151
|
e Silva KSF, Lima RM, Baeza LC, Lima PDS, Cordeiro TDM, Charneau S, da Silva RA, Soares CMDA, Pereira M. Interactome of Glyceraldehyde-3-Phosphate Dehydrogenase Points to the Existence of Metabolons in Paracoccidioides lutzii. Front Microbiol 2019; 10:1537. [PMID: 31338083 PMCID: PMC6629890 DOI: 10.3389/fmicb.2019.01537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioides is a dimorphic fungus, the causative agent of paracoccidioidomycosis. The disease is endemic within Latin America and prevalent in Brazil. The treatment is based on azoles, sulfonamides and amphotericin B. The seeking for new treatment approaches is a real necessity for neglected infections. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an essential glycolytic enzyme, well known for its multitude of functions within cells, therefore categorized as a moonlight protein. To our knowledge, this is the first approach performed on the Paracoccidioides genus regarding the description of PPIs having GAPDH as a target. Here, we show an overview of experimental GAPDH interactome in different phases of Paracoccidioides lutzii and an in silico analysis of 18 proteins partners. GAPDH interacted with 207 proteins in P. lutzii. Several proteins bound to GAPDH in mycelium, transition and yeast phases are common to important pathways such as glycolysis and TCA. We performed a co-immunoprecipitation assay to validate the complex formed by GAPDH with triose phosphate isomerase, enolase, isocitrate lyase and 2-methylcitrate synthase. We found GAPDH participating in complexes with proteins of specific pathways, indicating the existence of a glycolytic and a TCA metabolon in P. lutzii. GAPDH interacted with several proteins that undergoes regulation by nitrosylation. In addition, we modeled the GAPDH 3-D structure, performed molecular dynamics and molecular docking in order to identify the interacting interface between GAPDH and the interacting proteins. Despite the large number of interacting proteins, GAPDH has only four main regions of contact with interacting proteins, reflecting its ancestrality and conservation over evolution.
Collapse
Affiliation(s)
| | - Raisa Melo Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lilian Cristiane Baeza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Thuany de Moura Cordeiro
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Sébastien Charneau
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Roosevelt Alves da Silva
- Núcleo Colaborativo de Biossistemas, Instituto de Ciências Exatas, Universidade Federal de Jataí, Goiás, Brazil
| | | | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
152
|
Dorsett D. The Many Roles of Cohesin in Drosophila Gene Transcription. Trends Genet 2019; 35:542-551. [PMID: 31130395 PMCID: PMC6571051 DOI: 10.1016/j.tig.2019.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
The cohesin protein complex mediates sister chromatid cohesion to ensure accurate chromosome segregation, and also influences gene transcription in higher eukaryotes. Modest deficits in cohesin function that do not alter chromosome segregation cause significant birth defects. The mechanisms by which cohesin participates in gene regulation have been studied in Drosophila, revealing that it is involved in gene activation by transcriptional enhancers and epigenetic gene silencing mediated by Polycomb group proteins. Recent studies reveal that early DNA replication origins are important for determining which genes associate with cohesin, and suggest that cohesin at replication origins is important for establishing both sister chromatid cohesion and enhancer-promoter communication.
Collapse
Affiliation(s)
- Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
153
|
La Marca JE, Diepstraten ST, Hodge AL, Wang H, Hart AH, Richardson HE, Somers WG. Strip and Cka negatively regulate JNK signalling during Drosophila spermatogenesis. Development 2019; 146:dev.174292. [PMID: 31164352 DOI: 10.1242/dev.174292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/24/2019] [Indexed: 12/16/2022]
Abstract
One fundamental property of a stem cell niche is the exchange of molecular signals between its component cells. Niche models, such as the Drosophila melanogaster testis, have been instrumental in identifying and studying the conserved genetic factors that contribute to niche molecular signalling. Here, we identify jam packed (jam), an allele of Striatin interacting protein (Strip), which is a core member of the highly conserved Striatin-interacting phosphatase and kinase (STRIPAK) complex. In the developing Drosophila testis, Strip cell-autonomously regulates the differentiation and morphology of the somatic lineage, and non-cell-autonomously regulates the proliferation and differentiation of the germline lineage. Mechanistically, Strip acts in the somatic lineage with its STRIPAK partner, Connector of kinase to AP-1 (Cka), where they negatively regulate the Jun N-terminal kinase (JNK) signalling pathway. Our study reveals a novel role for Strip/Cka in JNK pathway regulation during spermatogenesis within the developing Drosophila testis.
Collapse
Affiliation(s)
- John E La Marca
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia 3086
| | - Sarah T Diepstraten
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia 3086
| | - Amy L Hodge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia 3086
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore 169857.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Adam H Hart
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia 3086
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia 3086
| | - W Gregory Somers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia 3086
| |
Collapse
|
154
|
Anselm E, Thomae AW, Jeyaprakash AA, Heun P. Oligomerization of Drosophila Nucleoplasmin-Like Protein is required for its centromere localization. Nucleic Acids Res 2019; 46:11274-11286. [PMID: 30357352 PMCID: PMC6277087 DOI: 10.1093/nar/gky988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023] Open
Abstract
The evolutionarily conserved nucleoplasmin family of histone chaperones has two paralogues in Drosophila, named Nucleoplasmin-Like Protein (NLP) and Nucleophosmin (NPH). NLP localizes to the centromere, yet molecular underpinnings of this localization are unknown. Moreover, similar to homologues in other organisms, NLP forms a pentamer in vitro, but the biological significance of its oligomerization has not been explored. Here, we characterize the oligomers formed by NLP and NPH in vivo and find that oligomerization of NLP is required for its localization at the centromere. We can further show that oligomerization-deficient NLP is unable to bind the centromeric protein Hybrid Male Rescue (HMR), which in turn is required for targeting the NLP oligomer to the centromere. Finally, using super-resolution microscopy we find that NLP and HMR largely co-localize in domains that are immediately adjacent to, yet distinct from centromere domains defined by the centromeric histone dCENP-A.
Collapse
Affiliation(s)
- Eduard Anselm
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Wellcome Trust Centre for Cell Biology, Edinburgh, UK
| | - Andreas W Thomae
- Biomedical Center, Core Facility Bioimaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | | | - Patrick Heun
- Wellcome Trust Centre for Cell Biology, Edinburgh, UK
| |
Collapse
|
155
|
Ding Z, Kihara D. Computational identification of protein-protein interactions in model plant proteomes. Sci Rep 2019; 9:8740. [PMID: 31217453 PMCID: PMC6584649 DOI: 10.1038/s41598-019-45072-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions (PPIs) play essential roles in many biological processes. A PPI network provides crucial information on how biological pathways are structured and coordinated from individual protein functions. In the past two decades, large-scale PPI networks of a handful of organisms were determined by experimental techniques. However, these experimental methods are time-consuming, expensive, and are not easy to perform on new target organisms. Large-scale PPI data is particularly sparse in plant organisms. Here, we developed a computational approach for detecting PPIs trained and tested on known PPIs of Arabidopsis thaliana and applied to three plants, Arabidopsis thaliana, Glycine max (soybean), and Zea mays (maize) to discover new PPIs on a genome-scale. Our method considers a variety of features including protein sequences, gene co-expression, functional association, and phylogenetic profiles. This is the first work where a PPI prediction method was developed for is the first PPI prediction method applied on benchmark datasets of Arabidopsis. The method showed a high prediction accuracy of over 90% and very high precision of close to 1.0. We predicted 50,220 PPIs in Arabidopsis thaliana, 13,175,414 PPIs in corn, and 13,527,834 PPIs in soybean. Newly predicted PPIs were classified into three confidence levels according to the availability of existing supporting evidence and discussed. Predicted PPIs in the three plant genomes are made available for future reference.
Collapse
Affiliation(s)
- Ziyun Ding
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA.
| |
Collapse
|
156
|
Garcia S, Trinh CT. Modular design: Implementing proven engineering principles in biotechnology. Biotechnol Adv 2019; 37:107403. [PMID: 31181317 DOI: 10.1016/j.biotechadv.2019.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/23/2019] [Accepted: 06/04/2019] [Indexed: 12/27/2022]
Abstract
Modular design is at the foundation of contemporary engineering, enabling rapid, efficient, and reproducible construction and maintenance of complex systems across applications. Remarkably, modularity has recently been discovered as a governing principle in natural biological systems from genes to proteins to complex networks within a cell and organism communities. The convergent knowledge of natural and engineered modular systems provides a key to drive modern biotechnology to address emergent challenges associated with health, food, energy, and the environment. Here, we first present the theory and application of modular design in traditional engineering fields. We then discuss the significance and impact of modular architectures on systems biology and biotechnology. Next, we focus on the very recent theoretical and experimental advances in modular cell engineering that seeks to enable rapid and systematic development of microbial catalysts capable of efficiently synthesizing a large space of useful chemicals. We conclude with an outlook towards theoretical and practical opportunities for a more systematic and effective application of modular cell engineering in biotechnology.
Collapse
Affiliation(s)
- Sergio Garcia
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, United States of America; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, United States of America; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America.
| |
Collapse
|
157
|
Gärtner SM, Hundertmark T, Nolte H, Theofel I, Eren-Ghiani Z, Tetzner C, Duchow TB, Rathke C, Krüger M, Renkawitz-Pohl R. Stage-specific testes proteomics of Drosophila melanogaster identifies essential proteins for male fertility. Eur J Cell Biol 2019; 98:103-115. [DOI: 10.1016/j.ejcb.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 02/01/2023] Open
|
158
|
Deng Y, Wu J, Qi M, Tan Y. Optimal disintegration strategy in spatial networks with disintegration circle model. CHAOS (WOODBURY, N.Y.) 2019; 29:061102. [PMID: 31266330 DOI: 10.1063/1.5093201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
The problem of network disintegration, such as suppression of an epidemic spread and destabilization of terrorist networks, has broad applications and recently has received increasing attention. In this study, we concentrate on the problem of network disintegration in the spatial network in which the nodes and edges are embedded in space. For such a network, it is crucial to include spatial information in the search for an optimal disintegration strategy. We first carry out an optimization model with multiple disintegration circles in the spatial network and introduce a tabu search to seek the optimal disintegration strategy. We demonstrate that the "best" disintegration strategy can be identified through global searches in the spatial network. The optimal disintegration strategy of the spatial network tends to place the disintegration circles so that they cover more nodes which are closer to the average degree to achieve a more destructive effect. Our understanding of the optimal disintegration strategy in spatial networks may also provide insight into network protection, e.g., identification of the weakest part, which deserves further study.
Collapse
Affiliation(s)
- Ye Deng
- College of Systems Engineering, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Jun Wu
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, Guangdong, People's Republic of China
| | - Mingze Qi
- College of Systems Engineering, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Yuejin Tan
- College of Systems Engineering, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| |
Collapse
|
159
|
Liu X, Yang Z, Sang S, Lin H, Wang J, Xu B. Detection of protein complexes from multiple protein interaction networks using graph embedding. Artif Intell Med 2019; 96:107-115. [PMID: 31164203 DOI: 10.1016/j.artmed.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/06/2019] [Accepted: 04/06/2019] [Indexed: 12/22/2022]
|
160
|
Saettone A, Nabeel-Shah S, Garg J, Lambert JP, Pearlman RE, Fillingham J. Functional Proteomics of Nuclear Proteins in Tetrahymena thermophila: A Review. Genes (Basel) 2019; 10:E333. [PMID: 31052454 PMCID: PMC6562869 DOI: 10.3390/genes10050333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Identification and characterization of protein complexes and interactomes has been essential to the understanding of fundamental nuclear processes including transcription, replication, recombination, and maintenance of genome stability. Despite significant progress in elucidation of nuclear proteomes and interactomes of organisms such as yeast and mammalian systems, progress in other models has lagged. Protists, including the alveolate ciliate protozoa with Tetrahymena thermophila as one of the most studied members of this group, have a unique nuclear biology, and nuclear dimorphism, with structurally and functionally distinct nuclei in a common cytoplasm. These features have been important in providing important insights about numerous fundamental nuclear processes. Here, we review the proteomic approaches that were historically used as well as those currently employed to take advantage of the unique biology of the ciliates, focusing on Tetrahymena, to address important questions and better understand nuclear processes including chromatin biology of eukaryotes.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Jyoti Garg
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada.
- CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
161
|
Proteomics turns functional. J Proteomics 2019; 198:36-44. [DOI: 10.1016/j.jprot.2018.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
|
162
|
Valoskova K, Biebl J, Roblek M, Emtenani S, Gyoergy A, Misova M, Ratheesh A, Reis-Rodrigues P, Shkarina K, Larsen ISB, Vakhrushev SY, Clausen H, Siekhaus DE. A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion. eLife 2019; 8:e41801. [PMID: 30910009 PMCID: PMC6435326 DOI: 10.7554/elife.41801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Aberrant display of the truncated core1 O-glycan T-antigen is a common feature of human cancer cells that correlates with metastasis. Here we show that T-antigen in Drosophila melanogaster macrophages is involved in their developmentally programmed tissue invasion. Higher macrophage T-antigen levels require an atypical major facilitator superfamily (MFS) member that we named Minerva which enables macrophage dissemination and invasion. We characterize for the first time the T and Tn glycoform O-glycoproteome of the Drosophila melanogaster embryo, and determine that Minerva increases the presence of T-antigen on proteins in pathways previously linked to cancer, most strongly on the sulfhydryl oxidase Qsox1 which we show is required for macrophage tissue entry. Minerva's vertebrate ortholog, MFSD1, rescues the minerva mutant's migration and T-antigen glycosylation defects. We thus identify a key conserved regulator that orchestrates O-glycosylation on a protein subset to activate a program governing migration steps important for both development and cancer metastasis.
Collapse
Affiliation(s)
| | - Julia Biebl
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Marko Roblek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Shamsi Emtenani
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Attila Gyoergy
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Michaela Misova
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Aparna Ratheesh
- Institute of Science and Technology AustriaKlosterneuburgAustria
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUnited Kingdom
| | | | | | - Ida Signe Bohse Larsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Daria E Siekhaus
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
163
|
Guo P, Lee CH, Lei H, Zheng Y, Pulgar Prieto KD, Pan D. Nerfin-1 represses transcriptional output of Hippo signaling in cell competition. eLife 2019; 8:38843. [PMID: 30901309 PMCID: PMC6430605 DOI: 10.7554/elife.38843] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/25/2019] [Indexed: 12/29/2022] Open
Abstract
The Hippo tumor suppressor pathway regulates tissue growth in Drosophila by restricting the activity of the transcriptional coactivator Yorkie (Yki), which normally complexes with the TEF/TEAD family DNA-binding transcription factor Scalloped (Sd) to drive the expression of growth-promoting genes. Given its pivotal role as a central hub in mediating the transcriptional output of Hippo signaling, there is great interest in understanding the molecular regulation of the Sd-Yki complex. In this study, we identify Nerfin-1 as a transcriptional repressor that antagonizes the activity of the Sd-Yki complex by binding to the TEA DNA-binding domain of Sd. Consistent with its biochemical function, ectopic expression of Nerfin-1 results in tissue undergrowth in an Sd-dependent manner. Conversely, loss of Nerfin-1 enhances the ability of winner cells to eliminate loser cells in multiple scenarios of cell competition. We further show that INSM1, the mammalian ortholog of Nerfin-1, plays a conserved role in repressing the activity of the TEAD-YAP complex. These findings reveal a novel regulatory mode converging on the transcriptional output of the Hippo pathway that may be exploited for modulating the YAP oncoprotein in cancer and regenerative medicine. Animals uses a range of mechanisms to stop their organs from growing once they have reached the right shape and size. One of these processes, a set of chemical messages called the Hippo pathway, controls the balance of cell death and cell division. In fruit flies, Hippo works by repressing a complex formed of two proteins, Yorkie and Scalloped, which normally switch genes on to encourage cells to grow. Yorkie is also involved in cell competition, a process in which cells in a tissue compare themselves to each other. Healthier ‘winner’ cells then kill neighboring ‘loser’ cells that are weaker or damaged. This ensures that the tissue keeps working properly. Despite Yorkie and Scalloped being key to control the growth and health of tissues, how the activity of these proteins is regulated was not well understood. To investigate, Guo et al. conducted a series experiments on fruit flies and found that a protein called Nerfin-1 can bind onto Scalloped to stop the Scalloped-Yorkie complex from switching on genes. As a result, flies with too much Nerfin-1 had stunted tissue growth. In addition, Guo et al. confirmed that the Nerfin-1 equivalent in mammals acts in the same way. Further work revealed that Nerfin-1 also plays a role in cell competition: without this protein, ‘winner’ cells became 'super winners', eliminating even more of the loser cells. Besides regulating the size of organs, the Hippo pathway is also involved in stopping cells from dividing uncontrollably and becoming cancerous. Further research may therefore focus on Nerfin-1 and its equivalent in mammals to understand how this protein could contribute to the emergence of cancer.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chang-Hyun Lee
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Huiyan Lei
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Katiuska Daniela Pulgar Prieto
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
164
|
Hughes SC, Simmonds AJ. Drosophila mRNA Localization During Later Development: Past, Present, and Future. Front Genet 2019; 10:135. [PMID: 30899273 PMCID: PMC6416162 DOI: 10.3389/fgene.2019.00135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple mechanisms tightly regulate mRNAs during their transcription, translation, and degradation. Of these, the physical localization of mRNAs to specific cytoplasmic regions is relatively easy to detect; however, linking localization to functional regulatory roles has been more difficult to establish. Historically, Drosophila melanogaster is a highly effective model to identify localized mRNAs and has helped identify roles for this process by regulating various cell activities. The majority of the well-characterized functional roles for localizing mRNAs to sub-regions of the cytoplasm have come from the Drosophila oocyte and early syncytial embryo. At present, relatively few functional roles have been established for mRNA localization within the relatively smaller, differentiated somatic cell lineages characteristic of later development, beginning with the cellular blastoderm, and the multiple cell lineages that make up the gastrulating embryo, larva, and adult. This review is divided into three parts—the first outlines past evidence for cytoplasmic mRNA localization affecting aspects of cellular activity post-blastoderm development in Drosophila. The majority of these known examples come from highly polarized cell lineages such as differentiating neurons. The second part considers the present state of affairs where we now know that many, if not most mRNAs are localized to discrete cytoplasmic regions in one or more somatic cell lineages of cellularized embryos, larvae or adults. Assuming that the phenomenon of cytoplasmic mRNA localization represents an underlying functional activity, and correlation with the encoded proteins suggests that mRNA localization is involved in far more than neuronal differentiation. Thus, it seems highly likely that past-identified examples represent only a small fraction of localization-based mRNA regulation in somatic cells. The last part highlights recent technological advances that now provide an opportunity for probing the role of mRNA localization in Drosophila, moving beyond cataloging the diversity of localized mRNAs to a similar understanding of how localization affects mRNA activity.
Collapse
Affiliation(s)
- Sarah C Hughes
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
165
|
Schmich F, Kuipers J, Merdes G, Beerenwinkel N. netprioR: a probabilistic model for integrative hit prioritisation of genetic screens. Stat Appl Genet Mol Biol 2019; 18:sagmb-2018-0033. [PMID: 30840598 DOI: 10.1515/sagmb-2018-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the post-genomic era of big data in biology, computational approaches to integrate multiple heterogeneous data sets become increasingly important. Despite the availability of large amounts of omics data, the prioritisation of genes relevant for a specific functional pathway based on genetic screening experiments, remains a challenging task. Here, we introduce netprioR, a probabilistic generative model for semi-supervised integrative prioritisation of hit genes. The model integrates multiple network data sets representing gene-gene similarities and prior knowledge about gene functions from the literature with gene-based covariates, such as phenotypes measured in genetic perturbation screens, for example, by RNA interference or CRISPR/Cas9. We evaluate netprioR on simulated data and show that the model outperforms current state-of-the-art methods in many scenarios and is on par otherwise. In an application to real biological data, we integrate 22 network data sets, 1784 prior knowledge class labels and 3840 RNA interference phenotypes in order to prioritise novel regulators of Notch signalling in Drosophila melanogaster. The biological relevance of our predictions is evaluated using in silico and in vivo experiments. An efficient implementation of netprioR is available as an R package at http://bioconductor.org/packages/netprioR.
Collapse
Affiliation(s)
- Fabian Schmich
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Gunter Merdes
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
166
|
Delaney CE, Methot SP, Guidi M, Katic I, Gasser SM, Padeken J. Heterochromatic foci and transcriptional repression by an unstructured MET-2/SETDB1 co-factor LIN-65. J Cell Biol 2019; 218:820-838. [PMID: 30737265 PMCID: PMC6400574 DOI: 10.1083/jcb.201811038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
The segregation of the genome into accessible euchromatin and histone H3K9-methylated heterochromatin helps silence repetitive elements and tissue-specific genes. In Caenorhabditis elegans, MET-2, the homologue of mammalian SETDB1, catalyzes H3K9me1 and me2, yet like SETDB1, its regulation is enigmatic. Contrary to the cytosolic enrichment of overexpressed MET-2, we show that endogenous MET-2 is nuclear throughout development, forming perinuclear foci in a cell cycle-dependent manner. Mass spectrometry identified two cofactors that bind MET-2: LIN-65, a highly unstructured protein, and ARLE-14, a conserved GTPase effector. All three factors colocalize in heterochromatic foci. Ablation of lin-65, but not arle-14, mislocalizes and destabilizes MET-2, resulting in decreased H3K9 dimethylation, dispersion of heterochromatic foci, and derepression of MET-2 targets. Mutation of met-2 or lin-65 also disrupts the perinuclear anchoring of genomic heterochromatin. Loss of LIN-65, like that of MET-2, compromises temperature stress resistance and germline integrity, which are both linked to promiscuous repeat transcription and gene expression.
Collapse
Affiliation(s)
- Colin E Delaney
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Stephen P Methot
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Micol Guidi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Iskra Katic
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Faculty of Natural Sciences, Basel, Switzerland
| | - Jan Padeken
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
167
|
Tian B, Duan Q, Zhao C, Teng B, He Z. Reinforce: An Ensemble Approach for Inferring PPI Network from AP-MS Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:365-376. [PMID: 28534782 DOI: 10.1109/tcbb.2017.2705060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Affinity Purification-Mass Spectrometry (AP-MS) is one of the most important technologies for constructing protein-protein interaction (PPI) networks. In this paper, we propose an ensemble method, Reinforce, for inferring PPI network from AP-MS data set. The new algorithm named Reinforce is based on rank aggregation and false discovery rate control. Under the null hypothesis that the interaction scores from different scoring methods are randomly generated, Reinforce follows three steps to integrate multiple ranking results from different algorithms or different data sets. The experimental results show that Reinforce can get more stable and accurate inference results than existing algorithms. The source codes of Reinforce and data sets used in the experiments are available at: https://sourceforge.net/projects/reinforce/.
Collapse
|
168
|
Control of Drosophila Growth and Survival by the Lipid Droplet-Associated Protein CG9186/Sturkopf. Cell Rep 2019; 26:3726-3740.e7. [DOI: 10.1016/j.celrep.2019.02.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 05/08/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
|
169
|
Hao T, Zhao L, Wu D, Wang B, Feng X, Wang E, Sun J. The Protein-Protein Interaction Network of Litopenaeus vannamei Haemocytes. Front Physiol 2019; 10:156. [PMID: 30863321 PMCID: PMC6399580 DOI: 10.3389/fphys.2019.00156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/08/2019] [Indexed: 12/23/2022] Open
Abstract
Protein–protein interaction networks (PINs) have been constructed in various organisms and utilized to conduct evolutionary analyses and functional predictions. Litopenaeus vannamei is a high-valued commercial aquaculture species with an uncharacterized interactome. With the development of RNA-seq techniques and systems biology, it is possible to obtain genome-wide transcriptional information for L. vannamei and construct a systematic network based on these data. In this work, based on the RNA-seq of haemocytes we constructed the first L. vannamei PIN including 4,858 proteins and 104,187 interactions. The PIN constructed here is the first large-scale PIN for shrimp. The confidence scores of interactions in the PIN were evaluated on the basis of sequence homology and genetic relationships. The immune-specific sub-network was extracted from global PIN, and more than a third of proteins were found in signaling pathways in the sub-network, which indicates an inseparable relationship between signaling processes and immune mechanisms. Six selected signaling pathways were constructed at different age groups based on evolutionary analyses. Furthermore, we showed that the functions of the pathways’ proteins were associated with their evolutionary history based on the evolutionary analyses combining with protein functional analyses. In addition, the functions of 1,955 unclassified proteins which were associated with 3,191 unigenes were assigned using the PIN, which account for approximately 70.3 and 44.9% of the previously unclassified proteins and unigenes in the network, respectively. The annotation of unclassified proteins and unigenes based on the PIN provides new candidates for further functional studies. The immune-specific sub-network and the pathways extracted from the PIN provide a novel information source for studying of immune mechanisms and disease resistances in shrimp.
Collapse
Affiliation(s)
- Tong Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Lingxuan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Dan Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Bin Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xin Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Edwin Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China.,Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
170
|
tmem33 is essential for VEGF-mediated endothelial calcium oscillations and angiogenesis. Nat Commun 2019; 10:732. [PMID: 30760708 PMCID: PMC6374405 DOI: 10.1038/s41467-019-08590-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/21/2019] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis requires co-ordination of multiple signalling inputs to regulate the behaviour of endothelial cells (ECs) as they form vascular networks. Vascular endothelial growth factor (VEGF) is essential for angiogenesis and induces downstream signalling pathways including increased cytosolic calcium levels. Here we show that transmembrane protein 33 (tmem33), which has no known function in multicellular organisms, is essential to mediate effects of VEGF in both zebrafish and human ECs. We find that tmem33 localises to the endoplasmic reticulum in zebrafish ECs and is required for cytosolic calcium oscillations in response to Vegfa. tmem33-mediated endothelial calcium oscillations are critical for formation of endothelial tip cell filopodia and EC migration. Global or endothelial-cell-specific knockdown of tmem33 impairs multiple downstream effects of VEGF including ERK phosphorylation, Notch signalling and embryonic vascular development. These studies reveal a hitherto unsuspected role for tmem33 and calcium oscillations in the regulation of vascular development. Calcium signalling downstream of VEGF is essential for VEGF-induced angiogenesis. Here Savage et al. show that Transmembrane Protein 33 (TMEM33) is required for angiogenesis and the endothelial calcium response to VEGF, revealing a function for TMEM33 in multicellular organisms.
Collapse
|
171
|
Jagannathan M, Cummings R, Yamashita YM. The modular mechanism of chromocenter formation in Drosophila. eLife 2019; 8:43938. [PMID: 30741633 PMCID: PMC6382350 DOI: 10.7554/elife.43938] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
A central principle underlying the ubiquity and abundance of pericentromeric satellite DNA repeats in eukaryotes has remained poorly understood. Previously we proposed that the interchromosomal clustering of satellite DNAs into nuclear structures known as chromocenters ensures encapsulation of all chromosomes into a single nucleus (Jagannathan et al., 2018). Chromocenter disruption led to micronuclei formation, resulting in cell death. Here we show that chromocenter formation is mediated by a ‘modular’ network, where associations between two sequence-specific satellite DNA-binding proteins, D1 and Prod, bound to their cognate satellite DNAs, bring the full complement of chromosomes into the chromocenter. D1 prod double mutants die during embryogenesis, exhibiting enhanced phenotypes associated with chromocenter disruption, revealing the universal importance of satellite DNAs and chromocenters. Taken together, we propose that associations between chromocenter modules, consisting of satellite DNA binding proteins and their cognate satellite DNA, package the Drosophila genome within a single nucleus.
Collapse
Affiliation(s)
- Madhav Jagannathan
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Ryan Cummings
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| | - Yukiko M Yamashita
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
172
|
Composition of the Survival Motor Neuron (SMN) Complex in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2019; 9:491-503. [PMID: 30563832 PMCID: PMC6385987 DOI: 10.1534/g3.118.200874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spinal Muscular Atrophy (SMA) is caused by homozygous mutations in the human survival motor neuron 1 (SMN1) gene. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. SMN is part of an oligomeric complex with core binding partners, collectively called Gemins. Biochemical and cell biological studies demonstrate that certain Gemins are required for proper snRNP assembly and transport. However, the precise functions of most Gemins are unknown. To gain a deeper understanding of the SMN complex in the context of metazoan evolution, we investigated its composition in Drosophila melanogaster Using transgenic flies that exclusively express Flag-tagged SMN from its native promoter, we previously found that Gemin2, Gemin3, Gemin5, and all nine classical Sm proteins, including Lsm10 and Lsm11, co-purify with SMN. Here, we show that CG2941 is also highly enriched in the pulldown. Reciprocal co-immunoprecipitation reveals that epitope-tagged CG2941 interacts with endogenous SMN in Schneider2 cells. Bioinformatic comparisons show that CG2941 shares sequence and structural similarity with metazoan Gemin4. Additional analysis shows that three other genes (CG14164, CG31950 and CG2371) are not orthologous to Gemins 6-7-8, respectively, as previously suggested. In D.melanogaster, CG2941 is located within an evolutionarily recent genomic triplication with two other nearly identical paralogous genes (CG32783 and CG32786). RNAi-mediated knockdown of CG2941 and its two close paralogs reveals that Gemin4 is essential for organismal viability.
Collapse
|
173
|
Titeca K, Lemmens I, Tavernier J, Eyckerman S. Discovering cellular protein-protein interactions: Technological strategies and opportunities. MASS SPECTROMETRY REVIEWS 2019; 38:79-111. [PMID: 29957823 DOI: 10.1002/mas.21574] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/03/2018] [Accepted: 06/04/2018] [Indexed: 05/09/2023]
Abstract
The analysis of protein interaction networks is one of the key challenges in the study of biology. It connects genotypes to phenotypes, and disruption often leads to diseases. Hence, many technologies have been developed to study protein-protein interactions (PPIs) in a cellular context. The expansion of the PPI technology toolbox however complicates the selection of optimal approaches for diverse biological questions. This review gives an overview of the binary and co-complex technologies, with the former evaluating the interaction of two co-expressed genetically tagged proteins, and the latter only needing the expression of a single tagged protein or no tagged proteins at all. Mass spectrometry is crucial for some binary and all co-complex technologies. After the detailed description of the different technologies, the review compares their unique specifications, advantages, disadvantages, and applicability, while highlighting opportunities for further advancements.
Collapse
Affiliation(s)
- Kevin Titeca
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Irma Lemmens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
174
|
Zhang Y, Wang L, Lv Y, Jiang C, Wu G, Dull RO, Minshall RD, Malik AB, Hu G. The GTPase Rab1 Is Required for NLRP3 Inflammasome Activation and Inflammatory Lung Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:194-206. [PMID: 30455398 PMCID: PMC6345506 DOI: 10.4049/jimmunol.1800777] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022]
Abstract
Uncontrolled inflammatory response during sepsis predominantly contributes to the development of multiorgan failure and lethality. However, the cellular and molecular mechanisms for excessive production and release of proinflammatory cytokines are not clearly defined. In this study, we show the crucial role of the GTPase Ras-related protein in brain (Rab)1a in regulating the nucleotide binding domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and lung inflammatory injury. Expression of dominant negative Rab1 N124I plasmid in bone marrow-derived macrophages prevented the release of IL-1β and IL-18, NLRP3 inflammasome activation, production of pro-IL-1β and pro-IL-18, and attenuated TLR4 surface expression and NF-кB activation induced by bacterial LPS and ATP compared with control cells. In alveolar macrophage-depleted mice challenged with cecal ligation and puncture, pulmonary transplantation of Rab1a-inactivated macrophages by expression of Rab1 N124I plasmid dramatically reduced the release of IL-1β and IL-18, neutrophil count in bronchoalveolar lavage fluid, and inflammatory lung injury. Rab1a activity was elevated in alveolar macrophages from septic patients and positively associated with severity of sepsis and respiratory dysfunction. Thus, inhibition of Rab1a activity in macrophages resulting in the suppression of NLRP3 inflammasome activation may be a promising target for the treatment of patients with sepsis.
Collapse
Affiliation(s)
- Yuehui Zhang
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
- Department of Critical Care Medicine, Affiliated Bao'an Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Lijun Wang
- Department of Critical Care Medicine, Affiliated Bao'an Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Yang Lv
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Chunling Jiang
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Randal O Dull
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612; and
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612; and
| | - Guochang Hu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL 60612;
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612; and
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221008, China
| |
Collapse
|
175
|
Aquilina B, Cauchi RJ. Modelling motor neuron disease in fruit flies: Lessons from spinal muscular atrophy. J Neurosci Methods 2018; 310:3-11. [DOI: 10.1016/j.jneumeth.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 12/25/2022]
|
176
|
Sun XY, Wang YH, Dong ZE, Wu HY, Chen PP, Xie Q. Identifying Differential Gene Expression in Wing Polymorphism of Adult Males of the Largest Water Strider: De novo Transcriptome Assembly for Gigantometra gigas (Hemiptera: Gerridae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5236978. [PMID: 30535417 PMCID: PMC6287054 DOI: 10.1093/jisesa/iey114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Indexed: 05/25/2023]
Abstract
Wing polymorphism is common in a wide variety of insect species. However, few studies have reported on adaptations in the wing polymorphism of insects at molecular level, in particular for males. Thus, the adaptive mechanisms need to be explored. The remarkable variability in wing morphs of insects is well represented in the water striders (Hemiptera: Gerridae). Within this family, Gigantometra gigas (China, 1925), the largest water strider known worldwide, displays macropterous and apterous males. In the present study, we used de novo transcriptome assembly to obtain gene expression information and compared body and leg-component lengths of adult males in different wing morphs. The analyses in both gene expression and phenotype levels were used for exploring the adaptive mechanism in wing polymorphism of G. gigas. After checking, a series of highly expressed structural genes were found in macropterous morphs, which were related to the maintenance of flight muscles and the enhancement of flight capacity, whereas in the apterous morphs, the imaginal morphogenesis protein-Late 2 (Imp-L2), which might inhibit wing development and increase the body size of insects, was still highly expressed in the adult stage. Moreover, body and leg-component lengths were significantly larger in apterous than in macropterous morphs. The larger size of the apterous morphs and the differences in highly expressed genes between the two wing morphs consistently demonstrate the adaptive significance of wing polymorphism in G. gigas. These results shed light on the future loss-of-function research of wing polymorphism in G. gigas.
Collapse
Affiliation(s)
- Xiao-ya Sun
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Ecology and Evolution, College of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan-hui Wang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Ecology and Evolution, College of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhuo-er Dong
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hao-yang Wu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Ecology and Evolution, College of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping-ping Chen
- National Reference Centre (NRC), Netherlands Plant Protection Organization (NPPO), Wageningen, the Netherlands
| | - Qiang Xie
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Ecology and Evolution, College of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
177
|
Harding K, White K. Drosophila as a Model for Developmental Biology: Stem Cell-Fate Decisions in the Developing Nervous System. J Dev Biol 2018; 6:E25. [PMID: 30347666 PMCID: PMC6315890 DOI: 10.3390/jdb6040025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Stem cells face a diversity of choices throughout their lives. At specific times, they may decide to initiate cell division, terminal differentiation, or apoptosis, or they may enter a quiescent non-proliferative state. Neural stem cells in the Drosophila central nervous system do all of these, at stereotypical times and anatomical positions during development. Distinct populations of neural stem cells offer a unique system to investigate the regulation of a particular stem cell behavior, while comparisons between populations can lead us to a broader understanding of stem cell identity. Drosophila is a well-described and genetically tractable model for studying fundamental stem cell behavior and the mechanisms that underlie cell-fate decisions. This review will focus on recent advances in our understanding of the factors that contribute to distinct stem cell-fate decisions within the context of the Drosophila nervous system.
Collapse
Affiliation(s)
- Katherine Harding
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA
| | - Kristin White
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
178
|
Barton LJ, Duan T, Ke W, Luttinger A, Lovander KE, Soshnev AA, Geyer PK. Nuclear lamina dysfunction triggers a germline stem cell checkpoint. Nat Commun 2018; 9:3960. [PMID: 30262885 PMCID: PMC6160405 DOI: 10.1038/s41467-018-06277-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
LEM domain (LEM-D) proteins are conserved components of the nuclear lamina (NL) that contribute to stem cell maintenance through poorly understood mechanisms. The Drosophila emerin homolog Otefin (Ote) is required for maintenance of germline stem cells (GSCs) and gametogenesis. Here, we show that ote mutants carry germ cell-specific changes in nuclear architecture that are linked to GSC loss. Strikingly, we found that both GSC death and gametogenesis are rescued by inactivation of the DNA damage response (DDR) kinases, ATR and Chk2. Whereas the germline checkpoint draws from components of the DDR pathway, genetic and cytological features of the GSC checkpoint differ from the canonical pathway. Instead, structural deformation of the NL correlates with checkpoint activation. Despite remarkably normal oogenesis, rescued oocytes do not support embryogenesis. Taken together, these data suggest that NL dysfunction caused by Otefin loss triggers a GSC-specific checkpoint that contributes to maintenance of gamete quality. Otefin is a nuclear lamina protein required for survival of Drosophila germ stem cells. Here the authors show that nuclear lamina dysfunction resulting from loss of Otefin activates a DNA damage-independent germ stem cell-specific checkpoint, mediated by the ATR and Chk2 kinases, which ensures that healthy gametes are passed on to the next generation.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Department of Cell Biology, Skirball Institute, NYU School of Medicine, 540 First Avenue, New York, NY, 10016, USA
| | - Tingting Duan
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Wenfan Ke
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Department of Biology, University of Virginia, 485 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Amy Luttinger
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Kaylee E Lovander
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Alexey A Soshnev
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Pamela K Geyer
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
179
|
van Tran N, Muller L, Ross RL, Lestini R, Létoquart J, Ulryck N, Limbach PA, de Crécy-Lagard V, Cianférani S, Graille M. Evolutionary insights into Trm112-methyltransferase holoenzymes involved in translation between archaea and eukaryotes. Nucleic Acids Res 2018; 46:8483-8499. [PMID: 30010922 PMCID: PMC6144793 DOI: 10.1093/nar/gky638] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
Protein synthesis is a complex and highly coordinated process requiring many different protein factors as well as various types of nucleic acids. All translation machinery components require multiple maturation events to be functional. These include post-transcriptional and post-translational modification steps and methylations are the most frequent among these events. In eukaryotes, Trm112, a small protein (COG2835) conserved in all three domains of life, interacts and activates four methyltransferases (Bud23, Trm9, Trm11 and Mtq2) that target different components of the translation machinery (rRNA, tRNAs, release factors). To clarify the function of Trm112 in archaea, we have characterized functionally and structurally its interaction network using Haloferax volcanii as model system. This led us to unravel that methyltransferases are also privileged Trm112 partners in archaea and that this Trm112 network is much more complex than anticipated from eukaryotic studies. Interestingly, among the identified enzymes, some are functionally orthologous to eukaryotic Trm112 partners, emphasizing again the similarity between eukaryotic and archaeal translation machineries. Other partners display some similarities with bacterial methyltransferases, suggesting that Trm112 is a general partner for methyltransferases in all living organisms.
Collapse
Affiliation(s)
- Nhan van Tran
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - Leslie Muller
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Robert L Ross
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221-0172, USA
| | - Roxane Lestini
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645-INSERM U1182 91128, Palaiseau Cedex, France
| | - Juliette Létoquart
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - Nathalie Ulryck
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221-0172, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Marc Graille
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| |
Collapse
|
180
|
Seong KM, Coates BS, Sun W, Clark JM, Pittendrigh BR. Changes in Neuronal Signaling and Cell Stress Response Pathways are Associated with a Multigenic Response of Drosophila melanogaster to DDT Selection. Genome Biol Evol 2018; 9:3356-3372. [PMID: 29211847 PMCID: PMC5737697 DOI: 10.1093/gbe/evx252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
The adaptation of insect populations to insecticidal control is a continual threat to human health and sustainable agricultural practices, but many complex genomic mechanisms involved in this adaption remain poorly understood. This study applied a systems approach to investigate the interconnections between structural and functional variance in response to dichlorodiphenyltrichloroethane (DDT) within the Drosophila melanogaster strain 91-R. Directional selection in 6 selective sweeps coincided with constitutive gene expression differences in DDT resistant flies, including the most highly upregulated transcript, Unc-115 b, which plays a central role in axon guidance, and the most highly downregulated transcript, the angiopoietin-like CG31832, which is involved in directing vascular branching and dendrite outgrowth but likely may be under trans-regulatory control. Direct functions and protein–protein interactions mediated by differentially expressed transcripts control changes in cell migration, signal transduction, and gene regulatory cascades that impact the nervous system. Although changes to cellular stress response pathways involve 8 different cytochrome P450s, stress response, and apoptosis is controlled by a multifacetted regulatory mechanism. These data demonstrate that DDT selection in 91-R may have resulted in genome-wide adaptations that impacts genetic and signal transduction pathways that converge to modify stress response, cell survival, and neurological functions. This study implicates the involvement of a multigenic mechanism in the adaptation to a chemical insecticide, which impact interconnected regulatory cascades. We propose that DDT selection within 91-R might act systemically, wherein pathway interactions function to reinforce the epistatic effects of individual adaptive changes on an additive or nonadditive basis.
Collapse
Affiliation(s)
- Keon Mook Seong
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| | - Brad S Coates
- Corn Insects & Crop Genetics Research Unit, USDA-ARS, Iowa State University, Ames, Iowa, USA
| | - Weilin Sun
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| | - John M Clark
- Department of Veterinary & Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Barry R Pittendrigh
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
181
|
Monedero Cobeta I, Stadler CB, Li J, Yu P, Thor S, Benito-Sipos J. Specification of Drosophila neuropeptidergic neurons by the splicing component brr2. PLoS Genet 2018; 14:e1007496. [PMID: 30133436 PMCID: PMC6122834 DOI: 10.1371/journal.pgen.1007496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/04/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
During embryonic development, a number of genetic cues act to generate neuronal diversity. While intrinsic transcriptional cascades are well-known to control neuronal sub-type cell fate, the target cells can also provide critical input to specific neuronal cell fates. Such signals, denoted retrograde signals, are known to provide critical survival cues for neurons, but have also been found to trigger terminal differentiation of neurons. One salient example of such target-derived instructive signals pertains to the specification of the Drosophila FMRFamide neuropeptide neurons, the Tv4 neurons of the ventral nerve cord. Tv4 neurons receive a BMP signal from their target cells, which acts as the final trigger to activate the FMRFa gene. A recent FMRFa-eGFP genetic screen identified several genes involved in Tv4 specification, two of which encode components of the U5 subunit of the spliceosome: brr2 (l(3)72Ab) and Prp8. In this study, we focus on the role of RNA processing during target-derived signaling. We found that brr2 and Prp8 play crucial roles in controlling the expression of the FMRFa neuropeptide specifically in six neurons of the VNC (Tv4 neurons). Detailed analysis of brr2 revealed that this control is executed by two independent mechanisms, both of which are required for the activation of the BMP retrograde signaling pathway in Tv4 neurons: (1) Proper axonal pathfinding to the target tissue in order to receive the BMP ligand. (2) Proper RNA splicing of two genes in the BMP pathway: the thickveins (tkv) gene, encoding a BMP receptor subunit, and the Medea gene, encoding a co-Smad. These results reveal involvement of specific RNA processing in diversifying neuronal identity within the central nervous system. The nervous system displays daunting cellular diversity, largely generated through complex regulatory input operating on stem cells and their neural lineages during development. Most of the reported mechanisms acting to generate neural diversity pertain to transcriptional regulation. In contrast, little is known regarding the post-transcriptional mechanisms involved. Here, we use a specific group of neurons, Apterous neurons, in the ventral nerve cord of Drosophila melanogaster as our model, to analyze the function of two essential components of the spliceosome; Brr2 and Prp8. Apterous neurons require a BMP retrograde signal for terminal differentiation, and we find that brr2 and Prp8 play crucial roles during this process. brr2 is critical for two independent events; axon pathfinding and BMP signaling, both of which are required for the activation of the retrograde signaling pathway necessary for Apterous neurons. These results identify a post-transcriptional mechanism as key for specifying neuronal identity, by ensuring the execution of a retrograde signal.
Collapse
Affiliation(s)
- Ignacio Monedero Cobeta
- Dept. of Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Dept. of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | | | - Jin Li
- Department of Electrical and Computer Engineering Texas A&M University, College Station, Texas, United States of America
- TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Peng Yu
- Department of Electrical and Computer Engineering Texas A&M University, College Station, Texas, United States of America
| | - Stefan Thor
- Dept. of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Jonathan Benito-Sipos
- Dept. of Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
182
|
Schiza C, Korbakis D, Panteleli E, Jarvi K, Drabovich AP, Diamandis EP. Discovery of a Human Testis-specific Protein Complex TEX101-DPEP3 and Selection of Its Disrupting Antibodies. Mol Cell Proteomics 2018; 17:2480-2495. [PMID: 30097533 DOI: 10.1074/mcp.ra118.000749] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/11/2018] [Indexed: 01/01/2023] Open
Abstract
TEX101 is a testis-specific protein expressed exclusively in male germ cells and is a validated biomarker of male infertility. Studies in mice suggest that TEX101 is a cell-surface chaperone which regulates, through protein-protein interactions, the maturation of proteins involved in spermatozoa transit and oocyte binding. Male TEX101-null mice are sterile. Here, we identified by co-immunoprecipitation-mass spectrometry the interactome of human TEX101 in testicular tissues and spermatozoa. The testis-specific cell-surface dipeptidase 3 (DPEP3) emerged as the top hit. We further validated the TEX101-DPEP3 complex by using hybrid immunoassays. Combinations of antibodies recognizing different epitopes of TEX101 and DPEP3 facilitated development of a simple immunoassay to screen for disruptors of TEX101-DPEP3 complex. As a proof-of-a-concept, we demonstrated that anti-TEX101 antibody T4 disrupted the native TEX101-DPEP3 complex. Disrupting antibodies may be used to study the human TEX101-DPEP3 complex, and to develop modulators for male fertility.
Collapse
Affiliation(s)
- Christina Schiza
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Dimitrios Korbakis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Efstratia Panteleli
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Keith Jarvi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Surgery, Division of Urology, Mount Sinai Hospital, Toronto, Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| |
Collapse
|
183
|
Ding Z, Kihara D. Computational Methods for Predicting Protein-Protein Interactions Using Various Protein Features. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2018; 93:e62. [PMID: 29927082 PMCID: PMC6097941 DOI: 10.1002/cpps.62] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding protein-protein interactions (PPIs) in a cell is essential for learning protein functions, pathways, and mechanism of diseases. PPIs are also important targets for developing drugs. Experimental methods, both small-scale and large-scale, have identified PPIs in several model organisms. However, results cover only a part of PPIs of organisms; moreover, there are many organisms whose PPIs have not yet been investigated. To complement experimental methods, many computational methods have been developed that predict PPIs from various characteristics of proteins. Here we provide an overview of literature reports to classify computational PPI prediction methods that consider different features of proteins, including protein sequence, genomes, protein structure, function, PPI network topology, and those which integrate multiple methods. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ziyun Ding
- Department of Biological Science, Purdue University, West Lafayette, IN, 47907 USA
| | - Daisuke Kihara
- Department of Biological Science, Purdue University, West Lafayette, IN, 47907 USA
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907 USA
- Corresponding author: DK; , Phone: 1-765-496-2284 (DK)
| |
Collapse
|
184
|
Mutlu B, Chen HM, Moresco JJ, Orelo BD, Yang B, Gaspar JM, Keppler-Ross S, Yates JR, Hall DH, Maine EM, Mango SE. Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in C. elegans embryos. SCIENCE ADVANCES 2018; 4:eaat6224. [PMID: 30140741 PMCID: PMC6105299 DOI: 10.1126/sciadv.aat6224] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/18/2018] [Indexed: 05/19/2023]
Abstract
Heterochromatin formation during early embryogenesis is timed precisely, but how this process is regulated remains elusive. We report the discovery of a histone methyltransferase complex whose nuclear accumulation and activation establish the onset of heterochromatin formation in Caenorhabditis elegans embryos. We find that the inception of heterochromatin generation coincides with the accumulation of the histone H3 lysine 9 (H3K9) methyltransferase MET-2 (SETDB) into nuclear hubs. The absence of MET-2 results in delayed and disturbed heterochromatin formation, whereas accelerated nuclear localization of the methyltransferase leads to precocious H3K9 methylation. We identify two factors that bind to and function with MET-2: LIN-65, which resembles activating transcription factor 7-interacting protein (ATF7IP) and localizes MET-2 into nuclear hubs, and ARLE-14, which is orthologous to adenosine 5'-diphosphate-ribosylation factor-like 14 effector protein (ARL14EP) and promotes stable association of MET-2 with chromatin. These data reveal that nuclear accumulation of MET-2 in conjunction with LIN-65 and ARLE-14 regulates timing of heterochromatin domains during embryogenesis.
Collapse
Affiliation(s)
- Beste Mutlu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Huei-Mei Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - James J. Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Barbara D. Orelo
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Bing Yang
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - John M. Gaspar
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Sabine Keppler-Ross
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - David H. Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eleanor M. Maine
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Susan E. Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author.
| |
Collapse
|
185
|
Homeostatic Control of Hpo/MST Kinase Activity through Autophosphorylation-Dependent Recruitment of the STRIPAK PP2A Phosphatase Complex. Cell Rep 2018; 21:3612-3623. [PMID: 29262338 DOI: 10.1016/j.celrep.2017.11.076] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/25/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
The Hippo pathway controls organ size and tissue homeostasis through a kinase cascade leading from the Ste20-like kinase Hpo (MST1/2 in mammals) to the transcriptional coactivator Yki (YAP/TAZ in mammals). Whereas previous studies have uncovered positive and negative regulators of Hpo/MST, how they are integrated to maintain signaling homeostasis remains poorly understood. Here, we identify a self-restricting mechanism whereby autophosphorylation of an unstructured linker in Hpo/MST creates docking sites for the STRIPAK PP2A phosphatase complex to inactivate Hpo/MST. Mutation of the phospho-dependent docking sites in Hpo/MST or deletion of Slmap, the STRIPAK subunit recognizing these docking sites, results in constitutive activation of Hpo/MST in both Drosophila and mammalian cells. In contrast, autophosphorylation of the Hpo/MST linker at distinct sites is known to recruit Mats/MOB1 to facilitate Hippo signaling. Thus, multisite autophosphorylation of Hpo/MST linker provides an evolutionarily conserved built-in molecular platform to maintain signaling homeostasis by coupling antagonistic signaling activities.
Collapse
|
186
|
Bellec K, Gicquel I, Le Borgne R. Stratum recruits Rab8 at Golgi exit sites to regulate the basolateral sorting of Notch and Sanpodo. Development 2018; 145:145/13/dev163469. [PMID: 29967125 DOI: 10.1242/dev.163469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/21/2018] [Indexed: 01/03/2023]
Abstract
In Drosophila, the sensory organ precursor (SOP or pI cell) divides asymmetrically to give birth to daughter cells, the fates of which are governed by the differential activation of the Notch pathway. Proteolytic activation of Notch induced by ligand is based on the correct polarized sorting and localization of the Notch ligand Delta, the Notch receptor and its trafficking partner Sanpodo (Spdo). Here, we have identified Stratum (Strat), a presumptive guanine nucleotide exchange factor for Rab GTPases, as a regulator of Notch activation. Loss of Strat causes cell fate transformations associated with an accumulation of Notch, Delta and Spdo in the trans-Golgi network (TGN), and an apical accumulation of Spdo. The strat mutant phenotype is rescued by the catalytically active as well as the wild-type form of Rab8, suggesting a chaperone function for Strat rather than that of exchange factor. Strat is required to localize Rab8 at the TGN, and rab8 phenocopies strat We propose that Strat and Rab8 act at the exit of the Golgi apparatus to regulate the sorting and the polarized distribution of Notch, Delta and Spdo.
Collapse
Affiliation(s)
- Karen Bellec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Isabelle Gicquel
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
187
|
Portela M, Yang L, Paul S, Li X, Veraksa A, Parsons LM, Richardson HE. Lgl reduces endosomal vesicle acidification and Notch signaling by promoting the interaction between Vap33 and the V-ATPase complex. Sci Signal 2018; 11:11/533/eaar1976. [PMID: 29871910 DOI: 10.1126/scisignal.aar1976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial cell polarity is linked to the control of tissue growth and tumorigenesis. The tumor suppressor and cell polarity protein lethal-2-giant larvae (Lgl) promotes Hippo signaling and inhibits Notch signaling to restrict tissue growth in Drosophila melanogaster Notch signaling is greater in lgl mutant tissue than in wild-type tissue because of increased acidification of endosomal vesicles, which promotes the proteolytic processing and activation of Notch by γ-secretase. We showed that the increased Notch signaling and tissue growth defects of lgl mutant tissue depended on endosomal vesicle acidification mediated by the vacuolar adenosine triphosphatase (V-ATPase). Lgl promoted the activity of the V-ATPase by interacting with Vap33 (VAMP-associated protein of 33 kDa). Vap33 physically and genetically interacted with Lgl and V-ATPase subunits and repressed V-ATPase-mediated endosomal vesicle acidification and Notch signaling. Vap33 overexpression reduced the abundance of the V-ATPase component Vha44, whereas Lgl knockdown reduced the binding of Vap33 to the V-ATPase component Vha68-3. Our data indicate that Lgl promotes the binding of Vap33 to the V-ATPase, thus inhibiting V-ATPase-mediated endosomal vesicle acidification and thereby reducing γ-secretase activity, Notch signaling, and tissue growth. Our findings implicate the deregulation of Vap33 and V-ATPase activity in polarity-impaired epithelial cancers.
Collapse
Affiliation(s)
- Marta Portela
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.,Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia.,Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Avenida Doctor Arce, 37, Madrid 28002, Spain
| | - Liu Yang
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Sayantanee Paul
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Linda M Parsons
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia. .,Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia.,Sir Peter MacCallum Department of Oncology, Department of Anatomy and Neuroscience, Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
188
|
Itonori S, Hashimoto K, Nakagawa M, Harada M, Suzuki T, Kojima H, Ito M, Sugita M. Structural analysis of neutral glycosphingolipids from the silkworm Bombyx mori and the difference in ceramide composition between larvae and pupae. J Biochem 2018; 163:201-214. [PMID: 29069405 DOI: 10.1093/jb/mvx072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/08/2017] [Indexed: 01/06/2023] Open
Abstract
Glycosphingolipids (GSLs) from the silkworm Bombyx mori were identified and GSL expression patterns between larvae and pupae were compared. The structural analysis of neutral GSLs from dried pupae revealed the following predominant species: Glcβ1Cer, Manβ4Glcβ1Cer, GlcNAcβ3Manβ4Glcβ1Cer, Galβ3Manβ4Glcβ1Cer, GalNAcα4Galβ3Manβ4Glcβ1Cer, GlcNAcβ3Galβ3Manβ4Glcβ1Cer, Galα4Galβ3Manβ4Glcβ1Cer and (GalNAcα4)1-4 GalNAcα4Galβ3Manβ4Glcβ1Cer. Lin-ear elongation of α4-GalNAc was observed at the non-reducing end of Galβ3Manβ4Glcβ1Cer with up to five GalNAc repeats. The arthro-series GSL GlcNAcβ3Manβ4Glcβ1Cer, a characteristic GSL-glycan sequence of other Arthropoda, was detected in silkworms. The main ceramide species in each purified GSL fraction were h20:0-d14:1 and h22:0-d14:1. GSL expression patterns in larvae and pupae were compared using thin-layer chromatography, which demonstrated differences among acidic, polar and neutral GSL fractions, while the zwitterionic fraction showed no difference. Neutral GSLs such as ceramides di-, tri- and tetrasaccharides in larvae showed less abundant than those in pupae. MALDI-TOF MS analysis revealed that larval GSLs contained four types of ceramide species, whereas pupal GSLs contained only two types. The structural analysis of neutral GSLs from silkworms revealed a novel series of GSLs. The comparison of GSL expression patterns between larvae and pupae demonstrated differences in several fractions. Alterations in GSL ceramide composition between larvae and pupae were observed by MALDI-TOF MS analysis.
Collapse
Affiliation(s)
- Saki Itonori
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| | - Kyouhei Hashimoto
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| | - Mika Nakagawa
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| | - Masashi Harada
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| | - Takae Suzuki
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| | - Hisao Kojima
- Department of Bioinformatics, Institute of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Masahiro Ito
- Department of Bioinformatics, Institute of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Mutsumi Sugita
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, 2-5-1, Hiratsu, Otsu, Shiga 520-0862, Japan
| |
Collapse
|
189
|
Kairamkonda S, Nongthomba U. Beadex, a Drosophila LIM domain only protein, function in follicle cells is essential for egg development and fertility. Exp Cell Res 2018; 367:97-103. [PMID: 29580687 DOI: 10.1016/j.yexcr.2018.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 11/25/2022]
Abstract
LIM domain, constituted by two tandem C2H2 zinc finger motif, proteins regulate several biological processes. They are usually found associated with various functional domains like Homeodomain, kinase domain and other protein binding domains. LIM proteins that are devoid of other domains are called LIM only proteins (LMO). LMO proteins were first identified in humans and are implicated in development and oncogenesis. They regulate various cell specifications by regulating the activity of respective transcriptional complexes. The Drosophila LMO protein (dLMO), Beadex (Bx), regulates various developmental processes like wing margin development and bristle development. It also regulates Drosophila behavior in response to cocaine and ethanol. We have previously generated Bx null flies and shown its essential function in neurons for multiple aspects of female reproduction. However, it was not known whether Bx affects reproduction through its independent function in ovaries. In this paper we show that female flies null for Bx lay eggs with multiple defects. Further, through knock down studies we demonstrate that function of Bx in follicle cells is required for normal egg development. We also show that function of Bx is particularly required in border cells for Drosophila fertility.
Collapse
Affiliation(s)
- Subhash Kairamkonda
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
190
|
Stonewall and Brickwall: Two Partially Redundant Determinants Required for the Maintenance of Female Germline in Drosophila. G3-GENES GENOMES GENETICS 2018; 8:2027-2041. [PMID: 29669801 PMCID: PMC5982830 DOI: 10.1534/g3.118.200192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proper specification of germline stem cells (GSCs) in Drosophila ovaries depends on niche derived non-autonomous signaling and cell autonomous components of transcriptional machinery. Stonewall (Stwl), a MADF-BESS family protein, is one of the cell intrinsic transcriptional regulators involved in the establishment and/or maintenance of GSC fate in Drosophila ovaries. Here we report identification and functional characterization of another member of the same protein family, CG3838/ Brickwall (Brwl) with analogous functions. Loss of function alleles of brwl exhibit age dependent progressive degeneration of the developing ovarioles and loss of GSCs. Supporting the conclusion that the structural deterioration of mutant egg chambers is a result of apoptotic cell death, activated caspase levels are considerably elevated in brwl- ovaries. Moreover, as in the case of stwl mutants, on several instances, loss of brwl activity results in fusion of egg chambers and misspecification of the oocyte. Importantly, brwl phenotypes can be partially rescued by germline specific over-expression of stwl arguing for overlapping yet distinct functional capabilities of the two proteins. Taken together with our phylogenetic analysis, these data suggest that brwl and stwl likely share a common MADF-BESS ancestor and they are expressed in overlapping spatiotemporal domains to ensure robust development of the female germline.
Collapse
|
191
|
C5a induces A549 cell proliferation of non-small cell lung cancer via GDF15 gene activation mediated by GCN5-dependent KLF5 acetylation. Oncogene 2018; 37:4821-4837. [PMID: 29773900 PMCID: PMC6117268 DOI: 10.1038/s41388-018-0298-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/23/2018] [Accepted: 04/13/2018] [Indexed: 12/21/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, and multiple evidence has confirmed that C5a production is elevated in NSCLC microenvironment. Although NSCLC cell proliferation induced by C5a has been reported, the involved mechanism has not been elucidated. In this study, we examined the proliferation-related genes (i.e., KLF5, GCN5, and GDF15) and C5a receptor (C5aR) expression in tumor tissues as well as C5a concentration in plasma of NSCLC patients, and then determined the roles of KLF5, GCN5, and GDF15 in C5a-triggered NSCLC cell proliferation and the related mechanism both in vitro and in vivo. Our results found that the expression of KLF5, GCN5, GDF15, C5aR, and C5a was significantly upregulated in NSCLC patients. Mechanistic exploration in vitro revealed that C5a could facilitate A549 cell proliferation through increasing KLF5, GCN5, and GDF15 expression. Besides, KLF5 and GCN5 could form a complex, binding to GDF15 promoter in a KLF5-dependent manner and leading to GDF15 gene transcription. More importantly, GCN5-mediated KLF5 acetylation contributing to GDF15 gene transcription and cell proliferation upon C5a stimulation, the region (−103 to +58 nt) of GDF15 promoter which KLF5 could bind to, and two new KLF5 lysine sites (K335 and K391) acetylated by GCN5 were identified for the first time. Furthermore, our experiment in vivo demonstrated that the growth of xenograft tumors in BALB/c nude mice was greatly suppressed by the silence of KLF5, GCN5, or GDF15. Collectively, these findings disclose that C5a-driven KLF5–GCN5–GDF15 axis had a critical role in NSCLC proliferation and might serve as targets for NSCLC therapy.
Collapse
|
192
|
Jordán-Pla A, Yu S, Waldholm J, Källman T, Östlund Farrants AK, Visa N. SWI/SNF regulates half of its targets without the need of ATP-driven nucleosome remodeling by Brahma. BMC Genomics 2018; 19:367. [PMID: 29776334 PMCID: PMC5960078 DOI: 10.1186/s12864-018-4746-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Background Brahma (BRM) is the only catalytic subunit of the SWI/SNF chromatin-remodeling complex of Drosophila melanogaster. The function of SWI/SNF in transcription has long been attributed to its ability to remodel nucleosomes, which requires the ATPase activity of BRM. However, recent studies have provided evidence for a non-catalytic function of BRM in the transcriptional regulation of a few specific genes. Results Here we have used RNA-seq and ChIP-seq to identify the BRM target genes in S2 cells, and we have used a catalytically inactive BRM mutant (K804R) that is unable to hydrolyze ATP to investigate the magnitude of the non-catalytic function of BRM in transcription regulation. We show that 49% of the BRM target genes in S2 cells are regulated through mechanisms that do not require BRM to have an ATPase activity. We also show that the catalytic and non-catalytic mechanisms of SWI/SNF regulation operate on two subsets of genes that differ in promoter architecture and are linked to different biological processes. Conclusions This study shows that the non-catalytic role of SWI/SNF in transcription regulation is far more prevalent than previously anticipated and that the genes that are regulated by SWI/SNF through ATPase-dependent and ATPase-independent mechanisms have specialized roles in different cellular and developmental processes. Electronic supplementary material The online version of this article (10.1186/s12864-018-4746-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonio Jordán-Pla
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Simei Yu
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Johan Waldholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Thomas Källman
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Ann-Kristin Östlund Farrants
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
193
|
Baculovirus AC102 Is a Nucleocapsid Protein That Is Crucial for Nuclear Actin Polymerization and Nucleocapsid Morphogenesis. J Virol 2018. [PMID: 29540600 DOI: 10.1128/jvi.00111-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the type species of alphabaculoviruses, is an enveloped DNA virus that infects lepidopteran insects and is commonly known as a vector for protein expression and cell transduction. AcMNPV belongs to a diverse group of viral and bacterial pathogens that target the host cell actin cytoskeleton during infection. AcMNPV is unusual, however, in that it absolutely requires actin translocation into the nucleus early in infection and actin polymerization within the nucleus late in infection coincident with viral replication. Of the six viral factors that are sufficient, when coexpressed, to induce the nuclear localization of actin, only AC102 is essential for viral replication and the nuclear accumulation of actin. We therefore sought to better understand the role of AC102 in actin mobilization in the nucleus early and late in infection. Although AC102 was proposed to function early in infection, we found that AC102 is predominantly expressed as a late protein. In addition, we observed that AC102 is required for F-actin assembly in the nucleus during late infection, as well as for proper formation of viral replication structures and nucleocapsid morphogenesis. Finally, we found that AC102 is a nucleocapsid protein and a newly recognized member of a complex consisting of the viral proteins EC27, C42, and the actin polymerization protein P78/83. Taken together, our findings suggest that AC102 is necessary for nucleocapsid morphogenesis and actin assembly during late infection through its role as a component of the P78/83-C42-EC27-AC102 protein complex.IMPORTANCE The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an important biotechnological tool for protein expression and cell transduction, and related nucleopolyhedroviruses are also used as environmentally benign insecticides. One impact of our work is to better understand the fundamental mechanisms through which AcMNPV exploits the cellular machinery of the host for replication, which may aid in the development of improved baculovirus-based research and industrial tools. Moreover, AcMNPV's ability to mobilize the host actin cytoskeleton within the cell's nucleus during infection makes it a powerful cell biological tool. It is becoming increasingly clear that actin plays important roles in the cell's nucleus, and yet the regulation and function of nuclear actin is poorly understood. Our work to better understand how AcMNPV relocalizes and polymerizes actin within the nucleus may reveal fundamental mechanisms that govern nuclear actin regulation and function, even in the absence of viral infection.
Collapse
|
194
|
Liu B, Xu S, Li T, Xiao J, Xu XK. Quantifying the Effects of Topology and Weight for Link Prediction in Weighted Complex Networks. ENTROPY 2018; 20:e20050363. [PMID: 33265453 PMCID: PMC7512883 DOI: 10.3390/e20050363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/28/2022]
Abstract
In weighted networks, both link weight and topological structure are significant characteristics for link prediction. In this study, a general framework combining null models is proposed to quantify the impact of the topology, weight correlation and statistics on link prediction in weighted networks. Three null models for topology and weight distribution of weighted networks are presented. All the links of the original network can be divided into strong and weak ties. We can use null models to verify the strong effect of weak or strong ties. For two important statistics, we construct two null models to measure their impacts on link prediction. In our experiments, the proposed method is applied to seven empirical networks, which demonstrates that this model is universal and the impact of the topology and weight distribution of these networks in link prediction can be quantified by it. We find that in the USAir, the Celegans, the Gemo, the Lesmis and the CatCortex, the strong ties are easier to predict, but there are a few networks whose weak edges can be predicted more easily, such as the Netscience and the CScientists. It is also found that the weak ties contribute more to link prediction in the USAir, the NetScience and the CScientists, that is, the strong effect of weak ties exists in these networks. The framework we proposed is versatile, which is not only used to link prediction but also applicable to other directions in complex networks.
Collapse
Affiliation(s)
- Bo Liu
- College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China
- Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China
| | - Shuang Xu
- College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China
| | - Ting Li
- College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China
| | - Jing Xiao
- College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China
| | - Xiao-Ke Xu
- College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China
- Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China
- Correspondence:
| |
Collapse
|
195
|
Proteomic-genomic adjustments and their confluence for elucidation of pathways and networks during liver fibrosis. Int J Biol Macromol 2018; 111:379-392. [PMID: 29309868 DOI: 10.1016/j.ijbiomac.2017.12.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/28/2017] [Accepted: 12/31/2017] [Indexed: 12/31/2022]
|
196
|
Tang HW, Hu Y, Chen CL, Xia B, Zirin J, Yuan M, Asara JM, Rabinow L, Perrimon N. The TORC1-Regulated CPA Complex Rewires an RNA Processing Network to Drive Autophagy and Metabolic Reprogramming. Cell Metab 2018; 27:1040-1054.e8. [PMID: 29606597 PMCID: PMC6100782 DOI: 10.1016/j.cmet.2018.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/22/2017] [Accepted: 02/23/2018] [Indexed: 12/25/2022]
Abstract
Nutrient deprivation induces autophagy through inhibiting TORC1 activity. We describe a novel mechanism in Drosophila by which TORC1 regulates RNA processing of Atg transcripts and alters ATG protein levels and activities via the cleavage and polyadenylation (CPA) complex. We show that TORC1 signaling inhibits CDK8 and DOA kinases, which directly phosphorylate CPSF6, a component of the CPA complex. These phosphorylation events regulate CPSF6 localization, RNA binding, and starvation-induced alternative RNA processing of transcripts involved in autophagy, nutrient, and energy metabolism, thereby controlling autophagosome formation and metabolism. Similarly, we find that mammalian CDK8 and CLK2, a DOA ortholog, phosphorylate CPSF6 to regulate autophagy and metabolic changes upon starvation, revealing an evolutionarily conserved mechanism linking TORC1 signaling with RNA processing, autophagy, and metabolism.
Collapse
Affiliation(s)
- Hong-Wen Tang
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Chiao-Lin Chen
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Baolong Xia
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Zirin
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Min Yuan
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - John M Asara
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Leonard Rabinow
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
197
|
Lyu J, Wang Y, Mao J, Yao Y, Wang S, Zheng Y, Ye M. Pseudotargeted MS Method for the Sensitive Analysis of Protein Phosphorylation in Protein Complexes. Anal Chem 2018; 90:6214-6221. [PMID: 29660285 DOI: 10.1021/acs.analchem.8b00749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we presented an enrichment-free approach for the sensitive analysis of protein phosphorylation in minute amounts of samples, such as purified protein complexes. This method takes advantage of the high sensitivity of parallel reaction monitoring (PRM). Specifically, low confident phosphopeptides identified from the data-dependent acquisition (DDA) data set were used to build a pseudotargeted list for PRM analysis to allow the identification of additional phosphopeptides with high confidence. The development of this targeted approach is very easy as the same sample and the same LC-system were used for the discovery and the targeted analysis phases. No sample fractionation or enrichment was required for the discovery phase which allowed this method to analyze minute amount of sample. We applied this pseudotargeted MS method to quantitatively examine phosphopeptides in affinity purified endogenous Shc1 protein complexes at four temporal stages of EGF signaling and identified 82 phospho-sites. To our knowledge, this is the highest number of phospho-sites identified from the protein complexes. This pseudotargeted MS method is highly sensitive in the identification of low abundance phosphopeptides and could be a powerful tool to study phosphorylation-regulated assembly of protein complex.
Collapse
Affiliation(s)
- Jiawen Lyu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center , Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center , Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center , Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yating Yao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center , Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shujuan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics , Beijing 102206 , China
| | - Yong Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics , Beijing 102206 , China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center , Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
198
|
Tan KL, Haelterman NA, Kwartler CS, Regalado ES, Lee PT, Nagarkar-Jaiswal S, Guo DC, Duraine L, Wangler MF, Bamshad MJ, Nickerson DA, Lin G, Milewicz DM, Bellen HJ. Ari-1 Regulates Myonuclear Organization Together with Parkin and Is Associated with Aortic Aneurysms. Dev Cell 2018; 45:226-244.e8. [PMID: 29689197 PMCID: PMC5920516 DOI: 10.1016/j.devcel.2018.03.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/15/2018] [Accepted: 03/26/2018] [Indexed: 12/25/2022]
Abstract
Nuclei are actively positioned and anchored to the cytoskeleton via the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex. We identified mutations in the Parkin-like E3 ubiquitin ligase Ariadne-1 (Ari-1) that affect the localization and distribution of LINC complex members in Drosophila. ari-1 mutants exhibit nuclear clustering and morphology defects in larval muscles. We show that Ari-1 mono-ubiquitinates the core LINC complex member Koi. Surprisingly, we discovered functional redundancy between Parkin and Ari-1: increasing Parkin expression rescues ari-1 mutant phenotypes and vice versa. We further show that rare variants in the human homolog of ari-1 (ARIH1) are associated with thoracic aortic aneurysms and dissections, conditions resulting from smooth muscle cell (SMC) dysfunction. Human ARIH1 rescues fly ari-1 mutant phenotypes, whereas human variants found in patients fail to do so. In addition, SMCs obtained from patients display aberrant nuclear morphology. Hence, ARIH1 is critical in anchoring myonuclei to the cytoskeleton.
Collapse
Affiliation(s)
- Kai Li Tan
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Nele A Haelterman
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Callie S Kwartler
- Department of Internal Medicine, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Ellen S Regalado
- Department of Internal Medicine, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Sonal Nagarkar-Jaiswal
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA
| | - Dong-Chuan Guo
- Department of Internal Medicine, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Lita Duraine
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA
| | - Michael F Wangler
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Guang Lin
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Dianna M Milewicz
- Department of Internal Medicine, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital (TCH), Houston, TX 77030, USA; Department of Neuroscience, BCM, Houston, TX 77030, USA.
| |
Collapse
|
199
|
Chen C, Cummings R, Mordovanakis A, Hunt AJ, Mayer M, Sept D, Yamashita YM. Cytokine receptor-Eb1 interaction couples cell polarity and fate during asymmetric cell division. eLife 2018; 7:33685. [PMID: 29578412 PMCID: PMC5886756 DOI: 10.7554/elife.33685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/25/2018] [Indexed: 12/15/2022] Open
Abstract
Asymmetric stem cell division is a critical mechanism for balancing self-renewal and differentiation. Adult stem cells often orient their mitotic spindle to place one daughter inside the niche and the other outside of it to achieve asymmetric division. It remains unknown whether and how the niche may direct division orientation. Here we discover a novel and evolutionary conserved mechanism that couples cell polarity to cell fate. We show that the cytokine receptor homolog Dome, acting downstream of the niche-derived ligand Upd, directly binds to the microtubule-binding protein Eb1 to regulate spindle orientation in Drosophila male germline stem cells (GSCs). Dome’s role in spindle orientation is entirely separable from its known function in self-renewal mediated by the JAK-STAT pathway. We propose that integration of two functions (cell polarity and fate) in a single receptor is a key mechanism to ensure an asymmetric outcome following cell division.
Collapse
Affiliation(s)
- Cuie Chen
- Life Sciences Institute, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | - Ryan Cummings
- Life Sciences Institute, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| | - Aghapi Mordovanakis
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | - Alan J Hunt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | - Michael Mayer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States
| | - Yukiko M Yamashita
- Life Sciences Institute, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| |
Collapse
|
200
|
Xio is a component of the Drosophila sex determination pathway and RNA N6-methyladenosine methyltransferase complex. Proc Natl Acad Sci U S A 2018; 115:3674-3679. [PMID: 29555755 DOI: 10.1073/pnas.1720945115] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
N6-methyladenosine (m6A), the most abundant chemical modification in eukaryotic mRNA, has been implicated in Drosophila sex determination by modifying Sex-lethal (Sxl) pre-mRNA and facilitating its alternative splicing. Here, we identify a sex determination gene, CG7358, and rename it xio according to its loss-of-function female-to-male transformation phenotype. xio encodes a conserved ubiquitous nuclear protein of unknown function. We show that Xio colocalizes and interacts with all previously known m6A writer complex subunits (METTL3, METTL14, Fl(2)d/WTAP, Vir/KIAA1429, and Nito/Rbm15) and that loss of xio is associated with phenotypes that resemble other m6A factors, such as sexual transformations, Sxl splicing defect, held-out wings, flightless flies, and reduction of m6A levels. Thus, Xio encodes a member of the m6A methyltransferase complex involved in mRNA modification. Since its ortholog ZC3H13 (or KIAA0853) also associates with several m6A writer factors, the function of Xio in the m6A pathway is likely evolutionarily conserved.
Collapse
|