151
|
Pharmacotherapeutic potential of phytochemicals: Implications in cancer chemoprevention and future perspectives. Biomed Pharmacother 2018; 97:564-586. [DOI: 10.1016/j.biopha.2017.10.124] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/14/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022] Open
|
152
|
Rizwanullah M, Amin S, Mir SR, Fakhri KU, Rizvi MMA. Phytochemical based nanomedicines against cancer: current status and future prospects. J Drug Target 2017; 26:731-752. [DOI: 10.1080/1061186x.2017.1408115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Md. Rizwanullah
- Formulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Saima Amin
- Formulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Showkat Rasool Mir
- Phytopharmaceutical Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Khalid Umar Fakhri
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
153
|
Chinembiri TN, Gerber M, du Plessis LH, du Preez JL, Hamman JH, du Plessis J. Topical Delivery of Withania somnifera Crude Extracts in Niosomes and Solid Lipid Nanoparticles. Pharmacogn Mag 2017; 13:S663-S671. [PMID: 29142430 PMCID: PMC5669113 DOI: 10.4103/pm.pm_489_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/08/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Withania somnifera is a medicinal plant native to India and is known to have anticancer properties. It has been investigated for its anti-melanoma properties, and since melanoma presents on the skin, it is prudent to probe the use of W. somnifera in topical formulations. To enhance topical drug delivery and to allow for controlled release, the use of niosomes and solid lipid nanoparticles (SLNs) as delivery vesicles were explored. OBJECTIVE The objective of this study is to determine the stability and topical delivery of W. somnifera crude extracts encapsulated in niosomes and SLNs. MATERIALS AND METHODS Water, ethanol, and 50% ethanol crude extracts of W. somnifera were prepared using 24 h soxhlet extraction which were each encapsulated in niosomes and SLNs. Franz cell diffusion studies were conducted with the encapsulated extracts to determine the release and skin penetration of the phytomolecules, withaferin A, and withanolide A. RESULTS The niosome and SLN formulations had average sizes ranging from 165.9 ± 9.4 to 304.6 ± 52.4 nm with the 50% ethanol extract formulations having the largest size. A small particle size seemed to have correlated with a low encapsulation efficiency (EE) of withaferin A, but a high EE of withanolide A. There was a significant difference (P < 0.05) between the amount of withaferin A and withanolide A that were released from each of the formulations, but only the SLN formulations managed to deliver withaferin A to the stratum corneum-epidermis and epidermis-dermis layers of the skin. CONCLUSION SLNs and niosomes were able to encapsulate crude extracts of W. somnifera and release the marker compounds, withaferin A, and withanolide A, for delivery to certain layers in the skin. SUMMARY Withania somnifera crude extracts were prepared using ethanol, water, and 50% ethanol as solvents. These three extracts were then incorporated into niosomes and solid lipid nanoparticles (SLNs) for use in skin diffusion studies, thus resulting in six formulations (ethanol niosome, water niosome, 50% ethanol niosome, ethanol SLN, water SLN, and 50% ethanol SLN). The diffusion of two marker compounds (withaferin A and withanolide A) from the formulations into the skin was then determined. Abbreviations used: API: Active pharmaceutical ingredient, ANOVA: Analysis of variance, ED: Epidermis-dermis, HPLC: High-performance liquid chromatography, HLB: Hydrophilic-lipophilic balance, NMR: Nuclear magnetic resonance spectroscopy, PDI: Polydispersity index, SLN: Solid lipid nanoparticle, SD: Standard deviation, SCE: Stratum corneum-epidermis, TEM: Transmission electron microscopy.
Collapse
Affiliation(s)
- Tawona N. Chinembiri
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Minja Gerber
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Lissinda H. du Plessis
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Jan L. du Preez
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Josias H. Hamman
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Jeanetta du Plessis
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
154
|
Sayeed MA, Bracci M, Lucarini G, Lazzarini R, Di Primio R, Santarelli L. Regulation of microRNA using promising dietary phytochemicals: Possible preventive and treatment option of malignant mesothelioma. Biomed Pharmacother 2017; 94:1197-1224. [PMID: 28841784 DOI: 10.1016/j.biopha.2017.07.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Malignant mesothelioma (MM) is a very aggressive, lethal cancer, and its incidence is increasing worldwide. Development of multi-drug resistance, therapy related side-effects, and disease recurrence after therapy are the major problems for the successful treatment of MM. Emerging evidence indicates that dietary phytochemicals can exert anti-cancer activities by regulating microRNA expression. Until now, only one dietary phytochemical (ursolic acid) has been reported to have MM microRNA regulatory ability. A large number of dietary phytochemicals still remain to be tested. In this paper, we have introduced some dietary phytochemicals (curcumin, epigallocatechin gallate, quercetin, genistein, pterostilbene, resveratrol, capsaicin, ellagic acid, benzyl isothiocyanate, phenethyl isothiocyanate, sulforaphane, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid) which have shown microRNA regulatory activities in various cancers and could regulate MM microRNAs. In addition to microRNA regulatory activities, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, phenethyl isothiocyanate, and sulforaphane have anti-mesothelioma potentials, and pterostilbene, capsaicin, ellagic acid, benzyl isothiocyanate, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid have potentials to inhibit cancer by regulating the expression of various genes which are also known to be aberrant in MM.
Collapse
Affiliation(s)
- Md Abu Sayeed
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy.
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Raffaella Lazzarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Roberto Di Primio
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| |
Collapse
|
155
|
A Comprehensive Review on Pharmacotherapeutics of Three Phytochemicals, Curcumin, Quercetin, and Allicin, in the Treatment of Gastric Cancer. J Gastrointest Cancer 2017; 48:314-320. [DOI: 10.1007/s12029-017-9997-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
156
|
Xiao J, Cao Y, Huang Q. Edible Nanoencapsulation Vehicles for Oral Delivery of Phytochemicals: A Perspective Paper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6727-6735. [PMID: 28737908 DOI: 10.1021/acs.jafc.7b02128] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Edible nanoencapsulation vehicles (ENVs) designed for the delivery of phytochemicals have gained increasing research interest. The major driving force for this trend is the potential bioavailability enhancement effect for phytochemicals when delivered via ENVs. ENVs affect the bioefficacy of phytochemicals by influencing their dispersion and gastrointestinal stability, rate and site of release, transportation efficiency across the endothelial layer, systemic circulation and biodistribution, and regulation of gut microflora. Enhanced bioefficacy can be achieved by rational design of the size, surface property, matrix materials, and compartment structure of ENVs according to properties of phytochemicals. Future investigations may lay particular emphasis on examining the relevance between results gained by in vitro digestion simulations and those obtained via in vivo digestion simulations, structural evolutions of ENVs during digestion and absorption, impacts of ENVs on the metabolism of phytochemicals, and using ENVs for deciphering the reciprocal interactions between phytochemicals and gut microbiota.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Food Science, College of Food Science, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Yong Cao
- Department of Food Science, College of Food Science, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Qingrong Huang
- Department of Food Science, Rutgers, The State University of New Jersey , 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
157
|
Chen D, Huang Y, Xu S, Jiang H, Wu J, Jin X, Zhu X. Self-Assembled Polyprodrug Amphiphile for Subcutaneous Xenograft Tumor Inhibition with Prolonged Acting Time In Vivo. Macromol Biosci 2017; 17. [PMID: 28737832 DOI: 10.1002/mabi.201700174] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/25/2017] [Indexed: 12/19/2022]
Abstract
Polymeric drug delivery system termed as "polyprodrug amphiphile" poly(2-methylacryloyloxyethyl phosphorylcholine)-b-poly(10-hydroxy-camptothecin methacrylate (pMPC-b-pHCPT) is developed for the prolonged-acting cancer therapy. It is obtained by two-step reversible addition-fragmentation chain transfer polymerization of zwitterionic monomer MPC and an esterase-responsive polymerizable prodrug methacrylic anhydride-CPT, respectively. This diblock polymer is composed of both antifouling (pMPC) and bioactive (pHCPT) segments and the drug is designed as a building block to construct the polymer skeleton directly. Due to its distinct amphiphilicity, the polymer can self-assemble into micelles with different dynamic sizes by facilely tuning the ratio of MPC/HCPT under physiological conditions. The outer pMPC shell is superhydrophilic to form dense hydrate layer preventing the nanosystem from unwanted nonspecific protein adsorption, which is the main lead cause of the rapid clearance of nanoparticles in vivo, thus facilitating the accumulation of drugs in tumor sites via enhanced permeability and retention effect. The configuration of the polyprodrug amphiphile is confirmed by several measurements. The resistance to albumin adsorption, prolonged plasma retention time, accumulation in tumor sites, and anticancer activity of the micelles is also investigated in vitro and in vivo. This novel amphiphile can be expected as a promising agent for the passive targeted prolonged-acting cancer therapy.
Collapse
Affiliation(s)
- Dong Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Yu Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Shuting Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Huangyong Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Jieli Wu
- Instrumental Analysis Center, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
158
|
Mouhid L, Corzo-Martínez M, Torres C, Vázquez L, Reglero G, Fornari T, Ramírez de Molina A. Improving In Vivo Efficacy of Bioactive Molecules: An Overview of Potentially Antitumor Phytochemicals and Currently Available Lipid-Based Delivery Systems. JOURNAL OF ONCOLOGY 2017; 2017:7351976. [PMID: 28555156 PMCID: PMC5438845 DOI: 10.1155/2017/7351976] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
Cancer is among the leading causes of morbidity and mortality worldwide. Many of the chemotherapeutic agents used in cancer treatment exhibit cell toxicity and display teratogenic effect on nontumor cells. Therefore, the search for alternative compounds which are effective against tumor cells but reduce toxicity against nontumor ones is of great importance in the progress or development of cancer treatments. In this sense, scientific knowledge about relevant aspects of nutrition intimately involved in the development and progression of cancer progresses rapidly. Phytochemicals, considered as bioactive ingredients present in plant products, have shown promising effects as potential therapeutic/preventive agents on cancer in several in vitro and in vivo assays. However, despite their bioactive properties, phytochemicals are still not commonly used in clinical practice due to several reasons, mainly attributed to their poor bioavailability. In this sense, new formulation strategies are proposed as carriers to improve their bioefficacy, highlighting the use of lipid-based delivery systems. Here, we review the potential antitumoral activity of the bioactive compounds derived from plants and the current studies carried out in animal and human models. Furthermore, their association with lipids as a formulation strategy to enhance their efficacy in vivo is also reported. The development of high effective bioactive supplements for cancer treatment based on the improvement of their bioavailability goes through this association.
Collapse
Affiliation(s)
- Lamia Mouhid
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Marta Corzo-Martínez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Carlos Torres
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Luis Vázquez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Guillermo Reglero
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Tiziana Fornari
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
159
|
Conte R, Marturano V, Peluso G, Calarco A, Cerruti P. Recent Advances in Nanoparticle-Mediated Delivery of Anti-Inflammatory Phytocompounds. Int J Mol Sci 2017; 18:E709. [PMID: 28350317 PMCID: PMC5412295 DOI: 10.3390/ijms18040709] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/18/2017] [Accepted: 03/23/2017] [Indexed: 12/11/2022] Open
Abstract
Phytocompounds have been used in medicine for decades owing to their potential in anti-inflammatory applications. However, major difficulties in achieving sustained delivery of phyto-based drugs are related to their low solubility and cell penetration, and high instability. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in the pharmaceutical sector. This review focuses on the recent advances in nanocarrier-mediated drug delivery of bioactive molecules of plant origin in the field of anti-inflammatory research. In particular, special attention is paid to the relationship between structure and properties of the nanocarrier and phytodrug release behavior.
Collapse
Affiliation(s)
- Raffaele Conte
- Institute of Agro-Environmental and Forest Biology (IBAF-CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Valentina Marturano
- Institute for Polymers, Composites, and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
- Department of Chemical Sciences, University of Naples "Federico II", Via Cynthia 4, 80125 Napoli, Italy.
| | - Gianfranco Peluso
- Institute of Agro-Environmental and Forest Biology (IBAF-CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Anna Calarco
- Institute of Agro-Environmental and Forest Biology (IBAF-CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites, and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
| |
Collapse
|
160
|
Caldas Dos Santos T, Rescignano N, Boff L, Reginatto FH, Simões CMO, de Campos AM, Mijangos C. In vitro antiherpes effect of C-glycosyl flavonoid enriched fraction of Cecropia glaziovii encapsulated in PLGA nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1214-1220. [PMID: 28415409 DOI: 10.1016/j.msec.2017.02.135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/15/2016] [Accepted: 02/24/2017] [Indexed: 01/18/2023]
Abstract
In this work is reported a novel and promising approach for the preparation of C-glycosylflavonoid enriched fraction of Cecropia glaziovii (EFF-Cg) loaded PLGA nanoparticles (NP) with antiherpes properties. The purpose of this study was to evaluate and to compare the effect of two nonionic surfactants (poloxamer 188 (PLU) and polyvinyl alcohol (PVA)), and also an emulsion stabilized by solid particles of cellulose nanocrystal (CNC) in place of surfactants. The characterization of these nanoparticles was in terms of size, polydispersity index, zeta potential, morphology, thermogravimetric analysis (TGA), loading capacity and percent yield. Since TGA analysis revealed thermo stability especially for NP-PLU, this formulation was selected for the evaluation of drug release profile, cytotoxicity and antiherpes activity. The drug delivery profile demonstrated a sustained release through the polymer structure and a significant reduction of the polymer molecular weight at 21-day period. The cytotoxicity of these nanoparticles was determined on Vero cells, and the selected formulation did not exhibit cytotoxicity even at the highest tested concentration. The results demonstrated a potential antiherpetic effect of the EFF-Cg loaded NP at 48h of testing. In summary, EFF-Cg loaded NP exhibited a promising system for the effective drug delivery in the treatment of herpes infections.
Collapse
Affiliation(s)
- Talitha Caldas Dos Santos
- Institute of Polymer Science and Technology, ICTP - CSIC, Madrid 28006, Spain; Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040900, Brazil.
| | | | - Laurita Boff
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040900, Brazil.
| | - Flávio Henrique Reginatto
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040900, Brazil.
| | | | - Angela Machado de Campos
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040900, Brazil.
| | - Carmen Mijangos
- Institute of Polymer Science and Technology, ICTP - CSIC, Madrid 28006, Spain.
| |
Collapse
|
161
|
Sayeed MA, Bracci M, Lazzarini R, Tomasetti M, Amati M, Lucarini G, Di Primio R, Santarelli L. Use of potential dietary phytochemicals to target miRNA: Promising option for breast cancer prevention and treatment? J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
162
|
Bertleff-Zieschang N, Rahim MA, Ju Y, Braunger JA, Suma T, Dai Y, Pan S, Cavalieri F, Caruso F. Biofunctional metal–phenolic films from dietary flavonoids. Chem Commun (Camb) 2017; 53:1068-1071. [DOI: 10.1039/c6cc08607a] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Flavonoid films: dietary flavonoids assemble into biofunctional films and capsules in a one-step process via metal coordination. The antioxidant property of the parent flavonoid is enhanced when assembled into a film and can be reused over multiple cycles.
Collapse
Affiliation(s)
- Nadja Bertleff-Zieschang
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Md. Arifur Rahim
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Yi Ju
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Julia A. Braunger
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Tomoya Suma
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Yunlu Dai
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Shuaijun Pan
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Francesca Cavalieri
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| | - Frank Caruso
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Parkville
- Australia
| |
Collapse
|
163
|
Valdés K, Morales J, Rodríguez L, Günther G. Potential use of nanocarriers with pentacyclic triterpenes in cancer treatments. Nanomedicine (Lond) 2016; 11:3139-3156. [PMID: 27809705 DOI: 10.2217/nnm-2016-0251] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ursolic, oleanolic and betulinic acids are representative pentacyclic triterpenoids found in various plants and fruits. Despite having marked antitumor potentials, the very poor water solubility of these triterpenes hinders treatment development. Nanotechnology can enhance solubility, stability, bioavailability and phytochemical delivery, improving the therapeutic efficiency of triterpenes. This review focuses on the formulation, characterization and in vitro/in vivo evaluation of several delivery nanosystems used to enhance the physicochemical properties of ursolic, oleanolic and betulinic acids.
Collapse
Affiliation(s)
- Karina Valdés
- Departamento de Ciencias y Tecnología Farmacéutica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Javier Morales
- Departamento de Ciencias y Tecnología Farmacéutica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Lennin Rodríguez
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Germán Günther
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
164
|
Production of a bioactive lipid-based delivery system from ratfish liver oil by enzymatic glycerolysis. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
165
|
Roy NK, Deka A, Bordoloi D, Mishra S, Kumar AP, Sethi G, Kunnumakkara AB. The potential role of boswellic acids in cancer prevention and treatment. Cancer Lett 2016; 377:74-86. [DOI: 10.1016/j.canlet.2016.04.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023]
|
166
|
Aqil F, Kausar H, Agrawal AK, Jeyabalan J, Kyakulaga AH, Munagala R, Gupta R. Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol 2016; 101:12-21. [PMID: 27235383 DOI: 10.1016/j.yexmp.2016.05.013] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 05/21/2016] [Indexed: 01/06/2023]
Abstract
Celastrol (CEL), a plant-derived triterpenoid, is a known inhibitor of Hsp90 and NF-κB activation pathways and has recently been suggested to be of therapeutic importance in various cancers. However, the molecular mechanisms of celastrol-mediated effects in lung cancer are not systematically studied. Moreover, it suffers from poor bioavailability and off-site toxicity issues. This study aims to study the effect of celastrol loaded into exosomes against two non-small cell-lung carcinoma (NSCLC) cell lines and explore the molecular mechanisms to determine the proteins governing the cellular responses. We observed that celastrol inhibited the proliferation of A549 and H1299 NSCLC cells in a time- and concentration-dependent manner as indexed by MTT assay. Mechanistically, CEL pre-treatment of H1299 cells completely abrogated TNFα-induced NF-κB activation and upregulated the expression of ER-stress chaperones Grp 94, Grp78, and pPERK. These changes in ER-stress mediators were paralleled by an increase in apoptotic response as evidenced by higher annexin-V/PI positive cells evaluated by FACS and immunoblotting which showed upregulation of the ER stress specific pro-apoptotic transcription factor, GADD153/CHOP and alteration of Bax/Bcl2 levels. Exosomes loaded with CEL exhibited enhanced anti-tumor efficacy as compared to free CEL against lung cancer cell xenograft. CEL did not exhibit any gross or systemic toxicity in wild-type C57BL6 mice as determined by hematological and liver and kidney function test. Together, our data demonstrate the chemotherapeutic potential of CEL in lung cancer and that exosomal formulation enhances its efficacy and reduces dose related toxicity.
Collapse
Affiliation(s)
- Farrukh Aqil
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Hina Kausar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Ashish Kumar Agrawal
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jeyaprakash Jeyabalan
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Al-Hassan Kyakulaga
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Radha Munagala
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Ramesh Gupta
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
167
|
How Diet Intervention via Modulation of DNA Damage Response through MicroRNAs May Have an Effect on Cancer Prevention and Aging, an in Silico Study. Int J Mol Sci 2016; 17:ijms17050752. [PMID: 27213347 PMCID: PMC4881573 DOI: 10.3390/ijms17050752] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/29/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022] Open
Abstract
The DNA damage response (DDR) is a molecular mechanism that cells have evolved to sense DNA damage (DD) to promote DNA repair, or to lead to apoptosis, or cellular senescence if the damage is too extensive. Recent evidence indicates that microRNAs (miRs) play a critical role in the regulation of DDR. Dietary bioactive compounds through miRs may affect activity of numerous genes. Among the most studied bioactive compounds modulating expression of miRs are epi-gallocatechin-3-gallate, curcumin, resveratrol and n3-polyunsaturated fatty acids. To compare the impact of these dietary compounds on DD/DDR network modulation, we performed a literature search and an in silico analysis by the DIANA-mirPathv3 software. The in silico analysis allowed us to identify pathways shared by different miRs involved in DD/DDR vis-à-vis the specific compounds. The results demonstrate that certain miRs (e.g., -146, -21) play a central role in the interplay among DD/DDR and the bioactive compounds. Furthermore, some specific pathways, such as "fatty acids biosynthesis/metabolism", "extracellular matrix-receptor interaction" and "signaling regulating the pluripotency of stem cells", appear to be targeted by most miRs affected by the studied compounds. Since DD/DDR and these pathways are strongly related to aging and carcinogenesis, the present in silico results of our study suggest that monitoring the induction of specific miRs may provide the means to assess the antiaging and chemopreventive properties of particular dietary compounds.
Collapse
|
168
|
Siddiqui IA, Sanna V. Impact of nanotechnology on the delivery of natural products for cancer prevention and therapy. Mol Nutr Food Res 2016; 60:1330-41. [DOI: 10.1002/mnfr.201600035] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 12/11/2022]
Affiliation(s)
| | - Vanna Sanna
- Department of Chemistry and Pharmacy, Laboratory of Nanomedicine; University of Sassari; Sassari Italy
| |
Collapse
|
169
|
Siddiqui IA, Sanna V. Impact of nanotechnology on the delivery of natural products for cancer prevention and therapy. Mol Nutr Food Res 2016. [DOI: 10.1002/mnfr.201600035 pmid: 26935239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Vanna Sanna
- Department of Chemistry and Pharmacy, Laboratory of Nanomedicine; University of Sassari; Sassari Italy
| |
Collapse
|
170
|
Cho M, So I, Chun JN, Jeon JH. The antitumor effects of geraniol: Modulation of cancer hallmark pathways (Review). Int J Oncol 2016; 48:1772-82. [PMID: 26983575 PMCID: PMC4809657 DOI: 10.3892/ijo.2016.3427] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/18/2016] [Indexed: 12/30/2022] Open
Abstract
Geraniol is a dietary monoterpene alcohol that is found in the essential oils of aromatic plants. To date, experimental evidence supports the therapeutic or preventive effects of geraniol on different types of cancer, such as breast, lung, colon, prostate, pancreatic, and hepatic cancer, and has revealed the mechanistic basis for its pharmacological actions. In addition, geraniol sensitizes tumor cells to commonly used chemotherapy agents. Geraniol controls a variety of signaling molecules and pathways that represent tumor hallmarks; these actions of geraniol constrain the ability of tumor cells to acquire adaptive resistance against anticancer drugs. In the present review, we emphasize that geraniol is a promising compound or chemical moiety for the development of a safe and effective multi-targeted anticancer agent. We summarize the current knowledge of the effects of geraniol on target molecules and pathways in cancer cells. Our review provides novel insight into the challenges and perspectives with regard to geraniol research and to its application in future clinical investigation.
Collapse
Affiliation(s)
- Minsoo Cho
- Undergraduate Research Program, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
171
|
Maru GB, Hudlikar RR, Kumar G, Gandhi K, Mahimkar MB. Understanding the molecular mechanisms of cancer prevention by dietary phytochemicals: From experimental models to clinical trials. World J Biol Chem 2016; 7:88-99. [PMID: 26981198 PMCID: PMC4768127 DOI: 10.4331/wjbc.v7.i1.88] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/04/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
Chemoprevention is one of the cancer prevention approaches wherein natural/synthetic agent(s) are prescribed with the aim to delay or disrupt multiple pathways and processes involved at multiple steps, i.e., initiation, promotion, and progression of cancer. Amongst environmental chemopreventive compounds, diet/beverage-derived components are under evaluation, because of their long history of exposure to humans, high tolerability, low toxicity, and reported biological activities. This compilation briefly covers and compares the available evidence on chemopreventive efficacy and probable mechanism of chemoprevention by selected dietary phytochemicals (capsaicin, curcumin, diallyl sulphide, genistein, green/black tea polyphenols, indoles, lycopene, phenethyl isocyanate, resveratrol, retinoids and tocopherols) in experimental systems and clinical trials. All the dietary phytochemicals covered in this review have demonstrated chemopreventive efficacy against spontaneous or carcinogen-induced experimental tumors and/or associated biomarkers and processes in rodents at several organ sites. The observed anti-initiating, anti-promoting and anti-progression activity of dietary phytochemicals in carcinogen-induced experimental models involve phytochemical-mediated redox changes, modulation of enzymes and signaling kinases resulting to effects on multiple genes and cell signaling pathways. Results from clinical trials using these compounds have not shown them to be chemopreventive. This may be due to our: (1) inability to reproduce the exposure conditions, i.e., levels, complexity, other host and lifestyle factors; and (2) lack of understanding about the mechanisms of action and agent-mediated toxicity in several organs and physiological processes in the host. Current research efforts in addressing the issues of exposure conditions, bioavailability, toxicity and the mode of action of dietary phytochemicals may help address the reason for observed mismatch that may ultimately lead to identification of new chemopreventive agents for protection against broad spectrum of exposures.
Collapse
|
172
|
Mehanny M, Hathout RM, Geneidi AS, Mansour S. Exploring the use of nanocarrier systems to deliver the magical molecule; Curcumin and its derivatives. J Control Release 2016; 225:1-30. [PMID: 26778694 DOI: 10.1016/j.jconrel.2016.01.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022]
Abstract
Curcumin and its derivatives; curcuminoids have been proven as potential remedies in different diseases. However, their delivery carries several challenges owing to their poor aqueous solubility, photodegradation, chemical instability, poor bioavailability and rapid metabolism. This review explores and criticizes the numerous attempts that were adopted through the years to entrap/encapsulate this valuable drug in nanocarriers aiming to reach its most appropriate and successful delivery system.
Collapse
Affiliation(s)
- Mina Mehanny
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Ahmed S Geneidi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt.
| |
Collapse
|
173
|
Aqil F, Gupta RC. Controlled Delivery of Chemopreventive Agents by Polymeric Implants. Methods Mol Biol 2016; 1379:1-11. [PMID: 26608285 DOI: 10.1007/978-1-4939-3191-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The clinical development of cancer chemopreventive agents has been hampered by poor oral bioavailability issue. Several compounds have low aqueous solubility and undergo extensive first pass metabolism following oral dosing. To overcome this limitation, we developed polymeric implants from biodegradable ε-polycaprolactone (PCL) that can deliver both lipophilic as well as hydrophilic compounds. Implants furnish controlled release of compounds for long duration and provide dose-dependent release. The rate of release in vitro correlated well with the in vivo release. The polymeric implant technology thus overcomes the oral bioavailability issues, lowers the total required dose and minimizes or eliminates toxicity generally associated with high doses.
Collapse
Affiliation(s)
- Farrukh Aqil
- James Graham Brown Cancer Center, University of Louisville, 580 S. Preston St., #304B, Louisville, KY, 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Ramesh C Gupta
- James Graham Brown Cancer Center, University of Louisville, 580 S. Preston Street, Delia Baxter II, Room 304E, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
174
|
Jortzik E, Zocher K, Isernhagen A, Mailu BM, Rahlfs S, Viola G, Wittlin S, Hunt NH, Ihmels H, Becker K. Benzo[b]quinolizinium Derivatives Have a Strong Antimalarial Activity and Inhibit Indoleamine Dioxygenase. Antimicrob Agents Chemother 2016; 60:115-25. [PMID: 26459907 PMCID: PMC4704160 DOI: 10.1128/aac.01066-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/06/2015] [Indexed: 12/16/2022] Open
Abstract
The heme-containing enzymes indoleamine 2,3-dioxygenase-1 (IDO-1) and IDO-2 catalyze the conversion of the essential amino acid tryptophan into kynurenine. Metabolites of the kynurenine pathway and IDO itself are involved in immunity and the pathology of several diseases, having either immunoregulatory or antimicrobial effects. IDO-1 plays a central role in the pathogenesis of cerebral malaria, which is the most severe and often fatal neurological complication of infection with Plasmodium falciparum. Mouse models are usually used to study the underlying pathophysiology. In this study, we screened a natural compound library against mouse IDO-1 and identified 8-aminobenzo[b]quinolizinium (compound 2c) to be an inhibitor of IDO-1 with potency at nanomolar concentrations (50% inhibitory concentration, 164 nM). Twenty-one structurally modified derivatives of compound 2c were synthesized for structure-activity relationship analyses. The compounds were found to be selective for IDO-1 over IDO-2. We therefore compared the roles of prominent amino acids in the catalytic mechanisms of the two isoenzymes via homology modeling, site-directed mutagenesis, and kinetic analyses. Notably, methionine 385 of IDO-2 was identified to interfere with the entrance of l-tryptophan to the active site of the enzyme, which explains the selectivity of the inhibitors. Most interestingly, several benzo[b]quinolizinium derivatives (6 compounds with 50% effective concentration values between 2.1 and 6.7 nM) were found to be highly effective against P. falciparum 3D7 blood stages in cell culture with a mechanism independent of IDO-1 inhibition. We believe that the class of compounds presented here has unique characteristics; it combines the inhibition of mammalian IDO-1 with strong antiparasitic activity, two features that offer potential for drug development.
Collapse
MESH Headings
- Animals
- Antimalarials/chemical synthesis
- Antimalarials/chemistry
- Antimalarials/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- Cloning, Molecular
- Crystallography, X-Ray
- Erythrocytes/drug effects
- Erythrocytes/parasitology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Kynurenine/metabolism
- Malaria/drug therapy
- Malaria/parasitology
- Mice
- Mutagenesis, Site-Directed
- Plasmodium berghei/drug effects
- Plasmodium berghei/enzymology
- Plasmodium berghei/genetics
- Plasmodium falciparum/drug effects
- Plasmodium falciparum/enzymology
- Plasmodium falciparum/genetics
- Quinolizines/chemical synthesis
- Quinolizines/chemistry
- Quinolizines/pharmacology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Structure-Activity Relationship
- Tryptophan/antagonists & inhibitors
- Tryptophan/metabolism
Collapse
Affiliation(s)
- Esther Jortzik
- Biochemistry and Molecular Biology, Justus Liebig University, Giessen, Germany
| | - Kathleen Zocher
- Biochemistry and Molecular Biology, Justus Liebig University, Giessen, Germany
| | - Antje Isernhagen
- Biochemistry and Molecular Biology, Justus Liebig University, Giessen, Germany
| | - Boniface M Mailu
- Biochemistry and Molecular Biology, Justus Liebig University, Giessen, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Justus Liebig University, Giessen, Germany
| | - Giampietro Viola
- Department of Woman's and Child's Health, University of Padova, Padua, Italy
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute and University of Basel, Basel, Switzerland
| | - Nicholas H Hunt
- Molecular Immunopathology Unit, University of Sydney, Sydney, NSW, Australia
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, Siegen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
175
|
Simão AMS, Bolean M, Cury TAC, Stabeli RG, Itri R, Ciancaglini P. Liposomal systems as carriers for bioactive compounds. Biophys Rev 2015; 7:391-397. [PMID: 28510100 DOI: 10.1007/s12551-015-0180-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/22/2015] [Indexed: 11/30/2022] Open
Abstract
Since the revolutionary discovery that phospholipids can form closed bilayered structures in aqueous systems, the study of liposomes has become a very interesting area of research. The versatility and amazing biocompatibility of liposomes has resulted in their wide-spread use in many scientific fields, and many of their applications, especially in medicine, have yielded breakthroughs in recent decades. Specifically, their easy preparation and various structural aspects have given rise to broadly usable methodologies to internalize different compounds, with either lipophilic or hydrophilic properties. The study of compounds with potential biotechnological application(s) is generally related to evaluation and risk assessment of the possible cytotoxic or therapeutic effects of the compound under study. In most cases, undesirable side-effects are associated with an interaction of the liposome with the cell membrane and/or its absorption and subsequent interaction with a cellular biomolecule. Liposomal carrier systems have an unprecedented potential for delivering bioactive substances to specific molecular targets due to their biocompatibility, biodegradability and low toxicity. Liposomes are therefore considered to be an invaluable asset in applied biotechnology studies due to their potential for interaction with both hydrophilic and lipophilic compounds.
Collapse
Affiliation(s)
- Ana Maria Sper Simão
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Maytê Bolean
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Thuanny Alexandra Campos Cury
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo Guerino Stabeli
- Centro de Nanotecnologia Aplicada a Saúde-Nanosus, Presidência da Fiocruz, Rua Prof. Algacyr Munhoz Mader, 3775, 81350-010, Curitiba, PR, Brazil.,Brasil e Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Rosangela Itri
- Depto. Física Aplicada, Instituto de Física, IF-USP, São Paulo, SP, Brazil
| | - Pietro Ciancaglini
- Departmento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
176
|
Jiang S, Teng CP, Puah WC, Wasser M, Win KY, Han MY. Oral Administration and Selective Uptake of Polymeric Nanoparticles in Drosophila Larvae as an in Vivo Model. ACS Biomater Sci Eng 2015; 1:1077-1084. [PMID: 33429549 DOI: 10.1021/acsbiomaterials.5b00163] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this article, Drosophila larvae are applied as an in vivo model to investigate the transport and uptake of polymeric nanoparticles in the larval digestive tract after oral administration. After feeding the larvae with food containing bare and chitosan-coated Poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles encapsulated with BODIPY, time-lapse imaging of live larvae is used to monitor the movement of fluorescent nanoparticles in the anterior, middle, and posterior midgut of the digestive tract. Also, the dissection of the digestive tract enables the analysis of cellular uptake in the midgut. Bare PLGA nanoparticles travel through the whole midgut smoothly while chitosan-coated PLGA nanoparticles have a long retention time in the posterior midgut. We identify that this retention occurs in the posterior segment of the posterior midgut, and it is termed as the retention segment. During transport in the midgut, chitosan-coated nanoparticles pass through the near-neutral anterior midgut and become highly positively charged when entering into the highly acidic middle midgut. After traveling through the near-neutral anterior segment of the posterior midgut, chitosan-coated nanoparticles have a long retention time of ∼10 h in the retention segment, indicating that the chitosan coating greatly enhances mucoadhesive ability and promotes cellular uptake in this part of the midgut. The dynamic behavior of orally administered nanoparticles in Drosophila larvae is in agreement with studies in other animal models. A Drosophila larva has the potential to evolve into a low-cost drug screening model through real time imaging, which will accelerate the development of improved nanoparticle formulations for oral drug delivery.
Collapse
Affiliation(s)
- Shan Jiang
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Choon Peng Teng
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, Singapore 138634.,Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575
| | - Wee Choo Puah
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix, Singapore 138671
| | - Martin Wasser
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix, Singapore 138671
| | - Khin Yin Win
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Ming-Yong Han
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, Singapore 138634.,Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575
| |
Collapse
|
177
|
Cojocneanu Petric R, Braicu C, Raduly L, Zanoaga O, Dragos N, Monroig P, Dumitrascu D, Berindan-Neagoe I. Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers. Onco Targets Ther 2015; 8:2053-66. [PMID: 26273208 PMCID: PMC4532173 DOI: 10.2147/ott.s83597] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Over the years, nutrition and environmental factors have been demonstrated to influence human health, specifically cancer. Owing to the fact that cancer is a leading cause of death worldwide, efforts are being made to elucidate molecular mechanisms that trigger or delay carcinogenesis. Phytochemicals, in particular, have been shown to modulate oncogenic processes through their antioxidant and anti-inflammatory activities and their ability to mimic the chemical structure and activity of hormones. These compounds can act not only by influencing oncogenic proteins, but also by modulating noncoding RNAs such as microRNAs and long noncoding RNAs. Although we are only beginning to understand the complete effects of many natural compounds, such as phytochemicals, researchers are motivated to combine these agents with traditional, chemo-based, or hormone-based therapies to fight against cancer. Since ongoing studies continue to prove effective, herein we exalt the importance of improving dietary choices as a chemo-preventive strategy.
Collapse
Affiliation(s)
- Roxana Cojocneanu Petric
- Department of Biology, Babes-Bolyai University, Cluj-Napoca, Romania ; Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nicolae Dragos
- Department of Biology, Babes-Bolyai University, Cluj-Napoca, Romania ; Department of Taxonomy and Ecology, Institute of Biological Research, Cluj-Napoca, Romania
| | - Paloma Monroig
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Dumitrascu
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania ; Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX, USA ; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr Ion Chiricuţă", Cluj-Napoca, Romania ; Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
178
|
Lipid nanocarriers based on natural oils with high activity against oxygen free radicals and tumor cell proliferation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 56:88-94. [PMID: 26249569 DOI: 10.1016/j.msec.2015.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/09/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022]
Abstract
The development of nano-dosage forms of phytochemicals represents a significant progress of the scientific approach in the biomedical research. The aim of this study was to assess the effectiveness of lipid nanocarriers based on natural oils (grape seed oil, fish oil and laurel leaf oil) in counteracting free radicals and combating certain tumor cells. No drug was encapsulated in the nanocarriers. The cytotoxic effect exerted by bioactive nanocarriers against two tumor cells, MDA-MB 231 and HeLa cell lines, and two normal cells, L929 and B16 cell lines, was measured using the MTT assay, while oxidative damage was assessed by measuring the total antioxidant activity using chemiluminescence analysis. The best performance was obtained for nanocarriers based on an association of grape seed and laurel leaf oils, with a capacity to scavenge about 98% oxygen free radicals. A dose of nanocarriers of 5mg·mL(-1) has led to a drastic decrease in tumor cell proliferation even in the absence of an antitumor drug (e.g. about 50% viability for MDA-MB 231 cell line and 60% viability for HeLa cell line). A comparative survival profile of normal and tumor cells, which were exposed to an effective dose of 2.5mg·mL(-1) lipid nanocarriers, has revealed a death rate of 20% for normal B16 cells and of 40% death rate for MDA-MB 231 and HeLa tumor cells. The results in this study imply that lipid nanocarriers based on grape seed oil in association with laurel leaf oil could be a candidate to reduce the delivery system toxicity and may significantly improve the therapeutic efficacy of antitumor drugs in clinical applications.
Collapse
|
179
|
Role of Polyphenols and Other Phytochemicals on Molecular Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:504253. [PMID: 26180591 PMCID: PMC4477245 DOI: 10.1155/2015/504253] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 01/11/2023]
Abstract
Optimized nutrition through supplementation of diet with plant derived phytochemicals has attracted significant attention to prevent the onset of many chronic diseases including cardiovascular impairments, cancer, and metabolic disorder. These phytonutrients alone or in combination with others are believed to impart beneficial effects and play pivotal role in metabolic abnormalities such as dyslipidemia, insulin resistance, hypertension, glucose intolerance, systemic inflammation, and oxidative stress. Epidemiological and preclinical studies demonstrated that fruits, vegetables, and beverages rich in carotenoids, isoflavones, phytoestrogens, and phytosterols delay the onset of atherosclerosis or act as a chemoprotective agent by interacting with the underlying pathomechanisms. Phytochemicals exert their beneficial effects either by reducing the circulating levels of cholesterol or by inhibiting lipid oxidation, while others exhibit anti-inflammatory and antiplatelet activities. Additionally, they reduce neointimal thickening by inhibiting proliferation of smooth muscle cells and also improve endothelium dependent vasorelaxation by modulating bioavailability of nitric-oxide and voltage-gated ion channels. However, detailed and profound knowledge on specific molecular targets of each phytochemical is very important to ensure safe use of these active compounds as a therapeutic agent. Thus, this paper reviews the active antioxidative, antiproliferative, anti-inflammatory, or antiangiogenesis role of various phytochemicals for prevention of chronic diseases.
Collapse
|
180
|
Cury TAC, Yoneda JS, Zuliani JP, Soares AM, Stábeli RG, Calderon LDA, Ciancaglini P. Cinnamic acid derived compounds loaded into liposomes: antileishmanial activity, production standardisation and characterisation. J Microencapsul 2015; 32:467-77. [PMID: 26052723 DOI: 10.3109/02652048.2015.1046518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Synthetic compounds derived from cinnamic acid were tested in cultures containing the promastigote form of Leishmania amazonensis and the dimethylsulphoxide solution of B2 compound (2.0 mg/mL) led to a 92% decrease of leishmania in 96 h of treatment. Then, different liposomal systems (diameters ∼200 nm) were prepared by the extrusion method in the presence and absence of compounds studied. DSC thermograms of the liposomes in the presence of these compounds caused changes in ΔH, Tm and ΔT1/2, compared to controls, indicating that there was an interaction of the compounds with the lipid bilayer. Assays with negatively charged liposomal systems containing these drugs in L. amazonensis cultures led to a 50-80% decrease in the number of leishmanias with a concentration to 100 times lower when compared to the B2 initial test. These liposomal systems are promoting more interaction and delivery of the compounds and proved to be an efficient, stable and promising system.
Collapse
Affiliation(s)
- Thuanny Alexandra Campos Cury
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo , Ribeirão Preto, São Paulo , Brazil
| | | | | | | | | | | | | |
Collapse
|
181
|
Neuroprotective therapeutics from botanicals and phytochemicals against Huntington's disease and related neurodegenerative disorders. J Herb Med 2015. [DOI: 10.1016/j.hermed.2015.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
182
|
Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett 2015; 357:129-140. [DOI: 10.1016/j.canlet.2014.11.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/18/2022]
|
183
|
Smith AJ, Oertle J, Prato D. Multiple Actions of Curcumin Including Anticancer, Anti-Inflammatory, Antimicrobial and Enhancement via Cyclodextrin. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jct.2015.63029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
184
|
Kakarala KK, Jamil K. Protease activated receptor-2 (PAR2): possible target of phytochemicals. J Biomol Struct Dyn 2014; 33:2003-22. [PMID: 25386994 DOI: 10.1080/07391102.2014.986197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The use of phytochemicals either singly or in combination with other anticancer drugs comes with an advantage of less toxicity and minimal side effects. Signaling pathways play central role in cell cycle, cell growth, metabolism, etc. Thus, the identification of phytochemicals with promising antagonistic effect on the receptor/s playing key role in single transduction may have better therapeutic application. With this background, phytochemicals were screened against protease-activated receptor 2 (PAR2). PAR2 belongs to the superfamily of GPCRs and is an important target for breast cancer. Using in silico methods, this study was able to identify the phytochemicals with promising binding affinity suggesting their therapeutic potential in the treatment of breast cancer. The findings from this study acquires importance as the information on the possible agonists and antagonists of PAR2 is limited due its unique mechanism of activation.
Collapse
Affiliation(s)
- Kavita Kumari Kakarala
- a Centre for Biotechnology and Bioinformatics (CBB), School of Life Sciences , Jawaharlal Nehru Institute of Advanced Studies (JNIAS) , 6th Floor, Buddha Bhawan, M.G. Road, Secunderabad 500003 , Andhra Pradesh , India
| | | |
Collapse
|
185
|
Hu J, Sun L, Zhao D, Zhang L, Ye M, Tan Q, Fang C, Wang H, Zhang J. Supermolecular evodiamine loaded water-in-oil nanoemulsions: Enhanced physicochemical and biological characteristics. Eur J Pharm Biopharm 2014; 88:556-64. [DOI: 10.1016/j.ejpb.2014.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/13/2014] [Accepted: 06/14/2014] [Indexed: 02/03/2023]
|
186
|
Tocotrienol-rich fraction, [6]-gingerol and epigallocatechin gallate inhibit proliferation and induce apoptosis of glioma cancer cells. Molecules 2014; 19:14528-41. [PMID: 25221872 PMCID: PMC6271025 DOI: 10.3390/molecules190914528] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 11/28/2022] Open
Abstract
Plant bioactives [6]-gingerol (GING), epigallocatechin gallate (EGCG) and asiaticoside (AS) and vitamin E, such as tocotrienol-rich fraction (TRF), have been reported to possess anticancer activity. In this study, we investigated the apoptotic properties of these bioactive compounds alone or in combination on glioma cancer cells. TRF, GING, EGCG and AS were tested for cytotoxicity on glioma cell lines 1321N1 (Grade II), SW1783 (Grade III) and LN18 (Grade IV) in culture by the (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) (MTS) assay. With the exception of AS, combinations of two compounds were tested, and the interactions of each combination were evaluated by the combination index (CI) using an isobologram. Different grades of glioma cancer cells showed different cytotoxic responses to the compounds, where in 1321N1 and LN18 cells, the combination of EGCG + GING exhibited a synergistic effect with CI = 0.77 and CI = 0.55, respectively. In contrast, all combinations tested (TRF + GING, TRF + EGCG and EGCG + GING) were found to be antagonistic on SW1783 with CI values of 1.29, 1.39 and 1.39, respectively. Combined EGCG + GING induced apoptosis in both 1321N1 and LN18 cells, as evidenced by Annexin-V FITC/PI staining and increased active caspase-3. Our current data suggests that the combination of EGCG + GING synergistically induced apoptosis and inhibits the proliferation 1321N1 and LN18 cells, but not SW1783 cells, which may be due to their different genetic profiles.
Collapse
|
187
|
Nanotechnology-applied curcumin for different diseases therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:394264. [PMID: 24995293 PMCID: PMC4066676 DOI: 10.1155/2014/394264] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/21/2014] [Accepted: 04/25/2014] [Indexed: 02/08/2023]
Abstract
Curcumin is a lipophilic molecule with an active ingredient in the herbal remedy and dietary spice turmeric. It is used by different folks for treatment of many diseases. Recent studies have discussed poor bioavailability of curcumin because of poor absorption, rapid metabolism, and rapid systemic elimination. Nanotechnology is an emerging field that is potentially changing the way we can treat diseases through drug delivery with curcumin. The recent investigations established several approaches to improve the bioavailability, to increase the plasma concentration, and to enhance the cellular permeability processes of curcumin. Several types of nanoparticles have been found to be suitable for the encapsulation or loading of curcumin to improve its therapeutic effects in different diseases. Nanoparticles such as liposomes, polymeric nanoparticles, micelles, nanogels, niosomes, cyclodextrins, dendrimers, silvers, and solid lipids are emerging as one of the useful alternatives that have been shown to deliver therapeutic concentrations of curcumin. This review shows that curcumin's therapeutic effects may increase to some extent in the presence of nanotechnology. The presented board of evidence focuses on the valuable special effects of curcumin on different diseases and candidates it for future clinical studies in the realm of these diseases.
Collapse
|
188
|
Madaan K, Lather V, Pandita D. Evaluation of polyamidoamine dendrimers as potential carriers for quercetin, a versatile flavonoid. Drug Deliv 2014; 23:254-62. [PMID: 24845475 DOI: 10.3109/10717544.2014.910564] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of the present research work was to investigate the potential of polyamidoamine (PAMAM) dendrimers as oral drug delivery carriers for quercetin, a Biopharmaceutical Classification System (BCS) class II molecule. The aqueous solubility of quercetin was investigated in different generations of dendrimers, i.e. G0, G1, G2 and G3, with varying concentrations (0.1, 0.5, 1, 2 and 4 µM). Then, it was successfully incorporated in PAMAM dendrimers and they were characterized for incorporation efficacy, nature of nanoformulations, size, size distribution, surface morphology and stability. In vitro release characteristics of quercetin from all quercetin-PAMAM complexes were studied at 37 °C in phosphate buffer saline (PBS; pH 7.4). Furthermore, the efficacy of quercetin-loaded PAMAM dendrimer was assessed by pharmacodynamic experiment, namely, a carrageenan-induced paw edema model to evaluate the acute activity of this nanocarrier in response to inflammation. It was observed that both generation and the respective concentrations of PAMAM dendrimers showed potential positive effects on solubility enhancement of quercetin. All the quercetin-PAMAM complexes were found to be in nanometeric range (<100 nm) with narrow polydispersity index. In vitro study revealed a biphasic release pattern of quercetin which was characterized by an initial faster release followed by sustained release phase and pharmacodynamic study provided the preliminary proof of concept about the potential of quercetin-PAMAM complexes. The study concludes that the dendrimer-based drug delivery system for quercetin has enormous potential to resolve the drug delivery issues associated with it.
Collapse
Affiliation(s)
- Kanika Madaan
- a Department of Pharmaceutics , Jan Nayak Ch. Devi Lal Memorial College of Pharmacy , Sirsa - 125055 , Haryana , India and
| | - Viney Lather
- b Department of Pharmaceutical Chemistry , Jan Nayak Ch. Devi Lal Memorial College of Pharmacy , Sirsa - 125055 , Haryana , India
| | - Deepti Pandita
- a Department of Pharmaceutics , Jan Nayak Ch. Devi Lal Memorial College of Pharmacy , Sirsa - 125055 , Haryana , India and
| |
Collapse
|
189
|
Celli GB, Ghanem A, Brooks MSL. Haskap Berries (Lonicera caerulea L.)—a Critical Review of Antioxidant Capacity and Health-Related Studies for Potential Value-Added Products. FOOD BIOPROCESS TECH 2014. [DOI: 10.1007/s11947-014-1301-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
190
|
Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr Polym 2013; 101:121-35. [PMID: 24299757 DOI: 10.1016/j.carbpol.2013.08.078] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/03/2013] [Accepted: 08/19/2013] [Indexed: 01/30/2023]
Abstract
Plants possess a wide range of molecules capable of improve healing: fibre, vitamins, phytosterols, and further sulphur-containing compounds, carotenoids, organic acid anions and polyphenolics. However, they require an adequate level of protection from the environmental conditions to prevent losing their structural integrity and bioactivity. Cyclodextrins are cyclic oligosaccharides arising from the degradation of starch, which can be a viable option as encapsulation technique. Cyclodextrins are inexpensive, friendly to humans, and also capable of improving the biological, chemical and physical properties of bioactive molecules. Therefore, the aim of this review is to highlight the use of cyclodextrins as encapsulating agents for bioactive plant molecules in the pharmaceutical field.
Collapse
|