151
|
Ji YB, Chen N, Zhu HW, Ling N, Li WL, Song DX, Gao SY, Zhang WC, Ma NN. Alkaloids from beach spider lily (Hymenocallis littoralis) induce apoptosis of HepG-2 cells by the fas-signaling pathway. Asian Pac J Cancer Prev 2015; 15:9319-25. [PMID: 25422219 DOI: 10.7314/apjcp.2014.15.21.9319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Alkaloids are the most extensively featured compounds of natural anti-tumor herbs, which have attracted much attention in pharmaceutical research. In our previous studies, a mixture of major three alkaloid components (5, 6-dihydrobicolorine, 7-deoxy-trans-dihydronarciclasine, littoraline) from Hymenocallis littoralis were extracted, analyzed and designated as AHL. In this paper, AHL extracts were added to human liver hepatocellular cells HepG-2, human gastric cancer cell SGC-7901, human breast adenocarcinoma cell MCF-7 and human umbilical vein endothelial cell EVC-304, to screen one or more AHL-sensitive tumor cell. Among these cells, HepG-2 was the most sensitive to AHL treatment, a very low dose (0.8μg/ml) significantly inhibiting proliferation . The non- tumor cell EVC-304, however, was not apparently affected. Effect of AHL on HepG-2 cells was then explored. We found that the AHL could cause HepG-2 cycle arrest at G2/M checkpoint, induce apoptosis, and interrupt polymerization of microtubules. In addition, expression of two cell cycle-regulated proteins, CyclinB1 and CDK1, was up-regulated upon AHL treatment. Up-regulation of the Fas, Fas ligand, Caspase-8 and Caspase-3 was observed as well, which might imply roles for the Fas/FsaL signaling pathway in the AHL-induced apoptosis of HepG-2 cells.
Collapse
Affiliation(s)
- Yu-Bin Ji
- Engineering Research Center of Natural Anticancer Drugs, Harbin University of Commerce, Harbin, China E-mail : ;
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Arpağ G, Shastry S, Hancock WO, Tüzel E. Transport by populations of fast and slow kinesins uncovers novel family-dependent motor characteristics important for in vivo function. Biophys J 2015; 107:1896-1904. [PMID: 25418170 DOI: 10.1016/j.bpj.2014.09.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/16/2014] [Accepted: 09/09/2014] [Indexed: 11/26/2022] Open
Abstract
Intracellular cargo transport frequently involves multiple motor types, either having opposite directionality or having the same directionality but different speeds. Although significant progress has been made in characterizing kinesin motors at the single-molecule level, predicting their ensemble behavior is challenging and requires tight coupling between experiments and modeling to uncover the underlying motor behavior. To understand how diverse kinesins attached to the same cargo coordinate their movement, we carried out microtubule gliding assays using pairwise mixtures of motors from the kinesin-1, -2, -3, -5, and -7 families engineered to have identical run lengths and surface attachments. Uniform motor densities were used and microtubule gliding speeds were measured for varying proportions of fast and slow motors. A coarse-grained computational model of gliding assays was developed and found to recapitulate the experiments. Simulations incorporated published force-dependent velocities and run lengths, along with mechanical interactions between motors bound to the same microtubule. The simulations show that the force-dependence of detachment is the key parameter that determines gliding speed in multimotor assays, while motor compliance, surface density, and stall force all play minimal roles. Simulations also provide estimates for force-dependent dissociation rates, suggesting that kinesin-1 and the mitotic motors kinesin-5 and -7 maintain microtubule association against loads, whereas kinesin-2 and -3 readily detach. This work uncovers unexpected motor behavior in multimotor ensembles and clarifies functional differences between kinesins that carry out distinct mechanical tasks in cells.
Collapse
Affiliation(s)
- Göker Arpağ
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Shankar Shastry
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| | - William O Hancock
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania.
| | - Erkan Tüzel
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts.
| |
Collapse
|
153
|
Cho Y, Park D, Cavalli V. Filamin A is required in injured axons for HDAC5 activity and axon regeneration. J Biol Chem 2015; 290:22759-70. [PMID: 26157139 DOI: 10.1074/jbc.m115.638445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 11/06/2022] Open
Abstract
Microtubule dynamics are important for axon growth during development as well as axon regeneration after injury. We have previously identified HDAC5 as an injury-regulated tubulin deacetylase that functions at the injury site to promote axon regeneration. However, the mechanisms involved in the spatial control of HDAC5 activity remain poorly understood. Here we reveal that HDAC5 interacts with the actin binding protein filamin A via its C-terminal domain. Filamin A plays critical roles in HDAC5-dependent tubulin deacetylation because, in cells lacking filamin A, the levels of acetylated tubulin are elevated markedly. We found that nerve injury increases filamin A axonal expression in a protein synthesis-dependent manner. Reducing filamin A levels or interfering with the interaction between HDAC5 and filamin A prevents injury-induced tubulin deacetylation as well as HDAC5 localization at the injured axon tips. In addition, neurons lacking filamin A display reduced axon regeneration. Our findings suggest a model in which filamin A local translation following axon injury controls localized HDAC5 activity to promote axon regeneration.
Collapse
Affiliation(s)
- Yongcheol Cho
- From the Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri 63110 and
| | - Dongeun Park
- the School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Valeria Cavalli
- From the Department of Anatomy and Neurobiology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri 63110 and
| |
Collapse
|
154
|
Kashina A. Protein arginylation, a global biological regulator that targets actin cytoskeleton and the muscle. Anat Rec (Hoboken) 2015; 297:1630-6. [PMID: 25125176 DOI: 10.1002/ar.22969] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/14/2014] [Indexed: 12/20/2022]
Abstract
Posttranslational addition of Arg to proteins, mediated by arginyltransferase ATE1 has been first observed in 1963 and remained poorly understood for decades since its original discovery. Recent work demonstrated the global nature of arginylation and its essential role in multiple physiological pathways during embryogenesis and adulthood and identified over a hundred of proteins arginylated in vivo. Among these proteins, the prominent role belongs to the actin cytoskeleton and the muscle, and follow up studies strongly suggests that arginylation constitutes a novel biological regulator of contractility. This review presents an overview of the studies of protein arginylation that led to the discovery of its major role in the muscle.
Collapse
Affiliation(s)
- Anna Kashina
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
155
|
Schneider N, Ludwig H, Nick P. Suppression of tubulin detyrosination by parthenolide recruits the plant-specific kinesin KCH to cortical microtubules. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2001-11. [PMID: 25779700 PMCID: PMC4378638 DOI: 10.1093/jxb/erv012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Detyrosination of α-tubulin seems to be conserved in all eukaryotes. However, its biological function in plants has remained obscure. A conserved C-terminal tyrosine is removed by a still unidentified tubulin-tyrosine carboxypeptidase (TTC) and can be religated by a tubulin-tyrosine ligase (TTL). To obtain insight into the still elusive biological function of this detyrosination-tyrosination cycle, the effects of the TTC inhibitor parthenolide were analysed in BY-2 tobacco cells. Parthenolide caused a depletion of detyrosinated α-tubulin, whereas the level of tyrosinated tubulin was elevated. This biochemical effect was accompanied by growth inhibition in cycling BY-2 cells and alteration of microtubule-dependent events that define division and expansion geometry such as cell plate alignment or axial expansion. Furthermore, parthenolide triggered an apoplastic alkalinization indicative of activation of defence-related calcium influx channels. At the same time, parthenolide promoted the association of the plant-specific kinesin KCH with cortical microtubules. These observations are integrated into a working model, where detyrosination acts as signal to modulate the binding of kinesin motors involved in structural and sensory functions of the microtubular cytoskeleton.
Collapse
Affiliation(s)
- Natalie Schneider
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstraße 2, D-76131 Karlsruhe, Germany
| | - Holger Ludwig
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstraße 2, D-76131 Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstraße 2, D-76131 Karlsruhe, Germany
| |
Collapse
|
156
|
Charafeddine RA, Makdisi J, Schairer D, O'Rourke BP, Diaz-Valencia JD, Chouake J, Kutner A, Krausz A, Adler B, Nacharaju P, Liang H, Mukherjee S, Friedman JM, Friedman A, Nosanchuk JD, Sharp DJ. Fidgetin-Like 2: A Microtubule-Based Regulator of Wound Healing. J Invest Dermatol 2015; 135:2309-2318. [PMID: 25756798 DOI: 10.1038/jid.2015.94] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/17/2015] [Accepted: 02/25/2015] [Indexed: 12/11/2022]
Abstract
Wound healing is a complex process driven largely by the migration of a variety of distinct cell types from the wound margin into the wound zone. In this study, we identify the previously uncharacterized microtubule-severing enzyme, Fidgetin-like 2 (FL2), as a fundamental regulator of cell migration that can be targeted in vivo using nanoparticle-encapsulated small interfering RNA (siRNA) to promote wound closure and regeneration. In vitro, depletion of FL2 from mammalian tissue culture cells results in a more than twofold increase in the rate of cell movement, in part due to a significant increase in directional motility. Immunofluorescence analyses indicate that FL2 normally localizes to the cell edge, importantly to the leading edge of polarized cells, where it regulates the organization and dynamics of the microtubule cytoskeleton. To clinically translate these findings, we utilized a nanoparticle-based siRNA delivery platform to locally deplete FL2 in both murine full-thickness excisional and burn wounds. Topical application of FL2 siRNA nanoparticles to either wound type results in a significant enhancement in the rate and quality of wound closure both clinically and histologically relative to controls. Taken together, these results identify FL2 as a promising therapeutic target to promote the regeneration and repair of cutaneous wounds.
Collapse
Affiliation(s)
- Rabab A Charafeddine
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joy Makdisi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Schairer
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Brian P O'Rourke
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Juan D Diaz-Valencia
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jason Chouake
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Allison Kutner
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Aimee Krausz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Brandon Adler
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Parimala Nacharaju
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hongying Liang
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Suranjana Mukherjee
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joel M Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Adam Friedman
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA; These authors contributed equally to this work
| | - Joshua D Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA; These authors contributed equally to this work
| | - David J Sharp
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA; These authors contributed equally to this work.
| |
Collapse
|
157
|
Cohen-Dvashi H, Ben-Chetrit N, Russell R, Carvalho S, Lauriola M, Nisani S, Mancini M, Nataraj N, Kedmi M, Roth L, Köstler W, Zeisel A, Yitzhaky A, Zylberg J, Tarcic G, Eilam R, Wigelman Y, Will R, Lavi S, Porat Z, Wiemann S, Ricardo S, Schmitt F, Caldas C, Yarden Y. Navigator-3, a modulator of cell migration, may act as a suppressor of breast cancer progression. EMBO Mol Med 2015; 7:299-314. [PMID: 25678558 PMCID: PMC4364947 DOI: 10.15252/emmm.201404134] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 01/11/2015] [Accepted: 01/13/2015] [Indexed: 12/16/2022] Open
Abstract
Dissemination of primary tumor cells depends on migratory and invasive attributes. Here, we identify Navigator-3 (NAV3), a gene frequently mutated or deleted in human tumors, as a regulator of epithelial migration and invasion. Following induction by growth factors, NAV3 localizes to the plus ends of microtubules and enhances their polarized growth. Accordingly, NAV3 depletion trimmed microtubule growth, prolonged growth factor signaling, prevented apoptosis and enhanced random cell migration. Mathematical modeling suggested that NAV3-depleted cells acquire an advantage in terms of the way they explore their environment. In animal models, silencing NAV3 increased metastasis, whereas ectopic expression of the wild-type form, unlike expression of two, relatively unstable oncogenic mutants from human tumors, inhibited metastasis. Congruently, analyses of > 2,500 breast and lung cancer patients associated low NAV3 with shorter survival. We propose that NAV3 inhibits breast cancer progression by regulating microtubule dynamics, biasing directionally persistent rather than random migration, and inhibiting locomotion of initiated cells.
Collapse
Affiliation(s)
- Hadas Cohen-Dvashi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Ben-Chetrit
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Roslin Russell
- Cancer Research UK Cambridge Research Institute Li Ka Shing Centre, Cambridge, UK
| | - Silvia Carvalho
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Mattia Lauriola
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sophia Nisani
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Maicol Mancini
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Nishanth Nataraj
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Kedmi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Lee Roth
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Wolfgang Köstler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Amit Zeisel
- Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Assif Yitzhaky
- Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Jacques Zylberg
- Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Gabi Tarcic
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Raya Eilam
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Wigelman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Rainer Will
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Sara Lavi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Sara Ricardo
- IPATIMUP - Institute of Molecular Pathology and Immunology, Medical Faculty of the University of Porto, Porto, Portugal
| | - Fernando Schmitt
- IPATIMUP - Institute of Molecular Pathology and Immunology, Medical Faculty of the University of Porto, Porto, Portugal
| | - Carlos Caldas
- Cancer Research UK Cambridge Research Institute Li Ka Shing Centre, Cambridge, UK
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
158
|
Arbeille E, Reynaud F, Sanyas I, Bozon M, Kindbeiter K, Causeret F, Pierani A, Falk J, Moret F, Castellani V. Cerebrospinal fluid-derived Semaphorin3B orients neuroepithelial cell divisions in the apicobasal axis. Nat Commun 2015; 6:6366. [PMID: 25721514 DOI: 10.1038/ncomms7366] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/22/2015] [Indexed: 01/05/2023] Open
Abstract
The spatial orientation of cell divisions is fundamental for tissue architecture and homeostasis. Here we analysed neuroepithelial progenitors in the developing mouse spinal cord to determine whether extracellular signals orient the mitotic spindle. We report that Semaphorin3B (Sema3B) released from the floor plate and the nascent choroid plexus in the cerebrospinal fluid (CSF) controls progenitor division orientation. Delivery of exogenous Sema3B to neural progenitors after neural tube opening in living embryos promotes planar orientation of their division. Preventing progenitor access to cues present in the CSF by genetically engineered canal obstruction affects the proportion of planar and oblique divisions. Sema3B knockout phenocopies the loss of progenitor access to the CSF. Sema3B binds to the apical surface of mitotic progenitors and exerts its effect via Neuropilin receptors, GSK3 activation and subsequent inhibition of the microtubule stabilizer CRMP2. Thus, extrinsic control mediated by the Semaphorin signalling orients progenitor divisions in neurogenic zones.
Collapse
Affiliation(s)
- Elise Arbeille
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Florie Reynaud
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Isabelle Sanyas
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Muriel Bozon
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Karine Kindbeiter
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Frédéric Causeret
- CNRS UMR 7592, Institut Jacques Monod, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Alessandra Pierani
- CNRS UMR 7592, Institut Jacques Monod, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Julien Falk
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Frédéric Moret
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| | - Valérie Castellani
- University of Lyon, University of Lyon1, CGΦMC, UMR CNRS 5534, F-69100 Villeurbanne, France
| |
Collapse
|
159
|
Hirokawa N, Tanaka Y. Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases. Exp Cell Res 2015; 334:16-25. [PMID: 25724902 DOI: 10.1016/j.yexcr.2015.02.016] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/14/2015] [Indexed: 02/01/2023]
Abstract
Kinesin superfamily proteins (KIFs) largely serve as molecular motors on the microtubule system and transport various cellular proteins, macromolecules, and organelles. These transports are fundamental to cellular logistics, and at times, they directly modulate signal transduction by altering the semantics of informational molecules. In this review, we will summarize recent approaches to the regulation of the transport destinations and to the physiological relevance of the role of these proteins in neuroscience, ciliary functions, and metabolic diseases. Understanding these burning questions will be essential in establishing a new paradigm of cellular functions and disease pathogenesis.
Collapse
Affiliation(s)
- Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
160
|
Jadhav S, Katina S, Kovac A, Kazmerova Z, Novak M, Zilka N. Truncated tau deregulates synaptic markers in rat model for human tauopathy. Front Cell Neurosci 2015; 9:24. [PMID: 25755633 PMCID: PMC4337338 DOI: 10.3389/fncel.2015.00024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/14/2015] [Indexed: 01/04/2023] Open
Abstract
Synaptic failure and neurofibrillary degeneration are two major neuropathological substrates of cognitive dysfunction in Alzheimer’s disease (AD). Only a few studies have demonstrated a direct relationship between these two AD hallmarks. To investigate tau mediated synaptic injury we used rat model of tauopathy that develops extensive neurofibrillary pathology in the cortex. Using fractionation of cortical synapses, we identified an increase in endogenous rat tau isoforms in presynaptic compartment, and their mis-sorting to the postsynaptic density (PSD). Truncated transgenic tau was distributed in both compartments exhibiting specific phospho-pattern that was characteristic for each synaptic compartment. In the presynaptic compartment, truncated tau was associated with impairment of dynamic stability of microtubules which could be responsible for reduction of synaptic vesicles. In the PSD, truncated tau lowered the levels of neurofilaments. Truncated tau also significantly decreased the synaptic levels of Aβ40 but not Aβ42. These data show that truncated tau differentially deregulates synaptic proteome in pre- and postsynaptic compartments. Importantly, we show that alteration of Aβ can arise downstream of truncated tau pathology.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences Bratislava, Slovak Republic
| | - Stanislav Katina
- Axon Neuroscience GmbH Bratislava, Slovak Republic ; Institute of Mathematics and Statistics, Masaryk University Brno, Czech Republic
| | - Andrej Kovac
- Axon Neuroscience GmbH Bratislava, Slovak Republic
| | - Zuzana Kazmerova
- Institute of Neuroimmunology, Slovak Academy of Sciences Bratislava, Slovak Republic
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences Bratislava, Slovak Republic ; Axon Neuroscience GmbH Bratislava, Slovak Republic
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences Bratislava, Slovak Republic ; Axon Neuroscience GmbH Bratislava, Slovak Republic
| |
Collapse
|
161
|
Fernandes S, Salta S, Summavielle T. Methamphetamine promotes α-tubulin deacetylation in endothelial cells: the protective role of acetyl-l-carnitine. Toxicol Lett 2015; 234:131-8. [PMID: 25703822 DOI: 10.1016/j.toxlet.2015.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 11/15/2022]
Abstract
Methamphetamine (METH) is a powerful psychostimulant drug used worldwide for its reinforcing properties. In addition to the classic long-lasting monoaminergic-disrupting effects extensively described in the literature, METH has been consistently reported to increase blood brain barrier (BBB) permeability, both in vivo and in vitro, as a result of tight junction and cytoskeleton disarrangement. Microtubules play a critical role in cell stability, which relies on post-translational modifications such as α-tubulin acetylation. As there is evidence that psychostimulants drugs modulate the expression of histone deacetylases (HDACs), we hypothesized that in endothelial cells METH-mediation of cytoplasmatic HDAC6 activity could affect tubulin acetylation and further contribute to BBB dysfunction. To validate our hypothesis, we exposed the bEnd.3 endothelial cells to increasing doses of METH and verified that it leads to an extensive α-tubulin deacetylation mediated by HDACs activation. Furthermore, since we recently reported that acetyl-l-carnitine (ALC), a natural occurring compound, prevents BBB structural loss in a context of METH exposure, we reasoned that ALC could also preserve the acetylation of microtubules under METH action. The present results confirm that ALC is able to prevent METH-induced deacetylation providing effective protection on microtubule acetylation. Although further investigation is still needed, HDACs regulation may become a new therapeutic target for ALC.
Collapse
Affiliation(s)
- S Fernandes
- Rua Alfredo Allen, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Rua do Campo Alegre, 823, Addiction Biology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4150-180 Porto, Portugal; Rua Valente Perfeito, 322, School of Allied Health Sciences - Polytechnic Institute of Porto (ESTSP-IPP), 4400-330 Vila Nova de Gaia, Portugal; Alameda Prof. Hernâni Monteiro, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal.
| | - S Salta
- Rua Alfredo Allen, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Rua do Campo Alegre, 823, Addiction Biology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4150-180 Porto, Portugal; Rua Valente Perfeito, 322, School of Allied Health Sciences - Polytechnic Institute of Porto (ESTSP-IPP), 4400-330 Vila Nova de Gaia, Portugal.
| | - T Summavielle
- Rua Alfredo Allen, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Rua do Campo Alegre, 823, Addiction Biology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4150-180 Porto, Portugal; Rua Valente Perfeito, 322, School of Allied Health Sciences - Polytechnic Institute of Porto (ESTSP-IPP), 4400-330 Vila Nova de Gaia, Portugal.
| |
Collapse
|
162
|
Tsai RY, Cheng YC, Wong CS. (+)-Naloxone inhibits morphine-induced chemotaxis via prevention of heat shock protein 90 cleavage in microglia. J Formos Med Assoc 2015; 114:446-55. [PMID: 25649471 DOI: 10.1016/j.jfma.2014.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/30/2014] [Accepted: 12/26/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/PURPOSE Microglia have a crucial role in maintaining neuronal homeostasis in the central nervous system. Immune factors released from microglia have important roles in nociceptive signal transduction. Activation of microglia seems to be a shared mechanism in pathological pain and morphine tolerance because pharmacological attenuation of microglia activation provides satisfactory management in both situations. METHODS In the present study, we investigated the effect of 1nM (+)-naloxone, which is not an opioid receptor antagonist, on morphine-induced activation of microglia EOC13.31 cells. RESULTS Our results showed that 1μM morphine enhanced microglia activation and migration, decreased α-tubulin acetylation, and induced heat shock protein 90 (HSP90) fragmentation and histone deacetylase 6 (HDAC6) expression. Morphine-induced α-tubulin deacetylation and HSP90 fragmentation were HDAC6-dependent. Pretreatment with (+)-naloxone (1nM) inhibited morphine-evoked microglia activation and chemotaxis and prevented α-tubulin deacetylation and HSP90 fragmentation by inhibiting HDAC6 expression. CONCLUSION Based on the findings of the present study, we suggest that (+)-naloxone inhibits morphine-induced microglia activation by regulating HDAC6-dependent α-tubulin deacetylation and HSP90 fragmentation.
Collapse
Affiliation(s)
- Ru-Yin Tsai
- Department of Nursing, Da-Yeh University, Changhua, Taiwan; Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan
| | - Yu-Che Cheng
- Department of Medical Research, Cathay General Hospital, Taipei, Taiwan
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
163
|
Graml V, Studera X, Lawson JLD, Chessel A, Geymonat M, Bortfeld-Miller M, Walter T, Wagstaff L, Piddini E, Carazo Salas RE. A genomic Multiprocess survey of machineries that control and link cell shape, microtubule organization, and cell-cycle progression. Dev Cell 2015; 31:227-239. [PMID: 25373780 DOI: 10.1016/j.devcel.2014.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 04/21/2014] [Accepted: 08/19/2014] [Indexed: 12/17/2022]
Abstract
Understanding cells as integrated systems requires that we systematically decipher how single genes affect multiple biological processes and how processes are functionally linked. Here, we used multiprocess phenotypic profiling, combining high-resolution 3D confocal microscopy and multiparametric image analysis, to simultaneously survey the fission yeast genome with respect to three key cellular processes: cell shape, microtubule organization, and cell-cycle progression. We identify, validate, and functionally annotate 262 genes controlling specific aspects of those processes. Of these, 62% had not been linked to these processes before and 35% are implicated in multiple processes. Importantly, we identify a conserved role for DNA-damage responses in controlling microtubule stability. In addition, we investigate how the processes are functionally linked. We show unexpectedly that disruption of cell-cycle progression does not necessarily affect cell size control and that distinct aspects of cell shape regulate microtubules and vice versa, identifying important systems-level links across these processes.
Collapse
Affiliation(s)
- Veronika Graml
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.,Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, United Kingdom.,Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, HPM G16.2, Zurich, CH-8093, Switzerland
| | - Xenia Studera
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.,Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, United Kingdom.,Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, HPM G16.2, Zurich, CH-8093, Switzerland
| | - Jonathan L D Lawson
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.,Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, United Kingdom
| | - Anatole Chessel
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.,Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, United Kingdom
| | - Marco Geymonat
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.,Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, United Kingdom
| | - Miriam Bortfeld-Miller
- Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, HPM G16.2, Zurich, CH-8093, Switzerland
| | - Thomas Walter
- Institut Curie, Centre for Computational Biology, Centre de Recherche Unité 900, 26 Rue d'Ulm, 75248 Paris, France
| | - Laura Wagstaff
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.,Zoology Department, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
| | - Eugenia Piddini
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.,Zoology Department, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
| | - Rafael E Carazo Salas
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom.,Genetics Department, University of Cambridge, Downing Street, Cambridge, CB2 3EH, United Kingdom.,Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, HPM G16.2, Zurich, CH-8093, Switzerland
| |
Collapse
|
164
|
Tang BL. Class II HDACs and neuronal regeneration. J Cell Biochem 2015; 115:1225-33. [PMID: 24604703 DOI: 10.1002/jcb.24802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/16/2014] [Indexed: 02/03/2023]
Abstract
The vastly more superior regenerative capacity of the axons of peripheral nerves over central nervous system (CNS) neurons has been partly attributed to the former's intrinsic capacity to initiate and sustain the functionality of a new growth cone. Growth cone generation involves a myriad of processes that centers around the organization of microtubule bundles. Histone deacetylases (HDACs) modulate a wide range of key neuronal processes such as neural progenitor differentiation, learning and memory, neuronal death, and degeneration. HDAC inhibitors have been shown to be beneficial in attenuating neuronal death and promoting neurite outgrowth and axonal regeneration. Recent advances have provided insights on how manipulating HDAC activities, particularly the type II HDACs 5 and 6, which deacetylate tubulin, may benefit axonal regeneration. These advances are discussed herein.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore, 117597, Singapore
| |
Collapse
|
165
|
|
166
|
Gzyl J, Chmielowska-Bąk J, Przymusiński R, Gwóźdź EA. Cadmium affects microtubule organization and post-translational modifications of tubulin in seedlings of soybean (Glycine max L.). FRONTIERS IN PLANT SCIENCE 2015; 6:937. [PMID: 26594217 PMCID: PMC4635210 DOI: 10.3389/fpls.2015.00937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/15/2015] [Indexed: 05/05/2023]
Abstract
Cadmium (Cd) is a non-essential heavy metal, toxic to all living organisms. The microtubule (MT) cytoskeleton appears to be one of the main targets of Cd action. In this study we present, with the use of various immunological approaches, the effect of Cd at moderate (85 μM) and high (170 μM) concentrations on the structure and functioning of the MT cytoskeleton in the root cells of soybean seedlings. As the result of heavy metal action, root growth was significantly diminished and was accompanied by a reduction in mitotic activity and disturbance in the structure of the MT arrays, including randomization of the cortical MT arrangement, distorted mitotic arrays and complete depolymerization of the MTs. Biochemical analysis revealed decreased levels of various α- and β-tubulin isoforms with a parallel down-regulation of most examined α-tubulin genes. Simultaneously, Cd treatment led to differentiated changes in the level of tubulin post-translational modifications, including tyrosination, detyrosination, acetylation, and polyglutamylation. Decreased tyrosination and polyglutamylation of particular tubulin isoforms accompanied by increase in the level of specific detyrosinated and acetylated isoforms implies augmented stability and reduced turnover of the MTs during stress conditions. Taken together, the obtained results indicate the significant impact of Cd on gene expression levels and subsequent post-translational processing of tubulin, which may be related to the impairment of MT cytoskeleton functioning in root cells.
Collapse
|
167
|
Negi AS, Gautam Y, Alam S, Chanda D, Luqman S, Sarkar J, Khan F, Konwar R. Natural antitubulin agents: importance of 3,4,5-trimethoxyphenyl fragment. Bioorg Med Chem 2014; 23:373-89. [PMID: 25564377 DOI: 10.1016/j.bmc.2014.12.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 01/29/2023]
Abstract
Microtubules are polar cytoskeletal filaments assembled from head-to-tail and comprised of lateral associations of α/β-tubulin heterodimers that play key role in various cellular processes. Because of their vital role in mitosis and various other cellular processes, microtubules have been attractive targets for several disease conditions and especially for cancer. Antitubulin is the most successful class of antimitotic agents in cancer chemotherapeutics. The target recognition of antimitotic agents as a ligand is not much explored so far. However, 3,4,5-trimethoxyphenyl fragment has been much highlighted and discussed in such type of interactions. In this review, some of the most important naturally occurring antimitotic agents and their interactions with microtubules are discussed with a special emphasis on the role of 3,4,5-trimethoxyphenyl unit. At last, some emerging naturally occurring antimitotic agents have also been tabulated.
Collapse
Affiliation(s)
- Arvind S Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India.
| | - Yashveer Gautam
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India
| | - Sarfaraz Alam
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India
| | - Debabrata Chanda
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India
| | - Suaib Luqman
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India
| | - Jayanta Sarkar
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Feroz Khan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, PO CIMAP, Lucknow 226015, India
| | - Rituraj Konwar
- CSIR-Central Drug Research Institute (CSIR-CDRI), B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| |
Collapse
|
168
|
Tyagi C, Gupta A, Goyal S, Dhanjal JK, Grover A. Fragment based group QSAR and molecular dynamics mechanistic studies on arylthioindole derivatives targeting the α-β interfacial site of human tubulin. BMC Genomics 2014; 15 Suppl 9:S3. [PMID: 25521775 PMCID: PMC4290613 DOI: 10.1186/1471-2164-15-s9-s3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A number of microtubule disassembly blocking agents and inhibitors of tubulin polymerization have been elements of great interest in anti-cancer therapy, some of them even entering into the clinical trials. One such class of tubulin assembly inhibitors is of arylthioindole derivatives which results in effective microtubule disorganization responsible for cell apoptosis by interacting with the colchicine binding site of the β-unit of tubulin close to the interface with the α unit. We modelled the human tubulin β unit (chain D) protein and performed docking studies to elucidate the detailed binding mode of actions associated with their inhibition. The activity enhancing structural aspects were evaluated using a fragment-based Group QSAR (G-QSAR) model and was validated statistically to determine its robustness. A combinatorial library was generated keeping the arylthioindole moiety as the template and their activities were predicted. RESULTS The G-QSAR model obtained was statistically significant with r2 value of 0.85, cross validated correlation coefficient q2 value of 0.71 and pred_r2 (r2 value for test set) value of 0.89. A high F test value of 65.76 suggests robustness of the model. Screening of the combinatorial library on the basis of predicted activity values yielded two compounds HPI (predicted pIC50 = 6.042) and MSI (predicted pIC50 = 6.001) whose interactions with the D chain of modelled human tubulin protein were evaluated in detail. A toxicity evaluation resulted in MSI being less toxic in comparison to HPI. CONCLUSIONS The study provides an insight into the crucial structural requirements and the necessary chemical substitutions required for the arylthioindole moiety to exhibit enhanced inhibitory activity against human tubulin. The two reported compounds HPI and MSI showed promising anti cancer activities and thus can be considered as potent leads against cancer. The toxicity evaluation of these compounds suggests that MSI is a promising therapeutic candidate. This study provided another stepping stone in the direction of evaluating tubulin inhibition and microtubule disassembly degeneration as viable targets for development of novel therapeutics against cancer.
Collapse
Affiliation(s)
- Chetna Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India - 110067
| | - Ankita Gupta
- Department of Biotechnology, Delhi Technological University, New Delhi, India -110042
| | - Sukriti Goyal
- Apaji Institute of Mathematics & Applied Computer Technology, Banasthali University, Tonk, Rajasthan, India - 304022
| | | | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India - 110067
| |
Collapse
|
169
|
Didonna A, Opal P. The promise and perils of HDAC inhibitors in neurodegeneration. Ann Clin Transl Neurol 2014; 2:79-101. [PMID: 25642438 PMCID: PMC4301678 DOI: 10.1002/acn3.147] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) represent emerging therapeutic targets in the context of neurodegeneration. Indeed, pharmacologic inhibition of HDACs activity in the nervous system has shown beneficial effects in several preclinical models of neurological disorders. However, the translation of such therapeutic approach to clinics has been only marginally successful, mainly due to our still limited knowledge about HDACs physiological role particularly in neurons. Here, we review the potential benefits along with the risks of targeting HDACs in light of what we currently know about HDAC activity in the brain.
Collapse
Affiliation(s)
- Alessandro Didonna
- Department of Neurology, University of California San Francisco San Francisco, California, 94158
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine Chicago, Illinois, 60611 ; Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine Chicago, Illinois, 60611
| |
Collapse
|
170
|
Toops KA, Tan LX, Jiang Z, Radu RA, Lakkaraju A. Cholesterol-mediated activation of acid sphingomyelinase disrupts autophagy in the retinal pigment epithelium. Mol Biol Cell 2014; 26:1-14. [PMID: 25378587 PMCID: PMC4279221 DOI: 10.1091/mbc.e14-05-1028] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
How autophagy is regulated in the postmitotic retinal pigment epithelium (RPE) is unclear. Visual cycle metabolites and cholesterol that accumulate in the RPE inhibit autophagic flux by activating acid sphingomyelinase (ASMase). Increased ceramide promotes tubulin acetylation, which prevents autophagosome traffic. ASMase inhibition restores RPE autophagy. Autophagy is an essential mechanism for clearing damaged organelles and proteins within the cell. As with neurodegenerative diseases, dysfunctional autophagy could contribute to blinding diseases such as macular degeneration. However, precisely how inefficient autophagy promotes retinal damage is unclear. In this study, we investigate innate mechanisms that modulate autophagy in the retinal pigment epithelium (RPE), a key site of insult in macular degeneration. High-speed live imaging of polarized adult primary RPE cells and data from a mouse model of early-onset macular degeneration identify a mechanism by which lipofuscin bisretinoids, visual cycle metabolites that progressively accumulate in the RPE, disrupt autophagy. We demonstrate that bisretinoids trap cholesterol and bis(monoacylglycero)phosphate, an acid sphingomyelinase (ASMase) cofactor, within the RPE. ASMase activation increases cellular ceramide, which promotes tubulin acetylation on stabilized microtubules. Live-imaging data show that autophagosome traffic and autophagic flux are inhibited in RPE with acetylated microtubules. Drugs that remove excess cholesterol or inhibit ASMase reverse this cascade of events and restore autophagosome motility and autophagic flux in the RPE. Because accumulation of lipofuscin bisretinoids and abnormal cholesterol homeostasis are implicated in macular degeneration, our studies suggest that ASMase could be a potential therapeutic target to ensure the efficient autophagy that maintains RPE health.
Collapse
Affiliation(s)
- Kimberly A Toops
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, McPherson Eye Research Institute, and
| | - Li Xuan Tan
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53706
| | - Zhichun Jiang
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90024
| | - Roxana A Radu
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90024
| | - Aparna Lakkaraju
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, McPherson Eye Research Institute, and Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
171
|
Tegha-Dunghu J, Bausch E, Neumann B, Wuensche A, Walter T, Ellenberg J, Gruss OJ. MAP1S controls microtubule stability throughout the cell cycle in human cells. J Cell Sci 2014; 127:5007-13. [PMID: 25300793 DOI: 10.1242/jcs.136457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Summary Understanding the molecular basis for proper cell division requires a detailed functional analysis of microtubule (MT)-associated proteins. MT-associated protein 1S (MAP1S), the most ubiquitously expressed MAP1 family member, is required for accurate cell division. Here, using quantitative analysis of MT plus-end tracking, we show that MAP1S knockdown alters MT dynamics throughout the cell cycle. Surprisingly, MAP1S downregulation results in faster growing, yet short-lived, MTs in all cell cycle stages and in a global loss of MT acetylation. These aberrations correlate with severe defects in the final stages of cell division. In monopolar cytokinesis assays, we demonstrate that MAP1S guides MT-dependent initiation of cytokinesis. Our data underline the key role of MAP1S as a global regulator of MT stability and demonstrate a new primary function of MAP1S to regulate MT dynamics at the onset of cytokinesis.
Collapse
Affiliation(s)
- Justus Tegha-Dunghu
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Elena Bausch
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Beate Neumann
- European Molecular Biology Laboratory (EMBL), Advanced Light Microscopy Facility Programme, Meyerhostr.1, 69117 Heidelberg, Germany
| | - Annelie Wuensche
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Programme, Meyerhostr.1, 69117 Heidelberg, Germany
| | - Thomas Walter
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Programme, Meyerhostr.1, 69117 Heidelberg, Germany
| | - Jan Ellenberg
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Programme, Meyerhostr.1, 69117 Heidelberg, Germany
| | - Oliver J Gruss
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
172
|
Koromilas ND, Lainioti GC, Gialeli C, Barbouri D, Kouravelou KB, Karamanos NK, Voyiatzis GA, Kallitsis JK. Preparation and toxicological assessment of functionalized carbon nanotube-polymer hybrids. PLoS One 2014; 9:e107029. [PMID: 25229474 PMCID: PMC4167694 DOI: 10.1371/journal.pone.0107029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/05/2014] [Indexed: 11/28/2022] Open
Abstract
Novel Carbon Nanotube-Polymer Hybrids were synthesized as potential materials for the development of membranes for water treatment applications in the field of Membrane Bioreactors (MBRs). Due to the toxicological concerns regarding the use of nanomaterials in water treatment as well as the rising demand for safe drinking water to protect public health, we studied the functionalization of MWCNTs and Thin-MWCNTs as to control their properties and increase their ability of embedment into porous anisotropic polymeric membranes. Following the growth of the hydrophilic monomer on the surface of the properly functionalized CNTs, that act as initiator for the controlled radical polymerization (ATRP) of sodium styrene sulfonate (SSNa), the antimicrobial quaternized phosphonium and ammonium salts were attached on CNTs-g-PSSNa through non-covalent bonding. In another approach the covalent attachment of quaternized ammonium polymeric moieties of acrylic acid-vinyl benzyl chloride copolymers with N,N-dimethylhexadecylamine (P(AA12-co-VBCHAM)) on functionalized CNTs has also been attempted. Finally, the toxicological assessment in terms of cell viability and cell morphological changes revealed that surface characteristics play a major role in the biological response of functionalized CNTs.
Collapse
Affiliation(s)
- Nikos D. Koromilas
- Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH) / Institute of Chemical Engineering Sciences (ICE-HT), Rio-Patras, Greece
| | - Georgia Ch. Lainioti
- Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH) / Institute of Chemical Engineering Sciences (ICE-HT), Rio-Patras, Greece
| | - Chrisostomi Gialeli
- Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH) / Institute of Chemical Engineering Sciences (ICE-HT), Rio-Patras, Greece
| | - Despoina Barbouri
- Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH) / Institute of Chemical Engineering Sciences (ICE-HT), Rio-Patras, Greece
| | | | - Nikos K. Karamanos
- Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH) / Institute of Chemical Engineering Sciences (ICE-HT), Rio-Patras, Greece
- * E-mail: (JKK); (NKK)
| | - George A. Voyiatzis
- Foundation for Research and Technology-Hellas (FORTH) / Institute of Chemical Engineering Sciences (ICE-HT), Rio-Patras, Greece
| | - Joannis K. Kallitsis
- Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH) / Institute of Chemical Engineering Sciences (ICE-HT), Rio-Patras, Greece
- * E-mail: (JKK); (NKK)
| |
Collapse
|
173
|
Ueno T, Endo S, Saito R, Hirose M, Hirai S, Suzuki H, Yamato K, Hyodo I. The sirtuin inhibitor tenovin-6 upregulates death receptor 5 and enhances cytotoxic effects of 5-fluorouracil and oxaliplatin in colon cancer cells. Oncol Res 2014; 21:155-64. [PMID: 24512730 DOI: 10.3727/096504013x13854886566598] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
It has been reported that upregulated SIRT1 (NAD(+)-dependent class III histone deacetylase) deacetylates the p53 protein, represses its function, and allows for tumor cell growth in various cancers. Here we investigated antitumor effects of tenovin-6, a small-molecule inhibitor of SIRT1 and SIRT2, in various colon cancer cell lines. Tenovin-6 induced apoptosis in all five colon cancer cell lines investigated (two cell lines with wild-type p53 and three with mutant p53) regardless of the p53 mutation status. This effect was accompanied by accumulation of death receptor 5 (DR5) in most cell lines. DR5 silencing in HCT116 cells strongly attenuated tenovin-6-induced apoptosis. We investigated the effect of combining tenovin-6 with conventional anticancer agents 5-fluorouracil (5-FU), SN-38 (an active metabolite of irinotecan), and oxaliplatin. Synergistic antitumor effects of tenovin-6 were observed in combination with either 5-FU or oxaliplatin in vitro. The combination of tenovin-6 and oxaliplatin exhibited potent growth inhibition of HCT116 xenograft tumors in vivo. In conclusion, tenovin-6 induced apoptosis in human colon cancer cells through the activation of the DR5 signaling pathway and enhanced the antitumor properties of 5-FU and oxaliplatin. These results may help develop a novel treatment option for colorectal cancer using a SIRT inhibitor.
Collapse
Affiliation(s)
- Takunori Ueno
- Department of Gastroenterology, University of Tsukuba Graduate School, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Fu MM, Holzbaur ELF. Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol 2014; 24:564-74. [PMID: 24953741 DOI: 10.1016/j.tcb.2014.05.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 12/25/2022]
Abstract
Intracellular trafficking pathways, including endocytosis, autophagy, and secretion, rely on directed organelle transport driven by the opposing microtubule motor proteins kinesin and dynein. Precise spatial and temporal targeting of vesicles and organelles requires the integrated regulation of these opposing motors, which are often bound simultaneously to the same cargo. Recent progress demonstrates that organelle-associated scaffolding proteins, including Milton/TRAKs (trafficking kinesin-binding protein), JIP1, JIP3 (JNK-interacting proteins), huntingtin, and Hook1, interact with molecular motors to coordinate activity and sustain unidirectional transport. Scaffolding proteins also bind to upstream regulatory proteins, including kinases and GTPases, to modulate transport in the cell. This integration of regulatory control with motor activity allows for cargo-specific changes in the transport or targeting of organelles in response to cues from the complex cellular environment.
Collapse
Affiliation(s)
- Meng-meng Fu
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
175
|
Ishiguro K, Ando T, Maeda O, Watanabe O, Goto H. Suppressive action of acetate on interleukin-8 production via tubulin-α acetylation. Immunol Cell Biol 2014; 92:624-30. [PMID: 24777307 DOI: 10.1038/icb.2014.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 01/20/2023]
Abstract
Acetate is the major short-chain fatty acid produced by commensal bacteria in the gut and is known as a nutrient source for epithelial cells of the mucosa. Acetate also suppresses interleukin (IL)-2 production in T cells by inhibiting nuclear factor of activated T cells (NFAT) nuclear translocation via tubulin-α acetylation. Using acetylation of tubulin-α as a biomarker, we have examined the influence of acetate in the large intestine. Because of high concentrations of acetate in fecal material, tubulin-α acetylation is dominant in the proximal large intestine relative to other sections of the large intestine and is induced in epithelial cells of the colonic mucosa. Flagellin stimulation induces IL-8 production in epithelial cells and acetate suppresses this IL-8 production via tubulin-α acetylation. Flagellin stimulation activates nuclear factor-κB, CREB and AP-1, but not NFAT. Of these transcription factors, acetate specifically inhibits AP-1 activation. Acetate impairs flagellin-induced activation of the Rap1-MEK-ERK-Elk-1 pathway with acetylation of tubulin-α that is bound to Rap1, resulting in reduced expression of c-Fos, a subunit of AP-1. These findings reveal a novel action of acetate via tubulin-α acetylation in epithelial cells of the colonic mucosa.
Collapse
Affiliation(s)
- Kazuhiro Ishiguro
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Ando
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Osamu Maeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Osamu Watanabe
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Hidemi Goto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
176
|
Trypanosoma cruzi bromodomain factor 3 binds acetylated α-tubulin and concentrates in the flagellum during metacyclogenesis. EUKARYOTIC CELL 2014; 13:822-31. [PMID: 24747213 DOI: 10.1128/ec.00341-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bromodomains are highly conserved acetyl-lysine binding domains found mainly in proteins associated with chromatin and nuclear acetyltransferases. The Trypanosoma cruzi genome encodes at least four bromodomain factors (TcBDFs). We describe here bromodomain factor 3 (TcBDF3), a bromodomain-containing protein localized in the cytoplasm. TcBDF3 cytolocalization was determined, using purified antibodies, by Western blot and immunofluorescence analyses in all life cycle stages of T. cruzi. In epimastigotes and amastigotes, it was detected in the cytoplasm, the flagellum, and the flagellar pocket, and in trypomastigotes only in the flagellum. Subcellular localization of TcBDF3 was also determined by digitonin extraction, ultrastructural immunocytochemistry, and expression of TcBDF3 fused to cyan fluorescent protein (CFP). Tubulin can acquire different posttranslational modifications, which modulate microtubule functions. Acetylated α-tubulin has been found in the axonemes of flagella and cilia, as well as in the subpellicular microtubules of trypanosomatids. TcBDF3 and acetylated α-tubulin partially colocalized in isolated cytoskeletons and flagella from T. cruzi epimastigotes and trypomastigotes. Interaction between the two proteins was confirmed by coimmunoprecipitation and far-Western blot assays with synthetic acetylated α-tubulin peptides and recombinant TcBDF3.
Collapse
|
177
|
Zhao J, Quan H, Xie C, Lou L. NL-103, a novel dual-targeted inhibitor of histone deacetylases and hedgehog pathway, effectively overcomes vismodegib resistance conferred by Smo mutations. Pharmacol Res Perspect 2014; 2:e00043. [PMID: 25505589 PMCID: PMC4186412 DOI: 10.1002/prp2.43] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/07/2014] [Indexed: 12/15/2022] Open
Abstract
Misregulation of hedgehog (Hh) signaling has been implicated in the pathogenesis of basal cell carcinoma (BCC) and medulloblastoma. Vismodegib, an orally bioavailable Hh signal pathway inhibitor targeting Smo, has been approved for the treatment of advanced BCC. However, acquired drug resistance to vismodegib induced by point mutation in Smo is emerging as a major problem to vismodegib treatment. In this study, we designed and synthesized a novel chimeric compound NL-103, which comprises structural elements of Hh pathway inhibitor vismodegib, and histone deacetylase (HDAC) inhibitor vorinostat. NL-103 simultaneously and significantly inhibited both HDACs and Hh pathway. Importantly, NL-103, as well as vorinostat, effectively overcame vismodegib resistance induced by Smoothened point mutations. Moreover, NL-103 and vorinostat, but not vismodegib, significantly downregulated the expression of Gli2 which plays an important role in Hh pathway. These results indicate that HDAC inhibitory activity is essential for NL-103 to overcome vismodegib resistance and that dual inhibition of HDAC and Hh signaling pathway may be a rational strategy for overcoming vismodegib resistance. Our findings suggest that NL-103 may be a promising compound for clinical development as a more effective Hh pathway inhibitor.
Collapse
Affiliation(s)
- Jie Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, 201203, China
| | - Haitian Quan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, 201203, China
| | - Chengying Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, 201203, China
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, 201203, China
| |
Collapse
|
178
|
Martin SK, Kamelgarn M, Kyprianou N. Cytoskeleton targeting value in prostate cancer treatment. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:15-26. [PMID: 25374905 PMCID: PMC4219288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 06/04/2023]
Abstract
Prostate cancer is a disease that affects hundreds of thousands of men in the United States each year. In the early stages of advanced prostate cancer, the disease can be suppressed by androgen deprivation therapy (ADT). Eventually, however, most patients experience resistance to androgen deprivation, and their treatment transitions to alternative targeting of the androgen axis with abiraterone and enzalutamide, as well as taxane-based chemotherapy. Development of advanced castration-resistant prostate cancer (CRPC) is a consequence of lack of an apoptotic response by the tumor cells to treatment. Understanding the mechanisms contributing to prostate tumor therapeutic resistance and progression to metastasis requires dissection of the signaling mechanisms navigating tumor invasion and metastasis as mediated by cell-matrix interactions engaging components of the extracellular matrix (ECM), to form adhesion complexes. For a tumor call to metastasize from the primary tumor, it requires disruption of cell-cell interactions from the surrounding cells, as well as detachment from the ECM and resistance to anoikis (apoptosis upon cell detachment from ECM). Attachment, movement and invasion of cancer cells are functionally facilitated by the actin cytoskeleton and tubulin as the structural component of microtubules. Transforming growth factor (TGF)-β has tumor-inhibitory activity in the early stages of tumorigenesis, but it promotes tumor invasive characteristics in metastatic disease. Recent evidence implicates active (dephosphorylated) cofilin, an F-actin severing protein required for cytoskeleton reorganization, as an important contributor to switching TGF-β characteristics from a growth suppressor to a promoter of prostate cancer invasion and metastasis. Cancer cells eventually lose the ability to adhere to adjacent neighboring cells as well as ECM proteins, and via epithelial-mesenchymal transition (EMT), acquire invasive and metastatic characteristics. Microtubule-targeting chemotherapeutic agents, taxanes, are used in combination with antiandrogen strategies to increase the survival rate in patients with CRPC. This review addresses the development of therapeutic platform for targeting the integrity of actin cytoskeleton to impair prostate cancer progression.
Collapse
Affiliation(s)
- Sarah K Martin
- Departments of Molecular and Cellular Biochemistry and Urology and The Markey Cancer Center, University of Kentucky College of Medicine Lexington, KY, USA
| | - Marisa Kamelgarn
- Departments of Molecular and Cellular Biochemistry and Urology and The Markey Cancer Center, University of Kentucky College of Medicine Lexington, KY, USA
| | - Natasha Kyprianou
- Departments of Molecular and Cellular Biochemistry and Urology and The Markey Cancer Center, University of Kentucky College of Medicine Lexington, KY, USA
| |
Collapse
|
179
|
Scharadin TM, Eckert RL. TIG3: an important regulator of keratinocyte proliferation and survival. J Invest Dermatol 2014; 134:1811-1816. [PMID: 24599174 PMCID: PMC4057967 DOI: 10.1038/jid.2014.79] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 12/11/2013] [Accepted: 01/16/2014] [Indexed: 01/12/2023]
Abstract
Tazarotene induced gene 3 (TIG3) is a tumor suppressor protein. In normal human epidermis, TIG3 is present in the differentiated, suprabasal layers and regulates terminal differentiation. TIG3 level is reduced in hyperproliferative diseases, including psoriasis and skin cancer, suggesting that loss of TIG3 is associated with enhanced cell proliferation. Moreover, transient expression of TIG3 leads to terminal differentiation in normal keratinocytes and apoptosis in skin cancer cells. In both cell types, TIG3 distributes to the cell membrane and to the centrosome. At the cell membrane, TIG3 interacts with and activates type I transglutaminase (TG1) to enhance keratinocyte terminal differentiation. TIG3 at the centrosome acts to inhibit centrosome separation during mitosis and to alter microtubule function. These findings argue that TIG3 is involved in control of keratinocyte differentiation and that loss of TIG3 in transformed cells contributes to the malignant phenotype.
Collapse
Affiliation(s)
- Tiffany M Scharadin
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard L Eckert
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Departments of Obstetrics and Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
180
|
Song Y, Brady ST. Stabilization of neuronal connections and the axonal cytoskeleton. BIOARCHITECTURE 2014; 4:22-4. [PMID: 24492417 DOI: 10.4161/bioa.28080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stabilization of axonal connections is an underappreciated, but critical, element in development and maintenance of neuronal functions. The ability to maintain the overall architecture of the brain for decades is essential for our ability to process sensory information efficiently, coordinate motor activity, and retain memories for a lifetime. While the importance of the neuronal cytoskeleton in this process is acknowledged, little has been known about specializations of the axonal cytoskeleton needed to stabilize neuronal architectures. A novel post-translational modification of tubulin that stabilizes normally dynamic microtubules in axons has now been identified. Polyamination appears to be enriched in axons and is developmentally regulated with a time course that correlates with increased microtubule stabilization. Identifying one of the molecular mechanisms for maintaining neuronal connections creates new research avenues for understanding the role of stabilizing neuronal architecture in neuronal function and in neuropathology.
Collapse
Affiliation(s)
- Yuyu Song
- Howard Hughes Medical Institute and Department of Genetics; Yale University School of Medicine; New Haven, CT USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology; University of Illinois at Chicago; Chicago, IL USA
| |
Collapse
|
181
|
Choi BS, Park JE, Jang CY. Sirt3 controls chromosome alignment by regulating spindle dynamics during mitosis. Biochem Biophys Res Commun 2014; 444:662-9. [DOI: 10.1016/j.bbrc.2014.01.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/25/2014] [Indexed: 10/25/2022]
|
182
|
O'Donnell L, O'Bryan MK. Microtubules and spermatogenesis. Semin Cell Dev Biol 2014; 30:45-54. [PMID: 24440897 DOI: 10.1016/j.semcdb.2014.01.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/04/2014] [Accepted: 01/08/2014] [Indexed: 12/28/2022]
Abstract
Microtubules are dynamic polymers of tubulin subunits that underpin many essential cellular processes, such as cell division and migration. Spermatogenesis is the process by which spermatogenic stem cells undergo mitotic and meiotic division and differentiation to produce streamlined spermatozoa capable of motility and fertilization. This review summarizes the current knowledge of microtubule-based processes in spermatogenesis. We describe the involvement of microtubule dynamics in Sertoli cell shape and function, as well as in the mitotic and meiotic division of germ cells. The roles of microtubules in sperm head shaping, via the development and function of the manchette, and in sperm flagella development are also discussed. The review brings together data from microscopy studies and genetically modified mouse models, and reveals that the regulation of microtubule dynamics is essential for male fertility.
Collapse
Affiliation(s)
- Liza O'Donnell
- MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia; Department of Anatomy and Developmental Biology, Monash University, Victoria 3800, Australia.
| | - Moira K O'Bryan
- Department of Anatomy and Developmental Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
183
|
Smith-Hammond CL, Swatek KN, Johnston ML, Thelen JJ, Miernyk JA. Initial description of the developing soybean seed protein Lys-N(ε)-acetylome. J Proteomics 2014; 96:56-66. [PMID: 24211405 DOI: 10.1016/j.jprot.2013.10.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/28/2013] [Accepted: 10/29/2013] [Indexed: 12/29/2022]
Abstract
Characterization of the myriad protein posttranslational modifications (PTM) is a key aspect of proteome profiling. While there have been previous studies of the developing soybean seed phospho-proteome, herein we present the first analysis of non-histone lysine-N(Ɛ)-acetylation in this system. In recent years there have been reports that lysine acetylation is widespread, affecting thousands of proteins in diverse species from bacteria to mammals. Recently preliminary descriptions of the protein lysine acetylome from the plants Arabidopsis thaliana and Vitis vinifera have been reported. Using a combination of immunoenrichment and mass spectrometry-based techniques, we have identified over 400 sites of lysine acetylation in 245 proteins from developing soybean (Glycine max (L.) Merr., cv. Jack) seeds, which substantially increases the number of known plant N(Ɛ)-lysine-acetylation sites. Results of functional annotation indicate acetyl-proteins are involved with a host of cellular activities. In addition to histones, and other proteins involved in RNA synthesis and processing, acetyl-proteins participate in signaling, protein folding, and a plethora of metabolic processes. Results from in silico localization indicate that lysine-acetylated proteins are present in all major subcellular compartments. In toto, our results establish developing soybean seeds as a physiologically distinct addendum to Arabidopsis thaliana seedlings for functional analysis of protein Lys-N(Ɛ)-acetylation. BIOLOGICAL SIGNIFICANCE Several modes of peptide fragmentation and database search algorithms are incorporated to identify, for the first time, sites of lysine acetylation on a plethora of proteins from developing soybean seeds. The contributions of distinct techniques to achieve increased coverage of the lysine acetylome are compared, providing insight to their respective benefits. Acetyl-proteins and specific acetylation sites are characterized, revealing intriguing similarities as well as differences with those previously identified in other plant and non-plant species.
Collapse
Affiliation(s)
- Colin L Smith-Hammond
- Division of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA.
| | - Kirby N Swatek
- Division of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA.
| | - Mark L Johnston
- Plant Genetics Research Unit, USDA, Agricultural Research Service, University of Missouri, Columbia, MO, USA.
| | - Jay J Thelen
- Division of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA.
| | - Ján A Miernyk
- Division of Biochemistry, University of Missouri, Columbia, MO, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA; Plant Genetics Research Unit, USDA, Agricultural Research Service, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
184
|
Schatten H, Sun QY. Posttranslationally modified tubulins and other cytoskeletal proteins: their role in gametogenesis, oocyte maturation, fertilization and Pre-implantation embryo development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:57-87. [PMID: 25030760 DOI: 10.1007/978-1-4939-0817-2_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cytoskeleton, mainly consisting of microtubules, intermediate filaments and microfilaments, along with cytoskeleton associated and interconnecting proteins as well as the centrosome, plays enormously important roles in all stages of embryogenesis and undergoes significant changes to accommodate a diversity of cellular functions during gametogenesis, oocyte maturation, fertilization and pre-implantation embryo development. The varied functions of the cytoskeleton can be accomplished on many different levels, among which are a diversity of different posttranslational modifications (PTMs), chemical modifications that regulate activity, localization and interactions with other cellular molecules. PTMs of the cytoskeleton, including phosphorylation, glycosylation, ubiquitination, detyrosination/tyrosination, (poly)glutamylation and (poly)glycylation, acetylation, sumoylation, and palmitoylation, will be addressed in this chapter. Focus will be on (1) Microtubules, microtubule organizing centers (centrosomes), intermediate filaments, microfilaments and their PTMs; (2) Cytoskeletal functions and cytoskeletal PTMs during gametogenesis and oocyte maturation; and (3) Cytoskeletal functions and cytoskeletal PTMs during fertilization and pre-implantation embryo development.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, 1600 E Rollins Street, Columbia, MO, 65211, USA,
| | | |
Collapse
|
185
|
Kalebic N, Sorrentino S, Perlas E, Bolasco G, Martinez C, Heppenstall PA. αTAT1 is the major α-tubulin acetyltransferase in mice. Nat Commun 2013; 4:1962. [PMID: 23748901 DOI: 10.1038/ncomms2962] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/30/2013] [Indexed: 12/28/2022] Open
Abstract
Post-translational modification of tubulin serves as a powerful means for rapidly adjusting the functional diversity of microtubules. Acetylation of the ε-amino group of K40 in α-tubulin is one such modification that is highly conserved in ciliated organisms. Recently, αTAT1, a Gcn5-related N-acetyltransferase, was identified as an α-tubulin acetyltransferase in Tetrahymena and C. elegans. Here we generate mice with a targeted deletion of Atat1 to determine its function in mammals. Remarkably, we observe a loss of detectable K40 α-tubulin acetylation in these mice across multiple tissues and in cellular structures such as cilia and axons where acetylation is normally enriched. Mice are viable and develop normally, however, the absence of Atat1 impacts upon sperm motility and male mouse fertility, and increases microtubule stability. Thus, αTAT1 has a conserved function as the major α-tubulin acetyltransferase in ciliated organisms and has an important role in regulating subcellular specialization of subsets of microtubules.
Collapse
Affiliation(s)
- Nereo Kalebic
- Mouse Biology Unit, EMBL, Via Ramarini 32, Monterotondo 00015, Italy
| | | | | | | | | | | |
Collapse
|
186
|
Neumann B, Hilliard MA. Loss of MEC-17 leads to microtubule instability and axonal degeneration. Cell Rep 2013; 6:93-103. [PMID: 24373971 DOI: 10.1016/j.celrep.2013.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 10/31/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022] Open
Abstract
Axonal degeneration arises as a consequence of neuronal injury and is a common hallmark of a number of neurodegenerative diseases. However, the genetic causes and the cellular mechanisms that trigger this process are still largely unknown. Based on forward genetic screening in C. elegans, we have identified the α-tubulin acetyltransferase gene mec-17 as causing spontaneous, adult-onset, and progressive axonal degeneration. Loss of MEC-17 leads to microtubule instability, a reduction in mitochondrial number, and disrupted axonal transport, with altered distribution of both mitochondria and synaptic components. Furthermore, mec-17-mediated axonal degeneration occurs independently from its acetyltransferase domain; is enhanced by mutation of coel-1, a tubulin-associated molecule; and correlates with the animal's body length. This study therefore identifies a critical role for the conserved microtubule-associated protein MEC-17 in preserving axon integrity and preventing axonal degeneration.
Collapse
Affiliation(s)
- Brent Neumann
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Massimo A Hilliard
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
187
|
Yasuda K, Ohyama K, Onga K, Kakizuka A, Mori N. Mdm20 stimulates polyQ aggregation via inhibiting autophagy through Akt-Ser473 phosphorylation. PLoS One 2013; 8:e82523. [PMID: 24358196 PMCID: PMC3865000 DOI: 10.1371/journal.pone.0082523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/24/2013] [Indexed: 01/12/2023] Open
Abstract
Mdm20 is an auxiliary subunit of the NatB complex, which includes Nat5, the catalytic subunit for protein N-terminal acetylation. The NatB complex catalyzes N-acetylation during de novo protein synthesis initiation; however, recent evidence from yeast suggests that NatB also affects post-translational modification of tropomyosin, which is involved in intracellular sorting of aggregated proteins. We hypothesized that an acetylation complex such as NatB may contribute to protein clearance and/or proteostasis in mammalian cells. Using a poly glutamine (polyQ) aggregation system, we examined whether the NatB complex or its components affect protein aggregation in rat primary cultured hippocampal neurons and HEK293 cells. The number of polyQ aggregates increased in Mdm20 over-expressing (OE) cells, but not in Nat5-OE cells. Conversely, in Mdm20 knockdown (KD) cells, but not in Nat5-KD cells, polyQ aggregation was significantly reduced. Although Mdm20 directly associates with Nat5, the overall cellular localization of the two proteins was slightly distinct, and Mdm20 apparently co-localized with the polyQ aggregates. Furthermore, in Mdm20-KD cells, a punctate appearance of LC3 was evident, suggesting the induction of autophagy. Consistent with this notion, phosphorylation of Akt, most notably at Ser473, was greatly reduced in Mdm20-KD cells. These results demonstrate that Mdm20, the so-called auxiliary subunit of the translation-coupled protein N-acetylation complex, contributes to protein clearance and/or aggregate formation by affecting the phosphorylation level of Akt indepenently from the function of Nat5.
Collapse
Affiliation(s)
- Kunihiko Yasuda
- From the Department of Anatomy and Neurobiology, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Kyoji Ohyama
- From the Department of Anatomy and Neurobiology, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Kazuko Onga
- From the Department of Anatomy and Neurobiology, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | - Nozomu Mori
- From the Department of Anatomy and Neurobiology, Nagasaki University School of Medicine, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
188
|
Mukherjee J, Wong KKW, Chandramouli KH, Qian PY, Leung PTY, Wu RSS, Thiyagarajan V. Proteomic response of marine invertebrate larvae to ocean acidification and hypoxia during metamorphosis and calcification. J Exp Biol 2013; 216:4580-9. [DOI: 10.1242/jeb.094516] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SUMMARY
Calcifying marine invertebrates with complex life cycles are particularly at risk to climate changes as they undergo an abrupt ontogenetic shift during larval metamorphosis. Although our understanding of the larval response to climate changes is rapidly advancing, the proteome plasticity involved in a compensatory response to climate change is still unknown. In this study, we investigated the proteomic response of metamorphosing larvae of the tubeworm Hydroides elegans, challenged with two climate change stressors, ocean acidification (OA; pH 7.6) and hypoxia (HYP; 2.8 mg O2 l−1), and with both combined. Using a two-dimensional gel electrophoresis (2-DE)-based approach coupled with mass spectrometry, we found that climate change stressors did not affect metamorphosis except under OA, but altered the larval proteome and phosphorylation status. Metabolism and various stress and calcification-related proteins were downregulated in response to OA. In OA and HYP combined, HYP restored the expression of the calcification-related proteins to the control levels. We speculate that mild HYP stress could compensate for the negative effects of OA. This study also discusses the potential functions of selected proteins that might play important roles in larval acclimation and adaption to climate change.
Collapse
Affiliation(s)
- Joy Mukherjee
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - Kelvin K. W. Wong
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | | | - Pei-Yuan Qian
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR
| | - Priscilla T. Y. Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - Rudolf S. S. Wu
- Centre for Marine Environmental Research and Innovative Technology, School of Biological Science, The University of Hong Kong, Hong Kong SAR
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
189
|
Bargi-Souza P, Romano RM, Salgado RDM, Goulart-Silva F, Brunetto EL, Zorn TMT, Nunes MT. Triiodothyronine rapidly alters the TSH content and the secretory granules distribution in male rat thyrotrophs by a cytoskeleton rearrangement-independent mechanism. Endocrinology 2013; 154:4908-18. [PMID: 24105481 DOI: 10.1210/en.2013-1508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rapid actions of T3 on TSH synthesis in posttranscriptional steps, such as polyadenylation and translation rate, have already been described. The focus of this paper was to characterize rapid actions of T3 on TSH secretion and the involvement of actin and microtubule cytoskeleton in this process. For that, sham-operated (SO) and thyroidectomized (Tx) rats were subjected to acute or chronic treatment with T3. We observed a disarrangement in microtubule and actin cytoskeletons and an increase in Tshb mRNA levels in Tx rats, whereas the total TSH protein content was reduced in the pituitary gland as a whole, but increased in the secretory granules close to the plasma membrane of thyrotrophs, as well as in the extracellular space. The acute T3 dose promoted a rapid increase and redistribution of TSH secretory granules throughout the cytoplasm, as well as a rearrangement in actin and microtubule cytoskeletons. The T3 chronic treatment outcome reinforces the acute effects observed and, additionally, evinces an increase in the α-tubulin content and a rearrangement in microtubule cytoskeleton. Thus, T3 is able to rapidly suppress TSH secretion and, in parallel, to promote a rearrangement in actin and microtubules assembly throughout the pituitary gland, effects that seem to be independent from each other.
Collapse
Affiliation(s)
- Paula Bargi-Souza
- PhD, Full Professor, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Avenue Professor Lineu Prestes, 1524, CEP 05508-000, Sao Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
190
|
Brenneis G, Stollewerk A, Scholtz G. Embryonic neurogenesis in Pseudopallene sp. (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups. EvoDevo 2013; 4:32. [PMID: 24289241 PMCID: PMC3879066 DOI: 10.1186/2041-9139-4-32] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/08/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Studies on early neurogenesis have had considerable impact on the discussion of the phylogenetic relationships of arthropods, having revealed striking similarities and differences between the major lineages. In Hexapoda and crustaceans, neurogenesis involves the neuroblast, a type of neural stem cell. In each hemi-segment, a set of neuroblasts produces neural cells by repeated asymmetrical and interiorly directed divisions. In Euchelicerata and Myriapoda, neurogenesis lacks neural stem cells, featuring instead direct immigration of neural cell groups from fixed sites in the neuroectoderm. Accordingly, neural stem cells were hitherto assumed to be an evolutionary novelty of the Tetraconata (Hexapoda + crustaceans). To further test this hypothesis, we investigated neurogenesis in Pycnogonida, or sea spiders, a group of marine arthropods with close affinities to euchelicerates. RESULTS We studied neurogenesis during embryonic development of Pseudopallene sp. (Callipallenidae), using fluorescent histochemical staining and immunolabelling. Embryonic neurogenesis has two phases. The first phase shows notable similarities to euchelicerates and myriapods. These include i) the lack of morphologically different cell types in the neuroectoderm; ii) the formation of transiently identifiable, stereotypically arranged cell internalization sites; iii) immigration of predominantly post-mitotic ganglion cells; and iv) restriction of tangentially oriented cell proliferation to the apical cell layer. However, in the second phase, the formation of a central invagination in each hemi-neuromere is accompanied by the differentiation of apical neural stem cells. The latter grow in size, show high mitotic activity and an asymmetrical division mode. A marked increase of ganglion cell numbers follows their differentiation. Directly basal to the neural stem cells, an additional type of intermediate neural precursor is found. CONCLUSIONS Embryonic neurogenesis of Pseudopallene sp. combines features of central nervous system development that have been hitherto described separately in different arthropod taxa. The two-phase character of pycnogonid neurogenesis calls for a thorough reinvestigation of other non-model arthropods over the entire course of neurogenesis. With the currently available data, a common origin of pycnogonid neural stem cells and tetraconate neuroblasts remains unresolved. To acknowledge this, we present two possible scenarios on the evolution of arthropod neurogenesis, whereby Myriapoda play a key role in the resolution of this issue.
Collapse
Affiliation(s)
- Georg Brenneis
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, Berlin 10115, Germany
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie/Vergleichende Zoologie, Philippstraße 13, Berlin 10115, Germany
| |
Collapse
|
191
|
Abstract
The post-genomic era has produced a variety of new investigation technologies, techniques and approaches that may offer exciting insights into many long-standing questions of scientific research. The microtubule cytoskeleton is a highly conserved system that shows a high degree of internal complexity, is known to be integral to many cell systems and functions on a fundamental level. After decades of study, much is still unknown about microtubules in vivo from the control of dynamics in living cells to their responses to environmental changes and responses to other cellular processes. In the present article, we examine some outstanding questions in the microtubule field and propose a combination of emerging interdisciplinary approaches, i.e. high-throughput functional genomics techniques, quantitative and super-resolution microscopy, and in silico modelling, that could shed light on the systemic regulation of microtubules in cells by networks of regulatory factors. We propose that such an integrative approach is key to elucidate the function of the microtubule cytoskeleton as a complete responsive integral biological system.
Collapse
|
192
|
Laporte D, Courtout F, Salin B, Ceschin J, Sagot I. An array of nuclear microtubules reorganizes the budding yeast nucleus during quiescence. ACTA ACUST UNITED AC 2013; 203:585-94. [PMID: 24247429 PMCID: PMC3840927 DOI: 10.1083/jcb.201306075] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The microtubule cytoskeleton is a highly dynamic network. In dividing cells, its complex architecture not only influences cell shape and movement but is also crucial for chromosome segregation. Curiously, nothing is known about the behavior of this cellular machinery in quiescent cells. Here we show that, upon quiescence entry, the Saccharomyces cerevisiae microtubule cytoskeleton is drastically remodeled. Indeed, while cytoplasmic microtubules vanish, the spindle pole body (SPB) assembles a long and stable monopolar array of nuclear microtubules that spans the entire nucleus. Consequently, the nucleolus is displaced. Kinetochores remain attached to microtubule tips but lose SPB clustering and distribute along the microtubule array, leading to a large reorganization of the nucleus. When cells exit quiescence, the nuclear microtubule array slowly depolymerizes and, by pulling attached centromeres back to the SPB, allows the recovery of a typical Rabl-like configuration. Finally, mutants that do not assemble a nuclear array of microtubules are impaired for both quiescence survival and exit.
Collapse
Affiliation(s)
- Damien Laporte
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, F-33077 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
193
|
Bonini SA, Ferrari-Toninelli G, Montinaro M, Memo M. Notch signalling in adult neurons: a potential target for microtubule stabilization. Ther Adv Neurol Disord 2013; 6:375-85. [PMID: 24228073 DOI: 10.1177/1756285613490051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytoskeletal dysfunction has been proposed during the last decade as one of the main mechanisms involved in the aetiology of several neurodegenerative diseases. Microtubules are basic elements of the cytoskeleton and the dysregulation of microtubule stability has been demonstrated to be causative for axonal transport impairment, synaptic contact degeneration, impaired neuronal function leading finally to neuronal loss. Several pathways are implicated in the microtubule assembly/disassembly process. Emerging evidence is focusing on Notch as a microtubule dynamics regulator. We demonstrated that activation of Notch signalling results in increased microtubule stability and changes in axonal morphology and branching. By contrast, Notch inhibition leads to an increase in cytoskeleton plasticity with intense neurite remodelling. Until now, several microtubule-binding compounds have been tested and the results have provided proof of concept that microtubule-binding agents or compounds with the ability to stabilize microtubules may have therapeutic potential for the treatment of Alzheimer's disease and other neurodegenerative diseases. In this review, based on its key role in cytoskeletal dynamics modulation, we propose Notch as a new potential target for microtubule stabilization.
Collapse
Affiliation(s)
- Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | | |
Collapse
|
194
|
Oláh J, Tőkési N, Lehotzky A, Orosz F, Ovádi J. Moonlighting microtubule-associated proteins: regulatory functions by day and pathological functions at night. Cytoskeleton (Hoboken) 2013; 70:677-85. [PMID: 24039085 DOI: 10.1002/cm.21137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/09/2013] [Accepted: 08/22/2013] [Indexed: 12/14/2022]
Abstract
The sensing, integrating, and coordinating features of the eukaryotic cells are achieved by the complex ultrastructural arrays and multifarious functions of the cytoskeletal network. Cytoskeleton comprises fibrous protein networks of microtubules, actin, and intermediate filaments. These filamentous polymer structures are highly dynamic and undergo constant and rapid reorganization during cellular processes. The microtubular system plays a crucial role in the brain, as it is involved in an enormous number of cellular events including cell differentiation and pathological inclusion formation. These multifarious functions of microtubules can be achieved by their decoration with proteins/enzymes that exert specific effects on the dynamics and organization of the cytoskeleton and mediate distinct functions due to their moonlighting features. This mini-review focuses on two aspects of the microtubule cytoskeleton. On the one hand, we describe the heteroassociation of tubulin/microtubules with metabolic enzymes, which in addition to their catalytic activities stabilize microtubule structures via their cross-linking functions. On the other hand, we focus on the recently identified moonlighting tubulin polymerization promoting protein, TPPP/p25. TPPP/p25 is a microtubule-associated protein and it displays distinct physiological or pathological (aberrant) functions; thus it is a prototype of Neomorphic Moonlighting Proteins. The expression of TPPP/p25 is finely controlled in the human brain; this protein is indispensable for the development of projections of oligodendrocytes that are responsible for the ensheathment of axons. The nonphysiological, higher or lower TPPP/p25 level leads to distinct CNS diseases. Mechanisms contributing to the control of microtubule stability and dynamics by metabolic enzymes and TPPP/p25 will be discussed.
Collapse
Affiliation(s)
- J Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
195
|
DeBerg HA, Blehm BH, Sheung J, Thompson AR, Bookwalter CS, Torabi SF, Schroer TA, Berger CL, Lu Y, Trybus KM, Selvin PR. Motor domain phosphorylation modulates kinesin-1 transport. J Biol Chem 2013; 288:32612-32621. [PMID: 24072715 DOI: 10.1074/jbc.m113.515510] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Disruptions in microtubule motor transport are associated with a variety of neurodegenerative diseases. Post-translational modification of the cargo-binding domain of the light and heavy chains of kinesin has been shown to regulate transport, but less is known about how modifications of the motor domain affect transport. Here we report on the effects of phosphorylation of a mammalian kinesin motor domain by the kinase JNK3 at a conserved serine residue (Ser-175 in the B isoform and Ser-176 in the A and C isoforms). Phosphorylation of this residue has been implicated in Huntington disease, but the mechanism by which Ser-175 phosphorylation affects transport is unclear. The ATPase, microtubule-binding affinity, and processivity are unchanged between a phosphomimetic S175D and a nonphosphorylatable S175A construct. However, we find that application of force differentiates between the two. Placement of negative charge at Ser-175, through phosphorylation or mutation, leads to a lower stall force and decreased velocity under a load of 1 piconewton or greater. Sedimentation velocity experiments also show that addition of a negative charge at Ser-175 favors the autoinhibited conformation of kinesin. These observations imply that when cargo is transported by both dynein and phosphorylated kinesin, a common occurrence in the cell, there may be a bias that favors motion toward the minus-end of microtubules. Such bias could be used to tune transport in healthy cells when properly regulated but contribute to a disease state when misregulated.
Collapse
Affiliation(s)
- Hannah A DeBerg
- From the Physics Department and Center for the Physics of Living Cells
| | - Benjamin H Blehm
- From the Physics Department and Center for the Physics of Living Cells
| | - Janet Sheung
- From the Physics Department and Center for the Physics of Living Cells
| | - Andrew R Thompson
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Carol S Bookwalter
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | | | - Trina A Schroer
- the Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Christopher L Berger
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Yi Lu
- the Departments of Biochemistry; Chemistry, University of Illinois, Urbana, Illinois 61801
| | - Kathleen M Trybus
- the Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Paul R Selvin
- From the Physics Department and Center for the Physics of Living Cells.
| |
Collapse
|
196
|
Ledda FD, Ramoino P, Ravera S, Perino E, Bianchini P, Diaspro A, Gallus L, Pronzato R, Manconi R. Tubulin posttranslational modifications induced by cadmium in the sponge Clathrina clathrus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:98-105. [PMID: 23765032 DOI: 10.1016/j.aquatox.2013.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 05/09/2023]
Abstract
As sessile filter feeders, sponges are exposed to environmental stress due to pollutants of both anthropogenic and natural origins and are able to accumulate harmful substances. Thus, sponges are considered a good tool for the biomonitoring of coastal areas. In this study, we used biochemical and immunocytochemical analyses to provide new data on the cadmium-related changes in sponge cells. In particular, we analyzed the effects of different concentrations of cadmium on the microtubule network in the calcisponge Clathrina clathrus. Quantitative densitometry of the immunoblots showed that, while the levels of α- and β-tubulin remained relatively constant in C. clathrus when exposed to 1 and 5 μM CdCl2, there were progressive shifts in the levels of some tubulin isoforms. Exposure for 24h to sublethal concentrations of cadmium reduced the level of tyrosinated α-tubulin and enhanced the levels of acetylated and detyrosinated α-tubulin relative to the levels in controls. Confocal microscopy analysis of immunolabeled tissue sections showed that the inhibitory effect of cadmium was associated with a decrease in the labeling of the cells with a monoclonal antibody that recognizes tyrosinated α-tubulin. By contrast, the reactivity with a monoclonal antibody that recognizes acetylated α-tubulin and with a polyclonal antibody specific for detyrosinated α-tubulin was enhanced at the same time points. Because the acetylation and detyrosination of α-tubulin occur on stable microtubules, the marked enhancement of α-tubulin acetylation and detyrosination in Cd(2+)-treated cells indicates that divalent Cd ions stabilize microtubules. The possibility that Cd(2+) may increase the stability of cytoplasmic microtubules was tested by exposing Cd(2+)-treated cells to a cold temperature (0°C). As shown, the microtubule bundles induced by Cd(2+), which were labeled by the monoclonal antibodies against acetylated and detyrosinated α-tubulin, were resistant to cold.
Collapse
Affiliation(s)
- F D Ledda
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Aslan JE, Phillips KG, Healy LD, Itakura A, Pang J, McCarty OJT. Histone deacetylase 6-mediated deacetylation of α-tubulin coordinates cytoskeletal and signaling events during platelet activation. Am J Physiol Cell Physiol 2013; 305:C1230-9. [PMID: 24025866 DOI: 10.1152/ajpcell.00053.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tubulin cytoskeleton plays a key role in maintaining the characteristic quiescent discoid shape of resting platelets. Upon activation, platelets undergo a dramatic change in shape; however, little is known of how the microtubule system contributes to regulating platelet shape and function. Here we investigated the role of the covalent modification of α-tubulin by acetylation in the regulation of platelet physiology during activation. Superresolution microscopy analysis of the platelet tubulin cytoskeleton showed that the marginal band together with an interconnected web of finer tubulin structures collapsed upon platelet activation with the glycoprotein VI (GPVI)-agonist collagen-related peptide (CRP). Western blot analysis revealed that α-tubulin was acetylated in resting platelets and deacetylated during platelet activation. Tubacin, a specific inhibitor of the tubulin deacetylase HDAC6, prevented tubulin deacetylation upon platelet activation with CRP. Inhibition of HDAC6 upregulated tubulin acetylation and disrupted the organization of the platelet microtubule marginal band without significantly affecting platelet volume changes in response to CRP stimulation. HDAC6 inhibitors also inhibited platelet aggregation in response to CRP and blocked platelet signaling events upstream of platelet Rho GTPase activation. Together, these findings support a role for acetylation signaling in controlling the resting structure of the platelet tubulin marginal band as well as in the coordination of signaling systems that drive platelet cytoskeletal changes and aggregation.
Collapse
Affiliation(s)
- Joseph E Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | | | | | | | | | | |
Collapse
|
198
|
Strack S, Wilson TJ, Cribbs JT. Cyclin-dependent kinases regulate splice-specific targeting of dynamin-related protein 1 to microtubules. ACTA ACUST UNITED AC 2013; 201:1037-51. [PMID: 23798729 PMCID: PMC3691453 DOI: 10.1083/jcb.201210045] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The splice isoform Drp1-x01 promotes mitochondrial fission and is regulated by Cdk phosphorylation-dependent changes in microtubule association. Fission and fusion reactions determine mitochondrial morphology and function. Dynamin-related protein 1 (Drp1) is a guanosine triphosphate–hydrolyzing mechanoenzyme important for mitochondrial fission and programmed cell death. Drp1 is subject to alternative splicing of three exons with previously unknown functional significance. Here, we report that splice variants including the third but excluding the second alternative exon (x01) localized to and copurified with microtubule bundles as dynamic polymers that resemble fission complexes on mitochondria. A major isoform in immune cells, Drp1-x01 required oligomeric assembly and Arg residues in alternative exon 3 for microtubule targeting. Drp1-x01 stabilized and bundled microtubules and attenuated staurosporine-induced mitochondrial fragmentation and apoptosis. Phosphorylation of a conserved Ser residue adjacent to the microtubule-binding exon released Drp1-x01 from microtubules and promoted mitochondrial fragmentation in a splice form–specific manner. Phosphorylation by Cdk1 contributed to dissociation of Drp1-x01 from mitotic microtubules, whereas Cdk5-mediated phosphorylation modulated Drp1-x01 targeting to interphase microtubules. Thus, alternative splicing generates a latent, cytoskeletal pool of Drp1 that is selectively mobilized by cyclin-dependent kinase signaling.
Collapse
Affiliation(s)
- Stefan Strack
- Department of Pharmacology, University of Iowa, Iowa City, IA 52246, USA.
| | | | | |
Collapse
|
199
|
Guedes-Dias P, Oliveira JM. Lysine deacetylases and mitochondrial dynamics in neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1345-59. [DOI: 10.1016/j.bbadis.2013.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 03/30/2013] [Accepted: 04/02/2013] [Indexed: 11/28/2022]
|
200
|
Increasing Tip60 HAT levels rescues axonal transport defects and associated behavioral phenotypes in a Drosophila Alzheimer's disease model. J Neurosci 2013; 33:7535-47. [PMID: 23616558 DOI: 10.1523/jneurosci.3739-12.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axonal transport defects and axonopathy are prominent in early preclinical stages of Alzheimer's disease (AD), often preceding known disease-related pathology by over a year. As epigenetic transcriptional regulatory mechanisms, such as histone acetylation, are critical for neurogenesis, it is postulated that their misregulation might be linked to early pathophysiological mechanisms that contribute to AD. The histone acetyltransferase (HAT) Tip60 epigenetically regulates genes enriched for neuronal functions and is implicated in AD via its formation of a transcriptional regulatory complex with the amyloid precursor protein (APP) intracellular domain. Disruption of APP function is associated with axonal transport defects, raising the possibility that an epigenetic role for Tip60 might also be involved. Here, we examine whether Tip60 HAT activity functions in axonal transport using Drosophila CNS motor neurons as a well-characterized transport model. We show that reduction of Tip60 HAT activity in the nervous system causes axonopathy and transport defects associated with epigenetic misregulation of certain axonal transport-linked Tip60 target genes. Functional consequences of these defects are evidenced by reduced locomotion activity of the mutant Tip60 larvae, and these phenotypes can be partially rescued with certain histone deacetylase inhibitors. Finally, we demonstrate that Tip60 function in axonal transport is mediated by APP and that, remarkably, excess Tip60 exerts a neuroprotective role in APP-induced axonal transport and functional locomotion defects. Our observations highlight a novel functional interactive role between Tip60 HAT activity and APP in axonal transport and provide insight into the importance of specific HAT modulators for cognitive disorder treatment.
Collapse
|