151
|
A CpG-loaded tumor cell vaccine induces antitumor CD4+ T cells that are effective in adoptive therapy for large and established tumors. Blood 2010; 117:118-27. [PMID: 20876455 DOI: 10.1182/blood-2010-06-288456] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We designed a whole tumor cell vaccine by "loading" lymphoma tumor cells with CG-enriched oligodeoxynucleotide (CpG), a ligand for the Toll-like receptor 9 (TLR9). CpG-loaded tumor cells were phagocytosed, delivering both tumor antigen(s) and the immunostimulatory CpG molecule to antigen-presenting cells (APCs). These APCs then expressed increased levels of costimulatory molecules and induced T-cell immunity. TLR9 was required in the APCs but not in the CpG-loaded tumor cell. We demonstrate that T cells induced by this vaccine are effective in adoptive cellular therapy for lymphoma. T cells from vaccinated mice transferred into irradiated, syngeneic recipients protected against subsequent lymphoma challenge and, remarkably, led to regression of large and established tumors. This therapeutic effect could be transferred by CD4(+) but not by CD8(+) T cells. A CpG-loaded whole-cell vaccination is practical and has strong potential for translation to the clinical setting. It is currently being tested in a clinical trial of adoptive immunotherapy for mantle-cell lymphoma.
Collapse
|
152
|
Lyn- and PLC-beta3-dependent regulation of SHP-1 phosphorylation controls Stat5 activity and myelomonocytic leukemia-like disease. Blood 2010; 116:6003-13. [PMID: 20858858 DOI: 10.1182/blood-2010-05-283937] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hyperactivation of the transcription factor Stat5 leads to various leukemias. Stat5 activity is regulated by the protein phosphatase SHP-1 in a phospholipase C (PLC)-β3-dependent manner. Thus, PLC-β3-deficient mice develop myeloproliferative neoplasm, like Lyn (Src family kinase)- deficient mice. Here we show that Lyn/PLC-β3 doubly deficient lyn(-/-);PLC-β3(-/-) mice develop a Stat5-dependent, fatal myelodysplastic/myeloproliferative neoplasm, similar to human chronic myelomonocytic leukemia (CMML). In hematopoietic stem cells of lyn(-/-);PLC-β3(-/-) mice that cause the CMML-like disease, phosphorylation of SHP-1 at Tyr(536) and Tyr(564) is abrogated, resulting in reduced phosphatase activity and constitutive activation of Stat5. Furthermore, SHP-1 phosphorylation at Tyr(564) by Lyn is indispensable for maximal phosphatase activity and for suppression of the CMML-like disease in these mice. On the other hand, Tyr(536) in SHP-1 can be phosphorylated by Lyn and another kinase(s) and is necessary for efficient interaction with Stat5. Therefore, we identify a novel Lyn/PLC-β3-mediated regulatory mechanism of SHP-1 and Stat5 activities.
Collapse
|
153
|
|
154
|
Singh DK, Ku CJ, Wichaidit C, Steininger RJ, Wu LF, Altschuler SJ. Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities. Mol Syst Biol 2010; 6:369. [PMID: 20461076 PMCID: PMC2890326 DOI: 10.1038/msb.2010.22] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/18/2010] [Indexed: 12/31/2022] Open
Abstract
Phenotypic heterogeneity has been widely observed in cellular populations. However, the extent to which heterogeneity contains biologically or clinically important information is not well understood. Here, we investigated whether patterns of basal signaling heterogeneity, in untreated cancer cell populations, could distinguish cellular populations with different drug sensitivities. We modeled cellular heterogeneity as a mixture of stereotyped signaling states, identified based on colocalization patterns of activated signaling molecules from microscopy images. We found that patterns of heterogeneity could be used to separate the most sensitive and resistant populations to paclitaxel within a set of H460 lung cancer clones and within the NCI-60 panel of cancer cell lines, but not for a set of less heterogeneous, immortalized noncancer human bronchial epithelial cell (HBEC) clones. Our results suggest that patterns of signaling heterogeneity, characterized as ensembles of a small number of distinct phenotypic states, can reveal functional differences among cellular populations.
Collapse
Affiliation(s)
- Dinesh Kumar Singh
- Department of Pharmacology, Green Center for Systems Biology, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | | | | | | | | | | |
Collapse
|
155
|
Cappella P, Giorgini ML, Ernestina Re C, Ubezio P, Ciomei M, Moll J. Miniaturizing bromodeoxyuridine incorporation enables the usage of flow cytometry for cell cycle analysis of adherent tissue culture cells for high throughput screening. Cytometry A 2010; 77:953-61. [DOI: 10.1002/cyto.a.20962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 11/05/2022]
|
156
|
Wu S, Jin L, Vence L, Radvanyi LG. Development and application of 'phosphoflow' as a tool for immunomonitoring. Expert Rev Vaccines 2010; 9:631-43. [PMID: 20518718 DOI: 10.1586/erv.10.59] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flow cytometry has revolutionized our ability to monitor immune responses by allowing us to simultaneously track a variety of cell surface and intracellular markers in discrete cell subsets in a highly sensitive and reproducible manner. This is especially critical in this new era of vaccinology trying to tackle the growing problems of chronic viral infections and cancer that not only evade host immune responses, but can negatively manipulate vaccine-induced immune responses. Thus, understanding how lymphocyte signaling is altered under normal and pathological conditions has become more critical. Over the last decade, a new flow cytometry technology called 'phosphoflow' (also sometimes called 'phosflow'), is rapidly developing for tracking multiple intracellular signaling molecules in the immune system at a single-cell level. Antibodies and reagents for tracking both tyrosine-phosphorylated and serine/threonine-phosphorylated signaling intermediaries in key immune signaling pathways have been developed, and phosphoflow is now starting to be applied to a wide variety of both preclinical and clinical studies on lymphocyte responses, as well as the functioning of cancer cells and virally infected cells. Here, we review the development of phosphoflow technology, its modern applications in the field of immunomonitoring and its current limitations. We then provide a perspective on the future of phosphoflow and a vision of how it can be applied to emerging critical questions in human vaccinology and public health.
Collapse
Affiliation(s)
- Sheng Wu
- Department of Melanoma Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
157
|
Lin CC, Huang WL, Su WP, Chen HHW, Lai WW, Yan JJ, Su WC. Single cell phospho-specific flow cytometry can detect dynamic changes of phospho-Stat1 level in lung cancer cells. Cytometry A 2010; 77:1008-19. [DOI: 10.1002/cyto.a.20965] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
158
|
Modulated multiparametric phosphoflow cytometry in hematological malignancies: technology and clinical applications. Best Pract Res Clin Haematol 2010; 23:319-31. [DOI: 10.1016/j.beha.2010.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
159
|
Niemeyer CM, Kang MW, Shin DH, Furlan I, Erlacher M, Bunin NJ, Bunda S, Finklestein JZ, Gorr TA, Mehta P, Schmid I, Kropshofer G, Corbacioglu S, Lang PJ, Klein C, Schlegel PG, Heinzmann A, Schneider M, Starý J, van den Heuvel-Eibrink MM, Hasle H, Locatelli F, Sakai D, Archambeault S, Chen L, Russell RC, Sybingco SS, Ohh M, Braun BS, Flotho C, Loh ML. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet 2010; 42:794-800. [PMID: 20694012 PMCID: PMC4297285 DOI: 10.1038/ng.641] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 07/12/2010] [Indexed: 01/23/2023]
Abstract
CBL encodes a member of the Cbl family of proteins, which functions as an E3 ubiquitin ligase. We describe a dominant developmental disorder resulting from germline missense CBL mutations, which is characterized by impaired growth, developmental delay, cryptorchidism and a predisposition to juvenile myelomonocytic leukemia (JMML). Some individuals experienced spontaneous regression of their JMML but developed vasculitis later in life. Importantly, JMML specimens from affected children show loss of the normal CBL allele through acquired isodisomy. Consistent with these genetic data, the common p.371Y>H altered Cbl protein induces cytokine-independent growth and constitutive phosphorylation of ERK, AKT and S6 only in hematopoietic cells in which normal Cbl expression is reduced by RNA interference. We conclude that germline CBL mutations have developmental, tumorigenic and functional consequences that resemble disorders that are caused by hyperactive Ras/Raf/MEK/ERK signaling and include neurofibromatosis type 1, Noonan syndrome, Costello syndrome, cardiofaciocutaneous syndrome and Legius syndrome.
Collapse
Affiliation(s)
- Charlotte M. Niemeyer
- Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
- Corresponding author: Mignon L Loh, University of California, Rm HSD-302 Box 0519, San Francisco, CA 94143; . Or: Charlotte M. Niemeyer, Department of Pediatrics, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany;
| | - Michelle W. Kang
- Department of Pediatrics and the Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Danielle H. Shin
- Department of Pediatrics and the Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Ingrid Furlan
- Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Nancy J Bunin
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Severa Bunda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Jerry Z. Finklestein
- Miller Children's Hospital/Harbor-UCLA, Jonathan Jaques Cancer Center, Long Beach, CA, United States
| | - Thomas A. Gorr
- Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Parinda Mehta
- Division of Hematology-Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Irene Schmid
- von Hauner Children's Hospital, LMU Munich University, Munich, Germany
| | - Gabriele Kropshofer
- University, Innsbruck, Austria; Department of Pediatrics and Adolescent Medicine, Medical
| | | | - Peter J Lang
- Dept. of Pediatrics, University of Tubingen, Germany
| | | | | | - Andrea Heinzmann
- Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Michaela Schneider
- Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Starý
- Department of Pediatric Hematology and Oncology, Charles University Prague, Prague, Czech Republic
| | | | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Franco Locatelli
- Pediatric Hematology/Oncology, University of Pavia Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Debbie Sakai
- Department of Pediatrics and the Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Sophie Archambeault
- Department of Pediatrics and the Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Leslie Chen
- Department of Pediatrics and the Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Ryan C. Russell
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Stephanie S. Sybingco
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Benjamin S. Braun
- Department of Pediatrics and the Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Christian Flotho
- Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Mignon L. Loh
- Department of Pediatrics and the Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
- Corresponding author: Mignon L Loh, University of California, Rm HSD-302 Box 0519, San Francisco, CA 94143; . Or: Charlotte M. Niemeyer, Department of Pediatrics, University of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany;
| |
Collapse
|
160
|
Rapidly fatal myeloproliferative disorders in mice with deletion of Casitas B-cell lymphoma (Cbl) and Cbl-b in hematopoietic stem cells. Proc Natl Acad Sci U S A 2010; 107:16274-9. [PMID: 20805496 DOI: 10.1073/pnas.1007575107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Casitas B-cell lymphoma (Cbl)-family E3 ubiquitin ligases are negative regulators of tyrosine kinase signaling. Recent work has revealed a critical role of Cbl in the maintenance of hematopoietic stem cell (HSC) homeostasis, and mutations in CBL have been identified in myeloid malignancies. Here we show that, in contrast to Cbl or Cbl-b single-deficient mice, concurrent loss of Cbl and Cbl-b in the HSC compartment leads to an early-onset lethal myeloproliferative disease in mice. Cbl, Cbl-b double-deficient bone marrow cells are hypersensitive to cytokines, and show altered biochemical response to thrombopoietin. Thus, Cbl and Cbl-b play redundant but essential roles in HSC regulation, whose breakdown leads to hematological abnormalities that phenocopy crucial aspects of mutant Cbl-driven human myeloid malignancies.
Collapse
|
161
|
Rosen DB, Putta S, Covey T, Huang YW, Nolan GP, Cesano A, Minden MD, Fantl WJ. Distinct patterns of DNA damage response and apoptosis correlate with Jak/Stat and PI3kinase response profiles in human acute myelogenous leukemia. PLoS One 2010; 5:e12405. [PMID: 20811632 PMCID: PMC2928279 DOI: 10.1371/journal.pone.0012405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/26/2010] [Indexed: 12/27/2022] Open
Abstract
Background Single cell network profiling (SCNP) utilizing flow cytometry measures alterations in intracellular signaling responses. Here SCNP was used to characterize Acute Myeloid Leukemia (AML) disease subtypes based on survival, DNA damage response and apoptosis pathways. Methodology and Principal Findings Thirty four diagnostic non-M3 AML samples from patients with known clinical outcome were treated with a panel of myeloid growth factors and cytokines, as well as with apoptosis-inducing agents. Analysis of induced Jak/Stat and PI3K pathway responses in blasts from individual patient samples identified subgroups with distinct signaling profiles that were not seen in the absence of a modulator. In vitro exposure of patient samples to etoposide, a DNA damaging agent, revealed three distinct “DNA damage response (DDR)/apoptosis” profiles: 1) AML blasts with a defective DDR and failure to undergo apoptosis; 2) AML blasts with proficient DDR and failure to undergo apoptosis; 3) AML blasts with proficiency in both DDR and apoptosis pathways. Notably, AML samples from clinical responders fell within the “DDR/apoptosis” proficient profile and, as well, had low PI3K and Jak/Stat signaling responses. In contrast, samples from clinical non responders had variable signaling profiles often with in vitro apoptotic failure and elevated PI3K pathway activity. Individual patient samples often harbored multiple, distinct, leukemia-associated cell populations identifiable by their surface marker expression, functional performance of signaling pathway in the face of cytokine or growth factor stimulation, as well as their response to apoptosis-inducing agents. Conclusions and Significance Characterizing and tracking changes in intracellular pathway profiles in cell subpopulations both at baseline and under therapeutic pressure will likely have important clinical applications, potentially informing the selection of beneficial targeted agents, used either alone or in combination with chemotherapy.
Collapse
Affiliation(s)
- David B. Rosen
- Nodality, Inc., South San Francisco, California, United States of America
| | - Santosh Putta
- Nodality, Inc., South San Francisco, California, United States of America
| | - Todd Covey
- Nodality, Inc., South San Francisco, California, United States of America
| | - Ying-Wen Huang
- Nodality, Inc., South San Francisco, California, United States of America
| | - Garry P. Nolan
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Alessandra Cesano
- Nodality, Inc., South San Francisco, California, United States of America
| | | | - Wendy J. Fantl
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
- Nodality, Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
162
|
Oh ST, Simonds EF, Jones C, Hale MB, Goltsev Y, Gibbs KD, Merker JD, Zehnder JL, Nolan GP, Gotlib J. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 2010; 116:988-92. [PMID: 20404132 PMCID: PMC2924231 DOI: 10.1182/blood-2010-02-270108] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 04/09/2010] [Indexed: 02/06/2023] Open
Abstract
Dysregulated Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling due to activation of tyrosine kinases is a common feature of myeloid malignancies. Here we report the first human disease-related mutations in the adaptor protein LNK, a negative regulator of JAK-STAT signaling, in 2 patients with JAK2 V617F-negative myeloproliferative neoplasms (MPNs). One patient exhibited a 5 base-pair deletion and missense mutation leading to a premature stop codon and loss of the pleckstrin homology (PH) and Src homology 2 (SH2) domains. A second patient had a missense mutation (E208Q) in the PH domain. BaF3-MPL cells transduced with these LNK mutants displayed augmented and sustained thrombopoietin-dependent growth and signaling. Primary samples from MPN patients bearing LNK mutations exhibited aberrant JAK-STAT activation, and cytokine-responsive CD34(+) early progenitors were abnormally abundant in both patients. These findings indicate that JAK-STAT activation due to loss of LNK negative feedback regulation is a novel mechanism of MPN pathogenesis.
Collapse
Affiliation(s)
- Stephen T Oh
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford Cancer Center, 875 Blake Wilbur Dr., Stanford, CA 94305-5821, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Vignudelli T, Selmi T, Martello A, Parenti S, Grande A, Gemelli C, Zanocco-Marani T, Ferrari S. ZFP36L1 negatively regulates erythroid differentiation of CD34+ hematopoietic stem cells by interfering with the Stat5b pathway. Mol Biol Cell 2010; 21:3340-51. [PMID: 20702587 PMCID: PMC2947470 DOI: 10.1091/mbc.e10-01-0040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ZFP36L1 is a member of a family of CCCH tandem zinc finger proteins (TTP family) able to bind to AU-rich elements in the 3'-untranslated region of mRNAs, thereby triggering their degradation. The present study suggests that such mechanism is used during hematopoiesis to regulate differentiation by posttranscriptionally modulating the expression of specific target genes. In particular, it demonstrates that ZFP36L1 negatively regulates erythroid differentiation by directly binding the 3' untranslated region of Stat5b encoding mRNA. Stat5b down-regulation obtained by ZFP36L1 overexpression results, in human hematopoietic progenitors, in a drastic decrease of erythroid colonies formation. These observations have been confirmed by silencing experiments targeting Stat5b and by treating hematopoietic stem/progenitor cells with drugs able to induce ZFP36L1 expression. Moreover, this study shows that different members of ZFP36L1 family act redundantly, because cooverexpression of ZFP36L1 and family member ZFP36 determines a cumulative effect on Stat5b down-regulation. This work describes a mechanism underlying ZFP36L1 capability to regulate hematopoietic differentiation and suggests a new target for the therapy of hematopoietic diseases involving Stat5b/JAK2 pathway, such as chronic myeloproliferative disorders.
Collapse
Affiliation(s)
- Tatiana Vignudelli
- Università di Modena e Reggio Emilia, Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, 41100, Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Sun J, Masterman-Smith MD, Graham NA, Jiao J, Mottahedeh J, Laks DR, Ohashi M, DeJesus J, Kamei KI, Lee KB, Wang H, Yu ZTF, Lu YT, Hou S, Li K, Liu M, Zhang N, Wang S, Angenieux B, Panosyan E, Samuels ER, Park J, Williams D, Konkankit V, Nathanson D, van Dam RM, Phelps ME, Wu H, Liau LM, Mischel PS, Lazareff JA, Kornblum HI, Yong WH, Graeber TG, Tseng HR. A microfluidic platform for systems pathology: multiparameter single-cell signaling measurements of clinical brain tumor specimens. Cancer Res 2010; 70:6128-38. [PMID: 20631065 DOI: 10.1158/0008-5472.can-10-0076] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The clinical practice of oncology is being transformed by molecular diagnostics that will enable predictive and personalized medicine. Current technologies for quantitation of the cancer proteome are either qualitative (e.g., immunohistochemistry) or require large sample sizes (e.g., flow cytometry). Here, we report a microfluidic platform-microfluidic image cytometry (MIC)-capable of quantitative, single-cell proteomic analysis of multiple signaling molecules using only 1,000 to 2,800 cells. Using cultured cell lines, we show simultaneous measurement of four critical signaling proteins (EGFR, PTEN, phospho-Akt, and phospho-S6) within the oncogenic phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. To show the clinical application of the MIC platform to solid tumors, we analyzed a panel of 19 human brain tumor biopsies, including glioblastomas. Our MIC measurements were validated by clinical immunohistochemistry and confirmed the striking intertumoral and intratumoral heterogeneity characteristic of glioblastoma. To interpret the multiparameter, single-cell MIC measurements, we adapted bioinformatic methods including self-organizing maps that stratify patients into clusters that predict tumor progression and patient survival. Together with bioinformatic analysis, the MIC platform represents a robust, enabling in vitro molecular diagnostic technology for systems pathology analysis and personalized medicine.
Collapse
Affiliation(s)
- Jing Sun
- Crump Institute for Molecular Imaging, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Hjelle SM, Forthun RB, Haaland I, Reikvam H, Sjøholt G, Bruserud O, Gjertsen BT. Clinical proteomics of myeloid leukemia. Genome Med 2010; 2:41. [PMID: 20587003 PMCID: PMC2905101 DOI: 10.1186/gm162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myeloid leukemias are a heterogeneous group of diseases originating from bone marrow myeloid progenitor cells. Patients with myeloid leukemias can achieve long-term survival through targeted therapy, cure after intensive chemotherapy or short-term survival because of highly chemoresistant disease. Therefore, despite the development of advanced molecular diagnostics, there is an unmet need for efficient therapy that reflects the advanced diagnostics. Although the molecular design of therapeutic agents is aimed at interacting with specific proteins identified through molecular diagnostics, the majority of therapeutic agents act on multiple protein targets. Ongoing studies on the leukemic cell proteome will probably identify a large number of new biomarkers, and the prediction of response to therapy through these markers is an interesting avenue for future personalized medicine. Mass spectrometric protein detection is a fundamental technique in clinical proteomics, and selected tools are presented, including stable isotope labeling with amino acids in cell culture (SILAC), isobaric tags for relative and absolute quantification (iTRAQ) and multiple reaction monitoring (MRM), as well as single cell determination. We suggest that protein analysis will play not only a supplementary, but also a prominent role in future molecular diagnostics, and we outline how accurate knowledge of the molecular therapeutic targets can be used to monitor therapy response.
Collapse
Affiliation(s)
- Sigrun M Hjelle
- Institute of Medicine, Hematology Section, University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
166
|
B-cell signaling networks reveal a negative prognostic human lymphoma cell subset that emerges during tumor progression. Proc Natl Acad Sci U S A 2010; 107:12747-54. [PMID: 20543139 DOI: 10.1073/pnas.1002057107] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human tumors contain populations of both cancerous and host immune cells whose malignant signaling interactions may define each patient's disease trajectory. We used multiplexed phospho-flow cytometry to profile single cells within human follicular lymphoma tumors and discovered a subpopulation of lymphoma cells with impaired B cell antigen receptor (BCR) signaling. The abundance of BCR-insensitive cells in each tumor negatively correlated with overall patient survival. These lymphoma negative prognostic (LNP) cells increased as tumors relapsed following chemotherapy. Loss of antigen receptor expression did not explain the absence of BCR signaling in LNP tumor cells, and other signaling responses were intact in these cells. Furthermore, BCR signaling responses could be reactivated in LNP cells, indicating that BCR signaling is not missing but rather specifically suppressed. LNP cells were also associated with changes to signaling interactions in the tumor microenvironment. Lower IL-7 signaling in tumor infiltrating T cells was observed in tumors with high LNP cell counts. The strength of signaling through T cell mediator of B cell function CD40 also stratified patient survival, particularly for those whose tumors contained few LNP cells. Thus, analysis of cell-cell interactions in heterogeneous primary tumors using signaling network profiles can identify and mechanistically define new populations of rare and clinically significant cells. Both the existence of these LNP cells and their aberrant signaling profiles provide targets for new therapies for follicular lymphoma.
Collapse
|
167
|
Li G, Miskimen KL, Wang Z, Xie XY, Tse W, Gouilleux F, Moriggl R, Bunting KD. Effective targeting of STAT5-mediated survival in myeloproliferative neoplasms using ABT-737 combined with rapamycin. Leukemia 2010; 24:1397-405. [PMID: 20535152 PMCID: PMC2921023 DOI: 10.1038/leu.2010.131] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Signal transducer and activator of transcription-5 (STAT5) is a critical transcription factor for normal hematopoiesis and its sustained activation is associated with hematologic malignancy. A persistently active mutant of STAT5 (STAT5aS711F) associates with Grb2 associated binding protein 2 (Gab2) in myeloid leukemias and promotes growth in vitro through AKT activation. Here we have retrovirally transduced wild-type or Gab2−/− mouse bone marrow cells expressing STAT5aS711F and transplanted into irradiated recipient mice to test an in vivo myeloproliferative disease (MPD) model. To target Gab2-independent AKT/mTOR activation, wild-type mice were treated separately with rapamycin. In either case, mice lacking Gab2 or treated with rapamycin displayed attenuated myeloid hyperplasia and modestly improved survival, but the effects were not cytotoxic and were reversible. To improve upon this approach, in vitro targeting of STAT5-mediated AKT/mTOR using rapamycin was combined with inhibition of the STAT5 direct target genes bcl-2 and bcl-XL using ABT-737. Striking synergy with both drugs was observed in mouse BaF3 cells expressing STAT5aS711F, TEL-JAK2, or BCR-ABL and in the relatively single agent-resistant human BCR-ABL positive K562 cell line. Therefore, targeting distinct STAT5 mediated survival signals, e.g. bcl-2/bcl-XL and AKT/mTOR may be an effective therapeutic approach for human myeloproliferative neoplasms.
Collapse
Affiliation(s)
- G Li
- Division of Hematology-Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Covey TM, Cesano A, Parkinson DR. Single-cell network profiling (SCNP) by flow cytometry in autoimmune disease. Autoimmunity 2010; 43:550-9. [DOI: 10.3109/08916931003674774] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
169
|
de Vries ACH, Zwaan CM, van den Heuvel-Eibrink MM. Molecular basis of juvenile myelomonocytic leukemia. Haematologica 2010; 95:179-82. [PMID: 20139388 DOI: 10.3324/haematol.2009.016865] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
MESH Headings
- Child
- Genes, ras
- Humans
- Janus Kinases/metabolism
- Leukemia, Myelomonocytic, Juvenile/diagnosis
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/metabolism
- Leukemia, Myelomonocytic, Juvenile/therapy
- Mutation
- Neurofibromatosis 1/diagnosis
- Neurofibromin 1/genetics
- PTEN Phosphohydrolase/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Proto-Oncogene Proteins c-cbl/genetics
- STAT Transcription Factors/metabolism
- Signal Transduction
- ras Proteins/metabolism
Collapse
|
170
|
Dawson MA, Curry JE, Barber K, Beer PA, Graham B, Lyons JF, Richardson CJ, Scott MA, Smyth T, Squires MS, Thompson NT, Green AR, Wallis NG. AT9283, a potent inhibitor of the Aurora kinases and Jak2, has therapeutic potential in myeloproliferative disorders. Br J Haematol 2010; 150:46-57. [PMID: 20507304 DOI: 10.1111/j.1365-2141.2010.08175.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Constitutive activation of Janus kinase (Jak) 2 is the most prevalent pathogenic event observed in the myeloproliferative disorders (MPD), suggesting that inhibitors of Jak2 may prove valuable in their management. Inhibition of the Aurora kinases has also proven to be an effective therapeutic strategy in a number of haematological malignancies. AT9283 is a multi-targeted kinase inhibitor with potent activity against Jak2 and Aurora kinases A and B, and is currently being evaluated in clinical trials. To investigate the therapeutic potential of AT9283 in the MPD we studied its activity in a number of Jak2-dependent systems. AT9283 potently inhibited proliferation and Jak2-related signalling in Jak2-dependent cell lines as well as inhibiting the formation of erythroid colonies from haematopoietic progenitors isolated from MPD patients with Jak2 mutations. The compound also demonstrated significant therapeutic potential in vivo in an ETV6-JAK2 (TEL-JAK2) murine leukaemia model. Inhibition of both Jak2 and Aurora B was observed in the model systems used, indicating a dual mechanism of action. Our results suggest that AT9283 may be a valuable therapy in patients with MPD and that the dual inhibition of Jak2 and the Aurora kinases may potentially offer combinatorial efficacy in the treatment of these diseases.
Collapse
Affiliation(s)
- Mark A Dawson
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Kornblau SM, Minden MD, Hogge D, Cohen A, Cesano A. Insights into acute myeloid leukemia via single cell network profiling. CLINICAL LABORATORY INTERNATIONAL 2010; 34:12-15. [PMID: 26726291 PMCID: PMC4696776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Single Cell Network Profiling (SCNP) uses multi-parameter flow cytometry to simultaneously measure resting and evoked intracellular signalling molecules and pathways in distinct cell subsets within a complex tissue sample. This review focuses on the utility of SCNP and its potential applications for chemotherapy selection in Acute Myeloid Leukemia (AML).
Collapse
Affiliation(s)
- Steven M Kornblau
- MD Anderson Cancer Center, University of Texas, 1515 Holcombe Blvd, Box 448, Houston, TX 77030-4095, USA
| | - Mark D Minden
- Dept of Medical Onc/Hem, Princess Margaret Hospital, 610 Univ. Ave. Rm 5-126, Toronto, ON M5G 2M9, Canada
| | - Donna Hogge
- BC Cancer Research Center, 675 W. 10th Ave, Vancouver, BC V5Z 1L3, Canada
| | - AileenC Cohen
- Nodality, 201 Gateway Blvd, South San Francisco, CA 94080, USA
| | | |
Collapse
|
172
|
Monitoring of the immunomodulatory effect of CP-690,550 by analysis of the JAK/STAT pathway in kidney transplant patients. Transplantation 2010; 88:1002-9. [PMID: 19855246 DOI: 10.1097/tp.0b013e3181b9ced7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND.: The small molecule drug CP-690,550 inhibits Janus kinase 3 at nanomolar concentrations and has recently been shown to prevent allograft rejection in rodents and nonhuman primates. METHODS.: As part of a phase 1 clinical trial, we investigated the effect of CP-690,550 after 29 days of 30 mg twice daily treatment at the cellular level in eight kidney transplant patients by studying ex vivo phosphorylation of STAT5 (P-STAT5), the key substrate of JAK3. RESULTS.: As determined by quantitative fluorescent western blotting, interleukin-2-induced P-STAT5 in YT cells was reduced by a median of 73% (P<0.01) in the presence of serum collected on day 29 compared with pretreatment baseline. When evaluated by phosphospecific flow cytometry, CP-690,550 also reduced interleukin-2-induced P-STAT5 in CD3 (median 20%; P<0.05), CD3CD4 (median 37%; P<0.05), and CD3CD8 (median 34%; P<0.01) populations in patient-derived peripheral blood mononuclear cells. At the functional level, the inhibitory effect of CP-690,550 was confirmed by determining the expression of several STAT5 targets genes. CONCLUSION.: Analysis of P-STAT5 may, therefore, be used to determine the immunomodulatory effect of CP-690,550 at the cellular level in transplant patients.
Collapse
|
173
|
Clark DP. Ex vivo biomarkers: functional tools to guide targeted drug development and therapy. Expert Rev Mol Diagn 2010; 9:787-94. [PMID: 19895224 DOI: 10.1586/erm.09.62] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most of the currently utilized predictive biomarkers for therapeutic decision-making provide information regarding the presence or absence of the drug target but reveal little about the functional circuitry of the signaling network that the drug must also impact. Ex vivo biomarkers are dynamic molecular markers evoked from living tumor cells after removal from the patient. Such ex vivo biomarkers provide valuable mechanistic information that may facilitate drug development and guide the clinical selection of targeted therapeutics.
Collapse
Affiliation(s)
- Douglas P Clark
- Department of Oncology, The Johns Hopkins School of Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA.
| |
Collapse
|
174
|
Loh ML. Childhood myelodysplastic syndrome: focus on the approach to diagnosis and treatment of juvenile myelomonocytic leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2010; 2010:357-362. [PMID: 21239819 DOI: 10.1182/asheducation-2010.1.357] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Expansion of myeloid blasts with suppression of normal hematopoiesis is a hallmark of acute myeloid leukemia (AML). In contrast, myeloproliferative neoplasms (MPNs) are clonal disorders characterized by overproliferation of one or more lineages that retain the ability to differentiate. Juvenile myelomonocytic leukemia (JMML) is an aggressive MPN of childhood that is clinically characterized by the overproduction of monocytic cells that can infiltrate organs, including the spleen, liver, gastrointestinal tract, and lung. Major progress in understanding the pathogenesis of JMML has been achieved by mapping out the genetic lesions that occur in patients. The spectrum of mutations described thus far in JMML occur in genes that encode proteins that signal through the Ras/mitogen-activated protein kinase (MAPK) pathways, thus providing potential new opportunities for both diagnosis and therapy. These genes include NF1, NRAS, KRAS, PTPN11, and, most recently, CBL. While the current standard of care for patients with JMML relies on allogeneic hematopoietic stem-cell transplant, relapse is the most frequent cause of treatment failure. Rarely, spontaneous resolution of this disorder can occur but is unpredictable. This review is focused on the genetic abnormalities that occur in JMML, with particular attention to germ-line predisposition syndromes associated with the disorder. Current approaches to therapy are also discussed.
Collapse
Affiliation(s)
- Mignon L Loh
- Department of Pediatrics and the Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
175
|
Paraiso KHT, Van Der Kooi K, Messina JL, Smalley KSM. Measurement of constitutive MAPK and PI3K/AKT signaling activity in human cancer cell lines. Methods Enzymol 2010; 484:549-67. [PMID: 21036250 DOI: 10.1016/b978-0-12-381298-8.00027-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The growth and survival of cancer cells are often driven by constitutive activity in the mitogen-activated protein kinase (MAPK) and phospho-inositide 3-kinase (PI3K)/AKT signaling pathways. Activity in these signal transduction cascades is known to contribute to the uncontrolled growth and resistance to apoptosis that characterizes tumor progression. There is now a great deal of interest in therapeutically targeting these pathways in cancer using small molecule inhibitors. In this chapter, we describe methods to measure constitutive MAPK and AKT activity in melanoma cell lines, with a focus upon Western blotting, phospho-flow cytometry, and immunofluorescence staining techniques.
Collapse
Affiliation(s)
- Kim H T Paraiso
- Department of Molecular Oncology, The Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | | | | | |
Collapse
|
176
|
Moritake H, Ikeda T, Manabe A, Kamimura S, Nunoi H. Cytomegalovirus infection mimicking juvenile myelomonocytic leukemia showing hypersensitivity to granulocyte-macrophage colony stimulating factor. Pediatr Blood Cancer 2009; 53:1324-6. [PMID: 19731324 DOI: 10.1002/pbc.22253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We describe an infant with cytomegalovirus (CMV) infection presenting as transient myeloproliferation resembling juvenile myelomonocytic leukemia (JMML). The patient fulfilled the international diagnostic criteria of JMML, including hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). Viral studies using serologic assays and polymerase chain reaction (PCR) were positive for CMV. Clinical symptoms disappeared and laboratory values returned to normal without specific treatment within 1 year. Follow-up showing a decrease in viral titers suggested CMV infection as an etiologic factor for the development of myeloproliferative features. We conclude that the CMV infection transiently induced abnormal myelopoiesis in this infant.
Collapse
Affiliation(s)
- Hiroshi Moritake
- Division of Pediatrics, Faculty of Medicine, Department of Reproductive and Developmental Medicine, University of Miyazaki, Miyazaki, Japan.
| | | | | | | | | |
Collapse
|
177
|
STAT5 requires the N-domain for suppression of miR15/16, induction of bcl-2, and survival signaling in myeloproliferative disease. Blood 2009; 115:1416-24. [PMID: 20008792 DOI: 10.1182/blood-2009-07-234963] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phosphorylated signal transducer and activator of transcription 5 (STAT5) is a biomarker and potential molecular target for hematologic malignancies. We have shown previously that lethal myeloproliferative disease (MPD) in mice mediated by persistently activated STAT5 (STAT5a(S711F)) requires the N-domain, but the mechanism was not defined. We now demonstrate by retrovirally complementing STAT5ab(null/null) primary mast cells that relative to wild-type STAT5a, STAT5a lacking the N-domain (STAT5aDeltaN) ineffectively protected against cytokine withdrawal-induced cell death. Both STAT5a and STAT5aDeltaN bound to a site in the bcl-2 gene and both bound near the microRNA 15b/16 cluster. However, only STAT5a could effectively induce bcl-2 mRNA and reciprocally suppress miR15b/16 leading to maintained bcl-2 protein levels. After retroviral complementation of STAT5ab(null/null) fetal liver cells and transplantation, persistently active STAT5a(S711F) lacking the N-domain (STAT5aDeltaN(S711F)) was insufficient to protect c-Kit(+)Lin(-)Sca-1(+) (KLS) cells from apoptosis and unable to induce bcl-2 expression, whereas STAT5a(S711F) caused robust KLS cell expansion, induction of bcl-2, and lethal MPD. Severe attenuation of MPD by STAT5aDeltaN(S711F) was reversed by H2k/bcl-2 transgenic expression. Overall, these studies define N-domain-dependent survival signaling as an Achilles heel of persistent STAT5 activation and highlight the potential therapeutic importance of targeting STAT5 N-domain-mediated regulation of bcl-2 family members.
Collapse
|
178
|
Alpha-defensins secreted by dysplastic granulocytes inhibit the differentiation of monocytes in chronic myelomonocytic leukemia. Blood 2009; 115:78-88. [PMID: 19864642 DOI: 10.1182/blood-2009-05-224352] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic disorder that occurs in elderly patients. One of the main diagnostic criteria is the accumulation of heterogeneous monocytes in the peripheral blood. We further explored this cellular heterogeneity and observed that part of the leukemic clone in the peripheral blood was made of immature dysplastic granulocytes with a CD14(-)/CD24(+) phenotype. The proteome profile of these cells is dramatically distinct from that of CD14(+)/CD24(-) monocytes from CMML patients or healthy donors. More specifically, CD14(-)/CD24(+) CMML cells synthesize and secrete large amounts of alpha-defensin 1-3 (HNP1-3). Recombinant HNPs inhibit macrophage colony-stimulating factor (M-CSF)-driven differentiation of human peripheral blood monocytes into macrophages. Using transwell, antibody-mediated depletion, suramin inhibition of purinergic receptors, and competitive experiments with uridine diphosphate (UDP)/uridine triphosphate (UTP), we demonstrate that HNP1-3 secreted by CD14(-)/CD24(+) cells inhibit M-CSF-induced differentiation of CD14(+)/CD24(-) cells at least in part through P2Y6, a receptor involved in macrophage differentiation. Altogether, these observations suggest that a population of immature dysplastic granulocytes contributes to the CMML phenotype through production of alpha-defensins HNP1-3 that suppress the differentiation capabilities of monocytes.
Collapse
|
179
|
|
180
|
Potula HSK, Wang D, Quyen DV, Singh NK, Kundumani-Sridharan V, Karpurapu M, Park EA, Glasgow WC, Rao GN. Src-dependent STAT-3-mediated expression of monocyte chemoattractant protein-1 is required for 15(S)-hydroxyeicosatetraenoic acid-induced vascular smooth muscle cell migration. J Biol Chem 2009; 284:31142-55. [PMID: 19736311 DOI: 10.1074/jbc.m109.012526] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To understand the role of human 15-lipoxygenase 1 (15-LOX1) in vascular wall remodeling, we have studied the effect of the major 15-LOX1 metabolite of arachidonic acid, 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), on vascular smooth muscle cell (VSMC) migration both in vitro and in vivo. Among 5(S)-HETE, 12(S)-HETE, and 15(S)-HETE, 15(S)-HETE potentially stimulated more vascular smooth muscle cell (VSMC) migration. In addition, 15(S)-HETE-induced VSMC migration was dependent on Src-mediated activation of signal transducer and activator of transcription-3 (STAT-3). 15(S)-HETE also induced monocyte chemoattractant protein-1 (MCP-1) expression via Src-STAT-3 signaling, and neutralizing anti-MCP-1 antibodies completely negated 15(S)-HETE-induced VSMC migration. Cloning and characterization of a 2.6-kb MCP-1 promoter revealed the presence of four putative STAT-binding sites, and the site that is proximal to the transcription start site was found to be essential for 15(S)-HETE-induced Src-STAT-3-mediated MCP-1 expression. Rat carotid arteries that were subjected to balloon injury and transduced with Ad-15-LOX1 upon exposure to [(3)H]arachidonic acid ex vivo produced 15-HETE as a major eicosanoid and enhanced balloon injury-induced expression of MCP-1 in smooth muscle cells in Src and STAT-3-dependent manner in vivo. Adenovirus-mediated delivery of 15-LOX1 into rat carotid artery also led to recruitment and homing of macrophages to medial region in response to injury. In addition, transduction of Ad-15-LOX1 into arteries enhanced balloon injury-induced smooth muscle cell migration from media to intima and neointima formation. These results show for the first time that 15-LOX1-15(S)-HETE axis plays a major role in vascular wall remodeling after balloon angioplasty.
Collapse
Affiliation(s)
- Harihara S K Potula
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Modeling the functional heterogeneity of leukemia stem cells: role of STAT5 in leukemia stem cell self-renewal. Blood 2009; 114:3983-93. [PMID: 19667399 DOI: 10.1182/blood-2009-06-227603] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although the cancer stem cell (CSC) concept implies that CSCs are rare, recent reports suggest that CSCs may be frequent in some cancers. We hypothesized that the proportion of leukemia stem cells would vary as a function of the number of dysregulated pathways. Constitutive expression of MN1 served as a 1-oncogene model, and coexpression of MN1 and a HOX gene served as a 2-oncogene model. Leukemia-initiating cell (LIC) number and in vitro expansion potential of LICs were functionally assessed by limiting dilution analyses. LIC expansion potential was 132-fold increased in the 2- compared with the 1-oncogene model, although phenotypically, both leukemias were similar. The 2-oncogene model was characterized by granulocyte-macrophage colony-stimulating factor (GM-CSF) hypersensitivity and activated STAT/ERK signaling. GM-CSF hypersensitivity of the 2-oncogene model (MN1/HOXA9) was lost in Stat5b(-/-) cells, and the LIC expansion potential was reduced by 86- and 28-fold in Stat5b(-/-) and Stat1(-/-) cells, respectively. Interestingly, in 201 acute myeloid leukemia (AML) patients, coexpression of MN1 and HOXA9 was restricted to patients with the poorest prognosis and was associated with highly active STAT signaling. Our data demonstrate the functional heterogeneity of LICs and show that STAT signaling is critical for leukemia stem cell self-renewal in MN1- and HOXA9-expressing leukemias.
Collapse
|
182
|
Braun BS, Shannon K. The SPS affair: a complex tale of illicit proliferation. Cancer Cell 2009; 16:87-8. [PMID: 19647218 DOI: 10.1016/j.ccr.2009.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this issue of Cancer Cell, Xiao et al. report that PLC-beta3 mutant mice develop myeloprolfierative neoplasms and show that tumor suppressor activity does not require PLC-beta3 catalytic activity. Instead, PLC-beta3 forms a complex with SHP-1 and Stat5 that facilitates Stat5 dephosphorylation. A similar mechanism may be operative in some human leukemias.
Collapse
Affiliation(s)
- Benjamin S Braun
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
183
|
Abstract
Juvenile myelomonocytic leukemia is an aggressive myeloproliferative disorder characterized by malignant transformation in the hematopoietic stem cell compartment with proliferation of differentiated progeny. Seventy-five percent of patients harbor mutations in the NF1, NRAS, KRAS, or PTPN11 genes, which encode components of Ras signaling networks. Using single nucleotide polymorphism arrays, we identified a region of 11q isodisomy that contains the CBL gene in several JMML samples, and subsequently identified CBL mutations in 27 of 159 JMML samples. Thirteen of these mutations alter codon Y371. In this report, we also demonstrate that CBL and RAS/PTPN11 mutations were mutually exclusive in these patients. Moreover, the exclusivity of CBL mutations with respect to other Ras pathway-associated mutations indicates that CBL may have a role in deregulating this key pathway in JMML.
Collapse
|
184
|
Abstract
Pediatric acute lymphoblastic leukemia (ALL) is a heterogeneous disease consisting of distinct clinical and biological subtypes that are characterized by specific chromosomal abnormalities or gene mutations. Mutation of genes encoding tyrosine kinases is uncommon in ALL, with the exception of Philadelphia chromosome-positive ALL, where the t(9,22)(q34;q11) translocation encodes the constitutively active BCR-ABL1 tyrosine kinase. We recently identified a poor prognostic subgroup of pediatric BCR-ABL1-negative ALL patients characterized by deletion of IKZF1 (encoding the lymphoid transcription factor IKAROS) and a gene expression signature similar to BCR-ABL1-positive ALL, raising the possibility of activated tyrosine kinase signaling within this leukemia subtype. Here, we report activating mutations in the Janus kinases JAK1 (n = 3), JAK2 (n = 16), and JAK3 (n = 1) in 20 (10.7%) of 187 BCR-ABL1-negative, high-risk pediatric ALL cases. The JAK1 and JAK2 mutations involved highly conserved residues in the kinase and pseudokinase domains and resulted in constitutive JAK-STAT activation and growth factor independence of Ba/F3-EpoR cells. The presence of JAK mutations was significantly associated with alteration of IKZF1 (70% of all JAK-mutated cases and 87.5% of cases with JAK2 mutations; P = 0.001) and deletion of CDKN2A/B (70% of all JAK-mutated cases and 68.9% of JAK2-mutated cases). The JAK-mutated cases had a gene expression signature similar to BCR-ABL1 pediatric ALL, and they had a poor outcome. These results suggest that inhibition of JAK signaling is a logical target for therapeutic intervention in JAK mutated ALL.
Collapse
|
185
|
Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 2009; 113:6182-92. [PMID: 19387008 DOI: 10.1182/blood-2008-12-194548] [Citation(s) in RCA: 300] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent evidence has demonstrated that acquired uniparental disomy (aUPD) is a novel mechanism by which pathogenetic mutations in cancer may be reduced to homozygosity. To help identify novel mutations in myeloproliferative neoplasms (MPNs), we performed a genome-wide single nucleotide polymorphism (SNP) screen to identify aUPD in 58 patients with atypical chronic myeloid leukemia (aCML; n = 30), JAK2 mutation-negative myelofibrosis (MF; n = 18), or JAK2 mutation-negative polycythemia vera (PV; n = 10). Stretches of homozygous, copy neutral SNP calls greater than 20Mb were seen in 10 (33%) aCML and 1 (6%) MF, but were absent in PV. In total, 7 different chromosomes were involved with 7q and 11q each affected in 10% of aCML cases. CBL mutations were identified in all 3 cases with 11q aUPD and analysis of 574 additional MPNs revealed a total of 27 CBL variants in 26 patients with aCML, myelofibrosis or chronic myelomonocytic leukemia. Most variants were missense substitutions in the RING or linker domains that abrogated CBL ubiquitin ligase activity and conferred a proliferative advantage to 32D cells overexpressing FLT3. We conclude that acquired, transforming CBL mutations are a novel and widespread pathogenetic abnormality in morphologically related, clinically aggressive MPNs.
Collapse
|
186
|
Stapnes C, Gjertsen BT, Reikvam H, Bruserud Ø. Targeted therapy in acute myeloid leukaemia: current status and future directions. Expert Opin Investig Drugs 2009; 18:433-55. [DOI: 10.1517/14728220902787628] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Camilla Stapnes
- Haukeland University Hospital, Department of Medicine, Section for Haematology, N-5021 Bergen, Norway ;
| | - Bjørn Tore Gjertsen
- Haukeland University Hospital, Department of Medicine, Section for Haematology, N-5021 Bergen, Norway ;
| | - Håkon Reikvam
- Haukeland University Hospital, Department of Medicine, Section for Haematology, N-5021 Bergen, Norway ;
| | - Øystein Bruserud
- Haukeland University Hospital, Department of Medicine, Section for Haematology, N-5021 Bergen, Norway ;
| |
Collapse
|
187
|
Ohnishi H, Hosoi KI, Yoshino H, Sugiura M, Matsushima S, Watanabe T, Bessho F. A novel JAK2 splicing mutation in neonatal myeloproliferative disorder accompanying congenital anomalies. Br J Haematol 2009; 145:676-8. [PMID: 19344419 DOI: 10.1111/j.1365-2141.2009.07672.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
188
|
Chan RJ, Cooper T, Kratz CP, Weiss B, Loh ML. Juvenile myelomonocytic leukemia: a report from the 2nd International JMML Symposium. Leuk Res 2009; 33:355-62. [PMID: 18954903 PMCID: PMC2692866 DOI: 10.1016/j.leukres.2008.08.022] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 08/15/2008] [Accepted: 08/19/2008] [Indexed: 02/02/2023]
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive childhood myeloproliferative disorder characterized by the overproduction of myelomonocytic cells. JMML incidence approaches 1.2/million persons in the United States (Cancer Incidence and Survival Among Children and Adolescents: United States SEER Program 1975-1995). Although rare, JMML is innately informative as the molecular genetics of this disease implicates hyperactive Ras as an essential initiating event. Given that Ras is one of the most frequently mutated oncogenes in human cancer, findings from this disease are applicable to more genetically diverse and complex adult leukemias. The JMML Foundation (www.jmmlfoundation.org) was founded by parent advocates dedicated to finding a cure for this disease. They work to bring investigators together in a collaborative manner. This article summarizes key presentations from The Second International JMML Symposium, on 7-8 December 2007 in Atlanta, GA. A list of all participants is in Supplementary Table.
Collapse
Affiliation(s)
- Rebecca J. Chan
- Departments of Pediatrics, the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Todd Cooper
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christian P. Kratz
- Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Brian Weiss
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mignon L. Loh
- Department of Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
189
|
Leukemogenic Ptpn11 causes fatal myeloproliferative disorder via cell-autonomous effects on multiple stages of hematopoiesis. Blood 2009; 113:4414-24. [PMID: 19179468 DOI: 10.1182/blood-2008-10-182626] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PTPN11, which encodes the tyrosine phosphatase SHP2, is mutated in approximately 35% of patients with juvenile myelomonocytic leukemia (JMML) and at a lower incidence in other neoplasms. To model JMML pathogenesis, we generated knockin mice that conditionally express the leukemia-associated mutant Ptpn11(D61Y). Expression of Ptpn11(D61Y) in all hematopoietic cells evokes a fatal myeloproliferative disorder (MPD), featuring leukocytosis, anemia, hepatosplenomegaly, and factor-independent colony formation by bone marrow (BM) and spleen cells. The Lin(-)Sca1(+)cKit(+) (LSK) compartment is expanded and "right-shifted," accompanied by increased stem cell factor (SCF)-evoked colony formation and Erk and Akt activation. However, repopulating activity is decreased in diseased mice, and mice that do engraft with Ptpn11(D61Y) stem cells fail to develop MPD. Ptpn11(D61Y) common myeloid progenitors (CMPs) and granulocyte-monocyte progenitors (GMPs) produce cytokine-independent colonies in a cell-autonomous manner and demonstrate elevated Erk and Stat5 activation in response to granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation. Ptpn11(D61Y) megakaryocyte-erythrocyte progenitors (MEPs) yield increased numbers of erythrocyte burst-forming units (BFU-Es), but MEPs and erythrocyte-committed progenitors (EPs) produce fewer erythrocyte colony-forming units (CFU-Es), indicating defective erythroid differentiation. Our studies provide a mouse model for Ptpn11-evoked MPD and show that this disease results from cell-autonomous and distinct lineage-specific effects of mutant Ptpn11 on multiple stages of hematopoiesis.
Collapse
|
190
|
Fleisher TA, Oliveira JB. Functional flow cytometry testing: an emerging approach for the evaluation of genetic disease. Clin Chem 2009; 55:389-90. [PMID: 19147728 DOI: 10.1373/clinchem.2008.119248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
191
|
Controversies of and Unique Issues in Hematopoietic Cell Transplantation for Infant Leukemia. Biol Blood Marrow Transplant 2009; 15:79-83. [DOI: 10.1016/j.bbmt.2008.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
192
|
Abstract
Knowledge of the distinctive cellular and genetic traits of a cancer aids in diagnosis, prognosis, and potentially treatment. In this issue of Cancer Cell, Kotecha et al. (2008) demonstrate using a sophisticated flow cytometry approach that signal transduction responses to exogenous stimulation can inform diagnosis and pathobiology of myeloproliferative neoplasms.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Child
- Disease Progression
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Humans
- Janus Kinase 2/metabolism
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/metabolism
- Leukemia, Myelomonocytic, Juvenile/pathology
- Leukemia, Myelomonocytic, Juvenile/therapy
- Neoplasm Staging
- Phosphorylation
- STAT5 Transcription Factor/metabolism
- Signal Transduction/genetics
- Treatment Outcome
Collapse
Affiliation(s)
- Demetrios Kalaitzidis
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|