151
|
Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer 2023; 23:78-94. [PMID: 36471053 DOI: 10.1038/s41568-022-00535-5] [Citation(s) in RCA: 245] [Impact Index Per Article: 245.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Cells have evolved a complex network of biochemical pathways, collectively known as the DNA damage response (DDR), to prevent detrimental mutations from being passed on to their progeny. The DDR coordinates DNA repair with cell-cycle checkpoint activation and other global cellular responses. Genes encoding DDR factors are frequently mutated in cancer, causing genomic instability, an intrinsic feature of many tumours that underlies their ability to grow, metastasize and respond to treatments that inflict DNA damage (such as radiotherapy). One instance where we have greater insight into how genetic DDR abrogation impacts on therapy responses is in tumours with mutated BRCA1 or BRCA2. Due to compromised homologous recombination DNA repair, these tumours rely on alternative repair mechanisms and are susceptible to chemical inhibitors of poly(ADP-ribose) polymerase (PARP), which specifically kill homologous recombination-deficient cancer cells, and have become a paradigm for targeted cancer therapy. It is now clear that many other synthetic-lethal relationships exist between DDR genes. Crucially, some of these interactions could be exploited in the clinic to target tumours that become resistant to PARP inhibition. In this Review, we discuss state-of-the-art strategies for DDR inactivation using small-molecule inhibitors and highlight those compounds currently being evaluated in the clinic.
Collapse
Affiliation(s)
- Florian J Groelly
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rebecca A Dagg
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
152
|
Systemic Therapy for Hereditary Breast Cancers. Hematol Oncol Clin North Am 2023; 37:203-224. [PMID: 36435611 DOI: 10.1016/j.hoc.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Approximately 5% to 10% of all breast cancers are hereditary; many of which are caused by pathogenic variants in genes required for homologous recombination, including BRCA1 and BRCA2. Here we discuss systemic treatment for such breast cancers, including approved chemotherapeutic approaches and also targeted treatment approaches using poly-(ADP ribose) polymerase inhibitors. We also discuss experimental approaches to treating hereditary breast cancer, including new small molecule DNA repair inhibitors and also immunomodulatory agents. Finally, we discuss how drug resistance emerges in patients with hereditary breast cancer, how this might be delayed or prevented, and how biomarker-adapted treatment is molding the future management of hereditary breast cancer.
Collapse
|
153
|
Vugic D, Dumoulin I, Martin C, Minello A, Alvaro-Aranda L, Gomez-Escudero J, Chaaban R, Lebdy R, von Nicolai C, Boucherit V, Ribeyre C, Constantinou A, Carreira A. Replication gap suppression depends on the double-strand DNA binding activity of BRCA2. Nat Commun 2023; 14:446. [PMID: 36707518 PMCID: PMC9883520 DOI: 10.1038/s41467-023-36149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Replication stress (RS) is a major source of genomic instability and is intrinsic to cancer cells. RS is also the consequence of chemotherapeutic drugs for treating cancer. However, adaptation to RS is also a mechanism of resistance to chemotherapy. BRCA2 deficiency results in replication stress in human cells. BRCA2 protein's main functions include DNA repair by homologous recombination (HR) both at induced DNA double-strand breaks (DSB) and spontaneous replicative lesions. At stalled replication forks, BRCA2 protects the DNA from aberrant nucleolytic degradation and is thought to limit the appearance of ssDNA gaps by arresting replication and via post-replicative HR. However, whether and how BRCA2 acts to limit the formation of ssDNA gaps or mediate their repair, remains ill-defined. Here, we use breast cancer variants affecting different domains of BRCA2 to shed light on this function. We demonstrate that the N-terminal DNA binding domain (NTD), and specifically, its dsDNA binding activity, is required to prevent and repair/fill-in ssDNA gaps upon nucleotide depletion but not to limit PARPi-induced ssDNA gaps. Thus, these findings suggest that nucleotide depletion and PARPi trigger gaps via distinct mechanisms and that the NTD of BRCA2 prevents nucleotide depletion-induced ssDNA gaps.
Collapse
Affiliation(s)
- Domagoj Vugic
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Isaac Dumoulin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Charlotte Martin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Anna Minello
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Lucia Alvaro-Aranda
- Genome Instability and Cancer Predisposition lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, 28049, Spain
| | - Jesus Gomez-Escudero
- Genome Instability and Cancer Predisposition lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, 28049, Spain
| | - Rady Chaaban
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
- Genome Instability and Cancer Predisposition lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, 28049, Spain
| | - Rana Lebdy
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Catharina von Nicolai
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Virginie Boucherit
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Cyril Ribeyre
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Angelos Constantinou
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France.
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France.
- Genome Instability and Cancer Predisposition lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, 28049, Spain.
| |
Collapse
|
154
|
Kwon Y, Rösner H, Zhao W, Selemenakis P, He Z, Kawale AS, Katz JN, Rogers CM, Neal FE, Badamchi Shabestari A, Petrosius V, Singh AK, Joel MZ, Lu L, Holloway SP, Burma S, Mukherjee B, Hromas R, Mazin A, Wiese C, Sørensen CS, Sung P. DNA binding and RAD51 engagement by the BRCA2 C-terminus orchestrate DNA repair and replication fork preservation. Nat Commun 2023; 14:432. [PMID: 36702902 PMCID: PMC9879961 DOI: 10.1038/s41467-023-36211-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The tumor suppressor BRCA2 participates in DNA double-strand break repair by RAD51-dependent homologous recombination and protects stressed DNA replication forks from nucleolytic attack. We demonstrate that the C-terminal Recombinase Binding (CTRB) region of BRCA2, encoded by gene exon 27, harbors a DNA binding activity. CTRB alone stimulates the DNA strand exchange activity of RAD51 and permits the utilization of RPA-coated ssDNA by RAD51 for strand exchange. Moreover, CTRB functionally synergizes with the Oligonucleotide Binding fold containing DNA binding domain and BRC4 repeat of BRCA2 in RPA-RAD51 exchange on ssDNA. Importantly, we show that the DNA binding and RAD51 interaction attributes of the CTRB are crucial for homologous recombination and protection of replication forks against MRE11-mediated attrition. Our findings shed light on the role of the CTRB region in genome repair, reveal remarkable functional plasticity of BRCA2, and help explain why deletion of Brca2 exon 27 impacts upon embryonic lethality.
Collapse
Affiliation(s)
- Youngho Kwon
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Heike Rösner
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Platon Selemenakis
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhuoling He
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Ajinkya S Kawale
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jeffrey N Katz
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Cody M Rogers
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Francisco E Neal
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Aida Badamchi Shabestari
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Valdemaras Petrosius
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Akhilesh K Singh
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
- GentiBio Inc., 150 Cambridgepark Dr, Cambridge, MA, 02140, USA
| | - Marina Z Joel
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lucy Lu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen P Holloway
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Alexander Mazin
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| | - Patrick Sung
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
155
|
Lazarchuk P, Nguyen VN, Brunon S, Pavlova MN, Sidorova JM. Innate immunity mediator STING modulates nascent DNA metabolism at stalled forks in human cells. Front Mol Biosci 2023; 9:1048726. [PMID: 36710880 PMCID: PMC9877313 DOI: 10.3389/fmolb.2022.1048726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Background: The cGAS/STING pathway, part of the innate immune response to foreign DNA, can be activated by cell's own DNA arising from the processing of the genome, including the degradation of nascent DNA at arrested replication forks, which can be upregulated in cancer cells. Recent evidence raises a possibility that the cGAS/STING pathway may also modulate the very processes that trigger it, e.g., DNA damage repair or processing of stalled forks. Methods: We manipulated STING levels in human cells by depleting or re-expressing it, and assessed the effects of STING on replication using microfluidics-assisted replication track analysis, or maRTA, a DNA fiber assay, as well as immuno-precipitation of nascent DNA, or iPOND. We also assessed STING subcellular distribution and its ability to activate. Results: Depletion of STING suppressed and its re-expression in STING-deficient cancer cells upregulated the degradation of nascent DNA at arrested replication forks. Replication fork arrest was accompanied by the STING pathway activation, and a STING mutant that does not activate the pathway failed to upregulate nascent DNA degradation. cGAS was required for STING's effect on degradation, but this requirement could be bypassed by treating cells with a STING agonist. Cells expressing inactive STING had a reduced level of RPA on parental and nascent DNA of arrested forks and a reduced CHK1 activation compared to cells with the wild type STING. STING also affected unperturbed fork progression in a subset of cell lines. STING fractionated to the nuclear fractions enriched for structural components of chromatin and nuclear envelope, and furthermore, it associated with the chromatin of arrested replication forks as well as post-replicative chromatin. Conclusion: Our data highlight STING as a determinant of stalled replication fork integrity, thus revealing a novel connection between the replication stress and innate immune responses.
Collapse
Affiliation(s)
| | | | | | | | - Julia M. Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
156
|
Nieminuszczy J, Martin PR, Broderick R, Krwawicz J, Kanellou A, Mocanu C, Bousgouni V, Smith C, Wen KK, Woodward BL, Bakal C, Shackley F, Aguilera A, Stewart GS, Vyas YM, Niedzwiedz W. Actin nucleators safeguard replication forks by limiting nascent strand degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523639. [PMID: 36711944 PMCID: PMC9882250 DOI: 10.1101/2023.01.12.523639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Accurate genome replication is essential for all life and a key mechanism of disease prevention, underpinned by the ability of cells to respond to replicative stress (RS) and protect replication forks. These responses rely on the formation of Replication Protein A (RPA)-single stranded (ss) DNA complexes, yet this process remains largely uncharacterized. Here we establish that actin nucleation-promoting factors (NPFs) associate with replication forks, promote efficient DNA replication and facilitate association of RPA with ssDNA at sites of RS. Accordingly, their loss leads to deprotection of ssDNA at perturbed forks, impaired ATR activation, global replication defects and fork collapse. Supplying an excess of RPA restores RPA foci formation and fork protection, suggesting a chaperoning role for actin nucleators (ANs) (i.e., Arp2/3, DIAPH1) and NPFs (i.e, WASp, N-WASp) in regulating RPA availability upon RS. We also discover that β-actin interacts with RPA directly in vitro , and in vivo a hyper-depolymerizing β-actin mutant displays a heightened association with RPA and the same dysfunctional replication phenotypes as loss of ANs/NPFs, which contrasts with the phenotype of a hyper-polymerizing β-actin mutant. Thus, we identify components of actin polymerization pathways that are essential for preventing ectopic nucleolytic degradation of perturbed forks by modulating RPA activity.
Collapse
Affiliation(s)
| | - Peter R. Martin
- Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Ronan Broderick
- Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Joanna Krwawicz
- Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | | | - Camelia Mocanu
- Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Vicky Bousgouni
- Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Charlotte Smith
- Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Kuo-Kuang Wen
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, PennState College of Medicine, PennState Health Children’s Hospital, Hershey, Pennsylvania 17033, USA
| | - Beth L. Woodward
- Genome Stability and Human Disease Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Chris Bakal
- Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Fiona Shackley
- Paediatric Immunology, Allergy and Infectious Diseases, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Andres Aguilera
- Centro Andaluz de Biologia Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Grant S. Stewart
- Genome Stability and Human Disease Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yatin M. Vyas
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, PennState College of Medicine, PennState Health Children’s Hospital, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
157
|
Lee SY, Kim JJ, Miller KM. Single-Cell Analysis of Histone Acetylation Dynamics at Replication Forks Using PLA and SIRF. Methods Mol Biol 2023; 2589:345-360. [PMID: 36255636 DOI: 10.1007/978-1-0716-2788-4_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genome integrity is constantly challenged by various processes including DNA damage, structured DNA, transcription, and DNA-protein crosslinks. During DNA replication, active replication forks that encounter these obstacles can result in their stalling and collapse. Accurate DNA replication requires the ability of forks to navigate these threats, which is aided by DNA repair proteins. Histone acetylation participates in this process through an ability to signal and recruit proteins to regions of replicating DNA. For example, the histone acetyltransferase PCAF promotes the recruitment of the DNA repair factors MRE11 and EXO1 to stalled forks by acetylating histone H4 at lysine 8 (H4K8ac). These highly dynamic processes can be detected and analyzed using a modified proximity ligation assay (PLA) method, known as SIRF (in situ protein interactions with nascent DNA replication forks). This single-cell assay combines PLA with EdU-coupled Click-iT chemistry reactions and fluorescence microscopy to detect these interactions at sites of replicating DNA. Here we provide a detailed protocol utilizing SIRF that detects the HAT PCAF and histone acetylation at replication forks. This technique provides a robust methodology to determine protein recruitment and modifications at the replication fork with single-cell resolution.
Collapse
Affiliation(s)
- Seo Yun Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jae Jin Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
158
|
Gospodinov A, Dzhokova S, Petrova M, Ugrinova I. Chromatin regulators in DNA replication and genome stability maintenance during S-phase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:243-280. [PMID: 37061334 DOI: 10.1016/bs.apcsb.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The duplication of genetic information is central to life. The replication of genetic information is strictly controlled to ensure that each piece of genomic DNA is copied only once during a cell cycle. Factors that slow or stop replication forks cause replication stress. Replication stress is a major source of genome instability in cancer cells. Multiple control mechanisms facilitate the unimpeded fork progression, prevent fork collapse and coordinate fork repair. Chromatin alterations, caused by histone post-translational modifications and chromatin remodeling, have critical roles in normal replication and in avoiding replication stress and its consequences. This text reviews the chromatin regulators that ensure DNA replication and the proper response to replication stress. We also briefly touch on exploiting replication stress in therapeutic strategies. As chromatin regulators are frequently mutated in cancer, manipulating their activity could provide many possibilities for personalized treatment.
Collapse
Affiliation(s)
- Anastas Gospodinov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Stefka Dzhokova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Petrova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iva Ugrinova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
159
|
Abstract
High-fidelity DNA replication is critical for the faithful transmission of genetic information to daughter cells. Following genotoxic stress, specialized DNA damage tolerance pathways are activated to ensure replication fork progression. These pathways include translesion DNA synthesis, template switching and repriming. In this Review, we describe how DNA damage tolerance pathways impact genome stability, their connection with tumorigenesis and their effects on cancer therapy response. We discuss recent findings that single-strand DNA gap accumulation impacts chemoresponse and explore a growing body of evidence that suggests that different DNA damage tolerance factors, including translesion synthesis polymerases, template switching proteins and enzymes affecting single-stranded DNA gaps, represent useful cancer targets. We further outline how the consequences of DNA damage tolerance mechanisms could inform the discovery of new biomarkers to refine cancer therapies.
Collapse
Affiliation(s)
- Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
160
|
Kavlashvili T, Liu W, Mohamed TM, Cortez D, Dewar JM. Replication fork uncoupling causes nascent strand degradation and fork reversal. Nat Struct Mol Biol 2023; 30:115-124. [PMID: 36593312 PMCID: PMC9868089 DOI: 10.1038/s41594-022-00871-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/14/2022] [Indexed: 01/03/2023]
Abstract
Genotoxins cause nascent strand degradation (NSD) and fork reversal during DNA replication. NSD and fork reversal are crucial for genome stability and are exploited by chemotherapeutic approaches. However, it is unclear how NSD and fork reversal are triggered. Additionally, the fate of the replicative helicase during these processes is unknown. We developed a biochemical approach to study synchronous, localized NSD and fork reversal using Xenopus egg extracts and validated this approach with experiments in human cells. We show that replication fork uncoupling stimulates NSD of both nascent strands and progressive conversion of uncoupled forks to reversed forks. Notably, the replicative helicase remains bound during NSD and fork reversal. Unexpectedly, NSD occurs before and after fork reversal, indicating that multiple degradation steps take place. Overall, our data show that uncoupling causes NSD and fork reversal and elucidate key events that precede fork reversal.
Collapse
Affiliation(s)
- Tamar Kavlashvili
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wenpeng Liu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Taha M Mohamed
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James M Dewar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
161
|
Ragupathi A, Singh M, Perez AM, Zhang D. Targeting the BRCA1/ 2 deficient cancer with PARP inhibitors: Clinical outcomes and mechanistic insights. Front Cell Dev Biol 2023; 11:1133472. [PMID: 37035242 PMCID: PMC10073599 DOI: 10.3389/fcell.2023.1133472] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
BRCA1 and BRCA2 play a critical role in a variety of molecular processes related to DNA metabolism, including homologous recombination and mediating the replication stress response. Individuals with mutations in the BRCA1 and BRCA2 (BRCA1/2) genes have a significantly higher risk of developing various types of cancers, especially cancers of the breast, ovary, pancreas, and prostate. Currently, the Food and Drug Administration (FDA) has approved four PARP inhibitors (PARPi) to treat cancers with BRCA1/2 mutations. In this review, we will first summarize the clinical outcomes of the four FDA-approved PARPi in treating BRCA1/2 deficient cancers. We will then discuss evidence supporting the hypothesis that the cytotoxic effect of PARPi is likely due to inducing excessive replication stress at the difficult-to-replicate (DTR) genomic regions in BRCA1/2 mutated tumors. Finally, we will discuss the ongoing preclinical and clinical studies on how to combine the PARPi with immuno-oncology drugs to further improve clinical outcomes.
Collapse
|
162
|
Shao G, He T, Mu Y, Mu P, Ao J, Lin X, Ruan L, Wang Y, Gao Y, Liu D, Zhang L, Chen X. The genome of a hadal sea cucumber reveals novel adaptive strategies to deep-sea environments. iScience 2022; 25:105545. [PMID: 36444293 PMCID: PMC9700323 DOI: 10.1016/j.isci.2022.105545] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/18/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
How organisms cope with coldness and high pressure in the hadal zone remains poorly understood. Here, we sequenced and assembled the genome of hadal sea cucumber Paelopatides sp. Yap with high quality and explored its potential mechanisms for deep-sea adaptation. First, the expansion of ACOX1 for rate-limiting enzyme in the DHA synthesis pathway, increased DHA content in the phospholipid bilayer, and positive selection of EPT1 may maintain cell membrane fluidity. Second, three genes for translation initiation factors and two for ribosomal proteins underwent expansion, and three ribosomal protein genes were positively selected, which may ameliorate the protein synthesis inhibition or ribosome dissociation in the hadal zone. Third, expansion and positive selection of genes associated with stalled replication fork recovery and DNA repair suggest improvements in DNA protection. This is the first genome sequence of a hadal invertebrate. Our results provide insights into the genetic adaptations used by invertebrate in deep oceans.
Collapse
Affiliation(s)
- Guangming Shao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tianliang He
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yinnan Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Pengfei Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jingqun Ao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xihuang Lin
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - Lingwei Ruan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - YuGuang Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - Yuan Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dinggao Liu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519000, China
| |
Collapse
|
163
|
Tsang ES, Munster PN. Targeting RAD51-Mediated Homologous Recombination as a Treatment for Advanced Solid and Hematologic Malignancies: Opportunities and Challenges Ahead. Onco Targets Ther 2022; 15:1509-1518. [PMID: 36536949 PMCID: PMC9758980 DOI: 10.2147/ott.s322297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2023] Open
Abstract
RAD51 is integral in homologous recombination DNA damage repair and has garnered much interest as both a biomarker and potential therapeutic target in oncology. Multiple in vitro and in vivo studies have demonstrated its role as a predictive marker, particularly in the context of platinum-based therapies and poly ADP-ribose polymerase (PARP) inhibitors. In this review, we highlight the development of RAD51 inhibitors, with a focus on novel molecules and ongoing clinical trials. Despite many efforts to develop effective and tolerable direct RAD51 inhibitors, identification of these agents remains challenging. Clinically, however, there may be a role of pharmacological indirect RAD51 inhibition.
Collapse
Affiliation(s)
- Erica S Tsang
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Pamela N Munster
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
164
|
Moise AC, Kay JE, Engelward BP. Transgenic mice harboring direct repeat substrates reveal key underlying causes of homologous recombination in vivo. DNA Repair (Amst) 2022; 120:103419. [DOI: 10.1016/j.dnarep.2022.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022]
|
165
|
RAD51 paralogs: Expanding roles in replication stress responses and repair. Curr Opin Pharmacol 2022; 67:102313. [PMID: 36343481 DOI: 10.1016/j.coph.2022.102313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Mammalian RAD51 paralogs are essential for cell survival and are critical for RAD51-mediated repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). However, the molecular mechanism by which RAD51 paralogs participate in HR is largely unclear. Germline mutations in RAD51 paralogs are associated with breast and ovarian cancers and Fanconi anemia-like disorder, underscoring the crucial roles of RAD51 paralogs in genome maintenance and tumor suppression. Despite their discovery over three decades ago, the essential functions of RAD51 paralogs in cell survival and genome stability remain obscure. Recent studies unravel DSB repair independent functions of RAD51 paralogs in replication stress responses. Here, we highlight the recent findings that uncovered the novel functions of RAD51 paralogs in replication fork progression, its stability, and restart and discuss RAD51 paralogs as a potential therapeutic target for cancer treatment.
Collapse
|
166
|
Jackson LM, Moldovan GL. Mechanisms of PARP1 inhibitor resistance and their implications for cancer treatment. NAR Cancer 2022; 4:zcac042. [PMID: 36568963 PMCID: PMC9773381 DOI: 10.1093/narcan/zcac042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The discovery of synthetic lethality as a result of the combined loss of PARP1 and BRCA has revolutionized the treatment of DNA repair-deficient cancers. With the development of PARP inhibitors, patients displaying germline or somatic mutations in BRCA1 or BRCA2 were presented with a novel therapeutic strategy. However, a large subset of patients do not respond to PARP inhibitors. Furthermore, many of those who do respond eventually acquire resistance. As such, combating de novo and acquired resistance to PARP inhibitors remains an obstacle in achieving durable responses in patients. In this review, we touch on some of the key mechanisms of PARP inhibitor resistance, including restoration of homologous recombination, replication fork stabilization and suppression of single-stranded DNA gap accumulation, as well as address novel approaches for overcoming PARP inhibitor resistance.
Collapse
Affiliation(s)
- Lindsey M Jackson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
167
|
The BRCAness Landscape of Cancer. Cells 2022; 11:cells11233877. [PMID: 36497135 PMCID: PMC9738094 DOI: 10.3390/cells11233877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
BRCAness refers to the damaged homologous recombination (HR) function due to the defects in HR-involved non-BRCA1/2 genes. BRCAness is the important marker for the use of synthetic lethal-based PARP inhibitor therapy in breast and ovarian cancer treatment. The success provides an opportunity of applying PARP inhibitor therapy to treat other cancer types with BRCAness features. However, systematic knowledge is lack for BRCAness in different cancer types beyond breast and ovarian cancer. We performed a comprehensive characterization for 40 BRCAness-related genes in 33 cancer types with over 10,000 cancer cases, including pathogenic variation, homozygotic deletion, promoter hypermethylation, gene expression, and clinical correlation of BRCAness in each cancer type. Using BRCA1/BRCA2 mutated breast and ovarian cancer as the control, we observed that BRCAness is widely present in multiple cancer types. Based on the sum of the BRCAneass features in each cancer type, we identified the following 21 cancer types as the potential targets for PARPi therapy: adrenocortical carcinoma, bladder urothelial carcinoma, brain lower grade glioma, colon adenocarcinoma, esophageal carcinoma, head and neck squamous carcinoma, kidney chromophobe, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, mesothelioma, rectum adenocarcinoma, pancreatic adenocarcinoma, prostate adenocarcinoma, sarcoma, skin cutaneous melanoma, stomach adenocarcinoma, uterine carcinosarcoma, and uterine corpus endometrial carcinoma.
Collapse
|
168
|
Li X, Wang L, Liu X, Zheng Z, Kong D. Cellular regulation and stability of DNA replication forks in eukaryotic cells. DNA Repair (Amst) 2022; 120:103418. [DOI: 10.1016/j.dnarep.2022.103418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/03/2022]
|
169
|
Systematic proximal mapping of the classical RAD51 paralogs unravel functionally and clinically relevant interactors for genome stability. PLoS Genet 2022; 18:e1010495. [DOI: 10.1371/journal.pgen.1010495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2022] Open
Abstract
Homologous recombination (HR) plays an essential role in the maintenance of genome stability by promoting the repair of cytotoxic DNA double strand breaks (DSBs). More recently, the HR pathway has emerged as a core component of the response to replication stress, in part by protecting stalled replication forks from nucleolytic degradation. In that regard, the mammalian RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) have been involved in both HR-mediated DNA repair and collapsed replication fork resolution. Still, it remains largely obscure how they participate in both processes, thereby maintaining genome stability and preventing cancer development. To gain better insight into their contribution in cellulo, we mapped the proximal interactome of the classical RAD51 paralogs using the BioID approach. Aside from identifying the well-established BCDX2 and CX3 sub-complexes, the spliceosome machinery emerged as an integral component of our proximal mapping, suggesting a crosstalk between this pathway and the RAD51 paralogs. Furthermore, we noticed that factors involved RNA metabolic pathways are significantly modulated within the BioID of the classical RAD51 paralogs upon exposure to hydroxyurea (HU), pointing towards a direct contribution of RNA processing during replication stress. Importantly, several members of these pathways have prognostic potential in breast cancer (BC), where their RNA expression correlates with poorer patient outcome. Collectively, this study uncovers novel functionally relevant partners of the different RAD51 paralogs in the maintenance of genome stability that could be used as biomarkers for the prognosis of BC.
Collapse
|
170
|
Classen S, Rahlf E, Jungwirth J, Albers N, Hebestreit LP, Zielinski A, Poole L, Groth M, Koch P, Liehr T, Kankel S, Cordes N, Petersen C, Rothkamm K, Pospiech H, Borgmann K. Partial Reduction in BRCA1 Gene Dose Modulates DNA Replication Stress Level and Thereby Contributes to Sensitivity or Resistance. Int J Mol Sci 2022; 23:13363. [PMID: 36362151 PMCID: PMC9656774 DOI: 10.3390/ijms232113363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024] Open
Abstract
BRCA1 is a well-known breast cancer risk gene, involved in DNA damage repair via homologous recombination (HR) and replication fork protection. Therapy resistance was linked to loss and amplification of the BRCA1 gene causing inferior survival of breast cancer patients. Most studies have focused on the analysis of complete loss or mutations in functional domains of BRCA1. How mutations in non-functional domains contribute to resistance mechanisms remains elusive and was the focus of this study. Therefore, clones of the breast cancer cell line MCF7 with indels in BRCA1 exon 9 and 14 were generated using CRISPR/Cas9. Clones with successful introduced BRCA1 mutations were evaluated regarding their capacity to perform HR, how they handle DNA replication stress (RS), and the consequences on the sensitivity to MMC, PARP1 inhibition, and ionizing radiation. Unexpectedly, BRCA1 mutations resulted in both increased sensitivity and resistance to exogenous DNA damage, despite a reduction of HR capacity in all clones. Resistance was associated with improved DNA double-strand break repair and reduction in replication stress (RS). Lower RS was accompanied by increased activation and interaction of proteins essential for the S phase-specific DNA damage response consisting of HR proteins, FANCD2, and CHK1.
Collapse
Affiliation(s)
- Sandra Classen
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elena Rahlf
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Johannes Jungwirth
- Project Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Nina Albers
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Luca Philipp Hebestreit
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alexandra Zielinski
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lena Poole
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marco Groth
- CF Next-Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Philipp Koch
- CF Life Science Computing, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Stefanie Kankel
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 50, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Bautzner Landstr. 400, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Helmut Pospiech
- Project Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
171
|
Zhu C, Iwase M, Li Z, Wang F, Quinet A, Vindigni A, Shao J. Profilin-1 regulates DNA replication forks in a context-dependent fashion by interacting with SNF2H and BOD1L. Nat Commun 2022; 13:6531. [PMID: 36319634 PMCID: PMC9626489 DOI: 10.1038/s41467-022-34310-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/21/2022] [Indexed: 12/04/2022] Open
Abstract
DNA replication forks are tightly controlled by a large protein network consisting of well-known core regulators and many accessory factors which remain functionally undefined. In this study, we report previously unknown nuclear functions of the actin-binding factor profilin-1 (PFN1) in DNA replication, which occur in a context-dependent fashion and require its binding to poly-L-proline (PLP)-containing proteins instead of actin. In unperturbed cells, PFN1 increases DNA replication initiation and accelerates fork progression by binding and stimulating the PLP-containing nucleosome remodeler SNF2H. Under replication stress, PFN1/SNF2H increases fork stalling and functionally collaborates with fork reversal enzymes to enable the over-resection of unprotected forks. In addition, PFN1 binds and functionally attenuates the PLP-containing fork protector BODL1 to increase the resection of a subset of stressed forks. Accordingly, raising nuclear PFN1 level decreases genome stability and cell survival during replication stress. Thus, PFN1 is a multi-functional regulator of DNA replication with exploitable anticancer potential.
Collapse
Affiliation(s)
- Cuige Zhu
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mari Iwase
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ziqian Li
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Faliang Wang
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Annabel Quinet
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- UMR Genetic Stability Stem Cells and Radiation, University of Paris and University of Paris-Saclay, INSERM, iRCM/IBFJ CEA, Fontenay-aux-Roses, France
| | - Alessandro Vindigni
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jieya Shao
- Divison of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
172
|
Dibitetto D, Marshall S, Sanchi A, Liptay M, Badar J, Lopes M, Rottenberg S, Smolka MB. DNA-PKcs promotes fork reversal and chemoresistance. Mol Cell 2022; 82:3932-3942.e6. [PMID: 36130596 PMCID: PMC9588680 DOI: 10.1016/j.molcel.2022.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/25/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
The DNA-PKcs kinase mediates the repair of DNA double-strand breaks via classical non-homologous end joining (NHEJ). DNA-PKcs is also recruited to active replication forks, although a role for DNA-PKcs in the control of fork dynamics is unclear. Here, we identify a crucial role for DNA-PKcs in promoting fork reversal, a process that stabilizes stressed replication forks and protects genome integrity. DNA-PKcs promotes fork reversal and slowing in response to several replication stress-inducing agents in a manner independent of its role in NHEJ. Cells lacking DNA-PKcs activity show increased DNA damage during S-phase and cellular sensitivity to replication stress. Notably, prevention of fork slowing and reversal via DNA-PKcs inhibition efficiently restores chemotherapy sensitivity in BRCA2-deficient mammary tumors with acquired PARPi resistance. Together, our data uncover a new key regulator of fork reversal and show how DNA-PKcs signaling can be manipulated to alter fork dynamics and drug resistance in cancer.
Collapse
Affiliation(s)
- Diego Dibitetto
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Shannon Marshall
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Andrea Sanchi
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Martin Liptay
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Jumana Badar
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; Division of Molecular Pathology, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Bern Center for Precision Medicine, University of Bern, 3012 Bern, Switzerland
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
173
|
ASPM promotes ATR-CHK1 activation and stabilizes stalled replication forks in response to replication stress. Proc Natl Acad Sci U S A 2022; 119:e2203783119. [PMID: 36161901 PMCID: PMC9546549 DOI: 10.1073/pnas.2203783119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
ASPM (encoded by MCPH5) is a frequently mutated protein, and such mutations occur in >40% of cases of primary microcephaly (MCPH). Here, we characterize a function of ASPM in DNA replication and the replication stress response. ASPM serves as a scaffold to load stimulators required for ATR-CHK1 checkpoint signaling upon replication stress, which protects stalled replication forks from degradation. ASPM deficiency leads to genomic instability and the sensitization of cancer cells to replication stressors. ASPM is a protein encoded by primary microcephaly 5 (MCPH5) and is responsible for ensuring spindle position during mitosis and the symmetrical division of neural stem cells. We recently reported that ASPM promotes homologous recombination (HR) repair of DNA double strand breaks. However, its potential role in DNA replication and replication stress response remains elusive. Interestingly, we found that ASPM is dispensable for DNA replication under unperturbed conditions. However, ASPM is enriched at stalled replication forks in a RAD17-dependent manner in response to replication stress and promotes RAD9 and TopBP1 loading onto chromatin, facilitating ATR-CHK1 activation. ASPM depletion results in failed fork restart and nuclease MRE11-mediated nascent DNA degradation at the stalled replication fork. The overall consequence is chromosome instability and the sensitization of cancer cells to replication stressors. These data support a role for ASPM in loading RAD17-RAD9/TopBP1 onto chromatin to activate the ATR-CHK1 checkpoint and ultimately ensure genome stability.
Collapse
|
174
|
The mismatch recognition protein MutSα promotes nascent strand degradation at stalled replication forks. Proc Natl Acad Sci U S A 2022; 119:e2201738119. [PMID: 36161943 PMCID: PMC9546528 DOI: 10.1073/pnas.2201738119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA mismatch repair (MMR) is well known for its role in maintaining replication fidelity by correcting mispairs generated during replication. Here, we identify an unusual MMR function to promote genome instability in the replication stress response. Under replication stress, binding of the mismatch recognition protein MutSα to replication forks blocks the loading of fork protection factors FANCD2 and BRCA1 to replication forks and promotes the recruitment of exonuclease MRE11 onto DNA to nascent strand degradation. This MutSα-dependent MRE11-catalyzed DNA degradation causes DNA breaks and chromosome abnormalities, contributing to an ultramutator phenotype. Mismatch repair (MMR) is a replication-coupled DNA repair mechanism and plays multiple roles at the replication fork. The well-established MMR functions include correcting misincorporated nucleotides that have escaped the proofreading activity of DNA polymerases, recognizing nonmismatched DNA adducts, and triggering a DNA damage response. In an attempt to determine whether MMR regulates replication progression in cells expressing an ultramutable DNA polymerase ɛ (Polɛ), carrying a proline-to-arginine substitution at amino acid 286 (Polɛ-P286R), we identified an unusual MMR function in response to hydroxyurea (HU)-induced replication stress. Polɛ-P286R cells treated with hydroxyurea exhibit increased MRE11-catalyzed nascent strand degradation. This degradation by MRE11 depends on the mismatch recognition protein MutSα and its binding to stalled replication forks. Increased MutSα binding at replication forks is also associated with decreased loading of replication fork protection factors FANCD2 and BRCA1, suggesting blockage of these fork protection factors from loading to replication forks by MutSα. We find that the MutSα-dependent MRE11-catalyzed fork degradation induces DNA breaks and various chromosome abnormalities. Therefore, unlike the well-known MMR functions of ensuring replication fidelity, the newly identified MMR activity of promoting genome instability may also play a role in cancer avoidance by eliminating rogue cells.
Collapse
|
175
|
Lemay JF, St-Hilaire E, Ronato DA, Gao Y, Bélanger F, Gezzar-Dandashi S, Kimenyi Ishimwe AB, Sawchyn C, Lévesque D, McQuaid M, Boisvert FM, Mallette FA, Masson JY, Drobetsky EA, Wurtele H. A genome-wide screen identifies SCAI as a modulator of the UV-induced replicative stress response. PLoS Biol 2022; 20:e3001543. [PMID: 36215310 PMCID: PMC9584372 DOI: 10.1371/journal.pbio.3001543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 10/20/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Helix-destabilizing DNA lesions induced by environmental mutagens such as UV light cause genomic instability by strongly blocking the progression of DNA replication forks (RFs). At blocked RF, single-stranded DNA (ssDNA) accumulates and is rapidly bound by Replication Protein A (RPA) complexes. Such stretches of RPA-ssDNA constitute platforms for recruitment/activation of critical factors that promote DNA synthesis restart. However, during periods of severe replicative stress, RPA availability may become limiting due to inordinate sequestration of this multifunctional complex on ssDNA, thereby negatively impacting multiple vital RPA-dependent processes. Here, we performed a genome-wide screen to identify factors that restrict the accumulation of RPA-ssDNA during UV-induced replicative stress. While this approach revealed some expected "hits" acting in pathways such as nucleotide excision repair, translesion DNA synthesis, and the intra-S phase checkpoint, it also identified SCAI, whose role in the replicative stress response was previously unappreciated. Upon UV exposure, SCAI knock-down caused elevated accumulation of RPA-ssDNA during S phase, accompanied by reduced cell survival and compromised RF progression. These effects were independent of the previously reported role of SCAI in 53BP1-dependent DNA double-strand break repair. We also found that SCAI is recruited to UV-damaged chromatin and that its depletion promotes nascent DNA degradation at stalled RF. Finally, we (i) provide evidence that EXO1 is the major nuclease underlying ssDNA formation and DNA replication defects in SCAI knockout cells and, consistent with this, (ii) demonstrate that SCAI inhibits EXO1 activity on a ssDNA gap in vitro. Taken together, our data establish SCAI as a novel regulator of the UV-induced replicative stress response in human cells.
Collapse
Affiliation(s)
- Jean-François Lemay
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Edlie St-Hilaire
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Daryl A. Ronato
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Québec, Canada
| | - Yuandi Gao
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Québec, Canada
| | - François Bélanger
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Sari Gezzar-Dandashi
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montréal, Québec, Canada
| | - Aimé Boris Kimenyi Ishimwe
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Molecular Biology Program, Université de Montréal, Montréal, Québec, Canada
| | - Christina Sawchyn
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mary McQuaid
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | | | - Frédérick A. Mallette
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Oncology Division; Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Québec, Canada
| | - Elliot A. Drobetsky
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Hugo Wurtele
- Centre de recherche, de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
176
|
Xie T, Dickson KA, Yee C, Ma Y, Ford CE, Bowden NA, Marsh DJ. Targeting Homologous Recombination Deficiency in Ovarian Cancer with PARP Inhibitors: Synthetic Lethal Strategies That Impact Overall Survival. Cancers (Basel) 2022; 14:4621. [PMID: 36230543 PMCID: PMC9563432 DOI: 10.3390/cancers14194621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
The advent of molecular targeted therapies has made a significant impact on survival of women with ovarian cancer who have defects in homologous recombination repair (HRR). High-grade serous ovarian cancer (HGSOC) is the most common histological subtype of ovarian cancer, with over 50% displaying defective HRR. Poly ADP ribose polymerases (PARPs) are a family of enzymes that catalyse the transfer of ADP-ribose to target proteins, functioning in fundamental cellular processes including transcription, chromatin remodelling and DNA repair. In cells with deficient HRR, PARP inhibitors (PARPis) cause synthetic lethality leading to cell death. Despite the major advances that PARPis have heralded for women with ovarian cancer, questions and challenges remain, including: can the benefits of PARPis be brought to a wider range of women with ovarian cancer; can other drugs in clinical use function in a similar way or with greater efficacy than currently clinically approved PARPis; what can we learn from long-term responders to PARPis; can PARPis sensitise ovarian cancer cells to immunotherapy; and can synthetic lethal strategies be employed more broadly to develop new therapies for women with ovarian cancer. We examine these, and other, questions with focus on improving outcomes for women with ovarian cancer.
Collapse
Affiliation(s)
- Tao Xie
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Christine Yee
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Caroline E. Ford
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nikola A. Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Newcastle, NSW 2289, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2289, Australia
- Hunter Medical Research Institute, Newcastle, NSW 2289, Australia
| | - Deborah J. Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
177
|
Chapin WJ, Reiss KA. PARPis and Other Novel, Targeted Therapeutics in Pancreatic Adenocarcinoma. Hematol Oncol Clin North Am 2022; 36:1019-1032. [PMID: 36154785 DOI: 10.1016/j.hoc.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, with a mere ∼10% of patients in the United States surviving 5 years from the time of diagnosis. Until recently, the treatment for advanced PDAC differed little based on patient or tumor characteristics. However, recent breakthroughs have identified subgroups of patients who benefit from novel, biomarker-driven therapies. We review the data and role for PARP inhibitors and for other biomarker-directed therapies, including for patients with NTRK fusions, NRG1 fusions, mismatch repair deficiency, and KRAS p.G12C mutations.
Collapse
Affiliation(s)
- William J Chapin
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, 3400 Civic Center Boulevard, 10th Floor South Pavilion, Philadelphia, PA 19104, USA
| | - Kim A Reiss
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, 3400 Civic Center Boulevard, 10th Floor South Pavilion, Philadelphia, PA 19104, USA.
| |
Collapse
|
178
|
Miglietta G, Marinello J, Russo M, Capranico G. Ligands stimulating antitumour immunity as the next G-quadruplex challenge. Mol Cancer 2022; 21:180. [PMID: 36114513 PMCID: PMC9482198 DOI: 10.1186/s12943-022-01649-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractG-quadruplex (G4) binders have been investigated to discover new anticancer drugs worldwide in past decades. As these ligands are generally not highly cytotoxic, the discovery rational was mainly based on increasing the cell-killing potency. Nevertheless, no G4 binder has been shown yet to be effective in cancer patients. Here, G4 binder activity at low dosages will be discussed as a critical feature to discover ligands with therapeutic effects in cancer patients. Specific effects of G4 binders al low doses have been reported to occur in cancer and normal cells. Among them, genome instability and the stimulation of cytoplasmic processes related to autophagy and innate immune response open to the use of G4 binders as immune-stimulating agents. Thus, we propose a new rational of drug discovery, which is not based on cytotoxic potency but rather on immune gene activation at non-cytotoxic dosage.
Collapse
|
179
|
Foo TK, Xia B. BRCA1-Dependent and Independent Recruitment of PALB2-BRCA2-RAD51 in the DNA Damage Response and Cancer. Cancer Res 2022; 82:3191-3197. [PMID: 35819255 PMCID: PMC9481714 DOI: 10.1158/0008-5472.can-22-1535] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
The BRCA1-PALB2-BRCA2 axis plays essential roles in the cellular response to DNA double-strand breaks (DSB), maintenance of genome integrity, and suppression of cancer development. Upon DNA damage, BRCA1 is recruited to DSBs, where it facilitates end resection and recruits PALB2 and its associated BRCA2 to load the central recombination enzyme RAD51 to initiate homologous recombination (HR) repair. In recent years, several BRCA1-independent mechanisms of PALB2 recruitment have also been reported. Collectively, these available data illustrate a series of hierarchical, context-dependent, and cooperating mechanisms of PALB2 recruitment that is critical for HR and therapy response either in the presence or absence of BRCA1. Here, we review these BRCA1-dependent and independent mechanisms and their importance in DSB repair, cancer development, and therapy. As BRCA1-mutant cancer cells regain HR function, for which PALB2 is generally required, and become resistant to targeted therapies, such as PARP inhibitors, targeting BRCA1-independent mechanisms of PALB2 recruitment represents a potential new avenue to improve treatment of BRCA1-mutant tumors.
Collapse
Affiliation(s)
- Tzeh Keong Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
180
|
Benureau Y, Pouvelle C, Dupaigne P, Baconnais S, Moreira Tavares E, Mazón G, Despras E, Le Cam E, Kannouche P. Changes in the architecture and abundance of replication intermediates delineate the chronology of DNA damage tolerance pathways at UV-stalled replication forks in human cells. Nucleic Acids Res 2022; 50:9909-9929. [PMID: 36107774 PMCID: PMC9508826 DOI: 10.1093/nar/gkac746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
DNA lesions in S phase threaten genome stability. The DNA damage tolerance (DDT) pathways overcome these obstacles and allow completion of DNA synthesis by the use of specialised translesion (TLS) DNA polymerases or through recombination-related processes. However, how these mechanisms coordinate with each other and with bulk replication remains elusive. To address these issues, we monitored the variation of replication intermediate architecture in response to ultraviolet irradiation using transmission electron microscopy. We show that the TLS polymerase η, able to accurately bypass the major UV lesion and mutated in the skin cancer-prone xeroderma pigmentosum variant (XPV) syndrome, acts at the replication fork to resolve uncoupling and prevent post-replicative gap accumulation. Repriming occurs as a compensatory mechanism when this on-the-fly mechanism cannot operate, and is therefore predominant in XPV cells. Interestingly, our data support a recombination-independent function of RAD51 at the replication fork to sustain repriming. Finally, we provide evidence for the post-replicative commitment of recombination in gap repair and for pioneering observations of in vivo recombination intermediates. Altogether, we propose a chronology of UV damage tolerance in human cells that highlights the key role of polη in shaping this response and ensuring the continuity of DNA synthesis.
Collapse
Affiliation(s)
- Yann Benureau
- UMR9019 CNRS, Genome Integrity and Cancers, Laboratory Genome Integrity , Immune Response and Cancers, Equipe Labellisée La Ligue Contre Le Cancer, Gustave Roussy 94805 , Villejuif , France
- UMR9019 CNRS, Genome Integrity and Cancers, Laboratory DSB Repair , Replication stress and Genome Integrity, Gustave Roussy 94805 , Villejuif, France
- Université Paris-Saclay , France
| | - Caroline Pouvelle
- UMR9019 CNRS, Genome Integrity and Cancers, Laboratory Genome Integrity , Immune Response and Cancers, Equipe Labellisée La Ligue Contre Le Cancer, Gustave Roussy 94805 , Villejuif , France
- Université Paris-Saclay , France
| | - Pauline Dupaigne
- UMR9019 CNRS, Genome Integrity and Cancers, Laboratory DSB Repair , Replication stress and Genome Integrity, Gustave Roussy 94805 , Villejuif, France
- Université Paris-Saclay , France
| | - Sonia Baconnais
- UMR9019 CNRS, Genome Integrity and Cancers, Laboratory DSB Repair , Replication stress and Genome Integrity, Gustave Roussy 94805 , Villejuif, France
- Université Paris-Saclay , France
| | - Eliana Moreira Tavares
- UMR9019 CNRS, Genome Integrity and Cancers, Laboratory DSB Repair , Replication stress and Genome Integrity, Gustave Roussy 94805 , Villejuif, France
- Université Paris-Saclay , France
| | - Gerard Mazón
- UMR9019 CNRS, Genome Integrity and Cancers, Laboratory DSB Repair , Replication stress and Genome Integrity, Gustave Roussy 94805 , Villejuif, France
- Université Paris-Saclay , France
| | - Emmanuelle Despras
- UMR9019 CNRS, Genome Integrity and Cancers, Laboratory Genome Integrity , Immune Response and Cancers, Equipe Labellisée La Ligue Contre Le Cancer, Gustave Roussy 94805 , Villejuif , France
- Université Paris-Saclay , France
| | - Eric Le Cam
- UMR9019 CNRS, Genome Integrity and Cancers, Laboratory DSB Repair , Replication stress and Genome Integrity, Gustave Roussy 94805 , Villejuif, France
- Université Paris-Saclay , France
| | - Patricia L Kannouche
- UMR9019 CNRS, Genome Integrity and Cancers, Laboratory Genome Integrity , Immune Response and Cancers, Equipe Labellisée La Ligue Contre Le Cancer, Gustave Roussy 94805 , Villejuif , France
- Université Paris-Saclay , France
| |
Collapse
|
181
|
Groelly FJ, Dagg RA, Petropoulos M, Rossetti GG, Prasad B, Panagopoulos A, Paulsen T, Karamichali A, Jones SE, Ochs F, Dionellis VS, Puig Lombardi E, Miossec MJ, Lockstone H, Legube G, Blackford AN, Altmeyer M, Halazonetis TD, Tarsounas M. Mitotic DNA synthesis is caused by transcription-replication conflicts in BRCA2-deficient cells. Mol Cell 2022; 82:3382-3397.e7. [PMID: 36002001 PMCID: PMC9631240 DOI: 10.1016/j.molcel.2022.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/31/2022] [Accepted: 07/16/2022] [Indexed: 12/24/2022]
Abstract
Aberrant replication causes cells lacking BRCA2 to enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here, we identify genome-wide the sites where MiDAS reactions occur when BRCA2 is abrogated. High-resolution profiling revealed that these sites are different from MiDAS at aphidicolin-induced common fragile sites in that they map to genomic regions replicating in the early S-phase, which are close to early-firing replication origins, are highly transcribed, and display R-loop-forming potential. Both transcription inhibition in early S-phase and RNaseH1 overexpression reduced MiDAS in BRCA2-deficient cells, indicating that transcription-replication conflicts (TRCs) and R-loops are the source of MiDAS. Importantly, the MiDAS sites identified in BRCA2-deficient cells also represent hotspots for genomic rearrangements in BRCA2-mutated breast tumors. Thus, our work provides a mechanism for how tumor-predisposing BRCA2 inactivation links transcription-induced DNA damage with mitotic DNA repair to fuel the genomic instability characteristic of cancer cells.
Collapse
Affiliation(s)
- Florian J Groelly
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Rebecca A Dagg
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Giacomo G Rossetti
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Birbal Prasad
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Andreas Panagopoulos
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Teressa Paulsen
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Samuel E Jones
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Fena Ochs
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Vasilis S Dionellis
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Emilia Puig Lombardi
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Matthieu J Miossec
- Bioinformatics and Statistical Genetics Core, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Helen Lockstone
- Bioinformatics and Statistical Genetics Core, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse 31062, France
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Thanos D Halazonetis
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland.
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
182
|
Tu Q, Liu X, Yao X, Li R, Liu G, Jiang H, Li K, Chen Q, Huang X, Chang Q, Xu G, Zhu H, Shi P, Zhao B. RETSAT associates with DDX39B to promote fork restarting and resistance to gemcitabine based chemotherapy in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2022; 41:274. [PMID: 36109793 PMCID: PMC9476698 DOI: 10.1186/s13046-022-02490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Severe hypoxia is a prominent character of pancreatic ductal adenocarcinoma (PDAC) microenvironment. In the process of gemcitabine based chemotherapy, PDAC cells are insulted from replication stresses co-induced by hypoxia and gemcitabine. However, PDAC cells get outstanding abilities to resist to such harsh conditions and keep proliferating, causing a major obstacle for current therapy. RETSAT (Retinol Saturase) is defined as a hypoxia convergent gene recently, with high expression in PDAC hypoxic sectors. This study aimed to explore the roles of RETSAT in replication stress resistance and hypoxia adaptation in PDAC cells, and decipher the underlying mechanism.
Methods
The expression of RETSAT was examined in TCGA (The Cancer Genome Atlas), human pancreatic cancer microarray, clinical specimens and cell lines. Functions of RETSAT were studied by means of DNA fiber assay and comet assay in monolayer cultured PDAC cell lines, three dimensional spheroids, patient derived organoids and cell derived xenograft mouse models. Mechanism was investigated by using iPOND (isolate proteins on nascent DNA) combined with mass spectrometry, immunoprecipitation and immunoblotting.
Results
First, we found the converse relationship of RETSAT expression and PDAC chemotherapy. That is, PDAC patients with high RETSAT expression correlated with poor survival, while ones holding low RETSAT expression were benefitted more in Gemcitabine based chemotherapy. Second, we identified RETSAT as a novel replication fork associated protein. HIF-1α signaling promotes RETSAT expression under hypoxia. Functionally, RETSAT promoted fork restarting under replication stress and maintained genomic stability. Third, we uncovered the interaction of RETSAT and R-loop unwinding helicase DDX39B. RETSAT detained DDX39B on forks to resolve R-loops, through which avoided fork damage and CHK1 initiated apoptosis. Targeting DDX39B using chemical CCT018159 sensitized PDAC cells and organoids to gemcitabine induced apoptosis, highlighting the synergetic application of CCT018159 and gemcitabine in PDAC chemotherapy.
Conclusions
This study identified RETSAT as a novel replication fork protein, which functions through interacting with DDX39B mediated R-loop clearance to promote fork restarting, leading to cellular resistance to replication stresses co-induced by tumor environmental hypoxia and gemcitabine in pancreatic ductal adenocarcinoma.
Collapse
|
183
|
Kang Y, An S, Min D, Lee JY. Single-molecule fluorescence imaging techniques reveal molecular mechanisms underlying deoxyribonucleic acid damage repair. Front Bioeng Biotechnol 2022; 10:973314. [PMID: 36185427 PMCID: PMC9520083 DOI: 10.3389/fbioe.2022.973314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in single-molecule techniques have uncovered numerous biological secrets that cannot be disclosed by traditional methods. Among a variety of single-molecule methods, single-molecule fluorescence imaging techniques enable real-time visualization of biomolecular interactions and have allowed the accumulation of convincing evidence. These techniques have been broadly utilized for studying DNA metabolic events such as replication, transcription, and DNA repair, which are fundamental biological reactions. In particular, DNA repair has received much attention because it maintains genomic integrity and is associated with diverse human diseases. In this review, we introduce representative single-molecule fluorescence imaging techniques and survey how each technique has been employed for investigating the detailed mechanisms underlying DNA repair pathways. In addition, we briefly show how live-cell imaging at the single-molecule level contributes to understanding DNA repair processes inside cells.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Soyeong An
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
- Center for Genomic Integrity, Institute of Basic Sciences, Ulsan, South Korea
- *Correspondence: Ja Yil Lee,
| |
Collapse
|
184
|
Jimenez-Sainz J, Mathew J, Moore G, Lahiri S, Garbarino J, Eder JP, Rothenberg E, Jensen RB. BRCA2 BRC missense variants disrupt RAD51-dependent DNA repair. eLife 2022; 11:e79183. [PMID: 36098506 PMCID: PMC9545528 DOI: 10.7554/elife.79183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Pathogenic mutations in the BRCA2 tumor suppressor gene predispose to breast, ovarian, pancreatic, prostate, and other cancers. BRCA2 maintains genome stability through homology-directed repair (HDR) of DNA double-strand breaks (DSBs) and replication fork protection. Nonsense or frameshift mutations leading to truncation of the BRCA2 protein are typically considered pathogenic; however, missense mutations resulting in single amino acid substitutions can be challenging to functionally interpret. The majority of missense mutations in BRCA2 have been classified as Variants of Uncertain Significance (VUS) with unknown functional consequences. In this study, we identified three BRCA2 VUS located within the BRC repeat region to determine their impact on canonical HDR and fork protection functions. We provide evidence that S1221P and T1980I, which map to conserved residues in the BRC2 and BRC7 repeats, compromise the cellular response to chemotherapeutics and ionizing radiation, and display deficits in fork protection. We further demonstrate biochemically that S1221P and T1980I disrupt RAD51 binding and diminish the ability of BRCA2 to stabilize RAD51-ssDNA complexes. The third variant, T1346I, located within the spacer region between BRC2 and BRC3 repeats, is fully functional. We conclude that T1346I is a benign allele, whereas S1221P and T1980I are hypomorphic disrupting the ability of BRCA2 to fully engage and stabilize RAD51 nucleoprotein filaments. Our results underscore the importance of correctly classifying BRCA2 VUS as pathogenic variants can impact both future cancer risk and guide therapy selection during cancer treatment.
Collapse
Affiliation(s)
| | - Joshua Mathew
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Gemma Moore
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Sudipta Lahiri
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Jennifer Garbarino
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Joseph P Eder
- Department of Medical Oncology, Yale University School of Medicine, Yale Cancer CenterNew HavenUnited States
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York UniversityNew YorkUnited States
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| |
Collapse
|
185
|
Thakar T, Dhoonmoon A, Straka J, Schleicher EM, Nicolae CM, Moldovan GL. Lagging strand gap suppression connects BRCA-mediated fork protection to nucleosome assembly through PCNA-dependent CAF-1 recycling. Nat Commun 2022; 13:5323. [PMID: 36085347 PMCID: PMC9463168 DOI: 10.1038/s41467-022-33028-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The inability to protect stalled replication forks from nucleolytic degradation drives genome instability and underlies chemosensitivity in BRCA-deficient tumors. An emerging hallmark of BRCA-deficiency is the inability to suppress replication-associated single-stranded DNA (ssDNA) gaps. Here, we report that lagging strand ssDNA gaps interfere with the ASF1-CAF-1 nucleosome assembly pathway, and drive fork degradation in BRCA-deficient cells. We show that CAF-1 function at replication forks is lost in BRCA-deficient cells, due to defects in its recycling during replication stress. This CAF-1 recycling defect is caused by lagging strand gaps which preclude PCNA unloading, causing sequestration of PCNA-CAF-1 complexes on chromatin. Importantly, correcting PCNA unloading defects in BRCA-deficient cells restores CAF-1-dependent fork stability. We further show that the activation of a HIRA-dependent compensatory histone deposition pathway restores fork stability to BRCA-deficient cells. We thus define lagging strand gap suppression and nucleosome assembly as critical enablers of BRCA-mediated fork stability. Efficient DNA replication is crucial for genome stability. Here, Thakar et al. report that accumulation of lagging strand ssDNA gaps during replication interferes with nucleosome assembly and drives replication fork degradation in BRCA-deficient cells.
Collapse
Affiliation(s)
- Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Ashna Dhoonmoon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Joshua Straka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Emily M Schleicher
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
186
|
Paniagua I, Tayeh Z, Falcone M, Hernández Pérez S, Cerutti A, Jacobs JJL. MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner. Nat Commun 2022; 13:5167. [PMID: 36075897 PMCID: PMC9458726 DOI: 10.1038/s41467-022-32861-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
Protection of stalled replication forks is essential to prevent genome instability, a major driving force of tumorigenesis. Several key regulators of DNA double-stranded break (DSB) repair, including 53BP1 and RIF1, have been implicated in fork protection. MAD2L2, also known as REV7, plays an important role downstream of 53BP1/RIF1 by counteracting resection at DSBs in the recently discovered shieldin complex. The ability to bind and counteract resection at exposed DNA ends at DSBs makes MAD2L2/shieldin a prime candidate for also suppressing nucleolytic processing at stalled replication forks. However, the function of MAD2L2/shieldin outside of DNA repair is unknown. Here we address this by using genetic and single-molecule analyses and find that MAD2L2 is required for protecting and restarting stalled replication forks. MAD2L2 loss leads to uncontrolled MRE11-dependent resection of stalled forks and single-stranded DNA accumulation, which causes irreparable genomic damage. Unexpectedly, MAD2L2 limits resection at stalled forks independently of shieldin, since fork protection remained unaffected by shieldin loss. Instead, MAD2L2 cooperates with the DNA polymerases REV3L and REV1 to promote fork stability. Thus, MAD2L2 suppresses aberrant nucleolytic processing both at DSBs and stalled replication forks by differentially engaging shieldin and REV1/REV3L, respectively. MAD2L2 – as a member of the shieldin complex - counteracts resection during DNA repair. Here the authors demonstrate that MAD2L2 protects stalled replication forks from excessive resection, in a shieldin-independent and REV3L-dependent manner.
Collapse
Affiliation(s)
- Inés Paniagua
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Zainab Tayeh
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Mattia Falcone
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Santiago Hernández Pérez
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Aurora Cerutti
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
187
|
Walker JR, Zhu XD. Role of Cockayne Syndrome Group B Protein in Replication Stress: Implications for Cancer Therapy. Int J Mol Sci 2022; 23:10212. [PMID: 36142121 PMCID: PMC9499456 DOI: 10.3390/ijms231810212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/01/2022] Open
Abstract
A variety of endogenous and exogenous insults are capable of impeding replication fork progression, leading to replication stress. Several SNF2 fork remodelers have been shown to play critical roles in resolving this replication stress, utilizing different pathways dependent upon the nature of the DNA lesion, location on the DNA, and the stage of the cell cycle, to complete DNA replication in a manner preserving genetic integrity. Under certain conditions, however, the attempted repair may lead to additional genetic instability. Cockayne syndrome group B (CSB) protein, a SNF2 chromatin remodeler best known for its role in transcription-coupled nucleotide excision repair, has recently been shown to catalyze fork reversal, a pathway that can provide stability of stalled forks and allow resumption of DNA synthesis without chromosome breakage. Prolonged stalling of replication forks may collapse to give rise to DNA double-strand breaks, which are preferentially repaired by homology-directed recombination. CSB plays a role in repairing collapsed forks by promoting break-induced replication in S phase and early mitosis. In this review, we discuss roles of CSB in regulating the sources of replication stress, replication stress response, as well as the implications of CSB for cancer therapy.
Collapse
Affiliation(s)
| | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
188
|
Hao S, Wang Y, Zhao Y, Gao W, Cui W, Li Y, Cui J, Liu Y, Lin L, Xu X, Wang H. Dynamic switching of crotonylation to ubiquitination of H2A at lysine 119 attenuates transcription-replication conflicts caused by replication stress. Nucleic Acids Res 2022; 50:9873-9892. [PMID: 36062559 PMCID: PMC9508856 DOI: 10.1093/nar/gkac734] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/20/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
The reversible post-translational modification (PTM) of proteins plays an important role in many cellular processes. Lysine crotonylation (Kcr) is a newly identified PTM, but its functional significance remains unclear. Here, we found that Kcr is involved in the replication stress response. We show that crotonylation of histone H2A at lysine 119 (H2AK119) and ubiquitination of H2AK119 are reversibly regulated by replication stress. Decrotonylation of H2AK119 by SIRT1 is a prerequisite for subsequent ubiquitination of H2AK119 by BMI1. Accumulation of ubiquitinated H2AK119 at reversed replication forks leads to the release of RNA Polymerase II and transcription repression in the vicinity of stalled replication forks. These effects attenuate transcription–replication conflicts (TRCs) and TRC-associated R-loop formation and DNA double-strand breaks. These findings suggest that decrotonylation and ubiquitination of H2A at lysine 119 act together to resolve replication stress-induced TRCs and protect genome stability.
Collapse
Affiliation(s)
- Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ya Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuqin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wen Gao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wei Cui
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Youhang Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jian Cui
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lixiu Lin
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, China Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
189
|
Halder S, Sanchez A, Ranjha L, Reginato G, Ceppi I, Acharya A, Anand R, Cejka P. Double-stranded DNA binding function of RAD51 in DNA protection and its regulation by BRCA2. Mol Cell 2022; 82:3553-3565.e5. [PMID: 36070766 DOI: 10.1016/j.molcel.2022.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
RAD51 and the breast cancer suppressor BRCA2 have critical functions in DNA double-strand (dsDNA) break repair by homologous recombination and the protection of newly replicated DNA from nucleolytic degradation. The recombination function of RAD51 requires its binding to single-stranded DNA (ssDNA), whereas binding to dsDNA is inhibitory. Using reconstituted MRE11-, EXO1-, and DNA2-dependent nuclease reactions, we show that the protective function of RAD51 unexpectedly depends on its binding to dsDNA. The BRC4 repeat of BRCA2 abrogates RAD51 binding to dsDNA and accordingly impairs the function of RAD51 in protection. The BRCA2 C-terminal RAD51-binding segment (TR2) acts in a dominant manner to overcome the effect of BRC4. Mechanistically, TR2 stabilizes RAD51 binding to dsDNA, even in the presence of BRC4, promoting DNA protection. Our data suggest that RAD51's dsDNA-binding capacity may have evolved together with its function in replication fork protection and provide a mechanistic basis for the DNA-protection function of BRCA2.
Collapse
Affiliation(s)
- Swagata Halder
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Aurore Sanchez
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland
| | - Ananya Acharya
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland
| | - Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, 6500 Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), 8049 Zürich, Switzerland.
| |
Collapse
|
190
|
Griffin WC, McKinzey DR, Klinzing KN, Baratam R, Eliyapura A, Trakselis MA. A multi-functional role for the MCM8/9 helicase complex in maintaining fork integrity during replication stress. Nat Commun 2022; 13:5090. [PMID: 36042199 PMCID: PMC9427862 DOI: 10.1038/s41467-022-32583-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
The minichromosome maintenance (MCM) 8/9 helicase is a AAA+ complex involved in DNA replication-associated repair. Despite high sequence homology to the MCM2-7 helicase, a precise cellular role for MCM8/9 has remained elusive. We have interrogated the DNA synthesis ability and replication fork stability in cells lacking MCM8 or 9 and find that there is a functional partitioning of MCM8/9 activity between promoting replication fork progression and protecting persistently stalled forks. The helicase function of MCM8/9 aids in normal replication fork progression, but upon persistent stalling, MCM8/9 directs additional downstream stabilizers, including BRCA1 and Rad51, to protect forks from excessive degradation. Loss of MCM8 or 9 slows the overall replication rate and allows for excessive nascent strand degradation, detectable by increased markers of genomic damage. This evidence defines multifunctional roles for MCM8/9 in promoting normal replication fork progression and genome integrity following stress.
Collapse
Affiliation(s)
- Wezley C. Griffin
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA ,grid.240871.80000 0001 0224 711XPresent Address: St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - David R. McKinzey
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Kathleen N. Klinzing
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Rithvik Baratam
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Achini Eliyapura
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| | - Michael A. Trakselis
- grid.252890.40000 0001 2111 2894Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706 USA
| |
Collapse
|
191
|
Dhoonmoon A, Nicolae CM, Moldovan GL. The KU-PARP14 axis differentially regulates DNA resection at stalled replication forks by MRE11 and EXO1. Nat Commun 2022; 13:5063. [PMID: 36030235 PMCID: PMC9420157 DOI: 10.1038/s41467-022-32756-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Suppression of nascent DNA degradation has emerged as an essential role of the BRCA pathway in genome protection. In BRCA-deficient cells, the MRE11 nuclease is responsible for both resection of reversed replication forks, and accumulation of single stranded DNA gaps behind forks. Here, we show that the mono-ADP-ribosyltransferase PARP14 is a critical co-factor of MRE11. PARP14 is recruited to nascent DNA upon replication stress in BRCA-deficient cells, and through its catalytic activity, mediates the engagement of MRE11. Loss or inhibition of PARP14 suppresses MRE11-mediated fork degradation and gap accumulation, and promotes genome stability and chemoresistance of BRCA-deficient cells. Moreover, we show that the KU complex binds reversed forks and protects them against EXO1-catalyzed degradation. KU recruits the PARP14-MRE11 complex, which initiates partial resection to release KU and allow long-range resection by EXO1. Our work identifies a multistep process of nascent DNA processing at stalled replication forks in BRCA-deficient cells. Protection of replication forks against nucleolytic degradation is crucial for genome stability. Here, Dhoonmoon et al identify PARP14 and the KU complex as essential regulators of fork degradation by MRE11 and EXO1 nucleases in BRCA-deficient cells.
Collapse
Affiliation(s)
- Ashna Dhoonmoon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
192
|
Feu S, Unzueta F, Ercilla A, Pérez-Venteo A, Jaumot M, Agell N. RAD51 is a druggable target that sustains replication fork progression upon DNA replication stress. PLoS One 2022; 17:e0266645. [PMID: 35969531 PMCID: PMC9377619 DOI: 10.1371/journal.pone.0266645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Solving the problems that replication forks encounter when synthesizing DNA is essential to prevent genomic instability. Besides their role in DNA repair in the G2 phase, several homologous recombination proteins, specifically RAD51, have prominent roles in the S phase. Using different cellular models, RAD51 has been shown not only to be present at ongoing and arrested replication forks but also to be involved in nascent DNA protection and replication fork restart. Through pharmacological inhibition, here we study the specific role of RAD51 in the S phase. RAD51 inhibition in non-transformed cell lines did not have a significant effect on replication fork progression under non-perturbed conditions, but when the same cells were subjected to replication stress, RAD51 became necessary to maintain replication fork progression. Notably, the inhibition or depletion of RAD51 did not compromise fork integrity when subjected to hydroxyurea treatment. RAD51 inhibition also did not decrease the ability to restart, but rather compromised fork progression during reinitiation. In agreement with the presence of basal replication stress in human colorectal cancer cells, RAD51 inhibition reduced replication fork speed in these cells and increased γH2Ax foci under control conditions. These alterations could have resulted from the reduced association of DNA polymerase α to chromatin, as observed when inhibiting RAD51. It may be possible to exploit the differential dependence of non-transformed cells versus colorectal cancer cells on RAD51 activity under basal conditions to design new therapies that specifically target cancer cells.
Collapse
Affiliation(s)
- Sonia Feu
- Dept. Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Fernando Unzueta
- Dept. Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Amaia Ercilla
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Montserrat Jaumot
- Dept. Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Neus Agell
- Dept. Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- * E-mail:
| |
Collapse
|
193
|
Halder S, Ranjha L, Taglialatela A, Ciccia A, Cejka P. Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex. Nucleic Acids Res 2022; 50:8008-8022. [PMID: 35801922 PMCID: PMC9371921 DOI: 10.1093/nar/gkac583] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022] Open
Abstract
SMARCAL1, ZRANB3 and HLTF are required for the remodeling of replication forks upon stress to promote genome stability. RAD51, along with the RAD51 paralog complex, were also found to have recombination-independent functions in fork reversal, yet the underlying mechanisms remained unclear. Using reconstituted reactions, we build upon previous data to show that SMARCAL1, ZRANB3 and HLTF have unequal biochemical capacities, explaining why they have non-redundant functions. SMARCAL1 uniquely anneals RPA-coated ssDNA, which depends on its direct interaction with RPA, but not on ATP. SMARCAL1, along with ZRANB3, but not HLTF efficiently employ ATPase driven translocase activity to rezip RPA-covered bubbled DNA, which was proposed to mimic elements of fork reversal. In contrast, ZRANB3 and HLTF but not SMARCAL1 are efficient in branch migration that occurs downstream in fork remodeling. We also show that low concentrations of RAD51 and the RAD51 paralog complex, RAD51B–RAD51C–RAD51D–XRCC2 (BCDX2), directly stimulate the motor-driven activities of SMARCAL1 and ZRANB3 but not HLTF, and the interplay is underpinned by physical interactions. Our data provide a possible mechanism explaining previous cellular experiments implicating RAD51 and BCDX2 in fork reversal.
Collapse
Affiliation(s)
- Swagata Halder
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, NY, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, NY, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| |
Collapse
|
194
|
Cong K, Cantor SB. Exploiting replication gaps for cancer therapy. Mol Cell 2022; 82:2363-2369. [PMID: 35568026 PMCID: PMC9271608 DOI: 10.1016/j.molcel.2022.04.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 01/08/2023]
Abstract
Defects in DNA double-strand break repair are thought to render BRCA1 or BRCA2 (BRCA) mutant tumors selectively sensitive to PARP inhibitors (PARPis). Challenging this framework, BRCA and PARP1 share functions in DNA synthesis on the lagging strand. Thus, BRCA deficiency or "BRCAness" could reflect an inherent lagging strand problem that is vulnerable to drugs such as PARPi that also target the lagging strand, a combination that generates a toxic accumulation of replication gaps.
Collapse
Affiliation(s)
- Ke Cong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
195
|
Bisht P, Kumar VU, Pandey R, Velayutham R, Kumar N. Role of PARP Inhibitors in Glioblastoma and Perceiving Challenges as Well as Strategies for Successful Clinical Development. Front Pharmacol 2022; 13:939570. [PMID: 35873570 PMCID: PMC9297740 DOI: 10.3389/fphar.2022.939570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiform is the most aggressive primary type of brain tumor, representing 54% of all gliomas. The average life span for glioblastoma multiform is around 14-15 months instead of treatment. The current treatment for glioblastoma multiform includes surgical removal of the tumor followed by radiation therapy and temozolomide chemotherapy for 6.5 months, followed by another 6 months of maintenance therapy with temozolomide chemotherapy (5 days every month). However, resistance to temozolomide is frequently one of the limiting factors in effective treatment. Poly (ADP-ribose) polymerase (PARP) inhibitors have recently been investigated as sensitizing drugs to enhance temozolomide potency. However, clinical use of PARP inhibitors in glioblastoma multiform is difficult due to a number of factors such as limited blood-brain barrier penetration of PARP inhibitors, inducing resistance due to frequent use of PARP inhibitors, and overlapping hematologic toxicities of PARP inhibitors when co-administered with glioblastoma multiform standard treatment (radiation therapy and temozolomide). This review elucidates the role of PARP inhibitors in temozolomide resistance, multiple factors that make development of these PARP inhibitor drugs challenging, and the strategies such as the development of targeted drug therapies and combination therapy to combat the resistance of PARP inhibitors that can be adopted to overcome these challenges.
Collapse
Affiliation(s)
- Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - V. Udaya Kumar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - Ruchi Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - Ravichandiran Velayutham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-Hajipur), Hajipur, India
| |
Collapse
|
196
|
Liu Q, Liu P, Ji T, Zheng L, Shen C, Ran S, Liu J, Zhao Y, Niu Y, Wang T, Dong J. The histone methyltransferase SUVR2 promotes DSB repair via chromatin remodeling and liquid-liquid phase separation. MOLECULAR PLANT 2022; 15:1157-1175. [PMID: 35610973 DOI: 10.1016/j.molp.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Maintaining genomic integrity and stability is particularly important for stem cells, which are at the top of the cell lineage origin. Here, we discovered that the plant-specific histone methyltransferase SUVR2 maintains the genome integrity of the root tip stem cells through chromatin remodeling and liquid-liquid phase separation (LLPS) when facing DNA double-strand breaks (DSBs). The histone methyltransferase SUVR2 (MtSUVR2) has histone methyltransferase activity and catalyzes the conversion of histone H3 lysine 9 monomethylation (H3K9me1) to H3K9me2/3 in vitro and in Medicago truncatula. Under DNA damage, the proportion of heterochromatin decreased and the level of DSB damage marker γ-H2AX increased in suvr2 mutants, indicating that MtSUVR2 promotes the compaction of the chromatin structure through H3K9 methylation modification to protect DNA from damage. Interestingly, MtSUVR2 was induced by DSBs to phase separate and form droplets to localize at the damage sites, and this was confirmed by immunofluorescence and fluorescence recovery after photobleaching experiments. The IDR1 and low-complexity domain regions of MtSUVR2 determined its phase separation in the nucleus, whereas the IDR2 region determined the interaction with the homologous recombinase MtRAD51. Furthermore, we found that MtSUVR2 drove the phase separation of MtRAD51 to form "DNA repair bodies," which could enhance the stability of MtRAD51 proteins to facilitate error-free homologous recombination repair of stem cells. Taken together, our study reveals that chromatin remodeling-associated proteins participate in DNA repair through LLPS.
Collapse
Affiliation(s)
- Qianwen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Ji
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lihua Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Shen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shasha Ran
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinling Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yafei Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
197
|
de Renty C, Pond KW, Yagle MK, Ellis NA. BLM Sumoylation Is Required for Replication Stability and Normal Fork Velocity During DNA Replication. Front Mol Biosci 2022; 9:875102. [PMID: 35847987 PMCID: PMC9284272 DOI: 10.3389/fmolb.2022.875102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
BLM is sumoylated in response to replication stress. We have studied the role of BLM sumoylation in physiologically normal and replication-stressed conditions by expressing in BLM-deficient cells a BLM with SUMO acceptor-site mutations, which we refer to as SUMO-mutant BLM cells. SUMO-mutant BLM cells exhibited multiple defects in both stressed and unstressed DNA replication conditions, including, in hydroxyurea-treated cells, reduced fork restart and increased fork collapse and, in untreated cells, slower fork velocity and increased fork instability as assayed by track-length asymmetry. We further showed by fluorescence recovery after photobleaching that SUMO-mutant BLM protein was less dynamic than normal BLM and comprised a higher immobile fraction at collapsed replication forks. BLM sumoylation has previously been linked to the recruitment of RAD51 to stressed forks in hydroxyurea-treated cells. An important unresolved question is whether the failure to efficiently recruit RAD51 is the explanation for replication stress in untreated SUMO-mutant BLM cells.
Collapse
Affiliation(s)
- Christelle de Renty
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Kelvin W. Pond
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Mary K. Yagle
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Nathan A. Ellis
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
198
|
Stalled replication fork protection limits cGAS-STING and P-body-dependent innate immune signalling. Nat Cell Biol 2022; 24:1154-1164. [PMID: 35817959 PMCID: PMC9924303 DOI: 10.1038/s41556-022-00950-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 05/27/2022] [Indexed: 12/11/2022]
Abstract
Protection of stalled replication forks is crucial for cells to respond to replication stress and maintain genome stability. Genome instability and replication stress have been linked to immune activation. Here we show that Abro1 and FANCD2 protect replication forks, which is linked with the restriction of innate immune responses. We reveal that stalled replication fork degradation induced by Abro1 or FANCD2 deficiency leads to accumulation of cytosolic single-stranded DNA and activation of a cGAS-STING-dependent innate immune response that is dependent on DNA2 nuclease. We further show that the increased cytosolic single-stranded DNA contains ribosomal DNA that can bind to cGAS. In addition, Abro1 and FANCD2 limit the formation of replication stress-induced P-bodies, and P-bodies are capable of modulating activation of the innate immune response after prolonged replication stress. Our study demonstrates a connection between replication stress and activation of the innate immune response that may be targeted for therapeutic purpose.
Collapse
|
199
|
Poreba E, Lesniewicz K, Durzynska J. Histone-lysine N-methyltransferase 2 (KMT2) complexes - a new perspective. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108443. [PMID: 36154872 DOI: 10.1016/j.mrrev.2022.108443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 01/01/2023]
Abstract
Histone H3 Lys4 (H3K4) methylation is catalyzed by the Histone-Lysine N-Methyltransferase 2 (KMT2) protein family, and its members are required for gene expression control. In vertebrates, the KMT2s function in large multisubunit complexes known as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). The activity of these complexes is critical for proper development, and mutation-induced defects in their functioning have frequently been found in human cancers. Moreover, inherited or de novo mutations in KMT2 genes are among the etiological factors in neurodevelopmental disorders such as Kabuki and Kleefstra syndromes. The canonical role of KMT2s is to catalyze H3K4 methylation, which results in a permissive chromatin environment that drives gene expression. However, current findings described in this review demonstrate that these enzymes can regulate processes that are not dependent on methylation: noncatalytic functions of KMT2s include DNA damage response, cell division, and metabolic activities. Moreover, these enzymes may also methylate non-histone substrates and play a methylation-dependent function in the DNA damage response. In this review, we present an overview of the new, noncanonical activities of KMT2 complexes in a variety of cellular processes. These discoveries may have crucial implications for understanding the functions of these methyltransferases in developmental processes, disease, and epigenome-targeting therapeutic strategies in the future.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Julia Durzynska
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
200
|
Wicks AJ, Krastev DB, Pettitt SJ, Tutt ANJ, Lord CJ. Opinion: PARP inhibitors in cancer-what do we still need to know? Open Biol 2022; 12:220118. [PMID: 35892198 PMCID: PMC9326299 DOI: 10.1098/rsob.220118] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
PARP inhibitors (PARPi) have been demonstrated to exhibit profound anti-tumour activity in individuals whose cancers have a defect in the homologous recombination DNA repair pathway. Here, we describe the current consensus as to how PARPi work and how drug resistance to these agents emerges. We discuss the need to refine the current repertoire of clinical-grade companion biomarkers to be used with PARPi, so that patient stratification can be improved, the early emergence of drug resistance can be detected and dose-limiting toxicity can be predicted. We also highlight current thoughts about how PARPi resistance might be treated.
Collapse
Affiliation(s)
- Andrew J. Wicks
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Dragomir B. Krastev
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Andrew N. J. Tutt
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Christopher J. Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London SW3 6JB, UK
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| |
Collapse
|