151
|
Anisotropic traction stresses and focal adhesion polarization mediates topography-induced cell elongation. Biomaterials 2018; 181:103-112. [DOI: 10.1016/j.biomaterials.2018.07.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/21/2018] [Accepted: 07/28/2018] [Indexed: 01/29/2023]
|
152
|
Jia Y, Li W, Duan H, Li Z, Zhou Q, Shi W. Mini-Sheet Injection for Cultured Corneal Endothelial Transplantation. Tissue Eng Part C Methods 2018; 24:474-479. [DOI: 10.1089/ten.tec.2018.0077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Yanni Jia
- Department of Medicine, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Wenjing Li
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Haoyun Duan
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Zongyi Li
- Department of Medicine, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Weiyun Shi
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
153
|
Zheng J, Zhao F, Zhang W, Mo Y, Zeng L, Li X, Chen X. Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:119-127. [DOI: 10.1016/j.msec.2018.03.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
|
154
|
Pacelli S, Rampetsreiter K, Modaresi S, Subham S, Chakravarti AR, Lohfeld S, Detamore MS, Paul A. Fabrication of a Double-Cross-Linked Interpenetrating Polymeric Network (IPN) Hydrogel Surface Modified with Polydopamine to Modulate the Osteogenic Differentiation of Adipose-Derived Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24955-24962. [PMID: 29969894 PMCID: PMC6535093 DOI: 10.1021/acsami.8b05200] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogel surface properties can be modified to form bioactive interfaces to modulate the osteogenic differentiation of stem cells. In this work, a hydrogel made of gelatin methacrylamide (GelMA) and alginate was designed and tested as a scaffold to control stem-cell osteogenic differentiation. The hydrogel's surface was treated with polydopamine (pDA) to create an adhesive layer for the adsorption of the osteoinductive drug dexamethasone (Dex). The presence of the pDA coating enhanced Dex adsorption and retention over 21 days. This effect resulted in a delay in the osteogenic differentiation of hASCs cultured on the hydrogel treated with a pDA layer.
Collapse
Affiliation(s)
- Settimio Pacelli
- Department of Chemical and Petroleum Engineering, BioIntel Research Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
| | - Kyle Rampetsreiter
- Department of Chemical and Petroleum Engineering, BioIntel Research Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
| | - Saman Modaresi
- Department of Chemical and Petroleum Engineering, BioIntel Research Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
| | - Siddharth Subham
- Department of Chemical and Petroleum Engineering, BioIntel Research Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
| | - Aparna R. Chakravarti
- Department of Chemical and Petroleum Engineering, BioIntel Research Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
| | - Stefan Lohfeld
- Department of Chemical and Petroleum Engineering, BioIntel Research Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
- Biomechanics Research Centre (BMEC), Mechanical and Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, H91 TK33 Ireland
| | - Michael S. Detamore
- Department of Chemical and Petroleum Engineering, BioIntel Research Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Arghya Paul
- Department of Chemical and Petroleum Engineering, BioIntel Research Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
155
|
Physical Crosslinked Poly(N-isopropylacrylamide)/Nano-Hydroxyapatite Thermosensitive Composite Hydrogels. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0893-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
156
|
Williams R, Lace R, Kennedy S, Doherty K, Levis H. Biomaterials for Regenerative Medicine Approaches for the Anterior Segment of the Eye. Adv Healthc Mater 2018; 7:e1701328. [PMID: 29388397 DOI: 10.1002/adhm.201701328] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Indexed: 12/13/2022]
Abstract
The role of biomaterials in tissue engineering and regenerative medicine strategies to treat vision loss associated with damage to tissues in the anterior segment of the eye has been studied for several years. This has mostly involved replacement and support for the cornea and conjunctiva. These are complex tissues with specific functional requirements for different parts of the tissue. Amniotic membrane (AM) is used in clinical practice to transplant autologous or allogenic cells to the corneal surface. Fibrin gels have also progressed to clinical use under specific conditions. Alternatives to AM such as collagen gels, other natural materials, for example keratin and silks, and synthetic polymers have received considerable attention in laboratory and animal studies. This experience is building a body of evidence to demonstrate the potential of tissue engineering and regenerative medicine in corneal and conjunctival reconstruction and can also lead to other applications in the anterior segment of the eye, for example, the trabecular meshwork. There is a real clinical need for new procedures to overcome vision loss but there are also opportunities for developments in ocular applications to lead to biomaterials innovations for use in other clinical areas.
Collapse
Affiliation(s)
- Rachel Williams
- Department of Eye and Vision Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Rebecca Lace
- Department of Eye and Vision Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Stephnie Kennedy
- Department of Eye and Vision Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Kyle Doherty
- Department of Eye and Vision Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Hannah Levis
- Department of Eye and Vision Science, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
157
|
Ludwig PE, Huff TJ, Zuniga JM. The potential role of bioengineering and three-dimensional printing in curing global corneal blindness. J Tissue Eng 2018; 9:2041731418769863. [PMID: 29686829 PMCID: PMC5900811 DOI: 10.1177/2041731418769863] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
An insufficiency of accessible allograft tissue for corneal transplantation leaves many impaired by untreated corneal disease. There is promise in the field of regenerative medicine for the development of autologous corneal tissue grafts or collagen-based scaffolds. Another approach is to create a suitable corneal implant that meets the refractive needs of the cornea and is integrated into the surrounding tissue but does not attempt to perfectly mimic the native cornea on a cellular level. Materials that have been investigated for use in the latter concept include natural polymers such as gelatin, semisynthetic polymers like gelatin methacrylate, and synthetic polymers. There are advantages and disadvantages inherent in natural and synthetic polymers: natural polymers are generally more biodegradable and biocompatible, while synthetic polymers typically provide greater control over the characteristics or property adjustment of the materials. Additive manufacturing could aid in the precision production of keratoprostheses and the personalization of implants.
Collapse
Affiliation(s)
| | - Trevor J Huff
- Creighton University School of Medicine, Omaha, NE, USA
| | - Jorge M Zuniga
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
158
|
Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells. SCIENCE CHINA-LIFE SCIENCES 2018; 61:448-456. [DOI: 10.1007/s11427-017-9287-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022]
|
159
|
Chen Z, You J, Liu X, Cooper S, Hodge C, Sutton G, Crook JM, Wallace GG. Biomaterials for corneal bioengineering. ACTA ACUST UNITED AC 2018; 13:032002. [PMID: 29021411 DOI: 10.1088/1748-605x/aa92d2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Corneal transplantation is an important surgical treatment for many common corneal diseases. However, a worldwide shortage of tissue from suitable corneal donors has meant that many people are not able to receive sight-restoring operations. In addition, rejection is a major cause of corneal transplant failure. Bioengineering corneal tissue has recently gained widespread attention. In order to facilitate corneal regeneration, a range of materials is currently being investigated. The ideal substrate requires sufficient tectonic durability, biocompatibility with cultured cellular elements, transparency, and perhaps biodegradability and clinical compliance. This review considers the anatomy and function of the native cornea as a precursor to evaluating a variety of biomaterials for corneal regeneration including key characteristics for optimal material form and function. The integration of appropriate cells with the most appropriate biomaterials is also discussed. Taken together, the information provided offers insight into the requirements for fabricating synthetic and semisynthetic corneas for in vitro modeling of tissue development and disease, pharmaceutical screening, and in vivo application for regenerative medicine.
Collapse
Affiliation(s)
- Zhi Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, New South Wales 2519, Australia
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Yi X, He J, Wang X, Zhang Y, Tan G, Zhou Z, Chen J, Chen D, Wang R, Tian W, Yu P, Zhou L, Ning C. Tunable Mechanical, Antibacterial, and Cytocompatible Hydrogels Based on a Functionalized Dual Network of Metal Coordination Bonds and Covalent Crosslinking. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6190-6198. [PMID: 29381319 DOI: 10.1021/acsami.7b18821] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tissue engineering has become a rapidly developing field of research because of the increased demand from regenerative medicine, and hydrogels are a promising tissue engineering scaffold because of their three-dimensional structures. In this study, we constructed novel hydrogels of gelatin methacrylate (GelMA) hydrogels modified with histidine and Zn2+ (GelMA-His-Zn(II)), which possessed fascinating antibacterial properties and tunable mechanical properties because of the formation of a functionalized dual network of covalent crosslinking and metal coordination bonds. The introduction of metal coordination bonds not only improves the strength of the GelMA hydrogels with covalent crosslinking but also makes their mechanical properties tunable via adjustments to the concentration of Zn2+. The synergistic effect of Zn2+ and the imidazole groups gives the GelMA-His-Zn(II) hydrogels fascinating antibacterial properties (up to 100% inhibition). Counting the colony forming units and compression tests confirmed the fascinating antibacterial abilities and tunable mechanical properties, respectively, of the GelMA-His-Zn(II) hydrogels. In addition, Cell Counting Kit-8 assays, cytoskeletal staining assays, and live/dead assays confirmed the excellent cytocompatibility of the GelMA-His-Zn(II) hydrogels. Therefore, the GelMA-His-Zn(II) hydrogels are promising for applications in tissue engineering.
Collapse
Affiliation(s)
| | | | - Xiaolan Wang
- Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA , Guangzhou 510010, China
| | - Yu Zhang
- Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command of PLA , Guangzhou 510010, China
| | - Guoxin Tan
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology , Guangzhou 510006, China
| | - Zhengnan Zhou
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology , Guangzhou 510006, China
| | | | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital , Beijing 100035, China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital , Beijing 100035, China
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital , Beijing 100035, China
| | | | | | | |
Collapse
|
161
|
Cutiongco MFA, Chua BMX, Neo DJH, Rizwan M, Yim EKF. Functional differences between healthy and diabetic endothelial cells on topographical cues. Biomaterials 2018; 153:70-84. [PMID: 29125983 PMCID: PMC5724387 DOI: 10.1016/j.biomaterials.2017.10.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/04/2017] [Accepted: 10/20/2017] [Indexed: 12/23/2022]
Abstract
The endothelial lining of blood vessels is severely affected in type II diabetes. Yet, there is still a paucity on the use of diabetic endothelial cells for study and assessment of implantable devices targeting vascular disease. This critically impairs our ability to determine appropriate topographical cues to be included in implantable devices that can be used to maintain or improve endothelial cell function in vivo. Here, the functional responses of healthy and diabetic human coronary arterial endothelial cells were studied and observed to differ depending on topography. Gratings (2 μm) maintained normal endothelial functions such as adhesiveness, angiogenic capacity and cell-cell junction formation, and reduced immunogenicity of healthy cells. However, a significant and consistent effect was not observed in diabetic cells. Instead, diabetic endothelial cells cultured on the perpendicularly aligned multi-scale hierarchical gratings (250 nm gratings on 2 μm gratings) drastically reduced the uptake of oxidized low-density lipoprotein, decreased immune activation, and accelerated cell migration. Concave microlens (1.8 μm diameter) topography was additionally observed to overwhelmingly deteriorate diabetic endothelial cell function. The results of this study support a new paradigm and approach in the design and testing of implantable devices and biomedical interventions for diabetic patients.
Collapse
Affiliation(s)
- Marie F A Cutiongco
- Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, Singapore, 117411; Department of Biomedical Engineering, Block E4 #04-08, 4 Engineering Drive 3, National University of Singapore, 117583, Singapore
| | - Bryan M X Chua
- Department of Biomedical Engineering, Block E4 #04-08, 4 Engineering Drive 3, National University of Singapore, 117583, Singapore
| | - Dawn J H Neo
- Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, Singapore, 117411
| | - Muhammad Rizwan
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1
| | - Evelyn K F Yim
- Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, Singapore, 117411; Department of Biomedical Engineering, Block E4 #04-08, 4 Engineering Drive 3, National University of Singapore, 117583, Singapore; Department of Surgery, National University of Singapore, Singapore; Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1.
| |
Collapse
|
162
|
Makita R, Akasaka T, Tamagawa S, Yoshida Y, Miyata S, Miyaji H, Sugaya T. Preparation of micro/nanopatterned gelatins crosslinked with genipin for biocompatible dental implants. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1735-1754. [PMID: 29977707 PMCID: PMC6009376 DOI: 10.3762/bjnano.9.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/09/2018] [Indexed: 05/09/2023]
Abstract
Background: Collagen is a basic component of the periodontium and plays an important role in the function of the periodontal unit. Therefore, coating with collagen/gelatin has been applied to enable dental implants to positively interact with peri-implant tissues. Although the micro/nanoscale topography is an important property of the surface of dental implants, smaller collagen/gelatin surface patterns have not been sufficiently developed. Furthermore, only few reports on the behavior of cells on gelatin surfaces with different patterns and sizes exist. In this study, we developed micro/nanometer-scaled gelatin surfaces using genipin crosslinking, with the aim of understanding the use of patterning in surface modification of dental implants. Results: Grooves, holes, and pillars, with widths or diameters of 2 µm, 1 µm, or 500 nm were fabricated using a combination of molding and genipin crosslinking of gelatin. The stability of the different gelatin patterns could be controlled by the degree of genipin crosslinking. The gelatin patterns at 20 mM concentration of genipin and 41% crosslinking maintained a stable, patterned shape for at least 14 days in a cell culture medium. A cell morphology study showed that the cells on groves were aligned along the direction of the grooves. In contrast, the cells on pillars and holes exhibited randomly elongated filopodia. The vinculin spots of the cells were observed on the top of ridges and pillars or the upper surface of holes. The results of a cell attachment assay showed that the number of surface-attached cells increased with increasing patterning of the gelatin surface. Unlike the cell attachment assay, the results of a cell proliferation assay showed that Saos-2 cells prefer grooves with diameters of approximately 2 µm and 1 µm and pillars with diameters of 1 µm and heights of 500 nm. The number of cells on pillars with heights of 2 µm was larger than those of the other gelatin surface patterns tested. Conclusion: These data support that a detailed design of the gelatin surface pattern can control both cell attachment and proliferation of Saos-2 cells. Thus, gelatin surfaces patterned using genipin crosslinking are now an available option for biocompatible material patterning.
Collapse
Affiliation(s)
- Reika Makita
- Department of Periodontology and Endodontology, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Tsukasa Akasaka
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Seiichi Tamagawa
- School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Yasuhiro Yoshida
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Saori Miyata
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| |
Collapse
|
163
|
Celikkin N, Mastrogiacomo S, Jaroszewicz J, Walboomers XF, Swieszkowski W. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration. J Biomed Mater Res A 2017; 106:201-209. [DOI: 10.1002/jbm.a.36226] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Nehar Celikkin
- Faculty of Material Science and Engineering; Warsaw University of Technology, Woloska 141, 02-507; Warsaw Poland
| | - Simone Mastrogiacomo
- Department of Biomaterials; PO Box 9101, 6500 HB, Radboud University Medical Center; Nijmegen The Netherlands
| | - Jakub Jaroszewicz
- Faculty of Material Science and Engineering; Warsaw University of Technology, Woloska 141, 02-507; Warsaw Poland
| | - X. Frank Walboomers
- Department of Biomaterials; PO Box 9101, 6500 HB, Radboud University Medical Center; Nijmegen The Netherlands
| | - Wojciech Swieszkowski
- Faculty of Material Science and Engineering; Warsaw University of Technology, Woloska 141, 02-507; Warsaw Poland
| |
Collapse
|