, mechanical strength, crystallinity, liquid-absorbing capabilities, biocompatibility, and biodegradability etc. These properties allow BC to be used in various fields, especially in industries producing medical, electronic, and food products etc. A major discrepancy associated with BC is its high production cost, usually much higher than the plant cellulose. To address this limitations, researchers have developed several strategies for enhanced production of BC including the designing of advanced reactors and utilization of various carbon sources. Another promising approach is the production of BC from waste materials such as food, industrial, agricultural, and brewery wastes etc. which not only reduces the overall BC production cost but is also environment-friendly. Besides, exploration of novel and efficient BC producing microbial strains provides impressive boost to the BC production processes. To this end, development of genetically engineered microbial strains has proven useful for enhanced BC production. In this review, we have summarized major efforts to enhance BC production in order to make it a cost-effective biopolymer. This review can be of interest to researchers investigating strategies for enhanced BC production, as well as companies exploring pilot projects to scale up BC production for industrial applications.
Collapse
Affiliation(s)
- Mazhar Ul Islam
- Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea; Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, 211, Oman
| | - Muhammad Wajid Ullah
- Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shaukat Khan
- Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Joong Kon Park
- Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
198
|
Zhao M, Cui N, Qu F, Huang X, Yang H, Nie S, Zha X, Cui SW, Nishinari K, Phillips GO, Fang Y. Novel nano-particulated exopolysaccharide produced by Klebsiella sp. PHRC1.001. Carbohydr Polym 2017; 171:252-258. [PMID: 28578961 DOI: 10.1016/j.carbpol.2017.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/11/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
In recent decades, microbial synthesis of polysaccharides with special functional properties has attracted increasing attention. This work reported a novel exopolysaccharide (EPS)-producing strain, Klebsiella sp. PHRC1.001 isolated from activated sludge. Physicochemical, rheological, emulsifying and toxicological properties of the obtained EPS were characterized. The EPS was mainly composed of d-glucose and l-arabinose, and was found to exist in aqueous solution in a nano-particulated form (∼50nm in diameter) with a strong tendency of aggregation. Rheological analysis showed that the EPS aqueous solution was a typical pseudoplastic fluid at higher concentration and could form weak gel upon alkaline treatment followed by neutralization. The EPS exhibited excellent emulsifying properties in stabilizing oil-in-water emulsions presumably by a Pickering mechanism owing to its nanoparticle structure. Acute toxicity test showed that 1.8g EPS per kg of body weight caused no toxic effect on mice. PHRC1.001 EPS has the potential to be a novel industrial polysaccharide.
Collapse
Affiliation(s)
- Meng Zhao
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Nana Cui
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Fangning Qu
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xue Huang
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education and School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xueqiang Zha
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230011, China
| | - Steve W Cui
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Glyn O Phillips
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yapeng Fang
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China; Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
199
|
Jasim A, Ullah MW, Shi Z, Lin X, Yang G. Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydr Polym 2017; 163:62-69. [DOI: 10.1016/j.carbpol.2017.01.056] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/25/2016] [Accepted: 01/15/2017] [Indexed: 12/22/2022]
|
200
|
Ampawong S, Aramwit P. In vivo safety and efficacy of sericin/poly(vinyl alcohol)/glycerin scaffolds fabricated by freeze-drying and salt-leaching techniques for wound dressing applications. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517694398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In our previous works, two techniques (freeze-drying and salt-leaching) were introduced to fabricate the sericin/poly(vinyl alcohol)/glycerin scaffolds. The freeze-dried and salt-leached sericin/poly(vinyl alcohol)/glycerin scaffolds with the same composition showed distinguished physical and in vitro biological characteristics. In this study, the in vivo safety and efficacy tests of both scaffolds as dressing materials for the healing of full-thickness wounds in rat model were performed in comparison with the clinically used dressing, Allevyn®. In the safety test, the scaffolds were implanted subcutaneously, and the signs of tissue irritation including the extent of inflammatory cells, calcification, vascularization, and fatty infiltration were scored. In the efficacy test, the scaffolds were applied to the full-thickness wound (1.5 cm × 1.5 cm), and the epithelialization and collagen formation in the wound were evaluated. Both freeze-dried and salt-leached scaffolds were characterized as non- to slightly irritant implantable materials. The freeze-dried scaffold minimally causes irritation to the tissue possibly because it was derived from the non-chemical relevant process. Furthermore, the freeze-dried scaffold showed the highest wound healing efficiency as characterized by the fastest epithelialization and highest extent of collagen formation. This might be due to the more sustained release of sericin from the freeze-dried scaffold, compared to that of the salt-leached scaffold. Therefore, fabrication process seemed to directly regulate the properties and applicability of the scaffolds. The safety and efficacy of the dressing materials in wound healing application depended not only on the materials themselves but also on the fabrication process that produces them.
Collapse
Affiliation(s)
- Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornanong Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|