151
|
MaruYama T. The nuclear IκB family of proteins controls gene regulation and immune homeostasis. Int Immunopharmacol 2015; 28:836-40. [DOI: 10.1016/j.intimp.2015.03.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/07/2015] [Accepted: 03/28/2015] [Indexed: 01/12/2023]
|
152
|
Abstract
Hepatocyte death, inflammation, and liver fibrosis are the hallmarks of chronic liver disease. Tumor necrosis factor-α (TNFα) is an inflammatory cytokine involved in liver inflammation and sustained liver inflammation leads to liver fibrosis. TNFα exerts inflammation, proliferation, and apoptosis. However, the role of TNFα signaling in liver fibrosis is not fully understood. This review highlights the recent findings demonstrating the molecular mechanisms of TNFα and its downstream signaling in liver fibrosis. During the progression of liver fibrosis, hepatic stellate cells play a pivotal role in a dynamic process of production of extracellular matrix proteins and modulation of immune response. Hepatic stellate cells transdifferentiate into activated myofibroblasts in response to damaged hepatocyte-derived mediators and immune cell-derived cytokines/chemokines. Here, we will discuss the role of TNFα in hepatic stellate cell survival and activation and the crosstalk between hepatic stellate cells and hepatocytes or other immune cells, such as macrophages, dendritic cells, and B cells in the development of liver fibrosis.
Collapse
Affiliation(s)
- Yoon Mee Yang
- Department of Medicine, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ekihiro Seki
- Department of Medicine, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| |
Collapse
|
153
|
Chen CY, Lee DS, Yan YT, Shen CN, Hwang SM, Lee ST, Hsieh PC. Bcl3 Bridges LIF-STAT3 to Oct4 Signaling in the Maintenance of Naïve Pluripotency. Stem Cells 2015; 33:3468-80. [DOI: 10.1002/stem.2201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/25/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Chen-Yun Chen
- Program in Molecular Medicine; National Yang-Ming University and Academia Sinica; Taipei Taiwan
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
| | - Desy S. Lee
- Institute of Clinical Medicine; National Cheng Kung University and Hospital; Tainan Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
| | - Chia-Ning Shen
- Genomics Research Center; Academia Sinica; Taipei Taiwan
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center; Food Industry Research and Development Institute; Hsinchu Taiwan
| | - Sho Tone Lee
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
| | - Patrick C.H. Hsieh
- Program in Molecular Medicine; National Yang-Ming University and Academia Sinica; Taipei Taiwan
- Institute of Biomedical Science; Academia Sinica; Taipei Taiwan
- Institute of Clinical Medicine; National Cheng Kung University and Hospital; Tainan Taiwan
| |
Collapse
|
154
|
Inherited cylindromas: lessons from a rare tumour. Lancet Oncol 2015; 16:e460-e469. [DOI: 10.1016/s1470-2045(15)00245-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 11/23/2022]
|
155
|
RNA-Binding Protein Musashi1 Is a Central Regulator of Adhesion Pathways in Glioblastoma. Mol Cell Biol 2015; 35:2965-78. [PMID: 26100017 DOI: 10.1128/mcb.00410-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/10/2015] [Indexed: 12/14/2022] Open
Abstract
The conserved RNA-binding protein Musashi1 (MSI1) has emerged as a key oncogenic factor in numerous solid tumors, including glioblastoma. However, its mechanism of action has not yet been established comprehensively. To identify its target genes comprehensively and determine the main routes by which it influences glioblastoma phenotypes, we conducted individual-nucleotide resolution cross-linking and immunoprecipitation (iCLIP) experiments. We confirmed that MSI1 has a preference for UAG sequences contained in a particular structural context, especially in 3' untranslated regions. Although numerous binding sites were also identified in intronic sequences, our RNA transcriptome sequencing analysis does not favor the idea that MSI1 is a major regulator of splicing in glioblastoma cells. MSI1 target mRNAs encode proteins that function in multiple pathways of cell proliferation and cell adhesion. Since these associations indicate potentially new roles for MSI1, we investigated its impact on glioblastoma cell adhesion, morphology, migration, and invasion. These processes are known to underpin the spread and relapse of glioblastoma, in contrast to other tumors where metastasis is the main driver of recurrence and progression.
Collapse
|
156
|
Dimitrakopoulos FID, Antonacopoulou AG, Kottorou A, Marousi S, Koukourikou I, Kalofonou M, Panagopoulos N, Scopa C, Dougenis D, Papadaki H, Papavassiliou AG, Kalofonos HP. Variant of BCL3 gene is strongly associated with five-year survival of non-small-cell lung cancer patients. Lung Cancer 2015; 89:311-9. [PMID: 26122346 DOI: 10.1016/j.lungcan.2015.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/18/2015] [Accepted: 06/11/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVES BCL3, a known atypical IκB family member, has been documented to be upregulated in hematological malignancies and in some solid tumors, functioning as a crucial player in tumor development. Recently, rs8100239, a tag-Single Nucleotide Polymorphism (SNP) in BCL3 (T>A) has been identified, but there are no data regarding its involvement in non-small-cell lung cancer (NSCLC) initiation and progression. MATERIALS AND METHODS To study the possible association of BCL3 with NSCLC, 268 patients and 279 healthy controls were genotyped for rs8100239. Moreover, BCL3 protein expression was also investigated in 112 NSCLC cases through an immunohistochemical analysis. RESULTS NSCLC patients with AA genotype displayed significantly worse prognosis compared to T allele carriers (P<0.001), who had less frequent intermediate nuclear BCL3 expression (P=0.042). In addition, overexpression of BCL3 was detected in tumor specimens, compared to normal tissue (P<0.001). Furthermore, BCL3 protein levels were associated with five-year survival (P=0.039), maximum diameter of lesion (P=0.012), grade (P=0.002) and relapse frequency (P=0.041). CONCLUSIONS The present study is the first to show a relationship between the genetic variation rs8100239 of BCL3 and cancer patients' survival. It also represents the first quantitative evaluation of BCL3 expression in NSCLC. Our findings indicate that rs8100239 may be considered as a novel prognostic indicator, demonstrating also the overexpression of BCL3 protein in NSCLC and implicating this pivotal molecule in the pathogenesis of NSCLC.
Collapse
Affiliation(s)
| | - Anna G Antonacopoulou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | - Anastasia Kottorou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | - Stella Marousi
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | - Ioulia Koukourikou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | - Melpomeni Kalofonou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | | | - Chrisoula Scopa
- Department of Pathology, Medical School, University of Patras, Greece
| | - Dimitrios Dougenis
- Department of Cardiothoracic Surgery, Medical School, University of Patras, Greece
| | - Helen Papadaki
- Department of Anatomy, Medical School, University of Patras, Greece
| | | | - Haralabos P Kalofonos
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece.
| |
Collapse
|
157
|
Sasaki K, Iwai K. Roles of linear ubiquitinylation, a crucial regulator of NF-κB and cell death, in the immune system. Immunol Rev 2015; 266:175-89. [DOI: 10.1111/imr.12308] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Katsuhiro Sasaki
- Molecular and Cellular Physiology; Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Kazuhiro Iwai
- Molecular and Cellular Physiology; Graduate School of Medicine; Kyoto University; Kyoto Japan
| |
Collapse
|
158
|
Yang X, Wang C, Xu C, Yan Z, Wei C, Guan K, Ma S, Cao Y, Liu L, Zou D, He X, Zhang B, Ma Q, Zheng Z. miR-526a regulates apoptotic cell growth in human carcinoma cells. Mol Cell Biochem 2015; 407:69-76. [DOI: 10.1007/s11010-015-2455-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/16/2015] [Indexed: 01/06/2023]
|
159
|
Luo S, Wang J, Ma Y, Yao Z, Pan H. PPARγ inhibits ovarian cancer cells proliferation through upregulation of miR-125b. Biochem Biophys Res Commun 2015; 462:85-90. [PMID: 25944662 DOI: 10.1016/j.bbrc.2015.04.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/03/2015] [Indexed: 12/30/2022]
Abstract
miR-125b has essential roles in coordinating tumor proliferation, angiogenesis, invasiveness, metastasis and chemotherapy recurrence. In ovarian cancer miR-125b has been shown to be downregulated and acts as a tumor suppressor by targeting proto-oncogene BCL3. PPARγ, a multiple functional transcription factor, has been reported to have anti-tumor effects through inhibition of proliferation and induction of differentiation and apoptosis by targeting the tumor related genes. However, it is unclear whether miR-125b is regulated by PPARγ in ovarian cancer. In this study, we demonstrated that the miR-125b downregulated in ovarian cancer tissues and cell lines. Ligands-activated PPARγ suppressed proliferation of ovarian cancer cells and this PPARγ-induced growth inhibition is mediated by the upregulation of miR-125b. PPARγ promoted the expression of miR-125b by directly binding to the responsive element in miR-125b gene promoter region. Thus, our results suggest that PPARγ can induce growth suppression of ovarian cancer by upregulating miR-125b which inhibition of proto-oncogene BCL3. These findings will extend our understanding of the function of PPARγ in tumorigenesis and miR-125b may be a therapeutic intervention of ovarian cancer.
Collapse
Affiliation(s)
- Shuang Luo
- Department of Obstetrics and Gynecology, Suining Central Hospital, Suining, China.
| | - Jidong Wang
- Department of Gynecology and Obsterics, Jinan Central Hospital, Jinan, China
| | - Ying Ma
- Department of Otorhinolaryngolgy, Suining Central Hospital, Suining, China
| | - Zhenwei Yao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjuan Pan
- Department of Gynecology and Obsterics, Zhongshan Hospital, Wuhan, China
| |
Collapse
|
160
|
Saamarthy K, Björner S, Johansson M, Landberg G, Massoumi R, Jirström K, Masoumi KC. Early diagnostic value of Bcl-3 localization in colorectal cancer. BMC Cancer 2015; 15:341. [PMID: 25929479 PMCID: PMC4434567 DOI: 10.1186/s12885-015-1342-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 11/29/2022] Open
Abstract
Background B-cell leukemia 3 (Bcl-3) is a member of the inhibitor of κB family, which regulates a wide range of biological processes by functioning as a transcriptional activator or as a repressor of target genes. Elevated expression, sustained nuclear accumulation, and uncontrolled activation of Bcl-3 causes increased cellular proliferation or survival, dependent on the tissue and type of stimuli. Methods We retrospectively reviewed patients who were diagnosed with colorectal cancer at Skåne University Hospital in Malmö between 1st of January 1990 and 31st of December 1991. Bcl-3 localization in colorectal cancer was assessed by immunohistochemistry on tissue microarray and freshly isolated colon from patients. Correlation between Bcl-3 localization and clinicopathological parameters of the cohort were evaluated using the Spearman rank-order correlation coefficient. In addition, Bcl-3 expression and localization in colon adenocarcinoma cells were analysed by western blot, immunohistochemistry and subcellular fractionation separately. Results We found that Bcl-3 was mainly localized in the cytoplasm in the tumour tissue isolated from colon cancer patients. Normal colon samples from the same patients showed Bcl-3 localization in the nucleus. In three out of six colon cancer cell lines, we detected elevated levels of Bcl-3. In these cell lines Bcl-3 was accumulated in the cytosol. We confirmed these findings by analysing Bcl-3 localization in a colon tissue micro array consisting of 270 cases. In these samples Bcl-3 localization correlated with the proliferation marker Ki-67, but not with the apoptotic marker Caspase 3. Conclusion These findings indicate that analysis of the subcellular localization of Bcl-3 could be a potential-early diagnostic marker in colon cancer.
Collapse
Affiliation(s)
- Karunakar Saamarthy
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumour Pathology, Lund University, Medicon Village, Building 404:A3, 223 83, Lund, Sweden.
| | - Sofie Björner
- Center for Molecular Pathology, Department of Laboratory Medicine, Lund University, Lund, Skåne University Hospital, 205 02, Malmö, Sweden.
| | - Martin Johansson
- Center for Molecular Pathology, Department of Laboratory Medicine, Lund University, Lund, Skåne University Hospital, 205 02, Malmö, Sweden.
| | - Göran Landberg
- Sahlgrenska Cancer Centre, University of Gothenburg, 405 30, Gothenburg, Sweden.
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumour Pathology, Lund University, Medicon Village, Building 404:A3, 223 83, Lund, Sweden.
| | - Karin Jirström
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden.
| | - Katarzyna Chmielarska Masoumi
- Department of Laboratory Medicine, Translational Cancer Research, Division of Molecular Tumour Pathology, Lund University, Medicon Village, Building 404:A3, 223 83, Lund, Sweden.
| |
Collapse
|
161
|
Wu X, Fukushima H, North BJ, Nagaoka Y, Nagashima K, Deng F, Okabe K, Inuzuka H, Wei W. SCFβ-TRCP regulates osteoclastogenesis via promoting CYLD ubiquitination. Oncotarget 2015; 5:4211-21. [PMID: 24961988 PMCID: PMC4147317 DOI: 10.18632/oncotarget.1971] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
CYLD negatively regulates the NF-κB signaling pathway and osteoclast differentiation largely through antagonizing TNF receptor-associated factor (TRAF)-mediated K63-linkage polyubiquitination in osteoclast precursor cells. CYLD activity is controlled by IκB kinase (IKK), but the molecular mechanism(s) governing CYLD protein stability remains largely undefined. Here, we report that SCFβ-TRCP regulates the ubiquitination and degradation of CYLD, a process dependent on prior phosphorylation of CYLD at Ser432/Ser436 by IKK. Furthermore, depletion of β-TRCP induced CYLD accumulation and TRAF6 deubiquitination in osteoclast precursor cells, leading to suppression of RANKL-induced osteoclast differentiation. Therefore, these data pinpoint the IKK/β-TRCP/CYLD signaling pathway as an important modulator of osteoclastogenesis.
Collapse
Affiliation(s)
- Xiaomian Wu
- Chongqing key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, P.R. China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
162
|
Abstract
The Epstein-Barr virus protein latent membrane protein 1 (LMP1) has two NF-κB activating domains within its intracellular carboxy terminus (carboxy-terminal activating region 1 [CTAR1] and CTAR2). LMP1-CTAR1 is required for B-lymphocyte transformation, is capable of transforming rodent fibroblasts, and uniquely activates phosphoinositol (PI3) kinase, the noncanonical NF-κB pathway, and expression of the epidermal growth factor receptor (EGFR). In this study, the effects of LMP1-CTAR1 on cellular gene expression were determined by high-throughput sequencing. Additionally, the binding of bcl3 was determined using chromatin immunoprecipitation (ChIP) and sequencing. LMP1-CTAR1 induced few changes in transcription with more genes showing decreased expression. Ingenuity pathway analysis indicated significant enrichment for genes involved in cancer and cellular movement, survival, growth, and proliferation pathways. ChIP in combination with high-throughput sequencing (ChIP-Seq) identified bcl3 binding for more than 2,000 genes in LMP1-CTAR1-expressing cells with more than 90% of the peaks at genes detected within the probable promoter region. Only a small subset of the genes with significant changes in expression had corresponding peaks in the bcl3 ChIP. However, both NFKB2 and PI3 kinase were identified in the bcl3 ChIP. Additionally, many of the predicted upstream regulators for the changes in expression were identified in the bcl3 ChIP. Analysis of the proteins in the NF-κB pathway revealed many changes identified by the high-throughput RNA sequencing (RNA-Seq) and bcl3 ChIP that would likely activate noncanonical NF-κB signaling and possibly inhibit canonical NF-κB signaling. These findings suggest that the two LMP1 signaling domains modulate their combined activity and that the bcl3 transcription factor is likely responsible for some of the unique effects of CTAR1 on cellular expression. The Epstein-Barr virus protein latent membrane protein 1 (LMP1) has potent effects on cell growth. LMP1 has two regions, carboxy-terminal activating region 1 (CTAR1) and CTAR2, that distinctly activate NF-κB, a transcription factor complex involved in activation of important host genes. In this study, analysis of the effects on cellular gene expression revealed that CTAR1 significantly affected cellular expression in part through effects on a specific form of NF-κB. The data suggest that LMP1 can activate a distinct subset of host gene expression through its CTAR1 domain which in combination with other signaling effects induced by the CTAR2 domain likely affects cell movement, survival, and growth.
Collapse
|
163
|
Tesio M, Tang Y, Müdder K, Saini M, von Paleske L, Macintyre E, Pasparakis M, Waisman A, Trumpp A. Hematopoietic stem cell quiescence and function are controlled by the CYLD-TRAF2-p38MAPK pathway. ACTA ACUST UNITED AC 2015; 212:525-38. [PMID: 25824820 PMCID: PMC4387289 DOI: 10.1084/jem.20141438] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/24/2015] [Indexed: 12/19/2022]
Abstract
Tesio at al. identify a novel pathway controlled by the tumor suppressor and deubiquitinase cylindromatosis (CYLD), which is involved in the regulation of hematopoietic stem cell quiescence and repopulation potential. The status of long-term quiescence and dormancy guarantees the integrity of hematopoietic stem cells (HSCs) during adult homeostasis. However the molecular mechanisms regulating HSC dormancy remain poorly understood. Here we show that cylindromatosis (CYLD), a tumor suppressor gene and negative regulator of NF-κB signaling with deubiquitinase activity, is highly expressed in label-retaining dormant HSCs (dHSCs). Moreover, Cre-mediated conditional elimination of the catalytic domain of CYLD induced dHSCs to exit quiescence and abrogated their repopulation and self-renewal potential. This phenotype is dependent on the interactions between CYLD and its substrate TRAF2 (tumor necrosis factor–associated factor 2). HSCs expressing a mutant CYLD with an intact catalytic domain, but unable to bind TRAF2, showed the same HSC phenotype. Unexpectedly, the robust cycling of HSCs lacking functional CYLD–TRAF2 interactions was not elicited by increased NF-κB signaling, but instead by increased activation of the p38MAPK pathway. Pharmacological inhibition of p38MAPK rescued the phenotype of CYLD loss, identifying the CYLD–TRAF2–p38MAPK pathway as a novel important regulator of HSC function restricting HSC cycling and promoting dormancy.
Collapse
Affiliation(s)
- Melania Tesio
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Yilang Tang
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Katja Müdder
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Massimo Saini
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa von Paleske
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Elizabeth Macintyre
- Institut Necker-Enfants Malades (INEM) and Université Paris Sorbonne Cité at Descartes, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1151, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Manolis Pasparakis
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany The German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| |
Collapse
|
164
|
Protective dendritic cell responses against listeriosis induced by the short form of the deubiquitinating enzyme CYLD are inhibited by full-length CYLD. Eur J Immunol 2015; 45:1366-76. [DOI: 10.1002/eji.201445116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/09/2015] [Accepted: 02/09/2015] [Indexed: 01/17/2023]
|
165
|
Nagy N, Farkas K, Kemény L, Széll M. Phenotype-genotype correlations for clinical variants caused by CYLD mutations. Eur J Med Genet 2015; 58:271-8. [PMID: 25782638 DOI: 10.1016/j.ejmg.2015.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 02/18/2015] [Indexed: 11/29/2022]
Abstract
Brooke-Spiegler syndrome (BSS; OMIM 605041) is an autosomal dominant condition characterized by skin appendageal neoplasms including cylindromas, trichoepitheliomas, and/or spiradenomas. In 1996, the gene locus for BSS was mapped to 16q12-13, and, in 2000, mutations in the cylindromatosis (CYLD) gene were determined to cause BSS, familial cylindromatosis (FC; OMIM 132700) and multiple familial trichoepithelioma type 1 (MFT1; OMIM 601606). The CYLD gene encodes an enzyme with deubiquitinase activity. To date, a total of 95 different diseases-causing mutations have been published for the CYLD gene. A summary of mutations identified in Hungarian patients and a review of previously published mutations are presented in this update. The majority of the sequence changes are frameshift (48%), nonsense (27%), missense (12%) and splice-site (11%) mutations; however, two in-frame deletions have also been reported. Most mutations are located in exons 9-20. Analysis of the identified CYLD gene mutations and the observed BSS, FC and MFT1 clinical phenotypes of the patients revealed significant genotype-phenotype correlations. Elucidation of these genotype-phenotype correlations is critical for the diagnosis of these rare monogenic skin diseases. In addition, characterizing these correlations may promote the understanding of their mechanisms and may hopefully contribute to the development of future therapeutic modalities.
Collapse
Affiliation(s)
- Nikoletta Nagy
- Department of Medical Genetics, University of Szeged, Szeged, Hungary; Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary; Dermatological Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary.
| | - Katalin Farkas
- Dermatological Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary; Dermatological Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, Szeged, Hungary; Dermatological Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| |
Collapse
|
166
|
Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther 2015; 147:32-54. [DOI: 10.1016/j.pharmthera.2014.11.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 12/27/2022]
|
167
|
Tassi I, Rikhi N, Claudio E, Wang H, Tang W, Ha HL, Saret S, Kaplan DH, Siebenlist U. The NF-κB regulator Bcl-3 modulates inflammation during contact hypersensitivity reactions in radioresistant cells. Eur J Immunol 2015; 45:1059-1068. [PMID: 25616060 DOI: 10.1002/eji.201444994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/22/2014] [Accepted: 01/20/2015] [Indexed: 12/22/2022]
Abstract
Bcl-3 is an atypical member of the IκB family. Bcl-3 functions as a cofactor of p50/NF-κB1 or p52/NF-κB2 homodimers in nuclei, where it modulates NF-κB-regulated transcription in a context-dependent way. Bcl-3 has tumorigenic potential, is critical in host defense of pathogens, and has been reported to ameliorate or exacerbate inflammation, depending on disease model. However, cell-specific functions of Bcl-3 remain largely unknown. Here, we explored the role of Bcl-3 in a contact hypersensitivity (CHS) mouse model, which depends on the interplay between keratinocytes and immune cells. Bcl-3-deficient mice exhibited an exacerbated and prolonged CHS response to oxazolone. Increased inflammation correlated with higher production of chemokines CXCL2, CXCL9, and CXCL10, and consequently increased recruitment of neutrophils and CD8(+) T cells. BM chimera experiments indicated that the ability of Bcl-3 to reduce the CHS response depended on Bcl-3 activity in radioresistant cells. Specific ablation of Bcl-3 in keratinocytes resulted in increased production of CXCL9 and CXCL10 and sustained recruitment of specifically CD8(+) T cells. These findings identify Bcl-3 as a critical player during the later stage of the CHS reaction to limit inflammation via actions in radioresistant cells, including keratinocytes.
Collapse
Affiliation(s)
- Ilaria Tassi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nimisha Rikhi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wanhu Tang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hye-Lin Ha
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel H Kaplan
- Department of Dermatology, University of Minnesota, Minneapolis, MN, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
168
|
The deubiquitinating enzyme CYLD regulates the differentiation and maturation of thymic medullary epithelial cells. Immunol Cell Biol 2015; 93:558-66. [PMID: 25601276 DOI: 10.1038/icb.2014.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/03/2014] [Accepted: 12/16/2014] [Indexed: 01/02/2023]
Abstract
The cross talk between thymocytes and the thymic epithelium is critical for T-cell development and the establishment of central tolerance. Medullary thymic epithelial cells (mTECs) are located in the thymic medulla and mediate the elimination of self-reactive thymocytes, thereby preventing the onset of autoimmunity. Previous studies identified the deubiquitinating enzyme CYLD as a critical regulator of T-cell development by activating proximal T-cell receptor signaling during the transition of double-positive to single-positive thymocytes. Here we evaluated the impact of the naturally occurring short-splice variant of the cyld gene (sCYLD) on the development and maturation of mTECs. We found that thymi of CYLD(ex7/8) mice, solely expressing sCYLD, displayed a reduced number of mature mTECs caused by a developmental block during the transition of immature to mature mTECs. Further, we could demonstrate an impaired negative selection of thymocytes in these mice. Our data demonstrate that inefficient negative selection in the thymus of CYLD(ex7/8) mice result from a defect in mTEC maturation.
Collapse
|
169
|
Multifaceted role of the ubiquitin ligase Itch in immune regulation. Immunol Cell Biol 2015; 93:452-60. [DOI: 10.1038/icb.2014.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022]
|
170
|
Rajan N, Elliott RJ, Smith A, Sinclair N, Swift S, Lord CJ, Ashworth A. The cylindromatosis gene product, CYLD, interacts with MIB2 to regulate notch signalling. Oncotarget 2014; 5:12126-40. [PMID: 25565632 PMCID: PMC4322962 DOI: 10.18632/oncotarget.2573] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/03/2014] [Indexed: 02/03/2023] Open
Abstract
CYLD, an ubiquitin hydrolase, has an expanding repertoire of regulatory roles in cell signalling and is dysregulated in a number of cancers. To dissect CYLD function we used a proteomics approach to identify CYLD interacting proteins and identified MIB2, an ubiquitin ligase enzyme involved in Notch signalling, as a protein which interacts with CYLD. Coexpression of CYLD and MIB2 resulted in stabilisation of MIB2 protein levels and was associated with reduced levels of JAG2, a ligand implicated in Notch signalling. Conversely, gene silencing of CYLD using siRNA, resulted in increased JAG2 expression and upregulation of Notch signalling. We investigated Notch pathway activity in skin tumours from patients with germline mutations in CYLD and found that JAG2 protein levels and Notch target genes were upregulated. In particular, RUNX1 was overexpressed in CYLD defective tumour cells. Finally, primary cell cultures of CYLD defective tumours demonstrated reduced viability when exposed to γ-secretase inhibitors that pharmacologically target Notch signalling. Taken together these data indicate an oncogenic dependency on Notch signalling and suggest potential novel therapeutic approaches for patients with CYLD defective tumours.
Collapse
Affiliation(s)
- Neil Rajan
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Richard J.R. Elliott
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Alice Smith
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Naomi Sinclair
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Sally Swift
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Alan Ashworth
- The CRUK Gene Function Laboratory and Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| |
Collapse
|
171
|
Urbanik T, Koehler BC, Wolpert L, Elßner C, Scherr AL, Longerich T, Kautz N, Welte S, Hövelmeyer N, Jäger D, Waisman A, Schulze-Bergkamen H. CYLD deletion triggers nuclear factor-κB-signaling and increases cell death resistance in murine hepatocytes. World J Gastroenterol 2014; 20:17049-17064. [PMID: 25493017 PMCID: PMC4258573 DOI: 10.3748/wjg.v20.i45.17049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/30/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the role of CYLD for receptor-mediated cell death of murine hepatocytes in acute liver injury models.
METHODS: Hepatocyte cell death in CYLD knockout mice (CYLD-/-) was analyzed by application of liver injury models for CD95- (Jo2) and tumor necrosis factor (TNF)-α- [D-GalN/lipopolysaccharide (LPS)] induced apoptosis. Liver injury was assessed by measurement of serum transaminases and histological analysis. Apoptosis induction was quantified by cleaved PARP staining and Western blotting of activated caspases. Nuclear factor (NF)-κB, ERK, Akt and jun amino-terminal kinases signaling were assessed. Primary Hepatocytes were isolated by two step-collagenase perfusion and treated with recombinant TNF-α and with the CD95-ligand Jo2. Cell viability was analyzed by MTT-assay.
RESULTS: Livers of CYLD-/- mice showed increased anti-apoptotic NF-κB signaling. In both applied liver injury models CYLD-/- mice showed a significantly reduced apoptosis sensitivity. After D-GalN/LPS treatment CYLD-/- mice exhibited significantly lower levels of alanine aminotransferase (ALT) (295 U/L vs 859 U/L, P < 0.05) and aspartate aminotransferase (AST) (560 U/L vs 1025 U/L, P < 0.01). After Jo injection CYLD-/- mice showed 2-fold lower ALT (50 U/L vs 110 U/L, P < 0.01) and lower AST (250 U/L vs 435 U/L, P < 0.01) serum-levels compared to WT mice. In addition, isolated CYLD-/- primary murine hepatocytes (PMH) were less sensitive towards death receptor-mediated apoptosis and showed increased levels of Bcl-2, XIAP, cIAP1/2, survivin and c-FLIP expression upon TNF- and CD95-receptor triggering, respectively. Inhibition of NF-κB activation by the inhibitor of NF-κB phosphorylation inhibitor BAY 11-7085 inhibited the expression of anti-apoptotic proteins and re-sensitized CYLD-/- PMH towards TNF- and CD95-receptor mediated cell death.
CONCLUSION: CYLD is a central regulator of apoptotic cell death in murine hepatocytes by controlling NF-κB dependent anti-apoptotic signaling.
Collapse
|
172
|
Ramakrishna S, Suresh B, Baek KH. Biological functions of hyaluronan and cytokine-inducible deubiquitinating enzymes. Biochim Biophys Acta Rev Cancer 2014; 1855:83-91. [PMID: 25481051 DOI: 10.1016/j.bbcan.2014.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/12/2014] [Accepted: 11/27/2014] [Indexed: 11/26/2022]
Abstract
The modification of proteins through post-translation and degradation by the ubiquitin-proteasome system plays a pivotal role in a broad array of biological processes. Reversal of this process by deubiquitination is a central step in the maintenance and regulation of cellular homeostasis. It now appears that the regulation of ubiquitin pathways by deubiquitinating enzymes (DUBs) could be used as targets for anticancer therapy. Recent success in inducing apoptosis in cancerous cells by USP17, a cytokine-inducible DUB encoding two hyaluronan binding motifs (HABMs) showing direct interaction with hyaluronan (HA), could prove a promising step in the development of DUBs containing HABMs as agents in anticancer therapeutics. In this review, we summarize the importance of hyaluronan (HA) in cancer, the role played by DUBs in apoptosis, and a possible relationship between DUBs and HA in cancerous cells, suggesting new strategies for applying DUB enzymes as potential anticancer therapeutics.
Collapse
Affiliation(s)
- Suresh Ramakrishna
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Bharathi Suresh
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea.
| |
Collapse
|
173
|
TNFR1-activated NF-κB signal transduction: regulation by the ubiquitin/proteasome system. Curr Opin Chem Biol 2014; 23:71-7. [DOI: 10.1016/j.cbpa.2014.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/20/2014] [Accepted: 10/20/2014] [Indexed: 12/14/2022]
|
174
|
Wang WY, Komatsu K, Huang Y, Wu J, Zhang W, Lee JY, Miyata M, Xu H, Li JD. CYLD negatively regulates nontypeable Haemophilus influenzae-induced IL-8 expression via phosphatase MKP-1-dependent inhibition of ERK. PLoS One 2014; 9:e112516. [PMID: 25389768 PMCID: PMC4229244 DOI: 10.1371/journal.pone.0112516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/06/2014] [Indexed: 12/28/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi), a Gram-negative bacterium, is the primary cause of otitis media in children and the exacerbation of chronic obstructive pulmonary disease in adults. A hallmark of both diseases is an overactive inflammatory response, including the upregulation of chemokines, such as interleukin-8 (IL-8). An appropriate inflammatory response is essential for eradicating pathogens. However, excessive inflammation can cause host tissue damage. Therefore, expression of IL-8 must be tightly regulated. We previously reported that NTHi induces IL-8 expression in an ERK-dependent manner. We also have shown that the deubiquitinase cylindromatosis (CYLD) suppresses NTHi-induced inflammation. However, the underlying molecular mechanism of how CYLD negatively regulates ERK-mediated IL-8 production is largely unknown. Here, we examine both human lung epithelial A549 cells and lung of Cyld−/− mice to show that CYLD specifically targets the activation of ERK. Interestingly, CYLD enhances NTHi-induced upregulation of another negative regulator, MAP Kinase Phosphatase-1 (MKP-1), which, in turn, leads to reduced ERK activation and subsequent suppression of IL-8. Taken together, the CYLD suppression of ERK-dependent IL-8 via MKP-1 may bring novel insights into the tight regulation of inflammatory responses and also lead to innovative therapeutic strategies for controlling these responses by targeting key negative regulators of inflammation.
Collapse
Affiliation(s)
- Wenzhuo Y. Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kensei Komatsu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Yuxian Huang
- Department of Infectious Disease, Huashan Hospital, Fudan University, Shanghai, China
- Department of Viral Hepatitis, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- * E-mail: (YH); (JDL)
| | - Jing Wu
- Department of Infectious Disease, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Disease, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji-Yun Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Masanori Miyata
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Haidong Xu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Jian-Dong Li
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail: (YH); (JDL)
| |
Collapse
|
175
|
MicroRNA-362-5p promotes tumor growth and metastasis by targeting CYLD in hepatocellular carcinoma. Cancer Lett 2014; 356:809-18. [PMID: 25449782 DOI: 10.1016/j.canlet.2014.10.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 02/07/2023]
Abstract
MicroRNAs are increasingly recognized as playing important roles in hepatocellular carcinoma (HCC) tumorigenesis. Here we identified an essential role for miR-362-5p in the regulation of HCC development. We found that miR-362-5p was significantly up-regulated in HCCs and associated with HCC progression. Inhibition of miR-362-5p in HCC cells dramatically decreased cell proliferation, clonogenicity, migration and invasion in vitro as well as tumor growth and metastasis in vivo. We subsequently identified that CYLD was a target gene of miR-362-5p. Furthermore, knockdown of CYLD expression partially counteracted the tumor suppressive effects of miR-362-5p inhibitors. Finally, we have shown that miR-362-5p acts through CYLD to activate the NF-κB signaling pathway, which contributes to HCC progression. Taken together, our findings indicate that miR-362-5p belongs to a new class of oncomiR that regulates HCC cell aggressiveness, thus providing new insight into the molecular mechanisms underlying HCC development. This study also suggests that miR-362-5p may serve as a novel therapeutic target for miRNA based HCC therapy.
Collapse
|
176
|
Shostak K, Zhang X, Hubert P, Göktuna SI, Jiang Z, Klevernic I, Hildebrand J, Roncarati P, Hennuy B, Ladang A, Somja J, Gothot A, Close P, Delvenne P, Chariot A. NF-κB-induced KIAA1199 promotes survival through EGFR signalling. Nat Commun 2014; 5:5232. [PMID: 25366117 PMCID: PMC4241993 DOI: 10.1038/ncomms6232] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022] Open
Abstract
Constitutive activation of EGFR- and NF-κB-dependent pathways is a hallmark of cancer, yet signalling proteins that connect both oncogenic cascades are poorly characterized. Here we define KIAA1199 as a BCL-3- and p65-dependent gene in transformed keratinocytes. KIAA1199 expression is enhanced on human papillomavirus (HPV) infection and is aberrantly expressed in clinical cases of cervical (pre)neoplastic lesions. Mechanistically, KIAA1199 binds Plexin A2 and protects from Semaphorin 3A-mediated cell death by promoting EGFR stability and signalling. Moreover, KIAA1199 is an EGFR-binding protein and KIAA1199 deficiency impairs EGF-dependent Src, MEK1 and ERK1/2 phosphorylations. Therefore, EGFR stability and signalling to downstream kinases requires KIAA1199. As such, KIAA1199 promotes EGF-mediated epithelial-mesenchymal transition (EMT). Taken together, our data define KIAA1199 as an oncogenic protein induced by HPV infection and constitutive NF-κB activity that transmits pro-survival and invasive signals through EGFR signalling.
Collapse
Affiliation(s)
- Kateryna Shostak
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Xin Zhang
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Pascale Hubert
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Experimental Pathology, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Cancer, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Serkan Ismail Göktuna
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Zheshen Jiang
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Iva Klevernic
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Julien Hildebrand
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Patrick Roncarati
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Experimental Pathology, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Cancer, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Benoit Hennuy
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] GIGA Transcriptomics Facility, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Aurélie Ladang
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Joan Somja
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Experimental Pathology, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Cancer, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - André Gothot
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] GIGA-Infection, Immunity and Inflammation, Department of Medicine/Hematology, University of Liege, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Pierre Close
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Philippe Delvenne
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Experimental Pathology, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Cancer, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Alain Chariot
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [4] Walloon Excellence in Life Sciences and Biotechnology (WELBIO) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| |
Collapse
|
177
|
Welte S, Urbanik T, Elßner C, Kautz N, Koehler BC, Waldburger N, Bermejo JL, Pinna F, Weiss KH, Schemmer P, Jaeger D, Longerich T, Breuhahn K, Schulze-Bergkamen H. Nuclear expression of the deubiquitinase CYLD is associated with improved survival in human hepatocellular carcinoma. PLoS One 2014; 9:e110591. [PMID: 25329885 PMCID: PMC4199737 DOI: 10.1371/journal.pone.0110591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/19/2014] [Indexed: 01/26/2023] Open
Abstract
Background & Aims The deubiquitinase CYLD removes (K-63)-linked polyubiquitin chains from proteins involved in NF-κB, Wnt/ß-catenin and Bcl-3 signaling. Reduced CYLD expression has been reported in different tumor entities, including hepatocellular carcinoma (HCC). Furthermore, loss of CYLD has been shown to contribute to HCC development in knockout animal models. This study aimed to assess subcellular CYLD expression in tumor tissues and its prognostic significance in HCC patients undergoing liver resection or liver transplantation. Methods Subcellular localization of CYLD was assessed by immunohistochemistry in tumor tissues of 95 HCC patients undergoing liver resection or transplantation. Positive nuclear CYLD staining was defined as an immunhistochemical (IHC) score ≥3. Positive cytoplasmic CYLD staining was defined as an IHC score ≥6. The relationship with clinicopathological parameters was investigated. Cell culture experiments were performed to analyze subcellular CYLD expression in vitro. Results Cytoplasmic CYLD expression was observed in 57 out of 95 (60%) HCC specimens (cyt°CYLD+). Nuclear CYLD staining was positive in 52 out of 95 specimens (55%, nucCYLD+). 13 out of 52 nucCYLD+ patients (25%) showed a lack of cytoplasmic CYLD expression. nucCYLD+ was associated with prolonged overall survival in patients after resection or liver transplantation (P = 0.007). 5-year overall survival rates were 63% in nucCYLD+vs. 26% in nucCYLD- patients. Nuclear CYLD staining strongly correlated with tumor grading (P<0.001) and Ki67 positivity (P = 0.005). nucCYLD+ did not prove to be an independent prognostic parameter. In vitro, Huh7, Hep3B and HepG2 showed reduced CYLD levels compared to the non-malignant liver cell line THLE-2. Induction of CYLD expression by doxorubicin treatment led to increased cytoplasmic and nuclear expression of CYLD. Conclusions Expression of nuclear CYLD is a novel prognostic factor for improved survival in patients with HCC undergoing liver resection or transplantation.
Collapse
Affiliation(s)
- Stefan Welte
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
- * E-mail:
| | - Toni Urbanik
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Christin Elßner
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Nicole Kautz
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Bruno Christian Koehler
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Nina Waldburger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Justo Lorenzo Bermejo
- Institute of Medical Biometry and Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Federico Pinna
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Karl-Heinz Weiss
- Department of Gastroenterology, Toxicology, and Infectious Diseases, Heidelberg University Hospital, Internal Medicine IV, Heidelberg, Germany
| | - Peter Schemmer
- Department of General and Transplant Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Jaeger
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Henning Schulze-Bergkamen
- National Center for Tumor Diseases, Department of Medical Oncology, Internal Medicine VI, Heidelberg University Hospital, Heidelberg, Germany
- Department of Gastroenterology, Diabetology and Rheumatology, Internal Medicine II, Marien-Hospital, Wesel, Germany
| |
Collapse
|
178
|
Xu C, He X, Zheng Z, Zhang Z, Wei C, Guan K, Hou L, Zhang B, Zhu L, Cao Y, Zhang Y, Cao Y, Ma S, Wang P, Zhang P, Xu Q, Ling Y, Yang X, Zhong H. Downregulation of microRNA miR-526a by enterovirus inhibits RIG-I-dependent innate immune response. J Virol 2014; 88:11356-68. [PMID: 25056901 PMCID: PMC4178780 DOI: 10.1128/jvi.01400-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/08/2014] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Retinoic acid-inducible gene I (RIG-I) is an intracellular RNA virus sensor that induces type I interferon-mediated host-protective innate immunity against viral infection. Although cylindromatosis (CYLD) has been shown to negatively regulate innate antiviral response by removing K-63-linked polyubiquitin from RIG-I, the regulation of its expression and the underlying regulatory mechanisms are still incompletely understood. Here we show that RIG-I activity is regulated by inhibition of CYLD expression mediated by the microRNA miR-526a. We found that viral infection specifically upregulates miR-526a expression in macrophages via interferon regulatory factor (IRF)-dependent mechanisms. In turn, miR-526a positively regulates virus-triggered type I interferon (IFN-I) production, thus suppressing viral replication, the underlying mechanism of which is the enhancement of RIG-I K63-linked ubiquitination by miR-526a via suppression of the expression of CYLD. Remarkably, virus-induced miR-526a upregulation and CYLD downregulation are blocked by enterovirus 71 (EV71) 3C protein, while ectopic miR-526a expression inhibits the replication of EV71 virus. The collective results of this study suggest a novel mechanism of the regulation of RIG-I activity during RNA virus infection by miR-526a and suggest a novel mechanism for the evasion of the innate immune response controlled by EV71. IMPORTANCE RNA virus infection upregulates the expression of miR-526a in macrophages through IRF-dependent pathways. In turn, miR-526a positively regulates virus-triggered type I IFN production and inhibits viral replication, the underlying mechanism of which is the enhancement of RIG-I K-63 ubiquitination by miR-526a via suppression of the expression of CYLD. Remarkably, virus-induced miR-526a upregulation and CYLD downregulation are blocked by enterovirus 71 (EV71) 3C protein; cells with overexpressed miR-526a were highly resistant to EV71 infection. The collective results of this study suggest a novel mechanism of the regulation of RIG-I activity during RNA virus infection by miR-526a and propose a novel mechanism for the evasion of the innate immune response controlled by EV71.
Collapse
Affiliation(s)
- Changzhi Xu
- Beijing Institute of Biotechnology, Beijing, China Institute of Health Science, School of Life Sciences, AnHui University, Hefei, Anhui, China
| | - Xiang He
- Beijing Institute of Biotechnology, Beijing, China
| | - Zirui Zheng
- Beijing Institute of Biotechnology, Beijing, China Institute of Health Science, School of Life Sciences, AnHui University, Hefei, Anhui, China
| | - Zhe Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Beijing, China
| | - Kai Guan
- Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, China
| | - Buchang Zhang
- Institute of Health Science, School of Life Sciences, AnHui University, Hefei, Anhui, China
| | - Lin Zhu
- Institute of Health Science, School of Life Sciences, AnHui University, Hefei, Anhui, China
| | - Yuan Cao
- Department of Laboratory Medicine, General Hospital of Jinan Military Region, Jinan, Shandong, China
| | | | - Ye Cao
- Beijing Institute of Biotechnology, Beijing, China
| | - Shengli Ma
- Beijing Institute of Biotechnology, Beijing, China
| | - Penghao Wang
- Beijing Institute of Biotechnology, Beijing, China
| | - Pingping Zhang
- Beijing Institute of Biotechnology, Beijing, China Department of Laboratory Medicine, General Hospital of Jinan Military Region, Jinan, Shandong, China
| | - Quanbin Xu
- Beijing Institute of Biotechnology, Beijing, China
| | - Youguo Ling
- Beijing Institute of Biotechnology, Beijing, China
| | - Xiao Yang
- Beijing Institute of Biotechnology, Beijing, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
179
|
Chen Y, Wang Z, Wang P, Li D, Zhou J, Wu S. CYLD negatively regulates Hippo signaling by limiting Hpo phosphorylation in Drosophila. Biochem Biophys Res Commun 2014; 452:808-12. [PMID: 25201729 DOI: 10.1016/j.bbrc.2014.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Cylindromatosis (CYLD), a deubiquitinase and regulator of microtubule dynamics, has important roles in the regulation of inflammation, immune response, apoptosis, mitosis, cell migration and tumorigenesis. Although great progress has been made in the biochemical and cellular functions of CYLD, its role in animal development remains elusive. In this study, we identified Drosophila CYLD (dCYLD) as a negative regulator of the Hippo pathway in vivo. dCYLD associates and colocalizes with Hpo, a core component of the Hippo pathway, in the cytoplasm, and decreases Hpo activity through limiting its phosphorylation at T195. We also showed that dCYLD limits Hippo signal transduction as evidenced by decreasing phosphorylation and thereby increasing activity of Yki, the key downstream effector of the Hippo pathway. These findings uncover dCYLD as a negative regulator of the Hippo pathway and provide new insights into the physiological function of dCYLD in animal development.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Zaizhu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Ping Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Shian Wu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
180
|
Yang L, Karin M. Roles of tumor suppressors in regulating tumor-associated inflammation. Cell Death Differ 2014. [PMID: 25190145 DOI: 10.1038/cdd.2014.131.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Loss or silencing of tumor suppressors (TSs) promotes neoplastic transformation and malignant progression. To date, most work on TS has focused on their cell autonomous effects. Recent evidence, however, demonstrates an important noncell autonomous role for TS in the control of tumor-associated inflammation. We review evidence from clinical data sets and mouse model studies demonstrating enhanced inflammation and altered tumor microenvironment (TME) upon TS inactivation. We discuss clinical correlations between tumor-associated inflammation and inactivation of TS, and their therapeutic implications. This review sets forth the concept that TS can also suppress tumor-associated inflammation, a concept that provides new insights into tumor-host interactions. We also propose that in some cases the loss of TS function in cancer can be overcome through inhibition of the resulting inflammatory response, regardless whether it is a direct or an indirect consequence of TS loss.
Collapse
Affiliation(s)
- L Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, USA
| | - M Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology and Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| |
Collapse
|
181
|
Yang L, Karin M. Roles of tumor suppressors in regulating tumor-associated inflammation. Cell Death Differ 2014; 21:1677-86. [PMID: 25190145 PMCID: PMC4211367 DOI: 10.1038/cdd.2014.131] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 12/21/2022] Open
Abstract
Loss or silencing of tumor suppressors (TSs) promotes neoplastic transformation and malignant progression. To date, most work on TS has focused on their cell autonomous effects. Recent evidence, however, demonstrates an important noncell autonomous role for TS in the control of tumor-associated inflammation. We review evidence from clinical data sets and mouse model studies demonstrating enhanced inflammation and altered tumor microenvironment (TME) upon TS inactivation. We discuss clinical correlations between tumor-associated inflammation and inactivation of TS, and their therapeutic implications. This review sets forth the concept that TS can also suppress tumor-associated inflammation, a concept that provides new insights into tumor-host interactions. We also propose that in some cases the loss of TS function in cancer can be overcome through inhibition of the resulting inflammatory response, regardless whether it is a direct or an indirect consequence of TS loss.
Collapse
Affiliation(s)
- L Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, USA
| | - M Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology and Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| |
Collapse
|
182
|
Abstract
The NF-κB (nuclear factor κB) transcription factor family is a pleiotropic regulator of many cellular pathways, providing a mechanism for the cell to respond to a wide variety of stimuli and environmental challenges. It is not surprising therefore that an important component of NF-κB's function includes regulation of the cell cycle. However, this aspect of its behaviour is often overlooked and receives less attention than its ability to induce inflammatory gene expression. In the present article, we provide an updated review of the current state of our knowledge about integration of NF-κB activity with cell cycle regulation, including newly characterized direct and indirect target genes in addition to the mechanisms through which NF-κB itself can be regulated by the cell cycle.
Collapse
|
183
|
Pannem RR, Dorn C, Hellerbrand C, Massoumi R. Cylindromatosis gene CYLD regulates hepatocyte growth factor expression in hepatic stellate cells through interaction with histone deacetylase 7. Hepatology 2014; 60:1066-81. [PMID: 24811579 DOI: 10.1002/hep.27209] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 12/20/2022]
Abstract
UNLABELLED Hepatic fibrosis is considered as a physiological wound-healing response to liver injury. The process involves several factors, such as hepatocyte growth factor (HGF), which restrains hepatic injury and facilitates reversibility of fibrotic reaction in response to an acute insult. Chronic liver injury and sustained inflammation cause progressive fibrosis and, ultimately, organ dysfunction. The mechanisms tipping the balance from restoration to progressive liver tissue scarring are not well understood. In the present study, we identify a mechanism in which the tumor-suppressor gene, cylindromatosis (CYLD), confers protection from hepatocellular injury and fibrosis. Mice lacking CYLD (CYLD-/-) were highly susceptible to hepatocellular damage, inflammation, and fibrosis and revealed significantly lower hepatic HGF levels, compared to wild-type (WT) animals. Exogenous application of HGF rescued the liver injury phenotype of CYLD-/- mice. In the absence of CYLD, gene transcription of HGF in hepatic stellate cells was repressed through binding of histone deacetylase 7 (HDAC7) to the promoter of HGF. In WT cells, CYLD removed HDAC7 from the HGF promoter and induced HGF expression. Of note, this interaction occurred independently of the deubiquitinating activity of CYLD. CONCLUSIONS Our findings highlight a novel link between CYLD and HDAC7, offering mechanistic insight into the contribution of these proteins to progression of liver disease. Thus, through regulation of HGF level, CYLD ameliorates hepatocellular damage and liver fibrogenesis.
Collapse
Affiliation(s)
- Rajeswara R Pannem
- Department of Laboratory Medicine, Medicon Village, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
184
|
Eguether T, Ermolaeva MA, Zhao Y, Bonnet MC, Jain A, Pasparakis M, Courtois G, Tassin AM. The deubiquitinating enzyme CYLD controls apical docking of basal bodies in ciliated epithelial cells. Nat Commun 2014; 5:4585. [PMID: 25134987 DOI: 10.1038/ncomms5585] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/03/2014] [Indexed: 12/20/2022] Open
Abstract
CYLD is a tumour suppressor gene mutated in familial cylindromatosis, a genetic disorder leading to the development of skin appendage tumours. It encodes a deubiquitinating enzyme that removes Lys63- or linear-linked ubiquitin chains. CYLD was shown to regulate cell proliferation, cell survival and inflammatory responses, through various signalling pathways. Here we show that CYLD localizes at centrosomes and basal bodies via interaction with the centrosomal protein CAP350 and demonstrate that CYLD must be both at the centrosome and catalytically active to promote ciliogenesis independently of NF-κB. In transgenic mice engineered to mimic the smallest truncation found in cylindromatosis patients, CYLD interaction with CAP350 is lost disrupting CYLD centrosome localization, which results in cilia formation defects due to impairment of basal body migration and docking. These results point to an undiscovered regulation of ciliogenesis by Lys63 ubiquitination and provide new perspectives regarding CYLD function that should be considered in the context of cylindromatosis.
Collapse
Affiliation(s)
- Thibaut Eguether
- 1] Institut Curie/INSERM U759, Campus Universitaire, Bat 112, 91405 Orsay Cedex, France [2] Université Pierre et Marie Curie, 75005 Paris, France [3]
| | - Maria A Ermolaeva
- Institute for Genetics, Center for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Yongge Zhao
- Laboratory of Host Defenses, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marion C Bonnet
- 1] Institute for Genetics, Center for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany [2] Excellence Research Chair, Université Européenne de Bretagne, IRSET/INSERM UMR1085, Faculté de Pharmacie, Université de Rennes 1, 35000 Rennes, France
| | - Ashish Jain
- Laboratory of Host Defenses, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Gilles Courtois
- 1] Université Grenoble Alpes, 38000 Grenoble, France [2] INSERM U1038/BGE/Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, 38054 Grenoble, France
| | - Anne-Marie Tassin
- 1] Institut Curie/INSERM U759, Campus Universitaire, Bat 112, 91405 Orsay Cedex, France [2] CNRS, Centre de Génétique Moléculaire, UPR3404, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
185
|
Cellular proteolytic modification of tumor-suppressor CYLD is critical for the initiation of human T-cell acute lymphoblastic leukemia. Blood Cells Mol Dis 2014; 54:132-8. [PMID: 25130432 DOI: 10.1016/j.bcmd.2014.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023]
Abstract
There exists a general recognition of the fact that post translational modification of CYLD protein through proteolytic cleavage by MALT-1 results in sustained cellular NF-kB activity which is conspicuously found to be associated with cancer in general and hematological malignancies in particular. The present study was directed to understand the contribution of MALT-1 and deubiquitinase CYLD to the initiation of T-cell acute lymphoblastic leukemia (T-ALL). Such a study revealed for the first time that the 35kDa CYLD cleaved factor generated by MALT-1 mediated proteolytic cleavage was conspicuously present in human T- ALL subjects of pediatric age group. Further, over-expression of this 35kDa CYLD factor within normal human peripheral blood mononuclear cells had the inherent capacity to program the genome of these cells resulting in T-cell lineage ALL. Based upon these results, we propose that MALT1 inhibitors may be of crucial importance in the treatment of T-ALL subjects of pediatric age group.
Collapse
|
186
|
Nfkb1 is a haploinsufficient DNA damage-specific tumor suppressor. Oncogene 2014; 34:2807-13. [PMID: 25043302 PMCID: PMC4302074 DOI: 10.1038/onc.2014.211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/30/2014] [Accepted: 06/02/2014] [Indexed: 12/12/2022]
Abstract
NF-κB proteins play a central and subunit-specific role in the response to DNA damage. Previous work identified p50/NF-κB1 as being necessary for cytotoxicity in response to DNA alkylation damage. Given the importance of damage-induced cell death for the maintenance of genomic stability, we examined whether Nfkb1 acts as a tumor suppressor in the setting of alkylation damage. Hprt mutation analysis demonstrates that Nfkb1(-/-) cells accumulate more alkylator-induced, but not ionizing radiation (IR)-induced, mutations than similarly treated wild-type cells. Subsequent in vivo tumor induction studies reveal that following alkylator treatment, but not IR, Nfkb1(-/-) mice develop more lymphomas than similarly treated Nfkb1(+/+) animals. Heterozygous mice develop lymphomas at an intermediate rate and retain functional p50 in their tumors, indicating that Nfkb1 acts in a haploinsufficient manner. Analysis of human cancers, including therapy-related myeloid neoplasms, demonstrates that NFKB1 mRNA expression is downregulated compared with control samples in multiple hematological malignancies. These data indicate that Nfkb1 is a haploinsufficient, pathway-specific tumor suppressor that prevents the development of hematologic malignancy in the setting of alkylation damage.
Collapse
|
187
|
Cell death and deubiquitinases: perspectives in cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:435197. [PMID: 25121098 PMCID: PMC4119901 DOI: 10.1155/2014/435197] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/19/2022]
Abstract
The process of cell death has important physiological implications. At the organism level it is mostly involved in maintenance of tissue homeostasis. At the cellular level, the strategies of cell death may be categorized as either suicide or sabotage. The mere fact that many of these processes are programmed and that these are often deregulated in pathological conditions is seed to thought. The various players that are involved in these pathways are highly regulated. One of the modes of regulation is via post-translational modifications such as ubiquitination and deubiquitination. In this review, we have first dealt with the different modes and pathways involved in cell death and then we have focused on the regulation of several proteins in these signaling cascades by the different deubiquitinating enzymes, in the perspective of cancer. The study of deubiquitinases is currently in a rather nascent stage with limited knowledge both in vitro and in vivo, but the emerging roles of the deubiquitinases in various processes and their specificity have implicated them as potential targets from the therapeutic point of view. This review throws light on another aspect of cancer therapeutics by targeting the deubiquitinating enzymes.
Collapse
|
188
|
Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells. Oncogene 2014; 34:2251-60. [PMID: 24909169 DOI: 10.1038/onc.2014.159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/28/2014] [Accepted: 04/28/2014] [Indexed: 01/01/2023]
Abstract
CYLD is a deubiquitinating (DUB) enzyme that has a pivotal role in modulating nuclear factor kappa B (NF-κB) signaling pathways by removing the lysine 63- and linear-linked ubiquitin chain from substrates such as tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF6. Loss of CYLD activity is associated with tumorigenicity, and levels of CYLD are lost or downregulated in different types of human tumors. In the present study, we found that high CYLD expression was associated with better overall survival and relapse-free neuroblastoma patient outcome, as well as inversely correlated with the stage of neuroblastoma. Retinoic acid-mediated differentiation of neuroblastoma restored CYLD expression and promoted SUMOylation of CYLD. This posttranslational modification inhibited deubiquitinase activity of CYLD against TRAF2 and TRAF6 and facilitated NF-κB signaling. Overexpression of non-SUMOylatable mutant CYLD in neuroblastoma cells reduced retinoic acid-induced NF-κB activation and differentiation of cells, but instead promoted cell death.
Collapse
|
189
|
Gringhuis SI, Kaptein TM, Wevers BA, Mesman AW, Geijtenbeek TBH. Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKε- and CYLD-dependent Bcl3 activation. Nat Commun 2014; 5:3898. [PMID: 24867235 DOI: 10.1038/ncomms4898] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/15/2014] [Indexed: 12/24/2022] Open
Abstract
Carbohydrate-specific signalling through DC-SIGN provides dendritic cells with plasticity to tailor immunity to the nature of invading microbes. Here we demonstrate that recognition of fucose-expressing extracellular pathogens like Schistosoma mansoni and Helicobacter pylori by DC-SIGN favors T helper cell type-2 (TH2) responses via activation of atypical NF-κB family member Bcl3. Crosstalk between TLR and DC-SIGN signalling results in TLR-induced MK2-mediated phosphorylation of LSP1, associated with DC-SIGN, upon fucose binding. Subsequently, IKKε and CYLD are recruited to phosphorylated LSP1. IKKε activation is pivotal for suppression of CYLD deubiquitinase activity and subsequent nuclear translocation of ubiquitinated Bcl3. Bcl3 activation represses TLR-induced proinflammatory cytokine expression, while enhancing interleukin-10 (IL-10) and TH2-attracting chemokine expression, shifting TH differentiation from TH1 to TH2 polarization. Thus, DC-SIGN directs adaptive TH2 immunity to fucose-expressing pathogens via an IKKε-CYLD-dependent signalling pathway leading to Bcl3 activation, which might be targeted in vaccination strategies or to prevent aberrant inflammation and allergy.
Collapse
Affiliation(s)
- Sonja I Gringhuis
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Tanja M Kaptein
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Brigitte A Wevers
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Annelies W Mesman
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
190
|
Li W, Liu J, Zhao Y. PKM2 inhibitor shikonin suppresses TPA-induced mitochondrial malfunction and proliferation of skin epidermal JB6 cells. Mol Carcinog 2014; 53:403-12. [PMID: 23255458 PMCID: PMC4827433 DOI: 10.1002/mc.21988] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/09/2012] [Accepted: 11/09/2012] [Indexed: 11/10/2022]
Abstract
Chemoprevention has been a pivotal and effective strategy during the skin cancer treatment. Using human skin normal and tumor samples, we demonstrated that both the expression and activity levels of pyruvate kinase M2 (PKM2) were higher in skin tumor tissues than normal tissues, suggesting that PKM2, one of important metabolic enzyme, might serve as a target for skin cancer prevention and/or therapy. Shikonin, a small-molecule active chemical, has been studied as an anti-cancer drug candidate in human cancer models. However, the mechanism of action and the chemopreventive potential of shikonin are unclear. Herein, we used the skin epidermal JB6 P+ cells and demonstrated that shikonin suppressed the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) induced neoplastic cell transformation and PKM2 activation in the early stage of carcinogenesis. Mitochondrial functions were inhibited by TPA treatment, as indicated by reduced mitochondrial membrane potential and mitochondrial respiration, which were restored by shikonin. We also examined the levels of lactate as a glycolysis marker, and shikonin suppressed its increase caused by tumor promoter treatment. Modulation of cell metabolism by shikonin was associated with G2-M phase accumulation, and Fra-1 (a major subunit of activator protein 1 in skin tumorigenesis) downregulation. In addition, we demonstrated that AMP-activated protein kinase (AMPK), an energy sensor, which is inactivated by TPA, shikonin could reverse AMPK activity. These results suggest that shikonin bears chemopreventive potential for human skin cancers in which PKM2 is upregulated, which might be mediated by inhibiting oncogenic activation, PKM2 activation, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Wenjuan Li
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana
| | | | | |
Collapse
|
191
|
Schworer SA, Smirnova II, Kurbatova I, Bagina U, Churova M, Fowler T, Roy AL, Degterev A, Poltorak A. Toll-like receptor-mediated down-regulation of the deubiquitinase cylindromatosis (CYLD) protects macrophages from necroptosis in wild-derived mice. J Biol Chem 2014; 289:14422-33. [PMID: 24706750 DOI: 10.1074/jbc.m114.547547] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pathogen recognition by the innate immune system initiates the production of proinflammatory cytokines but can also lead to programmed host cell death. Necroptosis, a caspase-independent cell death pathway, can contribute to the host defense against pathogens or cause damage to host tissues. Receptor-interacting protein (RIP1) is a serine/threonine kinase that integrates inflammatory and necroptotic responses. To investigate the mechanisms of RIP1-mediated activation of immune cells, we established a genetic screen on the basis of RIP1-mediated necroptosis in wild-derived MOLF/EiJ mice, which diverged from classical laboratory mice over a million years ago. When compared with C57BL/6, MOLF/EiJ macrophages were resistant to RIP1-mediated necroptosis induced by Toll-like receptors. Using a forward genetic approach in a backcross panel of mice, we identified cylindromatosis (CYLD), a deubiquitinase known to act directly on RIP1 and promote necroptosis in TNF receptor signaling, as the gene conferring the trait. We demonstrate that CYLD is required for Toll-like receptor-induced necroptosis and describe a novel mechanism by which CYLD is down-regulated at the transcriptional level in MOLF/EiJ macrophages to confer protection from necroptosis.
Collapse
Affiliation(s)
- Stephen A Schworer
- From the Graduate Program in Immunology, Medical Scientist Training Program
| | | | - Irina Kurbatova
- the Institute of Biology of the Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Republic of Karelia 185910, Russia, and
| | - Uliana Bagina
- the Petrozavodsk State University, Petrozavodsk, Republic of Karelia 185910, Russia
| | - Maria Churova
- the Institute of Biology of the Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Republic of Karelia 185910, Russia, and
| | - Trent Fowler
- Department of Developmental, Molecular, and Chemical Biology, and
| | - Ananda L Roy
- From the Graduate Program in Immunology, Department of Developmental, Molecular, and Chemical Biology, and Graduate Program in Genetics, Tufts University School of Medicine, Sackler School of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| | - Alexei Degterev
- Department of Developmental, Molecular, and Chemical Biology, and
| | - Alexander Poltorak
- From the Graduate Program in Immunology, the Institute of Biology of the Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Republic of Karelia 185910, Russia, and Graduate Program in Genetics, Tufts University School of Medicine, Sackler School of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111,
| |
Collapse
|
192
|
Kaul D, Sharma S, Sharma M, Arora M, Arora M. Arsenic programmes cellular genomic-immunity through miR-2909 RNomics. Gene 2014; 536:326-31. [PMID: 24361962 DOI: 10.1016/j.gene.2013.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
It is widely recognized that human cells are equipped with innate antiviral-RNA armour involving the production of type I interferons and APOBEC3G (apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G) gene-product. Although arsenic has been shown to have paradoxical effect on one arm of this armour involving APOBEC3G, the exact molecular mechanism of its action in this regard is far from clear. The present study, addressed to explore as to how arsenic programmes this innate antiviral-RNA cellular-sensing pathway, clearly revealed that arsenic programmes this innate cellular antiviral genomic response through its inherent capacity to initiate cellular miR-2909 RNomics pathway, involving not only the modulation of APOBEC3G gene but also KLF4 (Kruppel-like factor 4) dependent regulation of gene coding for IKBKε (Inhibitor of nuclear factor kappa-B kinase subunit epsilon) which in turn modulates RIG-I (retinoic acid-inducible gene 1) pathway responsible for the production of IFNβ (interferon beta) through restriction of CYLD (Cylindromatosis) deubiqutinating activity. This restricted inhibitory enzyme activity of CYLD upon NFkB (nuclear factor kappa-light-chain-enhancer of activated B cells) also ensures sustained expression of miR-2909. Our results for the first time show that cellular miR-2909 RNomics may constitute an innate genomic armour to promote as well as restrict retroviral infection.
Collapse
Affiliation(s)
- Deepak Kaul
- Department of Experimental Medicine & Biotechnology, Post-graduate Institute of Medical Education & Research, Chandigarh 160012, India.
| | - S Sharma
- Department of Experimental Medicine & Biotechnology, Post-graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - M Sharma
- Department of Experimental Medicine & Biotechnology, Post-graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - M Arora
- Department of Experimental Medicine & Biotechnology, Post-graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Mansi Arora
- Department of Experimental Medicine & Biotechnology, Post-graduate Institute of Medical Education & Research, Chandigarh 160012, India
| |
Collapse
|
193
|
Yu X, Deng Q, Bode AM, Dong Z, Cao Y. The role of necroptosis, an alternative form of cell death, in cancer therapy. Expert Rev Anticancer Ther 2014; 13:883-93. [PMID: 23875666 DOI: 10.1586/14737140.2013.811180] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Programmed cell death plays an important role in animal development, tissue homeostasis and eliminating harmful or virally infected cells. Necroptosis, a novel form of programmed cell death, is caspase independent but RIPK and RIPK3 dependent. Moreover, it is suggested that necroptosis can be specifically inhibited by small molecular inhibitors such as necrostatin-1. Its signaling pathways have something in common with apoptosis, although the molecular mechanisms of necroptosis need to be further elucidated. Previous evidences suggest that necroptosis has significant effects in regulating various physiological processes and disease, such as ischemic brain injury, immune system disorders and cancer. In this review, the molecular mechanism of necroptosis is described and how it could be manipulated in the treatment of cancer is summarized.
Collapse
Affiliation(s)
- Xinfang Yu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, 110 Xiang Ya Road, Changsha 410078, Hunan, China
| | | | | | | | | |
Collapse
|
194
|
Xia JT, Chen LZ, Jian WH, Wang KB, Yang YZ, He WL, He YL, Chen D, Li W. MicroRNA-362 induces cell proliferation and apoptosis resistance in gastric cancer by activation of NF-κB signaling. J Transl Med 2014; 12:33. [PMID: 24495516 PMCID: PMC3916099 DOI: 10.1186/1479-5876-12-33] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/30/2014] [Indexed: 12/25/2022] Open
Abstract
Background According to cancer-related microRNA (miRNA) expression microarray research available in public databases, miR-362 expression is elevated in gastric cancer. However, the expression and biological role of miR-362 in gastric progression remain unclear. Methods miR-362 expression levels in gastric cancer tissues and cell lines were determined using real-time PCR. The roles of miR-362, in promoting gastric cancer cell proliferation and apoptosis resistance, were assessed by different biological assays, such as colony assay, flow cytometry and TUNEL assay. The effect of miR-362 on NF-κB activation was investigated using the luciferase reporter assay, fluorescent immunostaining. Results MiR-362 overexpression induced cell proliferation, colony formation, and resistance to cisplatin-induced apoptosis in BGC-823 and SGC-7901 gastric cancer cells. MiR-362 increased NF-κB activity and relative mRNA expression of NF-κB–regulated genes, and induced nuclear translocation of p65. Expression of the tumor suppressor CYLD was inhibited by miR-362 in gastric cancer cells; miR-362 levels were inversely correlated with CYLD expression in gastric cancer tissue. MiR-362 downregulated CYLD expression by binding its 3′ untranslated region. NF-κB activation was mechanistically associated with siRNA-mediated downregulation of CYLD. MiR-362 inhibitor reversed all the effects of miR-362. Conclusion The results suggest that miR-362 plays an important role in repressing the tumor suppressor CYLD and present a novel mechanism of miRNA-mediated NF-κB activation in gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - De Chen
- Department of General Surgery, The third Affiliated Hospital, Guangzhou Medical University, #63 Duobao Road, Guangzhou, Guangdong 510150, China.
| | | |
Collapse
|
195
|
CYLD regulates spindle orientation by stabilizing astral microtubules and promoting dishevelled-NuMA-dynein/dynactin complex formation. Proc Natl Acad Sci U S A 2014; 111:2158-63. [PMID: 24469800 DOI: 10.1073/pnas.1319341111] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oriented cell division is critical for cell fate specification, tissue organization, and tissue homeostasis, and relies on proper orientation of the mitotic spindle. The molecular mechanisms underlying the regulation of spindle orientation remain largely unknown. Herein, we identify a critical role for cylindromatosis (CYLD), a deubiquitinase and regulator of microtubule dynamics, in the control of spindle orientation. CYLD is highly expressed in mitosis and promotes spindle orientation by stabilizing astral microtubules and deubiquitinating the cortical polarity protein dishevelled. The deubiquitination of dishevelled enhances its interaction with nuclear mitotic apparatus, stimulating the cortical localization of nuclear mitotic apparatus and the dynein/dynactin motor complex, a requirement for generating pulling forces on astral microtubules. These findings uncover CYLD as an important player in the orientation of the mitotic spindle and cell division and have important implications in health and disease.
Collapse
|
196
|
Li D, Gao J, Yang Y, Sun L, Suo S, Luo Y, Shui W, Zhou J, Liu M. CYLD coordinates with EB1 to regulate microtubule dynamics and cell migration. Cell Cycle 2014; 13:974-83. [PMID: 24552808 DOI: 10.4161/cc.27838] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cylindromatosis (CYLD), a deubiquitinase involved in inflammation and tumorigenesis via the modulation of cell signaling, has recently been identified as a critical regulator of microtubule dynamics. CYLD has also been shown to stimulate cell migration and thereby contribute to normal physiological processes. However, it remains elusive how the regulation of microtubule dynamic properties by CYLD is connected to its role in mediating cell migration. In this study, we performed yeast 2-hybrid screening with CYLD as bait and identified 7 CYLD-interacting proteins, including end-binding protein 1 (EB1). The CYLD-EB1 interaction was confirmed both in cells and in vitro, and these 2 proteins colocalized at the plus ends of microtubules. Interestingly, the association of CYLD with EB1 was significantly increased upon the stimulation of cell migration. CYLD coordinated with EB1 to orchestrate tail retraction, centrosome reorientation, and leading-edge microtubule stabilization in migratory cells. In addition, CYLD acted in concert with EB1 to regulate microtubule assembly in vitro, microtubule nucleation at the centrosome, and microtubule growth at the cell periphery. These data provide mechanistic insights into the actions of CYLD in the regulation of microtubule dynamics and cell migration. These findings also support the notion that coordinated actions of microtubule-binding proteins are critical for microtubule-mediated cellular events.
Collapse
Affiliation(s)
- Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Jinmin Gao
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Yunfan Yang
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Lei Sun
- Tianjin Key Laboratory of Medical Epigenetics; School of Basic Medical Sciences; Tianjin Medical University; Tianjin, China
| | - Shaojun Suo
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Youguang Luo
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Wenqing Shui
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Min Liu
- Tianjin Key Laboratory of Medical Epigenetics; School of Basic Medical Sciences; Tianjin Medical University; Tianjin, China
| |
Collapse
|
197
|
Hayashi M, Jono H, Shinriki S, Nakamura T, Guo J, Sueta A, Tomiguchi M, Fujiwara S, Yamamoto-Ibusuki M, Murakami KI, Yamashita S, Yamamoto Y, Li JD, Iwase H, Ando Y. Clinical significance of CYLD downregulation in breast cancer. Breast Cancer Res Treat 2014; 143:447-57. [DOI: 10.1007/s10549-013-2824-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/23/2013] [Indexed: 12/01/2022]
|
198
|
Maru GB, Gandhi K, Ramchandani A, Kumar G. The Role of Inflammation in Skin Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:437-69. [DOI: 10.1007/978-3-0348-0837-8_17] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
199
|
Dou QP. Deubiquitinating Enzymes as Novel Targets for Cancer Therapies. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2014. [PMCID: PMC7123001 DOI: 10.1007/978-3-319-06752-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Most ubiquitinated proteins can be recognized and degraded by the 26S proteasome. In the meantime, protein deubiquitination by various deubiquitinating enzymes (DUBs) regulates protein stability within cells, and it can counterbalance intracellular homeostasis mediated by ubiquitination. Numerous reports have demonstrated that an aberrant process of the ubiquitin-proteasome pathway (UPP) regulated by the ubiquitination and deubiquitination systems results in failure of balancing between protein stability and degradation, and this failure can lead to tumorigenesis in various organs and tissues of mammals. The identification of molecular properties for various DUBs is very critical to understand cancer development and tumorigenesis. Therefore, knowledge of DUBs and their association with cancer and diseases is indispensible for developing effective inhibitors for DUBs. This chapter describes various features and functions of cancer-related DUBs. In addition, we summarize several inhibitors that specifically target certain DUBs in cancer and suggest that DUBs may be one of the most ideal and attractive therapeutic targets.
Collapse
Affiliation(s)
- Q. Ping Dou
- Wayne State University, Detroit, Michigan USA
| |
Collapse
|
200
|
Feng ZY, He ZN, Zhang B, Chen Z. Osteoprotegerin promotes the proliferation of chondrocytes and affects the expression of ADAMTS-5 and TIMP-4 through MEK/ERK signaling. Mol Med Rep 2013; 8:1669-79. [PMID: 24126801 DOI: 10.3892/mmr.2013.1717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/26/2013] [Indexed: 11/06/2022] Open
Abstract
The involvement of osteoprotegerin (OPG) in bone metabolism has previously been established; however, whether OPG regulates chondrocytes directly and exerts precise cellular and molecular effects on chondrocytes remains to be determined. Thus, the present study aimed to investigate the direct effect of OPG on the viability, proliferation and functional consequences of chondrocytes. Primary chondrocytes were isolated from the knee of Sprague-Dawley rats. Passage 1 chondrocytes were identified by toluidine blue staining and used in the experiments. The cell proliferation induced by OPG at various concentrations was measured by a Cell Counting kit-8 (CCK-8) assay. Following pretreatment with mitogen-activated/extracellular signal-regulated kinase kinase (MEK) inhibitor U0126, extracellular signal-regulated kinase (ERK) inhibitor PD098059, and P38 mitogen-activated protein kinase (P38MAPK) inhibitor SB203580 for 30 min, chondrocytes were treated with OPG, and CCK-8 was performed. The cellular signals of MAPKs, including ERK, P38MAPK and c-Jun N-terminal protein kinase (JNK), were investigated by western blot analysis following treatment with OPG. The functional consequences following treatment with soluble OPG were analyzed by qPCR and western blot analysis. OPG increased chondrocyte proliferation with maximal effect at 10 ng/ml, and induced the phosphorylation of MEK and ERK but not P38MAPK or JNK. Suppression of ERK activity via PD098095 inhibited OPG-induced chondrocyte proliferation. Administration of OPG significantly downregulated ADAMTS‑5 and upregulated tissue inhibitor of metalloproteinase (TIMP)-4 production, but had no effect on the expression of TIMP-1, -2 and -3, insulin-like growth factor I, transforming growth factor-β, basic fibroblast growth factor, bone morphogenetic protein-2, collagen II, aggrecan and ADAMTS-4. Suppression of ERK activity via PD098095 inhibited the alteration of ADAMTS-5 and TIMP-4 expression induced by OPG. OPG therefore regulated the proliferation of chondrocytes via MEK/ERK signaling, and directly affected chondrocytes by influencing the expression profile of ADAMTS-5 and TIMP-4.
Collapse
Affiliation(s)
- Zhi-Yun Feng
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | | | | | | |
Collapse
|