151
|
Vergez F, Largeaud L, Bertoli S, Nicolau ML, Rieu JB, Vergnolle I, Saland E, Sarry A, Tavitian S, Huguet F, Picard M, Vial JP, Lechevalier N, Bidet A, Dumas PY, Pigneux A, Luquet I, Mansat-De Mas V, Delabesse E, Carroll M, Danet-Desnoyers G, Sarry JE, Récher C. Phenotypically-defined stages of leukemia arrest predict main driver mutations subgroups, and outcome in acute myeloid leukemia. Blood Cancer J 2022; 12:117. [PMID: 35973983 PMCID: PMC9381519 DOI: 10.1038/s41408-022-00712-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Classifications of acute myeloid leukemia (AML) patients rely on morphologic, cytogenetic, and molecular features. Here we have established a novel flow cytometry-based immunophenotypic stratification showing that AML blasts are blocked at specific stages of differentiation where features of normal myelopoiesis are preserved. Six stages of leukemia differentiation-arrest categories based on CD34, CD117, CD13, CD33, MPO, and HLA-DR expression were identified in two independent cohorts of 2087 and 1209 AML patients. Hematopoietic stem cell/multipotent progenitor-like AMLs display low proliferation rate, inv(3) or RUNX1 mutations, and high leukemic stem cell frequency as well as poor outcome, whereas granulocyte-monocyte progenitor-like AMLs have CEBPA mutations, RUNX1-RUNX1T1 or CBFB-MYH11 translocations, lower leukemic stem cell frequency, higher chemosensitivity, and better outcome. NPM1 mutations correlate with most mature stages of leukemia arrest together with TET2 or IDH mutations in granulocyte progenitors-like AML or with DNMT3A mutations in monocyte progenitors-like AML. Overall, we demonstrate that AML is arrested at specific stages of myeloid differentiation (SLA classification) that significantly correlate with AML genetic lesions, clinical presentation, stem cell properties, chemosensitivity, response to therapy, and outcome.
Collapse
Affiliation(s)
- François Vergez
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France. .,Université Toulouse III Paul Sabatier, Toulouse, France. .,Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France. .,Stem Cell and Xenograft Core, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| | - Laetitia Largeaud
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France
| | - Sarah Bertoli
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France.,Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Marie-Laure Nicolau
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Jean-Baptiste Rieu
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Inès Vergnolle
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Estelle Saland
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France
| | - Audrey Sarry
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Suzanne Tavitian
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Françoise Huguet
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Muriel Picard
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Jean-Philippe Vial
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Nicolas Lechevalier
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Audrey Bidet
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Pierre-Yves Dumas
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Arnaud Pigneux
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Pessac, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Véronique Mansat-De Mas
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Eric Delabesse
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Martin Carroll
- Stem Cell and Xenograft Core, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Gwenn Danet-Desnoyers
- Stem Cell and Xenograft Core, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jean-Emmanuel Sarry
- Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France.,Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Christian Récher
- Université Toulouse III Paul Sabatier, Toulouse, France. .,Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS, Toulouse, France. .,Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France.
| |
Collapse
|
152
|
Zhang F, Chen L. Molecular Threat of Splicing Factor Mutations to Myeloid Malignancies and Potential Therapeutic Modulations. Biomedicines 2022; 10:biomedicines10081972. [PMID: 36009519 PMCID: PMC9405558 DOI: 10.3390/biomedicines10081972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
Splicing factors are frequently mutated in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). These mutations are presumed to contribute to oncogenic transformation, but the underlying mechanisms remain incompletely understood. While no specific treatment option is available for MDS/AML patients with spliceosome mutations, novel targeting strategies are actively explored, leading to clinical trials of small molecule inhibitors that target the spliceosome, DNA damage response pathway, and immune response pathway. Here, we review recent progress in mechanistic understanding of splicing factor mutations promoting disease progression and summarize potential therapeutic strategies, which, if successful, would provide clinical benefit to patients carrying splicing factor mutations.
Collapse
|
153
|
Cobo I, Tanaka TN, Chandra Mangalhara K, Lana A, Yeang C, Han C, Schlachetzki J, Challcombe J, Fixsen BR, Sakai M, Li RZ, Fields H, Mokry M, Tsai RG, Bejar R, Prange K, de Winther M, Shadel GS, Glass CK. DNA methyltransferase 3 alpha and TET methylcytosine dioxygenase 2 restrain mitochondrial DNA-mediated interferon signaling in macrophages. Immunity 2022; 55:1386-1401.e10. [PMID: 35931086 PMCID: PMC9718507 DOI: 10.1016/j.immuni.2022.06.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
Deleterious somatic mutations in DNA methyltransferase 3 alpha (DNMT3A) and TET mehtylcytosine dioxygenase 2 (TET2) are associated with clonal expansion of hematopoietic cells and higher risk of cardiovascular disease (CVD). Here, we investigated roles of DNMT3A and TET2 in normal human monocyte-derived macrophages (MDM), in MDM isolated from individuals with DNMT3A or TET2 mutations, and in macrophages isolated from human atherosclerotic plaques. We found that loss of function of DNMT3A or TET2 resulted in a type I interferon response due to impaired mitochondrial DNA integrity and activation of cGAS signaling. DNMT3A and TET2 normally maintained mitochondrial DNA integrity by regulating the expression of transcription factor A mitochondria (TFAM) dependent on their interactions with RBPJ and ZNF143 at regulatory regions of the TFAM gene. These findings suggest that targeting the cGAS-type I IFN pathway may have therapeutic value in reducing risk of CVD in patients with DNMT3A or TET2 mutations.
Collapse
Affiliation(s)
- Isidoro Cobo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tiffany N Tanaka
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | | | - Addison Lana
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Calvin Yeang
- University of California San Diego, Sulpizio Cardiovascular Center, La Jolla, CA, USA
| | - Claudia Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Johannes Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jean Challcombe
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bethany R Fixsen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Rick Z Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hannah Fields
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Michal Mokry
- Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 EA Utrecht, the Netherlands
| | - Randy G Tsai
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Rafael Bejar
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Koen Prange
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Menno de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
154
|
Machado HE, Mitchell E, Øbro NF, Kübler K, Davies M, Leongamornlert D, Cull A, Maura F, Sanders MA, Cagan ATJ, McDonald C, Belmonte M, Shepherd MS, Vieira Braga FA, Osborne RJ, Mahbubani K, Martincorena I, Laurenti E, Green AR, Getz G, Polak P, Saeb-Parsy K, Hodson DJ, Kent DG, Campbell PJ. Diverse mutational landscapes in human lymphocytes. Nature 2022; 608:724-732. [PMID: 35948631 PMCID: PMC9402440 DOI: 10.1038/s41586-022-05072-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
The lymphocyte genome is prone to many threats, including programmed mutation during differentiation1, antigen-driven proliferation and residency in diverse microenvironments. Here, after developing protocols for expansion of single-cell lymphocyte cultures, we sequenced whole genomes from 717 normal naive and memory B and T cells and haematopoietic stem cells. All lymphocyte subsets carried more point mutations and structural variants than haematopoietic stem cells, with higher burdens in memory cells than in naive cells, and with T cells accumulating mutations at a higher rate throughout life. Off-target effects of immunological diversification accounted for approximately half of the additional differentiation-associated mutations in lymphocytes. Memory B cells acquired, on average, 18 off-target mutations genome-wide for every on-target IGHV mutation during the germinal centre reaction. Structural variation was 16-fold higher in lymphocytes than in stem cells, with around 15% of deletions being attributable to off-target recombinase-activating gene activity. DNA damage from ultraviolet light exposure and other sporadic mutational processes generated hundreds to thousands of mutations in some memory cells. The mutation burden and signatures of normal B cells were broadly similar to those seen in many B-cell cancers, suggesting that malignant transformation of lymphocytes arises from the same mutational processes that are active across normal ontogeny. The mutational landscape of normal lymphocytes chronicles the off-target effects of programmed genome engineering during immunological diversification and the consequences of differentiation, proliferation and residency in diverse microenvironments.
Collapse
Affiliation(s)
| | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nina F Øbro
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Kübler
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Megan Davies
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Molecular Diagnostics, Milton Road, Cambridge, United Kingdom
| | | | - Alyssa Cull
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | | | - Mathijs A Sanders
- Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Craig McDonald
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | - Mairi S Shepherd
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Robert J Osborne
- Wellcome Sanger Institute, Hinxton, UK
- Biofidelity, 330 Cambridge Science Park, Milton Road, Cambridge, United Kingdom
| | - Krishnaa Mahbubani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Elisa Laurenti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paz Polak
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - David G Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom.
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
155
|
Savola P, Bhattacharya D, Huuhtanen J. The spectrum of somatic mutations in large granular lymphocyte leukemia, rheumatoid arthritis and Felty's syndrome. Semin Hematol 2022; 59:123-130. [DOI: 10.1053/j.seminhematol.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
|
156
|
Noort S, van Oosterwijk J, Ma J, Garfinkle EA, Nance S, Walsh M, Song G, Reinhardt D, Pigazzi M, Locatelli F, Hasle H, Abrahamsson J, Jarosova M, Kelaidi C, Polychronopoulou S, van den Heuvel-Eibrink MM, Fornerod M, Gruber TA, Zwaan CM. Analysis of rare driving events in pediatric acute myeloid leukemia. Haematologica 2022; 108:48-60. [PMID: 35899387 PMCID: PMC9827169 DOI: 10.3324/haematol.2021.280250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 02/04/2023] Open
Abstract
Elucidating genetic aberrations in pediatric acute myeloid leukemia (AML) provides insight in biology and may impact on risk-group stratification and clinical outcome. This study aimed to detect such aberrations in a selected series of samples without known (cyto)genetic aberration using molecular profiling. A cohort of 161 patients was selected from various study groups: DCOG, BFM, SJCRH, NOPHO and AEIOP. Samples were analyzed using RNA sequencing (n=152), whole exome (n=135) and/or whole genome sequencing (n=100). In 70 of 156 patients (45%), of whom RNA sequencing or whole genome sequencing was available, rearrangements were detected, 22 of which were novel; five involving ERG rearrangements and four NPM1 rearrangements. ERG rearrangements showed self-renewal capacity in vitro, and a distinct gene expression pattern. Gene set enrichment analysis of this cluster showed upregulation of gene sets derived from Ewing sarcoma, which was confirmed comparing gene expression profiles of AML and Ewing sarcoma. Furthermore, NPM1-rearranged cases showed cytoplasmic NPM1 localization and revealed HOXA/B gene overexpression, as described for NPM1 mutated cases. Single-gene mutations as identified in adult AML were rare. Patients had a median of 24 coding mutations (range, 7-159). Novel recurrent mutations were detected in UBTF (n=10), a regulator of RNA transcription. In 75% of patients an aberration with a prognostic impact could be detected. Therefore, we suggest these techniques need to become standard of care in diagnostics.
Collapse
Affiliation(s)
- Sanne Noort
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands
| | | | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Stephanie Nance
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dirk Reinhardt
- AML-BFM Study Group, Pediatric Hematology and Oncology, Essen, Germany
| | - Martina Pigazzi
- Women and Child Health Department, Hematology-Oncology Clinic and Lab, University of Padova, Padova, Italy
| | - Franco Locatelli
- Italian Association of Pediatric Hematology and Oncology, University of Pavia, Pavia, Italy
| | - Henrik Hasle
- Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Abrahamsson
- Nordic Society for Pediatric Hematology and Oncology, Department of Pediatrics, Institution for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marie Jarosova
- Center of Molecular Biology and Gene Therapy, Department of Internal Hematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Charikleia Kelaidi
- Department of Pediatric Hematology and Oncology, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology and Oncology, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | - Marry M. van den Heuvel-Eibrink
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Maarten Fornerod
- Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
| | - Tanja A. Gruber
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - C. Michel Zwaan
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands,C. M. Zwaan
| |
Collapse
|
157
|
Gaulin C, Kelemen K, Arana Yi C. Molecular Pathways in Clonal Hematopoiesis: From the Acquisition of Somatic Mutations to Transformation into Hematologic Neoplasm. Life (Basel) 2022; 12:1135. [PMID: 36013314 PMCID: PMC9410004 DOI: 10.3390/life12081135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cell aging, through the acquisition of somatic mutations, gives rise to clonal hematopoiesis (CH). While a high prevalence of CH has been described in otherwise healthy older adults, CH confers an increased risk of both hematologic and non-hematologic diseases. Classification of CH into clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS) further describes this neoplastic myeloid precursor state and stratifies individuals at risk of developing clinically significant complications. The sequential acquisition of driver mutations, such as DNMT3A, TET2, and ASXL1, provide a selective advantage and lead to clonal expansion. Inflammation, microbiome signatures, and external selective pressures also contribute to clonal evolution. Despite significant progress in recent years, the precise molecular mechanisms driving CH transformation to hematologic neoplasms are not well defined. Further understanding of these complex mechanisms may improve risk stratification and introduce therapeutic interventions in CH. Here we discuss the genetic drivers underpinning CH, mechanisms for clonal evolution, and transformation to hematologic neoplasm.
Collapse
Affiliation(s)
- Charles Gaulin
- Division of Hematology and Medical Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA;
| | - Katalin Kelemen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ 85054, USA;
| | - Cecilia Arana Yi
- Division of Hematology and Medical Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA;
| |
Collapse
|
158
|
Manders F, van Boxtel R, Middelkamp S. The Dynamics of Somatic Mutagenesis During Life in Humans. FRONTIERS IN AGING 2022; 2:802407. [PMID: 35822044 PMCID: PMC9261377 DOI: 10.3389/fragi.2021.802407] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
From conception to death, human cells accumulate somatic mutations in their genomes. These mutations can contribute to the development of cancer and non-malignant diseases and have also been associated with aging. Rapid technological developments in sequencing approaches in the last few years and their application to normal tissues have greatly advanced our knowledge about the accumulation of these mutations during healthy aging. Whole genome sequencing studies have revealed that there are significant differences in mutation burden and patterns across tissues, but also that the mutation rates within tissues are surprisingly constant during adult life. In contrast, recent lineage-tracing studies based on whole-genome sequencing have shown that the rate of mutation accumulation is strongly increased early in life before birth. These early mutations, which can be shared by many cells in the body, may have a large impact on development and the origin of somatic diseases. For example, cancer driver mutations can arise early in life, decades before the detection of the malignancy. Here, we review the recent insights in mutation accumulation and mutagenic processes in normal tissues. We compare mutagenesis early and later in life and discuss how mutation rates and patterns evolve during aging. Additionally, we outline the potential impact of these mutations on development, aging and disease.
Collapse
Affiliation(s)
- Freek Manders
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, Netherlands
| | - Sjors Middelkamp
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
159
|
Interrogating breast cancer heterogeneity using single and pooled circulating tumor cell analysis. NPJ Breast Cancer 2022; 8:79. [PMID: 35790747 PMCID: PMC9256697 DOI: 10.1038/s41523-022-00445-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Single cell technologies allow the interrogation of tumor heterogeneity, providing insights into tumor evolution and treatment resistance. To better understand whether circulating tumor cells (CTCs) could complement metastatic biopsies for tumor genomic profiling, we characterized 11 single CTCs and 10 pooled CTC samples at the mutational and copy number aberration (CNA) levels, and compared these results with matched synchronous tumor biopsies from 3 metastatic breast cancer patients with triple-negative (TNBC), HER2-positive and estrogen receptor-positive (ER+) tumors. Similar CNA profiles and the same patient-specific driver mutations were found in bulk tissue and CTCs for the HER2-positive and TNBC tumors, whereas different CNA profiles and driver mutations were identified for the ER+ tumor, which presented two distinct clones in CTCs defined by mutations in ESR1 Y537N and TP53, respectively. Furthermore, de novo mutational signatures derived from CTCs described patient-specific biological processes. These data suggest that tumor tissue and CTCs provide complementary clinically relevant information to map tumor heterogeneity and tumor evolution.
Collapse
|
160
|
Ahmadinejad N, Troftgruben S, Wang J, Chandrashekar PB, Dinu V, Maley C, Liu L. Accurate Identification of Subclones in Tumor Genomes. Mol Biol Evol 2022; 39:msac136. [PMID: 35749590 PMCID: PMC9260306 DOI: 10.1093/molbev/msac136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding intratumor heterogeneity is critical for studying tumorigenesis and designing personalized treatments. To decompose the mixed cell population in a tumor, subclones are inferred computationally based on variant allele frequency (VAF) from bulk sequencing data. In this study, we showed that sequencing depth, mean VAF, and variance of VAF of a subclone are confounded. Without considering this effect, current methods require deep-sequencing data (>300× depth) to reliably infer subclones. Here, we present a novel algorithm that incorporates depth-variance and mean-variance dependencies in a clustering error model and successfully identifies subclones in tumors sequenced at depths of as low as 30×. We implemented the algorithm as a model-based adaptive grouping of subclones (MAGOS) method. Analyses of computer simulated data and empirical sequencing data showed that MAGOS outperformed existing methods on minimum sequencing depth, decomposition accuracy, and computation efficiency. The most prominent improvements were observed in analyzing tumors sequenced at depths between 30× and 200×, whereas the performance was comparable between MAGOS and existing methods on deeply sequenced tumors. MAGOS supports analysis of single-nucleotide variants and copy number variants from a single sample or multiple samples of a tumor. We applied MAGOS to whole-exome data of late-stage liver cancers and discovered that high subclone count in a tumor was a significant risk factor of poor prognosis. Lastly, our analysis suggested that sequencing multiple samples of the same tumor at standard depth is more cost-effective and robust for subclone characterization than deep sequencing a single sample. MAGOS is available at github (https://github.com/liliulab/magos).
Collapse
Affiliation(s)
- Navid Ahmadinejad
- College of Health Solutions, Arizona State University, Phoenix, AZ 85054, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Shayna Troftgruben
- College of Health Solutions, Arizona State University, Phoenix, AZ 85054, USA
| | - Junwen Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ 85054, USA
- Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Pramod B Chandrashekar
- College of Health Solutions, Arizona State University, Phoenix, AZ 85054, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Valentin Dinu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85054, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Carlo Maley
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85054, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
161
|
Yura Y, Cochran JD, Walsh K. Therapy-Related Clonal Hematopoiesis: A New Link Between Cancer and Cardiovascular Disease. Heart Fail Clin 2022; 18:349-359. [PMID: 35718411 DOI: 10.1016/j.hfc.2022.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Clonal hematopoiesis is a precancerous state that is recognized as a new causal risk factor for cardiovascular disease. Therapy-related clonal hematopoiesis is a condition that is often found in cancer survivors. These clonal expansions are caused by mutations in DNA damage-response pathway genes that allow hematopoietic stem cells to undergo positive selection in response to the genotoxic stress. These mutant cells increasingly give rise to progeny leukocytes that display enhanced proinflammatory properties. Recent experimental studies suggest that therapy-related clonal hematopoiesis may contribute to the medium- to long-term risk of genotoxic therapies on the cardiovascular system.
Collapse
Affiliation(s)
- Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, 415 Lane Road, PO Box 801394, Suite 1010, Charlottesville, VA 22908, USA; Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Jesse D Cochran
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, 415 Lane Road, PO Box 801394, Suite 1010, Charlottesville, VA 22908, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, 415 Lane Road, PO Box 801394, Suite 1010, Charlottesville, VA 22908, USA.
| |
Collapse
|
162
|
RNA m6A modification: Mapping methods, roles, and mechanisms in acute myeloid leukemia. BLOOD SCIENCE 2022; 4:116-124. [DOI: 10.1097/bs9.0000000000000131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
|
163
|
Matos S, Bernardo P, Esteves S, Botelho de Sousa A, Lemos M, Ribeiro P, Silva M, Nunes A, Lobato J, Frade MDJ, da Silva MG, Chacim S, Mariz J, Esteves G, Raposo J, Espadana A, Carda J, Barbosa P, Martins V, Carmo-Fonseca M, Desterro J. Screening a Targeted Panel of Genes by Next-Generation Sequencing Improves Risk Stratification in Real World Patients with Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:3236. [PMID: 35805006 PMCID: PMC9265035 DOI: 10.3390/cancers14133236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Although mutation profiling of defined genes is recommended for classification of acute myeloid leukemia (AML) patients, screening of targeted gene panels using next-generation sequencing (NGS) is not always routinely used as standard of care. The objective of this study was to prospectively assess whether extended molecular monitoring using NGS adds clinical value for risk assessment in real-world AML patients. We analyzed a cohort of 268 newly diagnosed AML patients. We compared the prognostic stratification of our study population according to the European LeukemiaNet recommendations, before and after the incorporation of the extended mutational profile information obtained by NGS. Without access to NGS data, 63 patients (23%) failed to be stratified into risk groups. After NGS data, only 27 patients (10%) failed risk stratification. Another 33 patients were re-classified as adverse-risk patients once the NGS data was incorporated. In total, access to NGS data refined risk assessment for 62 patients (23%). We further compared clinical outcomes with prognostic stratification, and observed unexpected outcomes associated with FLT3 mutations. In conclusion, this study demonstrates the prognostic utility of screening AML patients for multiple gene mutations by NGS and underscores the need for further studies to refine the current risk classification criteria.
Collapse
Affiliation(s)
- Sónia Matos
- GenoMed-Diagnósticos de Medicina Molecular SA, 1649-028 Lisboa, Portugal; (S.M.); (V.M.)
| | - Paulo Bernardo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (P.B.); (P.B.)
- Serviço de Hematologia Clínica, Hospital da Luz de Lisboa, 1500-650 Lisboa, Portugal
| | - Susana Esteves
- Unidade de Investigação Clínica, Instituto Português de Oncologia de Lisboa, Francisco Gentil, 1099-023 Lisboa, Portugal;
| | - Aida Botelho de Sousa
- Serviço de Hematologia, Centro Hospitalar Lisboa Central-Hospital de St. António dos Capuchos, 1150-315 Lisboa, Portugal; (A.B.d.S.); (M.L.); (P.R.); (M.S.)
| | - Marcos Lemos
- Serviço de Hematologia, Centro Hospitalar Lisboa Central-Hospital de St. António dos Capuchos, 1150-315 Lisboa, Portugal; (A.B.d.S.); (M.L.); (P.R.); (M.S.)
| | - Patrícia Ribeiro
- Serviço de Hematologia, Centro Hospitalar Lisboa Central-Hospital de St. António dos Capuchos, 1150-315 Lisboa, Portugal; (A.B.d.S.); (M.L.); (P.R.); (M.S.)
| | - Madalena Silva
- Serviço de Hematologia, Centro Hospitalar Lisboa Central-Hospital de St. António dos Capuchos, 1150-315 Lisboa, Portugal; (A.B.d.S.); (M.L.); (P.R.); (M.S.)
| | - Albertina Nunes
- Serviço de Hematologia, Instituto Português de Oncologia de Lisboa, Francisco Gentil, 1099-023 Lisboa, Portugal; (A.N.); (J.L.); (M.d.J.F.); (M.G.d.S.)
| | - Joana Lobato
- Serviço de Hematologia, Instituto Português de Oncologia de Lisboa, Francisco Gentil, 1099-023 Lisboa, Portugal; (A.N.); (J.L.); (M.d.J.F.); (M.G.d.S.)
| | - Maria de Jesus Frade
- Serviço de Hematologia, Instituto Português de Oncologia de Lisboa, Francisco Gentil, 1099-023 Lisboa, Portugal; (A.N.); (J.L.); (M.d.J.F.); (M.G.d.S.)
| | - Maria Gomes da Silva
- Serviço de Hematologia, Instituto Português de Oncologia de Lisboa, Francisco Gentil, 1099-023 Lisboa, Portugal; (A.N.); (J.L.); (M.d.J.F.); (M.G.d.S.)
| | - Sérgio Chacim
- Serviço de Hematologia, Instituto Português de Oncologia do Porto, 4200-072 Porto, Portugal; (S.C.); (J.M.)
| | - José Mariz
- Serviço de Hematologia, Instituto Português de Oncologia do Porto, 4200-072 Porto, Portugal; (S.C.); (J.M.)
| | - Graça Esteves
- Serviço de Hematologia e Transplantação de Medula, Centro Hospitalar Lisboa Norte-Hospital de Santa Maria, 1649-028 Lisboa, Portugal; (G.E.); (J.R.)
| | - João Raposo
- Serviço de Hematologia e Transplantação de Medula, Centro Hospitalar Lisboa Norte-Hospital de Santa Maria, 1649-028 Lisboa, Portugal; (G.E.); (J.R.)
| | - Ana Espadana
- Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.E.); (J.C.)
| | - José Carda
- Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.E.); (J.C.)
| | - Pedro Barbosa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (P.B.); (P.B.)
| | - Vânia Martins
- GenoMed-Diagnósticos de Medicina Molecular SA, 1649-028 Lisboa, Portugal; (S.M.); (V.M.)
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (P.B.); (P.B.)
| | - Joana Desterro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (P.B.); (P.B.)
- Serviço de Hematologia, Instituto Português de Oncologia de Lisboa, Francisco Gentil, 1099-023 Lisboa, Portugal; (A.N.); (J.L.); (M.d.J.F.); (M.G.d.S.)
| |
Collapse
|
164
|
Game of clones: Diverse implications for clonal hematopoiesis in lymphoma and multiple myeloma. Blood Rev 2022; 56:100986. [PMID: 35753868 DOI: 10.1016/j.blre.2022.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022]
Abstract
Clonal hematopoiesis (CH) refers to the disproportionate expansion of hematopoietic stem cell clones and their corresponding progeny following the acquisition of somatic mutations. CH is common at the time of diagnosis in patients with blood cancers, including multiple myeloma (MM) and lymphoma. The presence of CH mutations correlates with IL-6 mediated inflammation and may result in lymphoma or MM modulation through microenvironment effects or by manifestations of the mutations themselves within the founding tumor clone. As might be expected with a variety of mutations and multiple potential mechanisms, CH exerts context-dependent effects, being protective in some settings and harmful in others. Though CH is very common in patients with hematologic malignancies, how it intersects with therapy and the natural disease course of these cancers are active areas of investigation. In lymphomas and MM specifically, patients have high rates of CH at diagnosis and are subsequently exposed to therapies, such as cytotoxic chemotherapy, that can cause CH progression to overt hematologic malignancy. The expanding diversity of treatment modalities for these cancers also increases the opportunities for CH to impact clinical outcome and modulate clinical responses. Here we review the basic biology and known health effects of CH, and we focus on the clinical relevance of CH in lymphoma and MM.
Collapse
|
165
|
Tarantini F, Cumbo C, Anelli L, Zagaria A, Coccaro N, Tota G, Specchia G, Musto P, Albano F. Clonal hematopoiesis in clinical practice: walking a tightrope. Leuk Lymphoma 2022; 63:2536-2544. [DOI: 10.1080/10428194.2022.2087068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Francesco Tarantini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit – University of Bari “Aldo Moro”, Bari, Italy
| | - Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit – University of Bari “Aldo Moro”, Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit – University of Bari “Aldo Moro”, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit – University of Bari “Aldo Moro”, Bari, Italy
| | - Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit – University of Bari “Aldo Moro”, Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit – University of Bari “Aldo Moro”, Bari, Italy
| | | | - Pellegrino Musto
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit – University of Bari “Aldo Moro”, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology and Stem Cell Transplantation Unit – University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
166
|
Thwarting of Lphn3 Functions in Cell Motility and Signaling by Cancer-Related GAIN Domain Somatic Mutations. Cells 2022; 11:cells11121913. [PMID: 35741042 PMCID: PMC9221416 DOI: 10.3390/cells11121913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer progression relies on cellular transition states accompanied by changes in the functionality of adhesion molecules. The gene for adhesion G protein-coupled receptor latrophilin-3 (aGPCR Lphn3 or ADGRL3) is targeted by tumor-specific somatic mutations predominantly affecting the conserved GAIN domain where most aGPCRs are cleaved. However, it is unclear how these GAIN domain-altering mutations impact Lphn3 function. Here, we studied Lphn3 cancer-related mutations as a proxy for revealing unknown GAIN domain functions. We found that while intra-GAIN cleavage efficiency was unaltered, most mutations produced a ligand-specific impairment of Lphn3 intercellular adhesion profile paralleled by an increase in cell-matrix actin-dependent contact structures for cells expressing the select S810L mutation. Aberrant remodeling of the intermediate filament vimentin, which was found to coincide with Lphn3-induced modification of nuclear morphology, had less impact on the nuclei of S810L expressing cells. Notoriously, receptor signaling through G13 protein was deficient for all variants bearing non-homologous amino acid substitutions, including the S810L variant. Analysis of cell migration paradigms revealed a non-cell-autonomous impairment in collective cell migration indistinctly of Lphn3 or its cancer-related variants expression, while cell-autonomous motility was potentiated in the presence of Lphn3, but this effect was abolished in S810L GAIN mutant-expressing cells. These data identify the GAIN domain as an important regulator of Lphn3-dependent cell motility, thus furthering our understanding of cellular and molecular events linking Lphn3 genetic somatic mutations to cancer-relevant pathogenesis mechanisms.
Collapse
|
167
|
Relapsed acute myeloid leukemia in children and adolescents: current treatment options and future strategies. Leukemia 2022; 36:1951-1960. [PMID: 35668109 DOI: 10.1038/s41375-022-01619-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022]
Abstract
Pediatric acute myeloid leukemia (AML) develops from clonal expansion of hematopoietic precursor cells and is characterized by morphologic and cytomolecular heterogeneity. Although the past 40 years have seen significant improvements in overall survival, the prevailing treatment challenges in pediatric AML are the prevention of relapse and the management of relapsed disease. Approximately 25% of children and adolescents with AML suffer disease relapse and face a poor prognosis. Our greater understanding of the genomic, epigenomic, metabolomic, and immunologic pathophysiology of relapsed AML allows for better therapeutic strategies that are being developed for pediatric clinical trials. The development of biologically rational agents is critical as conventional chemotherapeutic salvage regimens are not effective for all patients and pose risk of organ toxicity in heavily pretreated patients. Another major barrier to improvement in outcomes for relapsed pediatric AML is the historic lack of availability and participation in clinical trials. There are ongoing efforts to launch multinational clinical trials of emerging therapies. The purpose of this review is to summarize currently available and newly developed therapies for relapsed pediatric AML.
Collapse
|
168
|
Mitchell E, Spencer Chapman M, Williams N, Dawson KJ, Mende N, Calderbank EF, Jung H, Mitchell T, Coorens THH, Spencer DH, Machado H, Lee-Six H, Davies M, Hayler D, Fabre MA, Mahbubani K, Abascal F, Cagan A, Vassiliou GS, Baxter J, Martincorena I, Stratton MR, Kent DG, Chatterjee K, Parsy KS, Green AR, Nangalia J, Laurenti E, Campbell PJ. Clonal dynamics of haematopoiesis across the human lifespan. Nature 2022; 606:343-350. [PMID: 35650442 PMCID: PMC9177428 DOI: 10.1038/s41586-022-04786-y] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
Age-related change in human haematopoiesis causes reduced regenerative capacity1, cytopenias2, immune dysfunction3 and increased risk of blood cancer4-6, but the reason for such abrupt functional decline after 70 years of age remains unclear. Here we sequenced 3,579 genomes from single cell-derived colonies of haematopoietic cells across 10 human subjects from 0 to 81 years of age. Haematopoietic stem cells or multipotent progenitors (HSC/MPPs) accumulated a mean of 17 mutations per year after birth and lost 30 base pairs per year of telomere length. Haematopoiesis in adults less than 65 years of age was massively polyclonal, with high clonal diversity and a stable population of 20,000-200,000 HSC/MPPs contributing evenly to blood production. By contrast, haematopoiesis in individuals aged over 75 showed profoundly decreased clonal diversity. In each of the older subjects, 30-60% of haematopoiesis was accounted for by 12-18 independent clones, each contributing 1-34% of blood production. Most clones had begun their expansion before the subject was 40 years old, but only 22% had known driver mutations. Genome-wide selection analysis estimated that between 1 in 34 and 1 in 12 non-synonymous mutations were drivers, accruing at constant rates throughout life, affecting more genes than identified in blood cancers. Loss of the Y chromosome conferred selective benefits in males. Simulations of haematopoiesis, with constant stem cell population size and constant acquisition of driver mutations conferring moderate fitness benefits, entirely explained the abrupt change in clonal structure in the elderly. Rapidly decreasing clonal diversity is a universal feature of haematopoiesis in aged humans, underpinned by pervasive positive selection acting on many more genes than currently identified.
Collapse
Affiliation(s)
- Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | | | - Nicole Mende
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Emily F Calderbank
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | | | | | | | - David H Spencer
- Department of Medicine, McDonnell Genome Institute, Washington University, St Louis, MO, USA
| | | | | | - Megan Davies
- Cambridge Molecular Diagnostics, Milton Road, Cambridge, UK
| | - Daniel Hayler
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Margarete A Fabre
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Krishnaa Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | | | | | - George S Vassiliou
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Joanna Baxter
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | - David G Kent
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Krishna Chatterjee
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Elisa Laurenti
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
169
|
Banella C, Catalano G, Travaglini S, Pelosi E, Ottone T, Zaza A, Guerrera G, Angelini DF, Niscola P, Divona M, Battistini L, Screnci M, Ammatuna E, Testa U, Nervi C, Voso MT, Noguera NI. Ascorbate Plus Buformin in AML: A Metabolic Targeted Treatment. Cancers (Basel) 2022; 14:cancers14102565. [PMID: 35626170 PMCID: PMC9139619 DOI: 10.3390/cancers14102565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Acute Myeloid Leukemias (AMLs) are rapidly progressive clonal neoplastic diseases. The overall 5-year survival rate is very poor: less than 5% in older patients aged over 65 years old. Elderly AML patients are often “unfit” for intensive chemotherapy, further highlighting the need of highly effective, well-tolerated new treatment options for AMLs. Growing evidence indicates that AML blasts feature a highly diverse and flexible metabolism consistent with the aggressiveness of the disease. Based on these evidences, we targeted the metabolic peculiarity and plasticity of AML cells with an association of ascorbate, which causes oxidative stress and interferes with hexokinase activity, and buformin, which completely shuts down mitochondrial contributions in ATP production. The ascorbate–buformin combination could be an innovative therapeutic option for elderly AML patients that are resistant to therapy. Abstract In the present study, we characterized the metabolic background of different Acute Myeloid Leukemias’ (AMLs) cells and described a heterogeneous and highly flexible energetic metabolism. Using the Seahorse XF Agilent, we compared the metabolism of normal hematopoietic progenitors with that of primary AML blasts and five different AML cell lines. We assessed the efficacy and mechanism of action of the association of high doses of ascorbate, a powerful oxidant, with the metabolic inhibitor buformin, which inhibits mitochondrial complex I and completely shuts down mitochondrial contributions in ATP production. Primary blasts from seventeen AML patients, assayed for annexin V and live/dead exclusion by flow cytometry, showed an increase in the apoptotic effect using the drug combination, as compared with ascorbate alone. We show that ascorbate inhibits glycolysis through interfering with HK1/2 and GLUT1 functions in hematopoietic cells. Ascorbate combined with buformin decreases mitochondrial respiration and ATP production and downregulates glycolysis, enhancing the apoptotic effect of ascorbate in primary blasts from AMLs and sparing normal CD34+ bone marrow progenitors. In conclusion, our data have therapeutic implications especially in fragile patients since both agents have an excellent safety profile, and the data also support the clinical evaluation of ascorbate–buformin in association with different mechanism drugs for the treatment of refractory/relapsing AML patients with no other therapeutic options.
Collapse
Affiliation(s)
- Cristina Banella
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Health Sciences, Meyer Children’s University Hospital, 50139 Florence, Italy
| | - Gianfranco Catalano
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Serena Travaglini
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (U.T.)
| | - Tiziana Ottone
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandra Zaza
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gisella Guerrera
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (G.G.); (D.F.A.); (L.B.)
| | - Daniela Francesca Angelini
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (G.G.); (D.F.A.); (L.B.)
| | - Pasquale Niscola
- Hematology Unit, Saint’ Eugenio Hospital, University of Rome Tor Vergata, 00144 Rome, Italy;
| | | | - Luca Battistini
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (G.G.); (D.F.A.); (L.B.)
| | - Maria Screnci
- Banca Regionale Sangue Cordone Ombelicale UOC Immunoematologia e Medicina Trasfusionale, Policlinico Umberto I, 00161 Roma, Italy;
| | - Emanuele Ammatuna
- Department of Hematology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (U.T.)
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma La Sapienza, 04100 Latina, Italy;
| | - Maria Teresa Voso
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (M.T.V.); (N.I.N.); Tel.: +39-06-501-703-225 (N.I.N.)
| | - Nelida Ines Noguera
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (M.T.V.); (N.I.N.); Tel.: +39-06-501-703-225 (N.I.N.)
| |
Collapse
|
170
|
Genescà E, González-Gil C. Latest Contributions of Genomics to T-Cell Acute Lymphoblastic Leukemia (T-ALL). Cancers (Basel) 2022; 14:2474. [PMID: 35626077 PMCID: PMC9140158 DOI: 10.3390/cancers14102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
As for many neoplasms, initial genetic data about T-cell acute lymphoblastic leukemia (T-ALL) came from the application of cytogenetics. This information helped identify some recurrent chromosomal alterations in T-ALL at the time of diagnosis, although it was difficult to determine their prognostic impact because of their low incidence in the specific T-ALL cohort analyzed. Genetic knowledge accumulated rapidly following the application of genomic techniques, drawing attention to the importance of using high-resolution genetic techniques to detect cryptic aberrations present in T-ALL, which are not usually detected by cytogenetics. We now have a clearer appreciation of the genetic landscape of the different T-ALL subtypes at diagnosis, explaining the particular oncogenetic processes taking place in each T-ALL, and we have begun to understand relapse-specific mechanisms. This review aims to summarize the latest advances in our knowledge of the genome in T-ALL. We highlight areas where the research in this subtype of ALL is progressing with the aim of identifying key questions that need to be answered in the medium-long term if this knowledge is to be applied in clinics.
Collapse
Affiliation(s)
- Eulàlia Genescà
- Institut d’Investigació Contra la Leucemia Josep Carreras (IJC), Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | | |
Collapse
|
171
|
Clonal hematopoiesis and cardiovascular disease in cancer patients and survivors. Thromb Res 2022; 213 Suppl 1:S107-S112. [DOI: 10.1016/j.thromres.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/22/2022]
|
172
|
Jin X, Ng V, Zhao M, Liu L, Higashimoto T, Lee ZH, Chung J, Chen V, Ney G, Kandarpa M, Talpaz M, Li Q. Epigenetic downregulation of Socs2 contributes to mutant N-Ras-mediated hematopoietic dysregulation. Dis Model Mech 2022; 15:274899. [PMID: 35352806 PMCID: PMC9092650 DOI: 10.1242/dmm.049088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
RAS mutations occur in a broad spectrum of human hematopoietic malignancies. Activating Ras mutations in blood cells leads to hematopoietic malignancies in mice. In murine hematopoietic stem cells (HSCs), mutant N-RasG12D activates Stat5 to dysregulate stem cell function. However, the underlying mechanism remains elusive. In this study, we demonstrate that Stat5 activation induced by a hyperactive Nras mutant, G12D, is dependent on Jak2 activity. Jak2 is activated in Nras mutant HSCs and progenitors (HSPCs), and inhibiting Jak2 with ruxolitinib significantly decreases Stat5 activation and HSPC hyper-proliferation in vivo in NrasG12D mice. Activation of Jak2-Stat5 is associated with downregulation of Socs2, an inhibitory effector of Jak2/Stat5. Restoration of Socs2 blocks NrasG12D HSC reconstitution in bone marrow transplant recipients. SOCS2 downregulation is also observed in human acute myeloid leukemia (AML) cells that carry RAS mutations. RAS mutant AML cells exhibited suppression of the enhancer active marker H3K27ac at the SOCS2 locus. Finally, restoration of SOCS2 in RAS mutant AML cells mitigated leukemic growth. Thus, we discovered a novel signaling feedback loop whereby hyperactive Ras signaling activates Jak2/Stat5 via suppression of Socs2. Summary: Jak2/Stat5 is often considered to be parallel to or upstream of Ras signaling. We have discovered a novel signaling feedback loop whereby hyperactive Ras signaling activates Jak2/Stat5 via suppression of Socs2.
Collapse
Affiliation(s)
- Xi Jin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Victor Ng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meiling Zhao
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lu Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomoyasu Higashimoto
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zheng Hong Lee
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jooho Chung
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Victor Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gina Ney
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malathi Kandarpa
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Moshe Talpaz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qing Li
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
173
|
Pero SC, Nagulapally AB, Mei L, Zhang F, Sholler GS, Krag DN, Shukla GS. Development of Clinical-Grade Antibodies against Tumor-Specific Mutations to Target Neuroblastoma. ANNALS OF CLINICAL AND LABORATORY SCIENCE 2022; 52:349-358. [PMID: 35777796 PMCID: PMC12016579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Tumor heterogeneity is a fundamental problem in treating cancer with monotargeting therapy, including chemical, antibody, and T cell therapies. Our goal is to target multiple mutated peptides found in a patient's cancer to increase antibody therapy effectiveness. METHODS Tumor samples were derived from patients with neuroblastoma. Whole-exome sequencing was performed of tumor and normal cells. Mutated proteins with missense mutations were selected from the patient tumor. These mutated proteins were further selected for the presence of missense mutations in the outer cell surface. Peptides representing a mutated section of the proteins were used for vaccinating rabbits and generating anti-peptide antibodies. The binding of individual polyclonal antibodies (pAbs) and the mixtures of pAbs were determined against the patient's tumor as cultured neuroblastoma cells and in a murine xenograft model. Antibodies were prepared according to FDA requirements of a phase I clinical protocol. RESULTS All of the generated rabbit pAbs bound with high affinity to the corresponding peptide used for vaccination. The pAbs also bound to low passage neuroblastoma cells. Mixed as cocktails, the pAbs had substantially increased binding to cells and bound well to the xenograft tissue. No binding was observed to the panel of normal human tissues. Preparation of pAbs by an academic lab to clinical-grade was approved by FDA for phase I clinical trial. CONCLUSION We describe a new strategy to make customized antibodies for individual cancer patients and present the data required to meet FDA specifications to begin a phase I clinical trial.
Collapse
Affiliation(s)
- Stephanie C Pero
- Department of Surgery and University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, VT
| | - Abhinav B Nagulapally
- Department of Pediatric Hematology and Oncology, Levine Cancer Institute/Atrium Health Children's Hospital, Charlotte, NC
| | - Linda Mei
- Department of Surgery and University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, VT
| | - Fan Zhang
- The Vermont Biomedical Research Network, University of Vermont, Burlington, VT, USA
| | - Giselle S Sholler
- Department of Pediatric Hematology and Oncology, Levine Cancer Institute/Atrium Health Children's Hospital, Charlotte, NC
| | - David N Krag
- Department of Surgery and University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, VT
| | - Girja S Shukla
- Department of Surgery and University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, VT
| |
Collapse
|
174
|
Dissecting the Genetic and Non-Genetic Heterogeneity of Acute Myeloid Leukemia Using Next-Generation Sequencing and In Vivo Models. Cancers (Basel) 2022; 14:cancers14092182. [PMID: 35565315 PMCID: PMC9103951 DOI: 10.3390/cancers14092182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is an extremely aggressive form of blood cancer with high rates of treatment failure. AML arises from the stepwise acquisition of genetic aberrations and is a highly heterogeneous disorder. Recent research has shown that individual AML samples often contain several clones that are defined by a distinct combination of genetic lesions, epigenetic patterns and cell surface marker expression profiles. A better understanding of the clonal dynamics of AML is required to develop novel treatment strategies against this disease. In this review, we discuss the recent developments that have further deepened our understanding of clonal evolution and heterogeneity in AML. Abstract Acute myeloid leukemia (AML) is an extremely aggressive and heterogeneous disorder that results from the transformation of hematopoietic stem cells. Although our understanding of the molecular pathology of AML has greatly improved in the last few decades, the overall and relapse free survival rates among AML patients remain quite poor. This is largely due to evolution of the disease and selection of the fittest, treatment-resistant leukemic clones. There is increasing evidence that most AMLs possess a highly complex clonal architecture and individual leukemias are comprised of genetically, phenotypically and epigenetically distinct clones, which are continually evolving. Advances in sequencing technologies as well as studies using murine AML models have provided further insights into the heterogeneity of leukemias. We will review recent advances in the field of genetic and non-genetic heterogeneity in AML.
Collapse
|
175
|
Wang Z, Zhang T, Wu W, Wu L, Li J, Huang B, Liang Y, Li Y, Li P, Li K, Wang W, Guo R, Wang Q. Detection and Localization of Solid Tumors Utilizing the Cancer-Type-Specific Mutational Signatures. Front Bioeng Biotechnol 2022; 10:883791. [PMID: 35547159 PMCID: PMC9081532 DOI: 10.3389/fbioe.2022.883791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Accurate detection and location of tumor lesions are essential for improving the diagnosis and personalized cancer therapy. However, the diagnosis of lesions with fuzzy histology is mainly dependent on experiences and with low accuracy and efficiency. Here, we developed a logistic regression model based on mutational signatures (MS) for each cancer type to trace the tumor origin. We observed MS could distinguish cancer from inflammation and healthy individuals. By collecting extensive datasets of samples from ten tumor types in the training cohort (5,001 samples) and independent testing cohort (2,580 samples), cancer-type-specific MS patterns (CTS-MS) were identified and had a robust performance in distinguishing different types of primary and metastatic solid tumors (AUC:0.76 ∼ 0.93). Moreover, we validated our model in an Asian population and found that the AUC of our model in predicting the tumor origin of the Asian population was higher than 0.7. The metastatic tumor lesions inherited the MS pattern of the primary tumor, suggesting the capability of MS in identifying the tissue-of-origin for metastatic cancers. Furthermore, we distinguished breast cancer and prostate cancer with 90% accuracy by combining somatic mutations and CTS-MS from cfDNA, indicating that the CTS-MS could improve the accuracy of cancer-type prediction by cfDNA. In summary, our study demonstrated that MS was a novel reliable biomarker for diagnosing solid tumors and provided new insights into predicting tissue-of-origin.
Collapse
Affiliation(s)
- Ziyu Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lingxiang Wu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Bin Huang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yuan Liang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Pengping Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Kening Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Kening Li, ; Wei Wang, ; Renhua Guo, ; Qianghu Wang,
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Kening Li, ; Wei Wang, ; Renhua Guo, ; Qianghu Wang,
| | - Renhua Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Kening Li, ; Wei Wang, ; Renhua Guo, ; Qianghu Wang,
| | - Qianghu Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Kening Li, ; Wei Wang, ; Renhua Guo, ; Qianghu Wang,
| |
Collapse
|
176
|
Saadi MI, Tahmasebijaroubi F, Noshadi E, Rahimikian R, Karimi Z, Owjfard M, Niknam A, Abdolyousefi EN, Salek S, Tabrizi R, Jamali E. Dysregulated Expression of MiR-19b, MiR-25, MiR-17, WT1, and CEBPA in Patients with Acute Myeloid Leukemia and Association with Graft versus Host Disease after Hematopoietic Stem Cell Transplantation. South Asian J Cancer 2022; 11:346-352. [PMID: 36756106 PMCID: PMC9902101 DOI: 10.1055/s-0042-1742593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Elham JamaliObjectives Acute myeloid leukemia (AML) is a blood malignancy characterized by the proliferation of aberrant cells in the bone marrow and blood that interfere with normal blood cells. We have investigated whether changes in the level of micro-ribonucleic acid (miR)-19b, miR-17, and miR-25, Wilms' tumor (WT1), and CCAAT enhancer-binding protein α (CEBPA) genes expression affect disease prognosis and clinical outcome in AML patients. Materials and Methods The expression level of miR-19-b, miR-17, and miR-25, as well as WT1 and CEBPA genes in a group of patients and controls as well as different risk groups (high, intermediate, and favorite risk), M3 versus non-M3, and graft-versus-host disease (GvHD) versus non-GvHD patients were assessed using a quantitative SYBR Green real-time polymerase chain reaction method. Results When compared with the baseline level at the period of diagnosis before chemotherapy, the expression of miR-19b and miR-17 in AML patients increased significantly after chemotherapy. The level of miR-19b and miR-25 expression in AML patients with M3 and non-M3 French-American-British subgroups differ significantly. MiR-19b and miR-25 expression was elevated in GvHD patients, while miR-19b and miR-25 expression was somewhat decreased in GvHD patients compared with non-GvHD patients, albeit the difference was not statistically significant. Also, patients with different cytogenetic aberrations had similar levels of miR-19-b and miR-25 expression. Conclusion MiR-19b, miR-17, and miR-25 are aberrantly expressed in AML patients' peripheral blood leukocytes, which may play a role in the development of acute GvHD following hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
| | | | - Esmat Noshadi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raha Rahimikian
- Department of Biochemistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahed Karimi
- Hematology and Oncology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran,Address for correspondence Elham Jamali, MSc Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical SciencesShirazIran
| | - Ahmad Niknam
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sanaz Salek
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran,Non Communicable Diseases Research Center (NCDC), Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Jamali
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Address for correspondence Elham Jamali, MSc Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical SciencesShirazIran
| |
Collapse
|
177
|
Zhang CR, Ostrander EL, Kukhar O, Mallaney C, Sun J, Haussler E, Celik H, Koh WK, King KY, Gontarz P, Challen GA. Txnip Enhances Fitness of Dnmt3a-Mutant Hematopoietic Stem Cells via p21. Blood Cancer Discov 2022; 3:220-239. [PMID: 35394496 PMCID: PMC9414740 DOI: 10.1158/2643-3230.bcd-21-0132] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Clonal hematopoiesis (CH) refers to the age-related expansion of specific clones in the blood system, and manifests from somatic mutations acquired in hematopoietic stem cells (HSCs). Most CH variants occur in the gene DNMT3A, but while DNMT3A-mutant CH becomes almost ubiquitous in aging humans, a unifying molecular mechanism to illuminate how DNMT3A-mutant HSCs outcompete their counterparts is lacking. Here, we used interferon gamma (IFNγ) as a model to study the mechanisms by which Dnmt3a mutations increase HSC fitness under hematopoietic stress. We found Dnmt3a-mutant HSCs resist IFNγ-mediated depletion, and IFNγ-signaling is required for clonal expansion of Dnmt3a-mutant HSCs in vivo. Mechanistically, DNA hypomethylation-associated overexpression of Txnip in Dnmt3a-mutant HSCs leads to p53 stabilization and upregulation of p21. This preserves the functional potential of Dnmt3a-mutant HSCs through increased quiescence and resistance to IFNγ-induced apoptosis. These data identify a previously undescribed mechanism to explain increased fitness of DNMT3A-mutant clones under hematopoietic stress. SIGNIFICANCE DNMT3A mutations are common variants in clonal hematopoiesis, and recurrent events in blood cancers. Yet the mechanisms by which these mutations provide hematopoietic stem cells a competitive advantage as a precursor to malignant transformation remain unclear. Here, we use inflammatory stress to uncover molecular mechanisms leading to this fitness advantage. See related article by De Dominici and James DeGregori .
Collapse
Affiliation(s)
- Christine R Zhang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Elizabeth L Ostrander
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ostap Kukhar
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Cates Mallaney
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jiameng Sun
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Emily Haussler
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Hamza Celik
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Won Kyun Koh
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Katherine Y King
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Paul Gontarz
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
178
|
Cagan A, Baez-Ortega A, Brzozowska N, Abascal F, Coorens THH, Sanders MA, Lawson ARJ, Harvey LMR, Bhosle S, Jones D, Alcantara RE, Butler TM, Hooks Y, Roberts K, Anderson E, Lunn S, Flach E, Spiro S, Januszczak I, Wrigglesworth E, Jenkins H, Dallas T, Masters N, Perkins MW, Deaville R, Druce M, Bogeska R, Milsom MD, Neumann B, Gorman F, Constantino-Casas F, Peachey L, Bochynska D, Smith ESJ, Gerstung M, Campbell PJ, Murchison EP, Stratton MR, Martincorena I. Somatic mutation rates scale with lifespan across mammals. Nature 2022; 604:517-524. [PMID: 35418684 PMCID: PMC9021023 DOI: 10.1038/s41586-022-04618-z] [Citation(s) in RCA: 236] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/07/2022] [Indexed: 12/22/2022]
Abstract
The rates and patterns of somatic mutation in normal tissues are largely unknown outside of humans1-7. Comparative analyses can shed light on the diversity of mutagenesis across species, and on long-standing hypotheses about the evolution of somatic mutation rates and their role in cancer and ageing. Here we performed whole-genome sequencing of 208 intestinal crypts from 56 individuals to study the landscape of somatic mutation across 16 mammalian species. We found that somatic mutagenesis was dominated by seemingly endogenous mutational processes in all species, including 5-methylcytosine deamination and oxidative damage. With some differences, mutational signatures in other species resembled those described in humans8, although the relative contribution of each signature varied across species. Notably, the somatic mutation rate per year varied greatly across species and exhibited a strong inverse relationship with species lifespan, with no other life-history trait studied showing a comparable association. Despite widely different life histories among the species we examined-including variation of around 30-fold in lifespan and around 40,000-fold in body mass-the somatic mutation burden at the end of lifespan varied only by a factor of around 3. These data unveil common mutational processes across mammals, and suggest that somatic mutation rates are evolutionarily constrained and may be a contributing factor in ageing.
Collapse
Affiliation(s)
- Alex Cagan
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK.
| | - Adrian Baez-Ortega
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Natalia Brzozowska
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Federico Abascal
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Tim H H Coorens
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Andrew R J Lawson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Luke M R Harvey
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Shriram Bhosle
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - David Jones
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Raul E Alcantara
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Timothy M Butler
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Yvette Hooks
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Kirsty Roberts
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Elizabeth Anderson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Sharna Lunn
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Edmund Flach
- Wildlife Health Services, Zoological Society of London, London, UK
| | - Simon Spiro
- Wildlife Health Services, Zoological Society of London, London, UK
| | - Inez Januszczak
- Wildlife Health Services, Zoological Society of London, London, UK
- The Natural History Museum, London, UK
| | | | - Hannah Jenkins
- Wildlife Health Services, Zoological Society of London, London, UK
| | - Tilly Dallas
- Wildlife Health Services, Zoological Society of London, London, UK
| | - Nic Masters
- Wildlife Health Services, Zoological Society of London, London, UK
| | | | - Robert Deaville
- Institute of Zoology, Zoological Society of London, London, UK
| | - Megan Druce
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine GmbH (HI-STEM), Heidelberg, Germany
| | - Ruzhica Bogeska
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine GmbH (HI-STEM), Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine GmbH (HI-STEM), Heidelberg, Germany
| | - Björn Neumann
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Frank Gorman
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Laura Peachey
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Langford, UK
| | - Diana Bochynska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, Faculty of Veterinary Medicine, Universitatea de Stiinte Agricole si Medicina Veterinara, Cluj-Napoca, Romania
| | | | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | | | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
179
|
Nowakowska MK, Kim T, Thompson MT, Bolton KL, Deswal A, Lin SH, Scheet P, Wehner MR, Nead KT. Association of clonal hematopoiesis mutations with clinical outcomes: A systematic review and meta-analysis. Am J Hematol 2022; 97:411-420. [PMID: 35015316 PMCID: PMC9284564 DOI: 10.1002/ajh.26465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/19/2022]
Abstract
Clonal hematopoiesis (CH) mutations are common among individuals without known hematologic disease. CH mutations have been associated with numerous adverse clinical outcomes across many different studies. We systematically reviewed the available literature for clinical outcomes associated with CH mutations in patients without hematologic disease. We searched PubMed, EMBASE, and Scopus for eligible studies. Three investigators independently extracted the data, and each study was verified by a second author. Risk of bias was assessed using the Newcastle-Ottawa Scale. We identified 32 studies with 56 cohorts that examine the association between CH mutations and clinical outcomes. We conducted meta-analyses comparing outcomes among individuals with and without detectable CH mutations. We conducted meta-analyses for cardiovascular diseases (nine studies; HR = 1.61, 95% CI = 1.26-2.07, p = .0002), hematologic malignancies (seven studies; HR = 5.59, 95% CI = 3.31-9.45, p < .0001), therapy-related myeloid neoplasms (four studies; HR = 7.55, 95% CI = 4.3-13.57, p < .001), and death (nine studies; HR = 1.34, 95% CI = 1.2-1.5, p < .0001). The cardiovascular disease analysis was further stratified by variant allele fraction (VAF) and gene, which showed a statistically significant association only with a VAF of ≥ 10% (HR = 1.42, 95% CI = 1.24-1.62, p < .0001), as well as statistically significant associations for each gene examined with the largest magnitude of effect found for CH mutations in JAK2 (HR = 3.5, 95% CI = 1.84-6.68, p < .0001). Analysis of the association of CH mutations with hematologic malignancy demonstrated a numeric stepwise increase in risk with increasing VAF thresholds. This analysis strongly supports the association of CH mutations with a clinically meaningful increased risk of adverse clinical outcomes among individuals without hematologic disease, particularly with increasing VAF thresholds.
Collapse
Affiliation(s)
| | - Taebeom Kim
- Department of Epidemiology University of Texas MD Anderson Cancer Center
| | | | - Kelly L. Bolton
- Division of Oncology, Department of Medicine Washington University School of Medicine in St. Louis
| | - Anita Deswal
- Department of Cardiology University of Texas MD Anderson Cancer Center
| | - Steven H. Lin
- Department of Radiation Oncology University of Texas MD Anderson Cancer Center
| | - Paul Scheet
- Department of Epidemiology University of Texas MD Anderson Cancer Center
| | - Mackenzie R. Wehner
- Department of Health Services Research University of Texas MD Anderson Cancer Center
- Department of Dermatology University of Texas MD Anderson Cancer Center
| | - Kevin T. Nead
- Department of Epidemiology University of Texas MD Anderson Cancer Center
- Department of Radiation Oncology University of Texas MD Anderson Cancer Center
| |
Collapse
|
180
|
Osadska M, Selicky T, Kretova M, Jurcik J, Sivakova B, Cipakova I, Cipak L. The Interplay of Cohesin and RNA Processing Factors: The Impact of Their Alterations on Genome Stability. Int J Mol Sci 2022; 23:3939. [PMID: 35409298 PMCID: PMC8999970 DOI: 10.3390/ijms23073939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Cohesin, a multi-subunit protein complex, plays important roles in sister chromatid cohesion, DNA replication, chromatin organization, gene expression, transcription regulation, and the recombination or repair of DNA damage. Recently, several studies suggested that the functions of cohesin rely not only on cohesin-related protein-protein interactions, their post-translational modifications or specific DNA modifications, but that some RNA processing factors also play an important role in the regulation of cohesin functions. Therefore, the mutations and changes in the expression of cohesin subunits or alterations in the interactions between cohesin and RNA processing factors have been shown to have an impact on cohesion, the fidelity of chromosome segregation and, ultimately, on genome stability. In this review, we provide an overview of the cohesin complex and its role in chromosome segregation, highlight the causes and consequences of mutations and changes in the expression of cohesin subunits, and discuss the RNA processing factors that participate in the regulation of the processes involved in chromosome segregation. Overall, an understanding of the molecular determinants of the interplay between cohesin and RNA processing factors might help us to better understand the molecular mechanisms ensuring the integrity of the genome.
Collapse
Affiliation(s)
- Michaela Osadska
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Tomas Selicky
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Miroslava Kretova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Jan Jurcik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Barbara Sivakova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia;
| | - Ingrid Cipakova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| |
Collapse
|
181
|
Law SM, Akizuki S, Morinobu A, Ohmura K. A case of refractory systemic lupus erythematosus with monocytosis exhibiting somatic KRAS mutation. Inflamm Regen 2022; 42:10. [PMID: 35361277 PMCID: PMC8973904 DOI: 10.1186/s41232-022-00195-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE), an autoimmune disorder that damages various organ systems, is caused by a combination of genetic and environmental factors. Although germline mutations of several genes are known to cause juvenile SLE, most of the susceptibility genetic variants of adult SLE are common variants of the population, somatic mutations that cause or exacerbate SLE have not been reported. We hereby report a refractory SLE case with monocytosis accompanying somatic KRAS mutation that have been shown to cause lupus-like symptoms. Case presentation A 60-year-old female patient who had been diagnosed with SLE was admitted to our hospital. Although prednisolone and tacrolimus treatments had kept her thrombocytopenia and anti-DNA Ab level at bay for more than 4 years, a diagnosis of transverse myelitis was made when she became acutely ill with pleocytosis. Elevated cells (predominately monocytes), protein, IgG, and IL-6 levels were also found in the cerebrospinal fluid (CSF) of the patient. Standard pulse treatments of methylprednisolone, high-dose of prednisolone, and intravenous cyclophosphamide in combination with plasma exchange could not alleviate the refractory neural and autoimmune manifestation. Monocytosis of peripheral blood was also noted. Flow cytometric analysis revealed elevated ratio of CD14+CD16+ atypical monocytes, which excluded the possibility of chronic myelomonocytic leukemia. Lupus-like symptoms with monocytosis reminded us of Ras-associated autoimmune leukoproliferative disorder, and Sanger sequencing of KRAS and NRAS genes from the patients’ peripheral blood mononuclear cells (PBMC), sorted CD3+ lymphocytes and CD14+ monocytes, and cerebrospinal fluid were performed. An activating KRAS somatic mutation was found in the patients’ DNA at the time of encephalomyelitis diagnosis. Conclusion Somatic mutations of some genes including KRAS may cause the refractoriness of SLE.
Collapse
Affiliation(s)
- Sze-Ming Law
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54 kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shuji Akizuki
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54 kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54 kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54 kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. .,Department of Rheumatology, Kobe City Medical Center General Hospital, Kobe, Japan.
| |
Collapse
|
182
|
Yegorov YE, Poznyak AV, Bezsonov EE, Zhuravlev AD, Nikiforov NG, Vishnyakova KS, Orekhov AN. Somatic Mutations of Hematopoietic Cells Are an Additional Mechanism of Body Aging, Conducive to Comorbidity and Increasing Chronification of Inflammation. Biomedicines 2022; 10:biomedicines10040782. [PMID: 35453534 PMCID: PMC9028317 DOI: 10.3390/biomedicines10040782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
It is known that the development of foci of chronic inflammation usually accompanies body aging. In these foci, senescent cells appear with a pro-inflammatory phenotype that helps maintain inflammation. Their removal with the help of senolytics significantly improves the general condition of the body and, according to many indicators, contributes to rejuvenation. The cells of the immune system participate in the initiation, development, and resolution of inflammation. With age, the human body accumulates mutations, including the cells of the bone marrow, giving rise to the cells of the immune system. We assume that a number of such mutations formed with age can lead to the appearance of “naive” cells with an initially pro-inflammatory phenotype, the migration of which to preexisting foci of inflammation contributes not to the resolution of inflammation but its chronicity. One of such cell variants are monocytes carrying mitochondrial mutations, which may be responsible for comorbidity and deterioration in the prognosis of the course of pathologies associated with aging, such as atherosclerosis, arthritis, osteoporosis, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Correspondence: (Y.E.Y.); (A.V.P.); (A.N.O.)
| | - Anastasia V. Poznyak
- Institute for Atherosclerosis Research, 121609 Moscow, Russia
- Correspondence: (Y.E.Y.); (A.V.P.); (A.N.O.)
| | - Evgeny E. Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.E.B.); (A.D.Z.); (N.G.N.)
- Institute of Human Morphology, 117418 Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 105043 Moscow, Russia
| | - Alexander D. Zhuravlev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.E.B.); (A.D.Z.); (N.G.N.)
- Institute of Human Morphology, 117418 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, 119334 Moscow, Russia
| | - Nikita G. Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.E.B.); (A.D.Z.); (N.G.N.)
- Institute of Human Morphology, 117418 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, 119334 Moscow, Russia
| | - Khava S. Vishnyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.E.B.); (A.D.Z.); (N.G.N.)
- Institute of Human Morphology, 117418 Moscow, Russia
- Correspondence: (Y.E.Y.); (A.V.P.); (A.N.O.)
| |
Collapse
|
183
|
Comparison of clonal architecture between primary and immunodeficient mouse-engrafted acute myeloid leukemia cells. Nat Commun 2022; 13:1624. [PMID: 35338146 PMCID: PMC8956585 DOI: 10.1038/s41467-022-29304-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/02/2022] [Indexed: 01/23/2023] Open
Abstract
Patient-derived xenografts (PDX) are widely used as human cancer models. Previous studies demonstrated clonal discordance between PDX and primary cells. However, in acute myeloid leukemia (AML)-PDX models, the significance of the clonal dynamics occurring in PDX remains unclear. By evaluating changes in the variant allele frequencies (VAF) of somatic mutations in serial samples of paired primary AML and their PDX bone marrow cells, we identify the skewing engraftment of relapsed or refractory (R/R) AML clones in 57% of PDX models generated from multiclonal AML cells at diagnosis, even if R/R clones are minor at <5% of VAF in patients. The event-free survival rate of patients whose AML cells successfully engraft in PDX models is consistently lower than that of patients with engraftment failure. We herein demonstrate that primary AML cells including potentially chemotherapy-resistant clones dominantly engraft in AML-PDX models and they enrich pre-existing treatment-resistant subclones.
Collapse
|
184
|
Genetic mosaicism in the human brain: from lineage tracing to neuropsychiatric disorders. Nat Rev Neurosci 2022; 23:275-286. [PMID: 35322263 DOI: 10.1038/s41583-022-00572-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/18/2022]
Abstract
Genetic mosaicism is the result of the accumulation of somatic mutations in the human genome starting from the first postzygotic cell generation and continuing throughout the whole life of an individual. The rapid development of next-generation and single-cell sequencing technologies is now allowing the study of genetic mosaicism in normal tissues, revealing unprecedented insights into their clonal architecture and physiology. The somatic variant repertoire of an adult human neuron is the result of somatic mutations that accumulate in the brain by different mechanisms and at different rates during development and ageing. Non-pathogenic developmental mutations function as natural barcodes that once identified in deep bulk or single-cell sequencing can be used to retrospectively reconstruct human lineages. This approach has revealed novel insights into the clonal structure of the human brain, which is a mosaic of clones traceable to the early embryo that contribute differentially to the brain and distinct areas of the cortex. Some of the mutations happening during development, however, have a pathogenic effect and can contribute to some epileptic malformations of cortical development and autism spectrum disorder. In this Review, we discuss recent findings in the context of genetic mosaicism and their implications for brain development and disease.
Collapse
|
185
|
Di Nardo M, Pallotta MM, Musio A. The multifaceted roles of cohesin in cancer. J Exp Clin Cancer Res 2022; 41:96. [PMID: 35287703 PMCID: PMC8919599 DOI: 10.1186/s13046-022-02321-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
The cohesin complex controls faithful chromosome segregation by pairing sister chromatids after DNA replication until mitosis. In addition, it is crucial for hierarchal three-dimensional organization of the genome, transcription regulation and maintaining DNA integrity. The core complex subunits SMC1A, SMC3, STAG1/2, and RAD21 as well as its modulators, have been found to be recurrently mutated in human cancers. The mechanisms by which cohesin mutations trigger cancer development and disease progression are still poorly understood. Since cohesin is involved in a range of chromosome-related processes, the outcome of cohesin mutations in cancer is complex. Herein, we discuss recent discoveries regarding cohesin that provide new insight into its role in tumorigenesis.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Moruzzi, 1 56124, Pisa, Italy
| | - Maria M. Pallotta
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Moruzzi, 1 56124, Pisa, Italy
| | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Moruzzi, 1 56124, Pisa, Italy
| |
Collapse
|
186
|
Sidorova OA, Sayed S, Paszkowski-Rogacz M, Seifert M, Camgöz A, Roeder I, Bornhäuser M, Thiede C, Buchholz F. RNAi-Mediated Screen of Primary AML Cells Nominates MDM4 as a Therapeutic Target in NK-AML with DNMT3A Mutations. Cells 2022; 11:cells11050854. [PMID: 35269477 PMCID: PMC8909053 DOI: 10.3390/cells11050854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/22/2022] Open
Abstract
DNA-methyltransferase 3A (DNMT3A) mutations belong to the most frequent genetic aberrations found in adult acute myeloid leukemia (AML). Recent evidence suggests that these mutations arise early in leukemogenesis, marking leukemic progenitors and stem cells, and persist through consolidation chemotherapy, providing a pool for AML relapse. Currently, there are no therapeutic approaches directed specifically against this cell population. To unravel therapeutically actionable targets in mutant DNMT3A-driven AML cells, we have performed a focused RNAi screen in a panel of 30 primary AML samples, all carrying a DNMT3A R882 mutation. As one of the strongest hits, we identified MDM4 as a gene essential for proliferation of primary DNMT3AWT/R882X AML cells. We analyzed a publicly available RNA-Seq dataset of primary normal karyotype (NK) AML samples and found a trend towards MDM4 transcript overexpression particularly in DNMT3A-mutant samples. Moreover, we found that the MDM2/4 inhibitor ALRN-6924 impairs growth of DNMT3AWT/R882X primary cells in vitro by inducing cell cycle arrest through upregulation of p53 target genes. Our results suggest that MDM4 inhibition is a potential target in NK-AML patients bearing DNMT3A R882X mutations.
Collapse
Affiliation(s)
- Olga Alexandra Sidorova
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
| | - Shady Sayed
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (I.R.)
| | - Aylin Camgöz
- Hopp Children’s Cancer Center Heidelberg, 69120 Heidelberg, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (I.R.)
| | - Martin Bornhäuser
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01328 Dresden, Germany
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Christian Thiede
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01328 Dresden, Germany
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Correspondence:
| |
Collapse
|
187
|
Shabashvili DE, Feng Y, Kaur P, Venugopal K, Guryanova OA. Combination strategies to promote sensitivity to cytarabine-induced replication stress in acute myeloid leukemia with and without DNMT3A mutations. Exp Hematol 2022; 110:20-27. [DOI: 10.1016/j.exphem.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
|
188
|
Zhao JC, Agarwal S, Ahmad H, Amin K, Bewersdorf JP, Zeidan AM. A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev 2022; 52:100905. [PMID: 34774343 PMCID: PMC9846716 DOI: 10.1016/j.blre.2021.100905] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/26/2023]
Abstract
FLT3 mutations are the most common genetic aberrations found in acute myeloid leukemia (AML) and associated with poor prognosis. Since the discovery of FLT3 mutations and their prognostic implications, multiple FLT3-targeted molecules have been evaluated. Midostaurin is approved in the U.S. and Europe for newly diagnosed FLT3 mutated AML in combination with standard induction and consolidation chemotherapy based on data from the RATIFY study. Gilteritinib is approved for relapsed or refractory FLT3 mutated AML as monotherapy based on the ADMIRAL study. Although significant progress has been made in the treatment of AML with FLT3-targeting, many challenges remain. Several drug resistance mechanisms have been identified, including clonal selection, stromal protection, FLT3-associated mutations, and off-target mutations. The benefit of FLT3 inhibitor maintenance therapy, either post-chemotherapy or post-transplant, remains controversial, although several studies are ongoing.
Collapse
Affiliation(s)
- Jennifer C Zhao
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Sonal Agarwal
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Hiba Ahmad
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Kejal Amin
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Jan Philipp Bewersdorf
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
189
|
The Glycolytic Gatekeeper PDK1 defines different metabolic states between genetically distinct subtypes of human acute myeloid leukemia. Nat Commun 2022; 13:1105. [PMID: 35232995 PMCID: PMC8888573 DOI: 10.1038/s41467-022-28737-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia remains difficult to treat due to strong genetic heterogeneity between and within individual patients. Here, we show that Pyruvate dehydrogenase kinase 1 (PDK1) acts as a targetable determinant of different metabolic states in acute myeloid leukemia (AML). PDK1low AMLs are OXPHOS-driven, are enriched for leukemic granulocyte-monocyte progenitor (L-GMP) signatures, and are associated with FLT3-ITD and NPM1cyt mutations. PDK1high AMLs however are OXPHOSlow, wild type for FLT3 and NPM1, and are enriched for stemness signatures. Metabolic states can even differ between genetically distinct subclones within individual patients. Loss of PDK1 activity releases glycolytic cells into an OXPHOS state associated with increased ROS levels resulting in enhanced apoptosis in leukemic but not in healthy stem/progenitor cells. This coincides with an enhanced dependency on glutamine uptake and reduced proliferation in vitro and in vivo in humanized xenograft mouse models. We show that human leukemias display distinct metabolic states and adaptation mechanisms that can serve as targets for treatment. Acute myeloid leukemia (AML) is genetically a very heterogeneous disease. Here, Erdem et al. uncover heterogeneity in the metabolic landscape of AML and identify Pyruvate dehydrogenase kinase 1 (PDK1) as a targetable determinant of different metabolic states in distinct subtypes of AML.
Collapse
|
190
|
Jawad M, Afkhami M, Ding Y, Zhang X, Li P, Young K, Xu ML, Cui W, Zhao Y, Halene S, Al-Kali A, Viswanatha D, Chen D, He R, Zheng G. DNMT3A R882 Mutations Confer Unique Clinicopathologic Features in MDS Including a High Risk of AML Transformation. Front Oncol 2022; 12:849376. [PMID: 35296003 PMCID: PMC8918526 DOI: 10.3389/fonc.2022.849376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 01/14/2023] Open
Abstract
DNMT3A mutations play a prominent role in clonal hematopoiesis and myeloid neoplasms with arginine (R)882 as a hotspot, however the clinical implications of R882 vs. non-R882 mutations in myeloid neoplasms like myelodysplastic syndrome (MDS) is unclear. By data mining with publicly accessible cancer genomics databases and a clinical genomic database from a tertiary medical institution, DNMT3A R882 mutations were found to be enriched in AML (53% of all DNMT3A mutations) but decreased in frequency in clonal hematopoiesis of indeterminate potential (CHIP) (10.6%) or other myeloid neoplasms including MDS (27%) (p<.001). Next with the largest cohort of patients with DNMT3A R882 mutant MDS known to date from multiple institutions, DNMT3A R882 mutant MDS cases were shown to have more severe leukopenia, enriched SRSF2 and IDH2 mutations, increased cases with excess blasts (47% vs 22.5%, p=.004), markedly increased risk of AML transformation (25.8%, vs. 1.7%, p=.0001) and a worse progression-free survival (PFS) (median 20.3, vs. >50 months, p=.009) than non-R882 mutant MDS cases. DNMT3A R882 mutation is an independent risk factor for worse PFS, and importantly the differences in the risk of AML transformation between R882 vs. non-R882 mutant patients cannot be explained by different treatment approaches. Interestingly the higher risk of AML transformation and the worse PFS in DNMT3A R882 mutant MDS cases are mitigated by coexisting SF3B1 or SRSF2 mutations. The unique clinicopathologic features of DNMT3A R882 mutant MDS shed light on the prognostic and therapeutic implications of DNMT3A R882 mutations.
Collapse
Affiliation(s)
- Majd Jawad
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Michelle Afkhami
- Division of Molecular Pathology and Therapy Biomarkers, Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
- Division of Hematopathology, Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Yi Ding
- Department of Laboratory Medicine, Geisinger Health, Danville, PA, United States
| | - Xiaohui Zhang
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Peng Li
- Department of Pathology, Associated Regional and University Pathologists (ARUP) Laboratories, Salt Lake City, UT, United States
| | - Kim Young
- Division of Hematopathology, Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Mina Luqing Xu
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Wei Cui
- Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Yiqing Zhao
- Department of Preventive Medicine, Northwestern University, Chicago, IL, United States
| | - Stephanie Halene
- Department of Internal Medicine, Division of Hematology, Yale School of Medicine, New Haven, CT, United States
| | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - David Viswanatha
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Dong Chen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Rong He
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Gang Zheng
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
191
|
Khan A, Singh VK, Thakral D, Gupta R. Autophagy in acute myeloid leukemia: a paradoxical role in chemoresistance. Clin Transl Oncol 2022; 24:1459-1469. [PMID: 35218522 DOI: 10.1007/s12094-022-02804-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022]
Abstract
Autophagy is a lysosomal degradation pathway that is constitutively active in almost every cell of our body at basal level. This self-eating process primarily serves to remove superfluous constituents of the cells and recycle the degraded products. Autophagy plays an essential role in cell homeostasis and can be enhanced in response to stressful conditions. Impairment in the regulation of the autophagic pathway is implicated in pathological conditions such as neurodegeneration, cardiac disorders, and cancer. However, the role of autophagy in cancer initiation and development is controversial and context-dependent. Evidence from various studies has shown that autophagy serves dual purpose and may assist in cancer progression or suppression. In the early stages of cancer initiation, autophagy acts as a quality control mechanism and prevents cancer development. When cancer is established and progresses to a later stage, autophagy helps in the survival of these cells through adaptation to stresses, including exposure to anti-cancer drugs. In this review, we highlight various studies on autophagic pathways and describe the role of autophagy in cancer, specifically acute myeloid leukemia (AML). We also discuss the prognostic significance of autophagy genes involved in AML leukemogenesis and implications in conferring resistance to chemotherapy.
Collapse
Affiliation(s)
- Aafreen Khan
- Room No. 239, Laboratory Oncology Unit, Dr BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Kumar Singh
- Room No. 239, Laboratory Oncology Unit, Dr BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Deepshi Thakral
- Room No. 239, Laboratory Oncology Unit, Dr BRA IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Ritu Gupta
- Room No. 239, Laboratory Oncology Unit, Dr BRA IRCH, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
192
|
Kisiel JB, Papadopoulos N, Liu MC, Crosby D, Srivastava S, Hawk ET. Multicancer early detection test: Preclinical, translational, and clinical evidence-generation plan and provocative questions. Cancer 2022; 128 Suppl 4:861-874. [PMID: 35133659 DOI: 10.1002/cncr.33912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/09/2021] [Indexed: 01/28/2023]
Abstract
Minimally invasive molecular biomarkers have been applied to the early detection of multiple cancers in large scale case-control and cohort studies. These demonstrations of feasibility herald the potential for permanent transformation of current cancer screening paradigms. This commentary discusses the major opportunities and challenges facing the preclinical development and clinical validation of multicancer early detection test strategies. From a diverse set of early detection research perspectives, the authors recommend specific approaches and highlight important questions for future investigation.
Collapse
Affiliation(s)
- John B Kisiel
- Division of Gastroenterology, Mayo Clinic, Rochester, Minnesota
| | - Nickolas Papadopoulos
- Department of Oncology and Pathology, Johns Hopkins University the Sidney Kimmel Cancer Center, and the Ludwig Center, Baltimore, Maryland
| | - Minetta C Liu
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Ernest T Hawk
- Department of Clinical Cancer Preventions, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
193
|
Dissecting TET2 Regulatory Networks in Blood Differentiation and Cancer. Cancers (Basel) 2022; 14:cancers14030830. [PMID: 35159097 PMCID: PMC8834528 DOI: 10.3390/cancers14030830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Bone marrow disorders such as leukemia and myelodysplastic syndromes are characterized by abnormal healthy blood cells production and function. Uncontrolled growth and impaired differentiation of white blood cells hinder the correct development of healthy cells in the bone marrow. One of the most frequent alterations that appear to initiate this deregulation and persist in leukemia patients are mutations in epigenetic regulators such as TET2. This review summarizes the latest molecular findings regarding TET2 functions in hematopoietic cells and their potential implications in blood cancer origin and evolution. Our goal was to encompass and interlink up-to-date discoveries of the convoluted TET2 functional network to provide a more precise overview of the leukemic burden of this protein. Abstract Cytosine methylation (5mC) of CpG is the major epigenetic modification of mammalian DNA, playing essential roles during development and cancer. Although DNA methylation is generally associated with transcriptional repression, its role in gene regulation during cell fate decisions remains poorly understood. DNA demethylation can be either passive or active when initiated by TET dioxygenases. During active demethylation, transcription factors (TFs) recruit TET enzymes (TET1, 2, and 3) to specific gene regulatory regions to first catalyze the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC) and subsequently to higher oxidized cytosine derivatives. Only TET2 is frequently mutated in the hematopoietic system from the three TET family members. These mutations initially lead to the hematopoietic stem cells (HSCs) compartment expansion, eventually evolving to give rise to a wide range of blood malignancies. This review focuses on recent advances in characterizing the main TET2-mediated molecular mechanisms that activate aberrant transcriptional programs in blood cancer onset and development. In addition, we discuss some of the key outstanding questions in the field.
Collapse
|
194
|
Muto T, Guillamot M, Yeung J, Fang J, Bennett J, Nadorp B, Lasry A, Redondo LZ, Choi K, Gong Y, Walker CS, Hueneman K, Bolanos LC, Barreyro L, Lee LH, Greis KD, Vasyliev N, Khodadadi-Jamayran A, Nudler E, Lujambio A, Lowe SW, Aifantis I, Starczynowski DT. TRAF6 functions as a tumor suppressor in myeloid malignancies by directly targeting MYC oncogenic activity. Cell Stem Cell 2022; 29:298-314.e9. [PMID: 35045331 PMCID: PMC8822959 DOI: 10.1016/j.stem.2021.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/05/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023]
Abstract
Clonal hematopoiesis (CH) is an aging-associated condition characterized by the clonal outgrowth of pre-leukemic cells that acquire specific mutations. Although individuals with CH are healthy, they are at an increased risk of developing myeloid malignancies, suggesting that additional alterations are needed for the transition from a pre-leukemia stage to frank leukemia. To identify signaling states that cooperate with pre-leukemic cells, we used an in vivo RNAi screening approach. One of the most prominent genes identified was the ubiquitin ligase TRAF6. Loss of TRAF6 in pre-leukemic cells results in overt myeloid leukemia and is associated with MYC-dependent stem cell signatures. TRAF6 is repressed in a subset of patients with myeloid malignancies, suggesting that subversion of TRAF6 signaling can lead to acute leukemia. Mechanistically, TRAF6 ubiquitinates MYC, an event that does not affect its protein stability but rather represses its functional activity by antagonizing an acetylation modification.
Collapse
Affiliation(s)
- Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maria Guillamot
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Jennifer Yeung
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA
| | - Joshua Bennett
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC 29208, USA
| | - Bettina Nadorp
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Audrey Lasry
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Luna Zea Redondo
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yixiao Gong
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Callum S Walker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Laura Barreyro
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lynn H Lee
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Nikita Vasyliev
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories and Genome Technology Center, NYU School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Amaia Lujambio
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 201815, USA
| | - Iannis Aifantis
- Department of Pathology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
195
|
Williams N, Lee J, Mitchell E, Moore L, Baxter EJ, Hewinson J, Dawson KJ, Menzies A, Godfrey AL, Green AR, Campbell PJ, Nangalia J. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature 2022; 602:162-168. [PMID: 35058638 DOI: 10.1038/s41586-021-04312-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Mutations in cancer-associated genes drive tumour outgrowth, but our knowledge of the timing of driver mutations and subsequent clonal dynamics is limited1-3. Here, using whole-genome sequencing of 1,013 clonal haematopoietic colonies from 12 patients with myeloproliferative neoplasms, we identified 580,133 somatic mutations to reconstruct haematopoietic phylogenies and determine clonal histories. Driver mutations were estimated to occur early in life, including the in utero period. JAK2V617F was estimated to have been acquired by 33 weeks of gestation to 10.8 years of age in 5 patients in whom JAK2V617F was the first event. DNMT3A mutations were acquired by 8 weeks of gestation to 7.6 years of age in 4 patients, and a PPM1D mutation was acquired by 5.8 years of age. Additional genomic events occurred before or following JAK2V617F acquisition and as independent clonal expansions. Sequential driver mutation acquisition was separated by decades across life, often outcompeting ancestral clones. The mean latency between JAK2V617F acquisition and diagnosis was 30 years (range 11-54 years). Estimated historical rates of clonal expansion varied substantially (3% to 190% per year), increased with additional driver mutations, and predicted latency to diagnosis. Our study suggests that early driver mutation acquisition and life-long growth and evolution underlie adult myeloproliferative neoplasms, raising opportunities for earlier intervention and a new model for cancer development.
Collapse
Affiliation(s)
| | - Joe Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Luiza Moore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - E Joanna Baxter
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - James Hewinson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Kevin J Dawson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Andrew Menzies
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anna L Godfrey
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Peter J Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
196
|
Abstract
PURPOSE OF REVIEW Liquid biopsies have emerged as a noninvasive alternative to tissue biopsy with potential applications during all stages of pediatric oncology care. The purpose of this review is to provide a survey of pediatric cell-free DNA (cfDNA) studies, illustrate their potential applications in pediatric oncology, and to discuss technological challenges and approaches to overcome these hurdles. RECENT FINDINGS Recent literature has demonstrated liquid biopsies' ability to inform treatment selection at diagnosis, monitor clonal evolution during treatment, sensitively detect minimum residual disease following local control, and provide sensitive posttherapy surveillance. Advantages include reduced procedural anesthesia, molecular profiling unbiased by tissue heterogeneity, and ability to track clonal evolution. Challenges to wider implementation in pediatric oncology, however, include blood volume restrictions and relatively low mutational burden in childhood cancers. Multiomic approaches address challenges presented by low-mutational burden, and novel bioinformatic analyses allow a single assay to yield increasing amounts of information, reducing blood volume requirements. SUMMARY Liquid biopsies hold tremendous promise in pediatric oncology, enabling noninvasive serial surveillance with adaptive care. Already integrated into adult care, recent advances in technologies and bioinformatics have improved applicability to the pediatric cancer landscape.
Collapse
Affiliation(s)
- R Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
197
|
Chattopadhyaya S, Ghosal S. DNA methylation: a saga of genome maintenance in hematological perspective. Hum Cell 2022; 35:448-461. [DOI: 10.1007/s13577-022-00674-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022]
|
198
|
Genetic diversity within leukemia-associated immunophenotype-defined subclones in AML. Ann Hematol 2022; 101:571-579. [PMID: 35024892 PMCID: PMC8810467 DOI: 10.1007/s00277-021-04747-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous disease showing dynamic clonal evolution patterns over time. Various subclones may be present simultaneously and subclones may show a different expansion pattern and respond differently to applied therapies. It is already clear that immunophenotyping and genetic analyses may yield overlapping, but also complementary information. Detailed information on the genetic make-up of immunophenotypically defined subclones is however scarce. We performed error-corrected sequencing for 27 myeloid leukemia driver genes in 86, FACS-sorted immunophenotypically characterized normal and aberrant subfractions in 10 AML patients. We identified three main scenarios. In the first group of patients, the two techniques were equally well characterizing the malignancy. In the second group, most of the isolated populations did not express aberrant immunophenotypes but still harbored several genetic aberrancies, indicating that the information obtained only by immunophenotyping would be incomplete. Vice versa, one patient was identified in which genetic mutations were found only in a small fraction of the immunophenotypically defined malignant populations, indicating that the genetic analysis gave an incomplete picture of the disease. We conclude that currently, characterization of leukemic cells in AML by molecular and immunophenotypic techniques is complementary, and infer that both techniques should be used in parallel in order to obtain the most complete view on the disease.
Collapse
|
199
|
Li CH, Haider S, Boutros PC. Age influences on the molecular presentation of tumours. Nat Commun 2022; 13:208. [PMID: 35017538 PMCID: PMC8752853 DOI: 10.1038/s41467-021-27889-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is often called a disease of aging. There are numerous ways in which cancer epidemiology and behaviour change with the age of the patient. The molecular bases for these relationships remain largely underexplored. To characterise them, we analyse age-associations in the nuclear and mitochondrial somatic mutational landscape of 20,033 tumours across 35 tumour-types. Age influences both the number of mutations in a tumour (0.077 mutations per megabase per year) and their evolutionary timing. Specific mutational signatures are associated with age, reflecting differences in exogenous and endogenous oncogenic processes such as a greater influence of tobacco use in the tumours of younger patients, but higher activity of DNA damage repair signatures in those of older patients. We find that known cancer driver genes such as CDKN2A and CREBBP are mutated in age-associated frequencies, and these alter the transcriptome and predict for clinical outcomes. These effects are most striking in brain cancers where alterations like SUFU loss and ATRX mutation are age-dependent prognostic biomarkers. Using three cancer datasets, we show that age shapes the somatic mutational landscape of cancer, with clinical implications.
Collapse
Affiliation(s)
- Constance H Li
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Human Genetics, University of California, Los Angeles, CA, USA.
- Department of Urology, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
- Institute for Precision Health, University of California, Los Angeles, CA, USA.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada.
| |
Collapse
|
200
|
Roloff GW, Drazer MW, Godley LA. Inherited Susceptibility to Hematopoietic Malignancies in the Era of Precision Oncology. JCO Precis Oncol 2022; 5:107-122. [PMID: 34994594 DOI: 10.1200/po.20.00387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
As germline predisposition to hematopoietic malignancies has gained increased recognition and attention in the field of oncology, it is important for clinicians to use a systematic framework for the identification, management, and surveillance of patients with hereditary hematopoietic malignancies (HHMs). In this article, we discuss strategies for identifying individuals who warrant diagnostic evaluation and describe considerations pertaining to molecular testing. Although a paucity of prospective data is available to guide clinical monitoring of individuals harboring pathogenic variants, we provide recommendations for clinical surveillance based on consensus opinion and highlight current advances regarding the risk of progression to overt malignancy in HHM variant carriers. We also discuss the prognosis of HHMs and considerations surrounding the utility of allogeneic stem-cell transplantation in these individuals. We close with an overview of contemporary issues at the intersection of HHMs and precision oncology.
Collapse
Affiliation(s)
- Gregory W Roloff
- Department of Medicine, Loyola University Medical Center, Maywood, IL
| | - Michael W Drazer
- Section of Hematology/Oncology, Department of Medicine and the Department of Human Genetics, the University of Chicago, Chicago, IL
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine and the Department of Human Genetics, the University of Chicago, Chicago, IL
| |
Collapse
|