151
|
Zhou Y, Wang W, Salauddin NM, Lin L, You M, You S, Yuchi Z. Crystal structure of the N-terminal domain of ryanodine receptor from the honeybee, Apis mellifera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 125:103454. [PMID: 32781205 DOI: 10.1016/j.ibmb.2020.103454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Ryanodine receptors (RyRs) are the molecular target of diamides, a new chemical class of insecticides. Diamide insecticides are used to control lepidopteran pests and were considered relatively safe for mammals and non-targeted beneficial insects, including honey bees. However, recent studies showed that exposure to diamides could cause long-lasting locomotor deficits of bees. Here we report the crystal structure of RyR N-terminal domain A (NTD-A) from the honeybee, Apis mellifera, at 2.5 Å resolution. It shows a similar overall fold as the RyR NTD-A from mammals and the diamondback moth (DBM), Plutella xylostella, and still several loops located at the inter-domain interfaces show insect-specific or bee-specific structural features. A potential insecticide-binding pocket formed by loop9 and loop13 is conserved in lepidopteran but different in both mammals and bees, making it a good candidate targeting site for the development of pest-selective insecticides. Furthermore, a conserved intra-domain disulfide bond was observed in both DBM and bee RyR NTD-A crystal structures, which explains their higher thermal stability compared to mammalian RyR NTD-A. This work provides a basis for the development of novel insecticides with better selectivity between pests and bees by targeting a distinct site on pest RyRs, which would be a promising strategy to overcome the current toxicity problem.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China
| | - Wenlan Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Nahiyan Mohammad Salauddin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China.
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
152
|
Dashti A, Mashayekhi G, Shekhar M, Ben Hail D, Salah S, Schwander P, des Georges A, Singharoy A, Frank J, Ourmazd A. Retrieving functional pathways of biomolecules from single-particle snapshots. Nat Commun 2020; 11:4734. [PMID: 32948759 PMCID: PMC7501871 DOI: 10.1038/s41467-020-18403-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
A primary reason for the intense interest in structural biology is the fact that knowledge of structure can elucidate macromolecular functions in living organisms. Sustained effort has resulted in an impressive arsenal of tools for determining the static structures. But under physiological conditions, macromolecules undergo continuous conformational changes, a subset of which are functionally important. Techniques for capturing the continuous conformational changes underlying function are essential for further progress. Here, we present chemically-detailed conformational movies of biological function, extracted data-analytically from experimental single-particle cryo-electron microscopy (cryo-EM) snapshots of ryanodine receptor type 1 (RyR1), a calcium-activated calcium channel engaged in the binding of ligands. The functional motions differ substantially from those inferred from static structures in the nature of conformationally active structural domains, the sequence and extent of conformational motions, and the way allosteric signals are transduced within and between domains. Our approach highlights the importance of combining experiment, advanced data analysis, and molecular simulations.
Collapse
Affiliation(s)
- Ali Dashti
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | - Ghoncheh Mashayekhi
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | - Mrinal Shekhar
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign 405 N. Mathews Ave., Urbana, IL, 61801, USA
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA
| | - Danya Ben Hail
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Salah Salah
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
- Department of Chemistry & Biochemistry, City College of New York, New York, NY, 10031, USA
- Ph.D. Programs in Physics, Chemistry & Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Peter Schwander
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
- Department of Chemistry & Biochemistry, City College of New York, New York, NY, 10031, USA.
- Ph.D. Programs in Physics, Chemistry & Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Abhishek Singharoy
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA.
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, 2-221 Black Building, 650 West 168th Street, New York, NY, 10032, USA.
- Department of Biological Sciences, Columbia University, 600 Fairchild Center, New York, NY, 10027, USA.
| | - Abbas Ourmazd
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA.
| |
Collapse
|
153
|
Nikolaienko R, Bovo E, Rebbeck RT, Kahn D, Thomas DD, Cornea RL, Zima AV. The functional significance of redox-mediated intersubunit cross-linking in regulation of human type 2 ryanodine receptor. Redox Biol 2020; 37:101729. [PMID: 32980662 PMCID: PMC7522892 DOI: 10.1016/j.redox.2020.101729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/19/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
The type 2 ryanodine receptor (RyR2) plays a key role in the cardiac intracellular calcium (Ca2+) regulation. We have previously shown that oxidative stress activates RyR2 in rabbit cardiomyocytes by promoting the formation of disulfide bonds between neighboring RyR2 subunits. However, the functional significance of this redox modification for human RyR2 (hRyR2) remains largely unknown. Here, we studied the redox regulation of hRyR2 in HEK293 cells transiently expressing the ryr2 gene. Analysis of hRyR2 cross-linking and of the redox-GFP readout response to diamide oxidation revealed that hRyR2 cysteines involved in the intersubunit cross-linking are highly sensitive to oxidative stress. In parallel experiments, the effect of diamide on endoplasmic reticulum (ER) Ca2+ release was studied in cells co-transfected with hRyR2, ER Ca2+ pump (SERCA2a) and the ER-targeted Ca2+ sensor R-CEPIA1er. Expression of hRyR2 and SERCA2a produced “cardiac-like” Ca2+ waves due to spontaneous hRyR2 activation. Incubation with diamide caused a fast decline of the luminal ER Ca2+ (or ER Ca2+ load) followed by the cessation of Ca2+ waves. The maximal effect of diamide on ER Ca2+ load and Ca2+ waves positively correlates with the maximum level of hRyR2 cross-linking, indicating a functional significance of this redox modification. Furthermore, the level of hRyR2 cross-linking positively correlates with the degree of calmodulin (CaM) dissociation from the hRyR2 complex. In skeletal muscle RyR (RyR1), cysteine 3635 (C3635) is viewed as dominantly responsible for the redox regulation of the channel. Here, we showed that the corresponding cysteine 3602 (C3602) in hRyR2 does not participate in intersubunit cross-linking and plays a limited role in the hRyR2 regulation by CaM during oxidative stress. Collectively, these results suggest that redox-mediated intersubunit cross-linking is an important regulator of hRyR2 function under pathological conditions associated with oxidative stress. Oxidative stress promotes cardiac ryanodine receptor (RyR2) intersubunit crosslinking. Human RyR2 crosslinking promotes Ca leak and calmodulin dissociation. RyR2 C3602 is not involved in crosslinking, slightly affects calmodulin binding. RyR2 crosslinking is an important pathology related RyR2 regulator.
Collapse
Affiliation(s)
- Roman Nikolaienko
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Daniel Kahn
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA.
| |
Collapse
|
154
|
Bauerová-Hlinková V, Hajdúchová D, Bauer JA. Structure and Function of the Human Ryanodine Receptors and Their Association with Myopathies-Present State, Challenges, and Perspectives. Molecules 2020; 25:molecules25184040. [PMID: 32899693 PMCID: PMC7570887 DOI: 10.3390/molecules25184040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 01/28/2023] Open
Abstract
Cardiac arrhythmias are serious, life-threatening diseases associated with the dysregulation of Ca2+ influx into the cytoplasm of cardiomyocytes. This dysregulation often arises from dysfunction of ryanodine receptor 2 (RyR2), the principal Ca2+ release channel. Dysfunction of RyR1, the skeletal muscle isoform, also results in less severe, but also potentially life-threatening syndromes. The RYR2 and RYR1 genes have been found to harbor three main mutation “hot spots”, where mutations change the channel structure, its interdomain interface properties, its interactions with its binding partners, or its dynamics. In all cases, the result is a defective release of Ca2+ ions from the sarcoplasmic reticulum into the myocyte cytoplasm. Here, we provide an overview of the most frequent diseases resulting from mutations to RyR1 and RyR2, briefly review some of the recent experimental structural work on these two molecules, detail some of the computational work describing their dynamics, and summarize the known changes to the structure and function of these receptors with particular emphasis on their N-terminal, central, and channel domains.
Collapse
|
155
|
Guo W, Sun B, Estillore JP, Wang R, Chen SRW. The central domain of cardiac ryanodine receptor governs channel activation, regulation, and stability. J Biol Chem 2020; 295:15622-15635. [PMID: 32878990 DOI: 10.1074/jbc.ra120.013512] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/25/2020] [Indexed: 11/06/2022] Open
Abstract
Structural analyses identified the central domain of ryanodine receptor (RyR) as a transducer converting conformational changes in the cytoplasmic platform to the RyR gate. The central domain is also a regulatory hub encompassing the Ca2+-, ATP-, and caffeine-binding sites. However, the role of the central domain in RyR activation and regulation has yet to be defined. Here, we mutated five residues that form the Ca2+ activation site and 10 residues with negatively charged or oxygen-containing side chains near the Ca2+ activation site. We also generated eight disease-associated mutations within the central domain of RyR2. We determined the effect of these mutations on Ca2+, ATP, and caffeine activation and Mg2+ inhibition of RyR2. Mutating the Ca2+ activation site markedly reduced the sensitivity of RyR2 to Ca2+ and caffeine activation. Unexpectedly, Ca2+ activation site mutation E3848A substantially enhanced the Ca2+-independent basal activity of RyR2, suggesting that E3848A may also affect the stability of the closed state of RyR2. Mutations in the Ca2+ activation site also abolished the effect of ATP/caffeine on the Ca2+-independent basal activity, suggesting that the Ca2+ activation site is also a critical determinant of ATP/caffeine action. Mutating residues with negatively charged or oxygen-containing side chains near the Ca2+ activation site significantly altered Ca2+ and caffeine activation and reduced Mg2+ inhibition. Furthermore, disease-associated RyR2 mutations within the central domain significantly enhanced Ca2+ and caffeine activation and reduced Mg2+ inhibition. Our data demonstrate that the central domain plays an important role in channel activation, channel regulation, and closed state stability.
Collapse
Affiliation(s)
- Wenting Guo
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Bo Sun
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Medical School, Kunming University of Science and Technology, Kunming, China
| | - John Paul Estillore
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
156
|
Zhang XH, Morad M. Ca 2+ signaling of human pluripotent stem cells-derived cardiomyocytes as compared to adult mammalian cardiomyocytes. Cell Calcium 2020; 90:102244. [PMID: 32585508 PMCID: PMC7483365 DOI: 10.1016/j.ceca.2020.102244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/23/2022]
Abstract
Human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs) have been extensively used for in vitro modeling of human cardiovascular disease, drug screening and pharmacotherapy, but little rigorous studies have been reported on their biophysical or Ca2+ signaling properties. There is also considerable concern as to the level of their maturity and whether they can serve as reliable models for adult human cardiac myocytes. Ultrastructural difference such as lack of t-tubular network, their polygonal shapes, disorganized sarcomeric myofilament, and their rhythmic automaticity, among others, have been cited as evidence for immaturity of hiPSC-CMs. In this review, we will deal with Ca2+ signaling, its regulation, and its stage of maturity as compared to the mammalian adult cardiomyocytes. We shall summarize the data on functional aspects of Ca2+signaling and its parameters that include: L-type calcium channel (Cav1.2), ICa-induced Ca2+release, CICR, and its parameters, cardiac Na/Ca exchanger (NCX1), the ryanodine receptors (RyR2), sarco-reticular Ca2+pump, SERCA2a/PLB, and the contribution of mitochondrial Ca2+ to hiPSC-CMs excitation-contraction (EC)-coupling as compared with adult mammalian cardiomyocytes. The comparative studies suggest that qualitatively hiPSC-CMs have similar Ca2+signaling properties as those of adult cardiomyocytes, but quantitative differences do exist. This review, we hope, will allow the readers to judge for themselves to what extent Ca2+signaling of hiPSC-CMs represents the adult form of this signaling pathway, and whether these cells can be used as good models of human cardiomyocytes.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, Clemson University, Charleston SC, United States
| | - Martin Morad
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, Clemson University, Charleston SC, United States.
| |
Collapse
|
157
|
Structural basis for diamide modulation of ryanodine receptor. Nat Chem Biol 2020; 16:1246-1254. [DOI: 10.1038/s41589-020-0627-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022]
|
158
|
Dashwood A, Cheesman E, Beard N, Haqqani H, Wong YW, Molenaar P. Understanding How Phosphorylation and Redox Modifications Regulate Cardiac Ryanodine Receptor Type 2 Activity to Produce an Arrhythmogenic Phenotype in Advanced Heart Failure. ACS Pharmacol Transl Sci 2020; 3:563-582. [PMID: 32832863 DOI: 10.1021/acsptsci.0c00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/17/2022]
Abstract
Heart failure (HF) is a global pandemic with significant mortality and morbidity. Despite current medications, 50% of individuals die within 5 years of diagnosis. Of these deaths, 30-50% will be a result of sudden cardiac death from ventricular arrhythmias. This review discusses two stress-induced mechanisms, phosphorylation from chronic β-adrenoceptor (β-AR) stimulation and thiol modifications from oxidative stress, and how they modulate the cardiac ryanodine receptor type 2 (RyR2) and foster an arrhythmogenic phenotype. Calcium (Ca2+) is the ubiquitous secondary messenger of excitation-contraction coupling and provides a common pathway for contractile dysfunction and arrhythmia genesis. In a healthy heart, Ca2+ is released from the sarcoplasmic reticulum (SR) by RyR2. The open probability of RyR2 is under the dynamic influence of co-proteins, ions, and kinases that are in strict balance to ensure normal physiological functioning. In HF, chronic β-AR activity and production of reactive oxygen species and reactive nitrogen species provide two stress-induced mechanisms uncoupling RyR2 control, resulting in pathological diastolic SR Ca2+ leak. This increased cytosolic [Ca2+] promotes Ca2+ extrusion via the local Na+/Ca2+ exchanger, resulting in net sarcolemmal depolarization, delayed after depolarization and ventricular arrhythmia. Experimental models researching oxidative stress and phosphorylation have aimed to identify how post-translational modifications to the RyR2 macromolecular complex, and the associated Na+/Ca2+ cycling proteins, result in pathological Ca2+ handling and diastolic leak. However, the causative molecular changes remain controversial and undefined. Through understanding the molecular mechanisms that produce an arrhythmic phenotype, novel therapeutic targets to treat HF and prevent its malignant course can be identified.
Collapse
Affiliation(s)
- Alexander Dashwood
- Heart Lung Institute, The Prince Charles Hospital, Chermside, Brisbane, Queensland 4032, Australia.,Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4032, Australia.,Griffith University, Southport, Queensland 4215, Australia
| | - Elizabeth Cheesman
- Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4032, Australia
| | - Nicole Beard
- Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.,Faculty of Science and Technology, University of Canberra, Bruce, Australian Capital Territory 2617, Australia
| | - Haris Haqqani
- Heart Lung Institute, The Prince Charles Hospital, Chermside, Brisbane, Queensland 4032, Australia.,Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4032, Australia
| | - Yee Weng Wong
- Heart Lung Institute, The Prince Charles Hospital, Chermside, Brisbane, Queensland 4032, Australia.,Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4032, Australia
| | - Peter Molenaar
- Cardio-Vascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4032, Australia.,Queensland University of Technology (QUT), School of Biomedical Sciences, Institute of Health and Biomedical Innovation, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia
| |
Collapse
|
159
|
Sanchez RM, Zhang Y, Chen W, Dietrich L, Kudryashev M. Subnanometer-resolution structure determination in situ by hybrid subtomogram averaging - single particle cryo-EM. Nat Commun 2020; 11:3709. [PMID: 32709843 PMCID: PMC7381653 DOI: 10.1038/s41467-020-17466-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 11/09/2022] Open
Abstract
Cryo-electron tomography combined with subtomogram averaging (StA) has yielded high-resolution structures of macromolecules in their native context. However, high-resolution StA is not commonplace due to beam-induced sample drift, images with poor signal-to-noise ratios (SNR), challenges in CTF correction, and limited particle number. Here we address these issues by collecting tilt series with a higher electron dose at the zero-degree tilt. Particles of interest are then located within reconstructed tomograms, processed by conventional StA, and then re-extracted from the high-dose images in 2D. Single particle analysis tools are then applied to refine the 2D particle alignment and generate a reconstruction. Use of our hybrid StA (hStA) workflow improved the resolution for tobacco mosaic virus from 7.2 to 4.4 Å and for the ion channel RyR1 in crowded native membranes from 12.9 to 9.1 Å. These resolution gains make hStA a promising approach for other StA projects aimed at achieving subnanometer resolution.
Collapse
Affiliation(s)
- Ricardo M Sanchez
- Max Planck Institute for Biophysics, Max-von-Laue Strasse, 3, 60348, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt am Main, Max-von-Laue Strasse, 15, 60348, Frankfurt am Main, Germany
| | - Yingyi Zhang
- Max Planck Institute for Biophysics, Max-von-Laue Strasse, 3, 60348, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt am Main, Max-von-Laue Strasse, 15, 60348, Frankfurt am Main, Germany
| | - Wenbo Chen
- Max Planck Institute for Biophysics, Max-von-Laue Strasse, 3, 60348, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt am Main, Max-von-Laue Strasse, 15, 60348, Frankfurt am Main, Germany
| | - Lea Dietrich
- Department of Structural Biology, Max Planck Institute for Biophysics, Max-von-Laue Strasse, 3, 60348, Frankfurt am Main, Germany
| | - Mikhail Kudryashev
- Max Planck Institute for Biophysics, Max-von-Laue Strasse, 3, 60348, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt am Main, Max-von-Laue Strasse, 15, 60348, Frankfurt am Main, Germany.
| |
Collapse
|
160
|
Iyer KA, Hu Y, Nayak AR, Kurebayashi N, Murayama T, Samsó M. Structural mechanism of two gain-of-function cardiac and skeletal RyR mutations at an equivalent site by cryo-EM. SCIENCE ADVANCES 2020; 6:eabb2964. [PMID: 32832689 PMCID: PMC7439390 DOI: 10.1126/sciadv.abb2964] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/10/2020] [Indexed: 05/16/2023]
Abstract
Mutations in ryanodine receptors (RyRs), intracellular Ca2+ channels, are associated with deadly disorders. Despite abundant functional studies, the molecular mechanism of RyR malfunction remains elusive. We studied two single-point mutations at an equivalent site in the skeletal (RyR1 R164C) and cardiac (RyR2 R176Q) isoforms using ryanodine binding, Ca2+ imaging, and cryo-electron microscopy (cryo-EM) of the full-length protein. Loss of the positive charge had greater effect on the skeletal isoform, mediated via distortion of a salt bridge network, a molecular latch inducing rotation of a cytoplasmic domain, and partial progression to open-state traits of the large cytoplasmic assembly accompanied by alteration of the Ca2+ binding site, which concur with the major "hyperactive" feature of the mutated channel. Our cryo-EM studies demonstrated the allosteric effect of a mutation situated ~85 Å away from the pore and identified an isoform-specific structural effect.
Collapse
Affiliation(s)
- Kavita A. Iyer
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yifan Hu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Ashok R. Nayak
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Montserrat Samsó
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
161
|
Wang YZ, Li QX, Zhang DM, Chen LB, Wang H. Ryanodine receptor 1 mediated dexamethasone-induced chondrodysplasia in fetal rats. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118791. [PMID: 32619649 DOI: 10.1016/j.bbamcr.2020.118791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Osteoarthritis is caused by cartilage dysplasia and has fetal origin. Prenatal dexamethasone exposure (PDE) induced chondrodysplasia in fetal rats by inhibiting transforming growth factor β (TGFβ) signaling. This study aimed to determine the effect of dexamethasone on fetal cartilage development and illustrate the underlying molecular mechanism. METHODS Dexamethasone (0.2 mg/kg.d) was injected subcutaneously every morning in pregnant rats from gestational day (GD) 9 to GD21. Harvested fetal femurs and tibias at GD21 for immunofluorescence and gene expression analysis. Fetal chondrocytes were treated with dexamethasone (100, 250 and 500 nM), endoplasmic reticulum stress (ERS) inhibitor, and ryanodine receptor 1 (RYR1) antagonist for subsequent analyses. RESULTS In vivo, prenatal dexamethasone exposure (PDE) decreased the total length of the fetal cartilage, the proportion of the proliferation area and the cell density and matrix content in fetal articular cartilage. Moreover, PDE increased RYR1 expression and intracellular calcium levels and elevated the expression of ERS-related genes, while downregulated the TGFβ signaling pathway and extracellular matrix (ECM) synthesis in fetal chondrocytes. In vitro, we verified dexamethasone significantly decreased ECM synthesis through activating RYR 1 mediated-ERS. CONCLUSIONS PDE inhibited TGFβ signaling pathway and matrix synthesis through RYR1 / intracellular calcium mediated ERS, which ultimately led to fetal dysplasia. This study confirmed the molecular mechanism of ERS involved in the developmental toxicity of dexamethasone and suggested that RYR1 may be an early intervention target for fetal-derived adult osteoarthritis.
Collapse
Affiliation(s)
- Yi-Zhong Wang
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Xiangyang No.1 People' Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Qing-Xian Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ding-Mei Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Liao-Bin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
162
|
Zheng W, Wen H. Investigating dual Ca 2+ modulation of the ryanodine receptor 1 by molecular dynamics simulation. Proteins 2020; 88:1528-1539. [PMID: 32557910 DOI: 10.1002/prot.25971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 11/09/2022]
Abstract
The ryanodine receptors (RyR) are essential to calcium signaling in striated muscles. A deep understanding of the complex Ca2+ -activation/inhibition mechanism of RyRs requires detailed structural and dynamic information for RyRs in different functional states (eg, with Ca2+ bound to activating or inhibitory sites). Recently, high-resolution structures of the RyR isoform 1 (RyR1) were solved by cryo-electron microscopy, revealing the location of a Ca2+ binding site for activation. Toward elucidating the Ca2+ -modulation mechanism of RyR1, we performed extensive molecular dynamics simulation of the core RyR1 structure in the presence and absence of activating and solvent Ca2+ (total simulation time is >5 μs). In the presence of solvent Ca2+ , Ca2+ binding to the activating site enhanced dynamics of RyR1 with higher inter-subunit flexibility, asymmetric inter-subunit motions, outward domain motions and partial pore dilation, which may prime RyR1 for subsequent channel opening. In contrast, the solvent Ca2+ alone reduced dynamics of RyR1 and led to inward domain motions and pore contraction, which may cause inhibition. Combining our simulation with the map of disease mutation sites in RyR1, we constructed a wiring diagram of key domains coupled via specific hydrogen bonds involving the mutation sites, some of which were modulated by Ca2+ binding. The structural and dynamic information gained from this study will inform future mutational and functional studies of RyR1 activation and inhibition by Ca2+ .
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, University at Buffalo, Buffalo, New York, USA
| | - Han Wen
- Department of Physics, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
163
|
Elbaz M, Ruiz A, Nicolay S, Tupini C, Bachmann C, Eckhardt J, Benucci S, Pelczar P, Treves S, Zorzato F. Bi-allelic expression of the RyR1 p.A4329D mutation decreases muscle strength in slow-twitch muscles in mice. J Biol Chem 2020; 295:10331-10339. [PMID: 32499372 DOI: 10.1074/jbc.ra120.013846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/29/2020] [Indexed: 12/25/2022] Open
Abstract
Mutations in the ryanodine receptor 1 (RYR1) gene are associated with several human congenital myopathies, including the dominantly inherited central core disease and exercise-induced rhabdomyolysis, and the more severe recessive phenotypes, including multiminicore disease, centronuclear myopathy, and congenital fiber type disproportion. Within the latter group, those carrying a hypomorphic mutation in one allele and a missense mutation in the other are the most severely affected. Because of nonsense-mediated decay, most hypomorphic alleles are not expressed, resulting in homozygous expression of the missense mutation allele. This should result in 50% reduced expression of the ryanodine receptor in skeletal muscle, but its observed content is even lower. To study in more detail the biochemistry and pathophysiology of recessive RYR1 myopathies, here we investigated a mouse model we recently generated by analyzing the effect of bi-allelic versus mono-allelic expression of the RyR1 p.A4329D mutation. Our results revealed that the expression of two alleles carrying the same mutation or of one allele with the mutation in combination with a hypomorphic allele does not result in functionally equal outcomes and impacts skeletal muscles differently. In particular, the bi-allelic RyR1 p.A4329D mutation caused a milder phenotype than its mono-allelic expression, leading to changes in the biochemical properties and physiological function only of slow-twitch muscles and largely sparing fast-twitch muscles. In summary, bi-allelic expression of the RyR1 p.A4329D mutation phenotypically differs from mono-allelic expression of this mutation in a compound heterozygous carrier.
Collapse
Affiliation(s)
- Moran Elbaz
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Alexis Ruiz
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Sven Nicolay
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Chiara Tupini
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Christoph Bachmann
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Jan Eckhardt
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Sofia Benucci
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Susan Treves
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland.,Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesco Zorzato
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland .,Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
164
|
Kushnir A, Todd JJ, Witherspoon JW, Yuan Q, Reiken S, Lin H, Munce RH, Wajsberg B, Melville Z, Clarke OB, Wedderburn-Pugh K, Wronska A, Razaqyar MS, Chrismer IC, Shelton MO, Mankodi A, Grunseich C, Tarnopolsky MA, Tanji K, Hirano M, Riazi S, Kraeva N, Voermans NC, Gruber A, Allen C, Meilleur KG, Marks AR. Intracellular calcium leak as a therapeutic target for RYR1-related myopathies. Acta Neuropathol 2020; 139:1089-1104. [PMID: 32236737 DOI: 10.1007/s00401-020-02150-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 01/14/2023]
Abstract
RYR1 encodes the type 1 ryanodine receptor, an intracellular calcium release channel (RyR1) on the skeletal muscle sarcoplasmic reticulum (SR). Pathogenic RYR1 variations can destabilize RyR1 leading to calcium leak causing oxidative overload and myopathy. However, the effect of RyR1 leak has not been established in individuals with RYR1-related myopathies (RYR1-RM), a broad spectrum of rare neuromuscular disorders. We sought to determine whether RYR1-RM affected individuals exhibit pathologic, leaky RyR1 and whether variant location in the channel structure can predict pathogenicity. Skeletal muscle biopsies were obtained from 17 individuals with RYR1-RM. Mutant RyR1 from these individuals exhibited pathologic SR calcium leak and increased activity of calcium-activated proteases. The increased calcium leak and protease activity were normalized by ex-vivo treatment with S107, a RyR stabilizing Rycal molecule. Using the cryo-EM structure of RyR1 and a new dataset of > 2200 suspected RYR1-RM affected individuals we developed a method for assigning pathogenicity probabilities to RYR1 variants based on 3D co-localization of known pathogenic variants. This study provides the rationale for a clinical trial testing Rycals in RYR1-RM affected individuals and introduces a predictive tool for investigating the pathogenicity of RYR1 variants of uncertain significance.
Collapse
Affiliation(s)
- Alexander Kushnir
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joshua J Todd
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Jessica W Witherspoon
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Harvey Lin
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ross H Munce
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Benjamin Wajsberg
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Zephan Melville
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Oliver B Clarke
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kaylee Wedderburn-Pugh
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Muslima S Razaqyar
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Irene C Chrismer
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Monique O Shelton
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Ami Mankodi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Kurenai Tanji
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sheila Riazi
- Department of Anesthesia, University of Toronto and Malignant Hyperthermia Investigation Unit, Toronto General Hospital, Toronto, Ontario, Canada
| | - Natalia Kraeva
- Department of Anesthesia, University of Toronto and Malignant Hyperthermia Investigation Unit, Toronto General Hospital, Toronto, Ontario, Canada
| | - Nicol C Voermans
- Department of Neurology, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Carolyn Allen
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Katherine G Meilleur
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA.
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
165
|
Maji S, Liao H, Dashti A, Mashayekhi G, Ourmazd A, Frank J. Propagation of Conformational Coordinates Across Angular Space in Mapping the Continuum of States from Cryo-EM Data by Manifold Embedding. J Chem Inf Model 2020; 60:2484-2491. [PMID: 32207941 PMCID: PMC7466846 DOI: 10.1021/acs.jcim.9b01115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent approaches to the study of biological molecules employ manifold learning to single-particle cryo-EM data sets to map the continuum of states of a molecule into a low-dimensional space spanned by eigenvectors or "conformational coordinates". This is done separately for each projection direction (PD) on an angular grid. One important step in deriving a consolidated map of occupancies, from which the free energy landscape of the molecule can be derived, is to propagate the conformational coordinates from a given choice of "anchor PD" across the entire angular space. Even when one eigenvector dominates, its sign might invert from one PD to the next. The propagation of the second eigenvector is particularly challenging when eigenvalues of the second and third eigenvector are closely matched, leading to occasional inversions in their ranking as we move across the angular grid. In the absence of a computational approach, this propagation across the angular space has been done thus far "by hand" using visual clues, thus greatly limiting the general use of the technique. In this work we have developed a method that is able to solve the propagation problem computationally, by using optical flow and a probabilistic graphical model. We demonstrate its utility by selected examples.
Collapse
Affiliation(s)
- Suvrajit Maji
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168 Street, New York, NY 10032, USA
| | - Hstau Liao
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168 Street, New York, NY 10032, USA
| | - Ali Dashti
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI 53211, USA
| | - Ghoncheh Mashayekhi
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI 53211, USA
| | - Abbas Ourmazd
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI 53211, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168 Street, New York, NY 10032, USA
- Department of Biological Sciences, Columbia University, 600 Fairchild Center, New York, NY 10027, USA
| |
Collapse
|
166
|
Noble M, Lin QT, Sirko C, Houpt JA, Novello MJ, Stathopulos PB. Structural Mechanisms of Store-Operated and Mitochondrial Calcium Regulation: Initiation Points for Drug Discovery. Int J Mol Sci 2020; 21:E3642. [PMID: 32455637 PMCID: PMC7279490 DOI: 10.3390/ijms21103642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022] Open
Abstract
Calcium (Ca2+) is a universal signaling ion that is essential for the life and death processes of all eukaryotes. In humans, numerous cell stimulation pathways lead to the mobilization of sarco/endoplasmic reticulum (S/ER) stored Ca2+, resulting in the propagation of Ca2+ signals through the activation of processes, such as store-operated Ca2+ entry (SOCE). SOCE provides a sustained Ca2+ entry into the cytosol; moreover, the uptake of SOCE-mediated Ca2+ by mitochondria can shape cytosolic Ca2+ signals, function as a feedback signal for the SOCE molecular machinery, and drive numerous mitochondrial processes, including adenosine triphosphate (ATP) production and distinct cell death pathways. In recent years, tremendous progress has been made in identifying the proteins mediating these signaling pathways and elucidating molecular structures, invaluable for understanding the underlying mechanisms of function. Nevertheless, there remains a disconnect between using this accumulating protein structural knowledge and the design of new research tools and therapies. In this review, we provide an overview of the Ca2+ signaling pathways that are involved in mediating S/ER stored Ca2+ release, SOCE, and mitochondrial Ca2+ uptake, as well as pinpoint multiple levels of crosstalk between these pathways. Further, we highlight the significant protein structures elucidated in recent years controlling these Ca2+ signaling pathways. Finally, we describe a simple strategy that aimed at applying the protein structural data to initiating drug design.
Collapse
Affiliation(s)
- Megan Noble
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Qi-Tong Lin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Christian Sirko
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Jacob A. Houpt
- Department of Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada;
| | - Matthew J. Novello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| |
Collapse
|
167
|
Lawal TA, Wires ES, Terry NL, Dowling JJ, Todd JJ. Preclinical model systems of ryanodine receptor 1-related myopathies and malignant hyperthermia: a comprehensive scoping review of works published 1990-2019. Orphanet J Rare Dis 2020; 15:113. [PMID: 32381029 PMCID: PMC7204063 DOI: 10.1186/s13023-020-01384-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pathogenic variations in the gene encoding the skeletal muscle ryanodine receptor (RyR1) are associated with malignant hyperthermia (MH) susceptibility, a life-threatening hypermetabolic condition and RYR1-related myopathies (RYR1-RM), a spectrum of rare neuromuscular disorders. In RYR1-RM, intracellular calcium dysregulation, post-translational modifications, and decreased protein expression lead to a heterogenous clinical presentation including proximal muscle weakness, contractures, scoliosis, respiratory insufficiency, and ophthalmoplegia. Preclinical model systems of RYR1-RM and MH have been developed to better understand underlying pathomechanisms and test potential therapeutics. METHODS We conducted a comprehensive scoping review of scientific literature pertaining to RYR1-RM and MH preclinical model systems in accordance with the PRISMA Scoping Reviews Checklist and the framework proposed by Arksey and O'Malley. Two major electronic databases (PubMed and EMBASE) were searched without language restriction for articles and abstracts published between January 1, 1990 and July 3, 2019. RESULTS Our search yielded 5049 publications from which 262 were included in this review. A majority of variants tested in RYR1 preclinical models were localized to established MH/central core disease (MH/CCD) hot spots. A total of 250 unique RYR1 variations were reported in human/rodent/porcine models with 95% being missense substitutions. The most frequently reported RYR1 variant was R614C/R615C (human/porcine total n = 39), followed by Y523S/Y524S (rabbit/mouse total n = 30), I4898T/I4897T/I4895T (human/rabbit/mouse total n = 20), and R163C/R165C (human/mouse total n = 18). The dyspedic mouse was utilized by 47% of publications in the rodent category and its RyR1-null (1B5) myotubes were transfected in 23% of publications in the cellular model category. In studies of transfected HEK-293 cells, 57% of RYR1 variations affected the RyR1 channel and activation core domain. A total of 15 RYR1 mutant mouse strains were identified of which ten were heterozygous, three were compound heterozygous, and a further two were knockout. Porcine, avian, zebrafish, C. elegans, canine, equine, and drosophila model systems were also reported. CONCLUSIONS Over the past 30 years, there were 262 publications on MH and RYR1-RM preclinical model systems featuring more than 200 unique RYR1 variations tested in a broad range of species. Findings from these studies have set the foundation for therapeutic development for MH and RYR1-RM.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily S Wires
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Nancy L Terry
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joshua J Todd
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
168
|
Lin L, Hao Z, Cao P, Yuchi Z. Homology modeling and docking study of diamondback moth ryanodine receptor reveals the mechanisms for channel activation, insecticide binding and resistance. PEST MANAGEMENT SCIENCE 2020; 76:1291-1303. [PMID: 31595631 DOI: 10.1002/ps.5640] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Diamide insecticides, including phthalic and anthranilic diamides, target insect ryanodine receptors (RyRs) and cause misregulation of calcium signaling in insect muscles and neurons. Several resistance mutations have been reported to reduce the efficacy of the diamides, but the exact binding sites and mechanism of resistance mutations are not clear. RESULTS The recent breakthrough in structural studies of mammalian RyRs has deepened our understanding of these giant calcium-release channels, but structural information about insect RyRs is still scarce. The only reported high-resolution structure is from the N-terminal domain of diamondback moth (DBM) RyR determined by our group. Here, we generate several homology models of full-length DBM RyR representing different functional states and dock the diamide insecticides into the structural models using Schrodinger software. These models reveal the specific structural features, activation mechanism, structural difference between functional states, ligand-binding sites and insecticide-binding sites of DBM RyR. By comparing the structures of wild-type and insecticide-resistant mutants, we propose a model depicting how the mutations affect the insecticide binding. We also identify the key difference between mammalian and insect RyRs that may explain the species-specific binding properties of diamides. CONCLUSION The binding sites for three activators Ca2+ , ATP and caffeine, and regulator ryanodine are conserved in insect and mammalian RyRs, but the binding site for diamide insecticides is species-specific. The phthalic and anthranilic diamides have distinct binding properties in DBM, which can be interfered by resistance mutations located in the transmembrane region. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhiyuan Hao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
169
|
Eshima H, Tamura Y, Kakehi S, Kakigi R, Hashimoto R, Funai K, Kawamori R, Watada H. A chronic high-fat diet exacerbates contractile dysfunction with impaired intracellular Ca 2+ release capacity in the skeletal muscle of aged mice. J Appl Physiol (1985) 2020; 128:1153-1162. [PMID: 32213111 DOI: 10.1152/japplphysiol.00530.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obesity and aging reduce skeletal muscle contractile function. However, it remains unclear whether obesity additively promotes muscle contractile dysfunction in the setting of aging. In this study, we investigated skeletal muscle contractile function ex vivo and intracellular Ca2+ release in male C57BL/6J mice fed a low-fat diet (LFD) or a high-fat diet (HFD) for 4 or 20 mo. Tetanic force production in the extensor digitorum longus muscle was decreased by aging or HFD feeding, and the further reduction was observed in aged HFD mice. The 20-mo HFD-fed mice, not the 20-mo LFD-fed mice or 4-mo HFD-fed mice, showed reduced intracellular Ca2+ peak levels by high concentration of caffeine (25 mM) compared with 4-mo LFD mice. Aging and HFD feeding additively increased intramyocellular lipid (IMCL) levels and were associated with the degree of impaired muscle contractile force and peak Ca2+ level. These data suggest that impairment in the contractile force in aged muscle is aggravated by HFD, which may be due, at least in part, to dysfunction in intracellular Ca2+ release. The IMCL level may be a marker for impaired muscle contractile force caused by aging and HFD.NEW & NOTEWORTHY The aim of this study was to examine the effect of high-fat diet (HFD)-induced obesity on contractile function and Ca2+ release capacity in aged skeletal muscle. Not only were the force production and peak Ca2+ levels decreased by aging and HFD feeding, respectively, but also, these interventions had an additive effect in aged HFD-fed mice. These data suggest that the impairment in the contractile force in aged muscle is aggravated by a HFD, which may be due to synergistic dysfunction in intracellular Ca2+ release.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Kakehi
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryo Kakigi
- Department of Physiology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ryota Hashimoto
- Department of Physiology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Ryuzo Kawamori
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
170
|
Chen W, Kudryashev M. Structure of RyR1 in native membranes. EMBO Rep 2020; 21:e49891. [PMID: 32147968 PMCID: PMC7202208 DOI: 10.15252/embr.201949891] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/27/2022] Open
Abstract
Ryanodine receptor 1 (RyR1) mediates excitation–contraction coupling by releasing Ca2+ from sarcoplasmic reticulum (SR) to the cytoplasm of skeletal muscle cells. RyR1 activation is regulated by several proteins from both the cytoplasm and lumen of the SR. Here, we report the structure of RyR1 from native SR membranes in closed and open states. Compared to the previously reported structures of purified RyR1, our structure reveals helix‐like densities traversing the bilayer approximately 5 nm from the RyR1 transmembrane domain and sarcoplasmic extensions linking RyR1 to a putative calsequestrin network. We document the primary conformation of RyR1 in situ and its structural variations. The activation of RyR1 is associated with changes in membrane curvature and movement in the sarcoplasmic extensions. Our results provide structural insight into the mechanism of RyR1 in its native environment.
Collapse
Affiliation(s)
- Wenbo Chen
- Max Planck Institute for Biophysics, Frankfurt on Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt on Main, Germany
| | - Mikhail Kudryashev
- Max Planck Institute for Biophysics, Frankfurt on Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt on Main, Germany
| |
Collapse
|
171
|
Hohendanner F, Bode D. Mitochondrial Calcium in heart failure with preserved ejection fraction-friend or foe? Acta Physiol (Oxf) 2020; 228:e13415. [PMID: 31729810 DOI: 10.1111/apha.13415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Felix Hohendanner
- Department of Internal Medicine and Cardiology Charité‐Universitätsmedizin Berlin Berlin Germany
- DZHK (German Centre for Cardiovascular Research) Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
| | - D. Bode
- Department of Internal Medicine and Cardiology Charité‐Universitätsmedizin Berlin Berlin Germany
- DZHK (German Centre for Cardiovascular Research) Berlin Germany
| |
Collapse
|
172
|
Seidel M, de Meritens CR, Johnson L, Parthimos D, Bannister M, Thomas NL, Ozekhome-Mike E, Lai FA, Zissimopoulos S. Identification of an amino-terminus determinant critical for ryanodine receptor/Ca2+ release channel function. Cardiovasc Res 2020; 117:780-791. [PMID: 32077934 PMCID: PMC7898959 DOI: 10.1093/cvr/cvaa043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/05/2019] [Accepted: 02/17/2020] [Indexed: 01/12/2023] Open
Abstract
AIMS The cardiac ryanodine receptor (RyR2), which mediates intracellular Ca2+ release to trigger cardiomyocyte contraction, participates in development of acquired and inherited arrhythmogenic cardiac disease. This study was undertaken to characterize the network of inter- and intra-subunit interactions regulating the activity of the RyR2 homotetramer. METHODS AND RESULTS We use mutational investigations combined with biochemical assays to identify the peptide sequence bridging the β8 with β9 strand as the primary determinant mediating RyR2 N-terminus self-association. The negatively charged side chains of two aspartate residues (D179 and D180) within the β8-β9 loop are crucial for the N-terminal inter-subunit interaction. We also show that the RyR2 N-terminus domain interacts with the C-terminal channel pore region in a Ca2+-independent manner. The β8-β9 loop is required for efficient RyR2 subunit oligomerization but it is dispensable for N-terminus interaction with C-terminus. Deletion of the β8-β9 sequence produces unstable tetrameric channels with subdued intracellular Ca2+ mobilization implicating a role for this domain in channel opening. The arrhythmia-linked R176Q mutation within the β8-β9 loop decreases N-terminus tetramerization but does not affect RyR2 subunit tetramerization or the N-terminus interaction with C-terminus. RyR2R176Q is a characteristic hypersensitive channel displaying enhanced intracellular Ca2+ mobilization suggesting an additional role for the β8-β9 domain in channel closing. CONCLUSION These results suggest that efficient N-terminus inter-subunit communication mediated by the β8-β9 loop may constitute a primary regulatory mechanism for both RyR2 channel activation and suppression.
Collapse
Affiliation(s)
- Monika Seidel
- Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - Camille Rabesahala de Meritens
- Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - Louisa Johnson
- Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - Dimitris Parthimos
- Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Mark Bannister
- Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - Nia Lowri Thomas
- Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Esizaze Ozekhome-Mike
- Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - Francis Anthony Lai
- College of Medicine, QU Health, and Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Spyros Zissimopoulos
- Department of Cardiology, School of Medicine, Wales Heart Research Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| |
Collapse
|
173
|
The Ca 2+ permeation mechanism of the ryanodine receptor revealed by a multi-site ion model. Nat Commun 2020; 11:922. [PMID: 32066742 PMCID: PMC7026163 DOI: 10.1038/s41467-020-14573-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022] Open
Abstract
Ryanodine receptors (RyR) are ion channels responsible for the release of Ca2+ from the sarco/endoplasmic reticulum and play a crucial role in the precise control of Ca2+ concentration in the cytosol. The detailed permeation mechanism of Ca2+ through RyR is still elusive. By using molecular dynamics simulations with a specially designed Ca2+ model, we show that multiple Ca2+ ions accumulate in the upper selectivity filter of RyR1, but only one Ca2+ can occupy and translocate in the narrow pore at a time, assisted by electrostatic repulsion from the Ca2+ within the upper selectivity filter. The Ca2+ is nearly fully hydrated with the first solvation shell intact during the whole permeation process. These results suggest a remote knock-on permeation mechanism and one-at-a-time occupation pattern for the hydrated Ca2+ within the narrow pore, uncovering the basis underlying the high permeability and low selectivity of the RyR channels.
Collapse
|
174
|
Xu L, Harms FL, Chirasani VR, Pasek DA, Kortüm F, Meinecke P, Dokholyan NV, Kutsche K, Meissner G. Single-channel properties of skeletal muscle ryanodine receptor pore Δ 4923FF 4924 in two brothers with a lethal form of fetal akinesia. Cell Calcium 2020; 87:102182. [PMID: 32097819 DOI: 10.1016/j.ceca.2020.102182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 11/26/2022]
Abstract
Ryanodine receptor ion channels (RyR1s) release Ca2+ ions from the sarcoplasmic reticulum to regulate skeletal muscle contraction. By whole-exome sequencing, we identified the heterozygous RYR1 variant c.14767_14772del resulting in the in-frame deletion p.(Phe4923_Phe4924del) in two brothers with a lethal form of the fetal akinesia deformation syndrome (FADS). The two deleted phenylalanines (RyR1-Δ4923FF4924) are located in the S6 pore-lining helix of RyR1. Clinical features in one of the two siblings included severe hypotonia, thin ribs, swallowing inability, and respiratory insufficiency that caused early death. Functional consequences of the RyR1-Δ4923FF4924 variant were determined using recombinant 2,200-kDa homotetrameric and heterotetrameric RyR1 channel complexes that were expressed in HEK293 cells and characterized by cellular, electrophysiological, and computational methods. Cellular Ca2+ release in response to caffeine indicated that the homotetrameric variant formed caffeine-sensitive Ca2+ conducting channels in HEK293 cells. In contrast, the homotetrameric channel complex was not activated by Ca2+ and did not conduct Ca2+ based on single-channel measurements. The computational analysis suggested decreased protein stability and loss of salt bridge interactions between RyR1-R4944 and RyR1-D4938, increasing the electrostatic interaction energy of Ca2+ in a region 20 Å from the mutant site. Co-expression of wild-type and mutant RyR1s resulted in Ca2+-dependent channel activities that displayed intermediate Ca2+ conductances and suggested maintenance of a reduced Ca2+ release in the two patients. Our findings reveal that the RYR1 pore variant p.(Phe4923_Phe4924del) attenuates the flow of Ca2+ through heterotetrameric channels, but alone was not sufficient to cause FADS, indicating additional genetic factors to be involved.
Collapse
Affiliation(s)
- Le Xu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States
| | - Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Venkat R Chirasani
- Departments of Pharmacology, and Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, United States
| | - Daniel A Pasek
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter Meinecke
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nikolay V Dokholyan
- Departments of Pharmacology, and Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, United States
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States.
| |
Collapse
|
175
|
Zhou Y, Ma D, Lin L, You M, Yuchi Z, You S. Crystal Structure of the Ryanodine Receptor SPRY2 Domain from the Diamondback Moth Provides Insights into the Development of Novel Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1731-1740. [PMID: 31951399 DOI: 10.1021/acs.jafc.9b08151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Diamide insecticides targeting ryanodine receptors (RyRs) are a major class of pesticides used to control a wide range of agricultural pests, but their efficacies have been reduced dramatically by the recent emergence of resistance mutations. There is a pressing need to develop novel insecticides, targeting distinct and novel binding sites within insect RyRs to overcome the resistance crisis; however, the limited structural information on insect RyRs is a major roadblock to our understanding of their molecular mechanisms. Here, we report the crystal structure of the RyR SPRY2 domain from the diamondback moth (DBM), Plutella xylostella, a destructive agricultural pest worldwide that has developed resistance to all classes of insecticide at 2.06 Å resolution. The overall fold of DBM SPRY2 is similar to its mammalian homolog, but it shows distinct conformations in several loops. Docking it into the recently published cryo-electron microscope structure of the full-length RyR reveals that two insect-specific loops interact with the BSol domain from the neighboring subunit. The SPRY2-BSol interface will change the conformation upon channel gating, indicating that it might be a potential targeting site for insect-specific insecticides. Interestingly, several previously identified disease-causing mutations also lie in the same interface, implying that this interface is important for channel gating. Another insect-specific loop located in the SPRY2-SPRY3 interface might indirectly affect another gating interface between SPRY3 and Repeat34.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education , Fuzhou 350002 , China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture , Fuzhou 350002 , China
| | - Dan Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education , Fuzhou 350002 , China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture , Fuzhou 350002 , China
| | - Zhiguang Yuchi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education , Fuzhou 350002 , China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture , Fuzhou 350002 , China
| |
Collapse
|
176
|
Ogawa H, Kurebayashi N, Yamazawa T, Murayama T. Regulatory mechanisms of ryanodine receptor/Ca 2+ release channel revealed by recent advancements in structural studies. J Muscle Res Cell Motil 2020; 42:291-304. [PMID: 32040690 PMCID: PMC8332584 DOI: 10.1007/s10974-020-09575-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Ryanodine receptors (RyRs) are huge homotetrameric Ca2+ release channels localized to the sarcoplasmic reticulum. RyRs are responsible for the release of Ca2+ from the SR during excitation–contraction coupling in striated muscle cells. Recent revolutionary advancements in cryo-electron microscopy have provided a number of near-atomic structures of RyRs, which have enabled us to better understand the architecture of RyRs. Thus, we are now in a new era understanding the gating, regulatory and disease-causing mechanisms of RyRs. Here we review recent advances in the elucidation of the structures of RyRs, especially RyR1 in skeletal muscle, and their mechanisms of regulation by small molecules, associated proteins and disease-causing mutations.
Collapse
Affiliation(s)
- Haruo Ogawa
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Toshiko Yamazawa
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
177
|
Reggiani C. Caffeine as a tool to investigate sarcoplasmic reticulum and intracellular calcium dynamics in human skeletal muscles. J Muscle Res Cell Motil 2020; 42:281-289. [PMID: 32034582 DOI: 10.1007/s10974-020-09574-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
Caffeine is worldwide used for its power to increase cognitive and physical performance. The ergogenic effects of caffeine, however, do not depend on a direct action on muscles. Actually, the actions of caffeine on skeletal muscles, take place at millimolar concentrations which are far above the micromolar level reached after a regular consumption of coffee or similar drinks, and close to a lethal concentration. At millimolar concentrations caffeine exerts a powerful effect on sarcoplasmic reticulum (SR) activating the release of calcium via ryanodine receptors and, possibly, inhibiting calcium reuptake. For this reason caffeine has become a valuable tool for studying SR function and for diagnostics of SR related muscle disorders. This review aims to briefly describe the effects and the mechanism of action of caffeine on sarcoplasmic reticulum and to focus on its use to study intracellular calcium dynamics in human muscle fibers in physiological and pathological conditions.
Collapse
Affiliation(s)
- Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Via Marzolo 3, 35131, Padua, Italy. .,ZRS-Science and Research Center, Koper, Slovenia.
| |
Collapse
|
178
|
Azumaya CM, Linton EA, Risener CJ, Nakagawa T, Karakas E. Cryo-EM structure of human type-3 inositol triphosphate receptor reveals the presence of a self-binding peptide that acts as an antagonist. J Biol Chem 2020; 295:1743-1753. [PMID: 31915246 PMCID: PMC7008357 DOI: 10.1074/jbc.ra119.011570] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/06/2020] [Indexed: 01/04/2023] Open
Abstract
Calcium-mediated signaling through inositol 1,4,5-triphosphate receptors (IP3Rs) is essential for the regulation of numerous physiological processes, including fertilization, muscle contraction, apoptosis, secretion, and synaptic plasticity. Deregulation of IP3Rs leads to pathological calcium signaling and is implicated in many common diseases, including cancer and neurodegenerative, autoimmune, and metabolic diseases. Revealing the mechanism of activation and inhibition of this ion channel will be critical to an improved understanding of the biological processes that are controlled by IP3Rs. Here, we report structural findings of the human type-3 IP3R (IP3R-3) obtained by cryo-EM (at an overall resolution of 3.8 Å), revealing an unanticipated regulatory mechanism where a loop distantly located in the primary sequence occupies the IP3-binding site and competitively inhibits IP3 binding. We propose that this inhibitory mechanism must differ qualitatively among IP3R subtypes because of their diverse loop sequences, potentially serving as a key molecular determinant of subtype-specific calcium signaling in IP3Rs. In summary, our structural characterization of human IP3R-3 provides critical insights into the mechanistic function of IP3Rs and into subtype-specific regulation of these important calcium-regulatory channels.
Collapse
MESH Headings
- Binding Sites
- Calcium Signaling
- Cryoelectron Microscopy
- Humans
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors
- Inositol 1,4,5-Trisphosphate Receptors/chemistry
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/ultrastructure
- Models, Molecular
- Peptides/metabolism
- Protein Conformation
Collapse
Affiliation(s)
- Caleigh M Azumaya
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232
| | - Emily A Linton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232
| | - Caitlin J Risener
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232; Center for Structural Biology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232; Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232
| | - Erkan Karakas
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232; Center for Structural Biology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232.
| |
Collapse
|
179
|
McCarthy MR, Savich Y, Cornea RL, Thomas DD. Resolved Structural States of Calmodulin in Regulation of Skeletal Muscle Calcium Release. Biophys J 2020; 118:1090-1100. [PMID: 32049056 DOI: 10.1016/j.bpj.2020.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
Calmodulin (CaM) is proposed to modulate activity of the skeletal muscle sarcoplasmic reticulum (SR) calcium release channel (ryanodine receptor, RyR1 isoform) via a mechanism dependent on the conformation of RyR1-bound CaM. However, the correlation between CaM structure and functional regulation of RyR in physiologically relevant conditions is largely unknown. Here, we have used time-resolved fluorescence resonance energy transfer (TR-FRET) to study structural changes in CaM that may play a role in the regulation of RyR1. We covalently labeled each lobe of CaM (N and C) with fluorescent probes and used intramolecular TR-FRET to assess interlobe distances when CaM is bound to RyR1 in SR membranes, purified RyR1, or a peptide corresponding to the CaM-binding domain of RyR (RyRp). TR-FRET resolved an equilibrium between two distinct structural states (conformations) of CaM, each characterized by an interlobe distance and Gaussian distribution width (disorder). In isolated CaM, at low Ca2+, the two conformations of CaM are resolved, centered at 5 nm (closed) and 7 nm (open). At high Ca2+, the equilibrium shifts to favor the open conformation. In the presence of RyRp at high Ca2+, the closed conformation shifts to a more compact conformation and is the major component. When CaM is bound to full-length RyR1, either purified or in SR membranes, strikingly different results were obtained: 1) the two conformations are resolved and more ordered, 2) the open state is the major component, and 3) Ca2+ stabilized the closed conformation by a factor of two. We conclude that the Ca2+-dependent structural distribution of CaM bound to RyR1 is distinct from that of CaM bound to RyRp. We propose that the function of RyR1 is tuned to the Ca2+-dependent structural dynamics of bound CaM.
Collapse
Affiliation(s)
- Megan R McCarthy
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, Minnesota
| | - Yahor Savich
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, Minnesota; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, Minnesota.
| |
Collapse
|
180
|
Gaburjakova J, Almassy J, Gaburjakova M. Luminal addition of non-permeant Eu 3+ interferes with luminal Ca 2+ regulation of the cardiac ryanodine receptor. Bioelectrochemistry 2020; 132:107449. [PMID: 31918058 DOI: 10.1016/j.bioelechem.2019.107449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
Dysregulation of the cardiac ryanodine receptor (RYR2) by luminal Ca2+ has been implicated in a life-threatening, stress-induced arrhythmogenic disease. The mechanism of luminal Ca2+-mediated RYR2 regulation is under debate, and it has been attributed to Ca2+ binding on the cytosolic face (the Ca2+ feedthrough mechanism) and/or the luminal face of the RYR2 channel (the true luminal mechanism). The molecular nature and location of the luminal Ca2+ site is unclear. At the single-channel level, we directly probed the RYR2 luminal face by Eu3+, considering the non-permeant nature of trivalent cations and their high binding affinities for Ca2+ sites. Without affecting essential determinants of the Ca2+ feedthrough mechanism, we found that luminal Eu3+ competitively antagonized the activation effect of luminal Ca2+ on RYR2 responsiveness to cytosolic caffeine, and no appreciable effect was observed for luminal Ba2+ (mimicking the absence of luminal Ca2+). Importantly, luminal Eu3+ caused no changes in RYR2 gating. Our results indicate that two distinct Ca2+ sites (available for luminal Ca2+ even when the channel is closed) are likely involved in the true luminal mechanism. One site facing the lumen regulates channel responsiveness to caffeine, while the other site, presumably positioned in the channel pore, governs the gating behavior.
Collapse
Affiliation(s)
- Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovak Republic.
| | - Janos Almassy
- Department of Physiology, Faculty of Medicine, University of Debrecen, PO Box 400, Debrecen 4002, Hungary.
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovak Republic.
| |
Collapse
|
181
|
Asghari P, Scriven DR, Ng M, Panwar P, Chou KC, van Petegem F, Moore ED. Cardiac ryanodine receptor distribution is dynamic and changed by auxiliary proteins and post-translational modification. eLife 2020; 9:51602. [PMID: 31916935 PMCID: PMC6994221 DOI: 10.7554/elife.51602] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
The effects of the immunophilins, FKBP12 and FKBP12.6, and phosphorylation on type II ryanodine receptor (RyR2) arrangement and function were examined using correlation microscopy (line scan confocal imaging of Ca2+ sparks and dual-tilt electron tomography) and dSTORM imaging of permeabilized Wistar rat ventricular myocytes. Saturating concentrations (10 µmol/L) of either FKBP12 or 12.6 significantly reduced the frequency, spread, amplitude and Ca2+ spark mass relative to control, while the tomograms revealed both proteins shifted the tetramers into a largely side-by-side configuration. Phosphorylation of immunophilin-saturated RyR2 resulted in structural and functional changes largely comparable to phosphorylation alone. dSTORM images of myocyte surfaces demonstrated that both FKBP12 and 12.6 significantly reduced RyR2 cluster sizes, while phosphorylation, even of immunophilin-saturated RyR2, increased them. We conclude that both RyR2 cluster size and the arrangement of tetramers within clusters is dynamic and respond to changes in the cellular environment. Further, these changes affect Ca2+ spark formation.
Collapse
Affiliation(s)
- Parisa Asghari
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - David Rl Scriven
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Myles Ng
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Pankaj Panwar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Keng C Chou
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Filip van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Edwin Dw Moore
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
182
|
A muscular hypotonia-associated STIM1 mutant at R429 induces abnormalities in intracellular Ca 2+ movement and extracellular Ca 2+ entry in skeletal muscle. Sci Rep 2019; 9:19140. [PMID: 31844136 PMCID: PMC6915709 DOI: 10.1038/s41598-019-55745-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) mediates extracellular Ca2+ entry into the cytosol through a store-operated Ca2+ entry (SOCE) mechanism, which is involved in the physiological functions of various tissues, including skeletal muscle. STIM1 is also associated with skeletal muscle diseases, but its pathological mechanisms have not been well addressed. The present study focused on examining the pathological mechanism(s) of a mutant STIM1 (R429C) that causes human muscular hypotonia. R429C was expressed in mouse primary skeletal myotubes, and the properties of the skeletal myotubes were examined using single-cell Ca2+ imaging of myotubes and transmission electron microscopy (TEM) along with biochemical approaches. R429C did not interfere with the terminal differentiation of myoblasts to myotubes. Unlike wild-type STIM1, there was no further increase of SOCE by R429C. R429C bound to endogenous STIM1 and slowed down the initial rate of SOCE that were mediated by endogenous STIM1. Moreover, R429C increased intracellular Ca2+ movement in response to membrane depolarization by eliminating the attenuation on dihydropyridine receptor-ryanodine receptor (DHPR-RyR1) coupling by endogenous STIM1. The cytosolic Ca2+ level was also increased due to the reduction in SR Ca2+ level. In addition, R429C-expressing myotubes showed abnormalities in mitochondrial shape, a significant decrease in ATP levels, and the higher expression levels of mitochondrial fission-mediating proteins. Therefore, serial defects in SOCE, intracellular Ca2+ movement, and cytosolic Ca2+ level along with mitochondrial abnormalities in shape and ATP level could be a pathological mechanism of R429C for human skeletal muscular hypotonia. This study also suggests a novel clue that STIM1 in skeletal muscle could be related to mitochondria via regulating intra and extracellular Ca2+ movements.
Collapse
|
183
|
Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators. Proc Natl Acad Sci U S A 2019; 116:25575-25582. [PMID: 31792195 PMCID: PMC6926060 DOI: 10.1073/pnas.1914451116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As a switch for the release of Ca2+ from the sarco(endo)plasmic reticulum of cardiomyocytes, the type 2 ryanodine receptor (RyR2) is subject to sophisticated regulation by a broad spectrum of modulators. Dysregulation of RyR2-mediated Ca2+ release is linked to life-threatening cardiac arrhythmias. The regulatory mechanism of RyR2 by key modulators, such as Ca2+, FKBP12.6, ATP, and caffeine, remains unclear. This study provides important insights into the long-range allosteric regulation of RyR2 channel gating by these modulators and serves as an important framework for mechanistic understanding of the regulation of this key player in the excitation–contraction coupling of cardiac muscles. The type 2 ryanodine receptor (RyR2) is responsible for releasing Ca2+ from the sarcoplasmic reticulum of cardiomyocytes, subsequently leading to muscle contraction. Here, we report 4 cryo-electron microscopy (cryo-EM) structures of porcine RyR2 bound to distinct modulators that, together with our published structures, provide mechanistic insight into RyR2 regulation. Ca2+ alone induces a contraction of the central domain that facilitates the dilation of the S6 bundle but is insufficient to open the pore. The small-molecule agonist PCB95 helps Ca2+ to overcome the barrier for opening. FKBP12.6 induces a relaxation of the central domain that decouples it from the S6 bundle, stabilizing RyR2 in a closed state even in the presence of Ca2+ and PCB95. Although the channel is open when PCB95 is replaced by caffeine and adenosine 5′-triphosphate (ATP), neither of the modulators alone can sufficiently counter the antagonistic effect to open the channel. Our study marks an important step toward mechanistic understanding of the sophisticated regulation of this key channel whose aberrant activity engenders life-threatening cardiac disorders.
Collapse
|
184
|
Abstract
In the body, extracellular stimuli produce inositol 1,4,5-trisphosphate (IP3), an intracellular chemical signal that binds to the IP3 receptor (IP3R) to release calcium ions (Ca2+) from the endoplasmic reticulum. In the past 40 years, the wide-ranging functions mediated by IP3R and its genetic defects causing a variety of disorders have been unveiled. Recent cryo-electron microscopy and X-ray crystallography have resolved IP3R structures and begun to integrate with concurrent functional studies, which can explicate IP3-dependent opening of Ca2+-conducting gates placed ∼90 Å away from IP3-binding sites and its regulation by Ca2+. This review highlights recent research progress on the IP3R structure and function. We also propose how protein plasticity within IP3R, which involves allosteric gating and assembly transformations accompanied by rapid and chronic structural changes, would enable it to regulate diverse functions at cellular microdomains in pathophysiological states.
Collapse
Affiliation(s)
- Kozo Hamada
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| | - Katsuhiko Mikoshiba
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| |
Collapse
|
185
|
Yamaguchi N. Molecular Insights into Calcium Dependent Regulation of Ryanodine Receptor Calcium Release Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1131:321-336. [DOI: 10.1007/978-3-030-12457-1_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
186
|
Cao X, Chen J, Li D, Xie P, Xu M, Lin W, Li S, Pan G, Tang Y, Xu J, Olkkonen VM, Yan D, Zhong W. ORP4L couples IP 3 to ITPR1 in control of endoplasmic reticulum calcium release. FASEB J 2019; 33:13852-13865. [PMID: 31648575 DOI: 10.1096/fj.201900933rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxysterol-binding protein-related protein (ORP) 4L acts as a scaffold protein assembling CD3-ε, G-αq/11, and PLC-β3 into a complex at the plasma membrane that mediates inositol (1,4,5)-trisphosphate (IP3)-induced endoplasmic reticulum (ER) Ca2+ release and oxidative phosphorylation in T-cell acute lymphoblastic leukemia cells. Here, we offer new evidence that ORP4L interacts with the carboxyl terminus of the IP3 receptor type 1 (ITPR1) in Jurkat T cells. ORP4L enables IP3 binding to ITPR1; a truncated construct that lacks the ITPR1-binding region retains the ability to increase IP3 production but fails to mediate IP3 and ITPR1 binding. In association with this ability of ORP4L, it enhances Ca2+ release from the ER and subsequent cytosolic and mitochondrial parallel Ca2+ spike oscillations that stimulate mitochondrial energetics and thus maintains cell survival. These data support a novel model in which ORP4L is a cofactor of ITPR1, which increases ITPR1 sensitivity to IP3 and enables ER Ca2+ release.-Cao, X., Chen, J., Li, D., Xie, P., Xu, M., Lin, W., Li, S., Pan, G., Tang, Y., Xu, J., Olkkonen, V. M., Yan, D., Zhong, W. ORP4L couples IP3 to ITPR1 in control of endoplasmic reticulum calcium release.
Collapse
Affiliation(s)
- Xiuye Cao
- Department of Biology, Jinan University, Guangzhou, China
| | - Jianuo Chen
- Department of Biology, Jinan University, Guangzhou, China
| | - Dan Li
- Department of Biology, Jinan University, Guangzhou, China
| | - Peipei Xie
- Department of Biology, Jinan University, Guangzhou, China
| | - Mengyang Xu
- Department of Biology, Jinan University, Guangzhou, China
| | - Weize Lin
- Department of Biology, Jinan University, Guangzhou, China
| | - Shiqian Li
- Department of Biology, Jinan University, Guangzhou, China
| | - Guoping Pan
- Department of Biology, Jinan University, Guangzhou, China
| | - Yong Tang
- Department of Biology, Jinan University, Guangzhou, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki, Finland
| | - Daoguang Yan
- Department of Biology, Jinan University, Guangzhou, China
| | - Wenbin Zhong
- Department of Biology, Jinan University, Guangzhou, China
| |
Collapse
|
187
|
Black KA, Jin R, He S, Gulbis JM. Changing perspectives on how the permeation pathway through potassium channels is regulated. J Physiol 2019; 599:1961-1976. [PMID: 31612997 DOI: 10.1113/jp278682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/25/2019] [Indexed: 11/08/2022] Open
Abstract
The primary means by which ion permeation through potassium channels is controlled, and the key to selective intervention in a range of pathophysiological conditions, is the process by which channels switch between non-conducting and conducting states. Conventionally, this has been explained by a steric mechanism in which the pore alternates between two conformations: a 'closed' state in which the conduction pathway is occluded and an 'open' state in which the pathway is sufficiently wide to accommodate fully hydrated ions. Recently, however, 'non-canonical' mechanisms have been proposed for some classes of K+ channels. The purpose of this review is to illuminate structural and dynamic relationships underpinning permeation control in K+ channels, indicating where additional data might resolve some of the remaining issues.
Collapse
Affiliation(s)
- Katrina A Black
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Ruitao Jin
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Sitong He
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Jacqueline M Gulbis
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| |
Collapse
|
188
|
Ma Z, Liu H, Yu H. Triclosan Affects Ca 2+ Regulatory Module and Musculature Development in Skeletal Myocyte during Early Life Stages of Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11988-11998. [PMID: 31532625 DOI: 10.1021/acs.est.9b03231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advanced technologies for toxicity tests are designed to identify biomarkers with superior predictive power or end points of the complex web of biological pathways. However, the data obtained need to be fully characterized for dose-response, physiological systems, and relevance to a system or (sub) population before biological interpretation and decision making. In this study, the toxicity of triclosan (TCS) on zebrafish was selected as a case study to correlate the observed morphological effects with existing data and identify the critical events by receptor activity sensitivity analysis. Triclosan exhibited weak acute toxicity against zebrafish and significantly affected the development of trunk muscles at 0.52, 1.04, and 1.73 μM. Through receptor-mediated screening, we found that the adverse effects of TCS induce Ryanodine receptor 1 (RyR1) activity and distort Ca2+ signaling. The trunk skeletal muscle abnormalities occurred only when the dihydropyridine receptor (DHPR) was blocked, demonstrating that TCS mainly influenced the Ca2+ regulatory module associated with signaling between DHPRs and RyR1; DHPRs mainly regulated the orthograde and retrograde signaling in skeletal muscles. This unexpected result could integrate the mode of action of TCS and provide insight for high-throughput screening and toxicity prediction using zebrafish.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
189
|
Xu T, Yuchi Z. Crystal structure of diamondback moth ryanodine receptor Repeat34 domain reveals insect-specific phosphorylation sites. BMC Biol 2019; 17:77. [PMID: 31597572 PMCID: PMC6784350 DOI: 10.1186/s12915-019-0698-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/02/2019] [Indexed: 01/23/2023] Open
Abstract
Background Ryanodine receptor (RyR), a calcium-release channel located in the sarcoplasmic reticulum membrane of muscles, is the target of insecticides used against a wide range of agricultural pests. Mammalian RyRs have been shown to be under the regulatory control of several kinases and phosphatases, but little is known about the regulation of insect RyRs by phosphorylation. Results Here we present the crystal structures of wild-type and phospho-mimetic RyR Repeat34 domain containing PKA phosphorylation sites from diamondback moth (DBM), a major lepidopteran pest of cruciferous vegetables. The structure has unique features, not seen in mammalian RyRs, including an additional α-helix near the phosphorylation loop. Using tandem mass spectrometry, we identify several PKA sites clustering in the phosphorylation loop and the newly identified α-helix. Bioinformatics analysis shows that this α-helix is only present in Lepidoptera, suggesting an insect-specific regulation. Interestingly, the specific phosphorylation pattern is temperature-dependent. The thermal stability of the DBM Repeat34 domain is significantly lower than that of the analogous domain in the three mammalian RyR isoforms, indicating a more dynamic domain structure that can be partially unfolded to facilitate the temperature-dependent phosphorylation. Docking the structure into the cryo-electron microscopy model of full-length RyR reveals that the interface between the Repeat34 and neighboring HD1 domain is more conserved than that of the phosphorylation loop region that might be involved in the interaction with SPRY3 domain. We also identify an insect-specific glycerol-binding pocket that could be potentially targeted by novel insecticides to fight the current resistance crisis. Conclusions The crystal structures of the DBM Repeat34 domain reveals insect-specific temperature-dependent phosphorylation sites that may regulate insect ryanodine receptor function. It also reveals insect-specific structural features and a potential ligand-binding site that could be targeted in an effort to develop green pesticides with high species-specificity.
Collapse
Affiliation(s)
- Tong Xu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
190
|
Hu Y, Wang J, Zhou Y, Xie H, Yan X, Chu X, Chen W, Liu Y, Wang X, Wang J, Zhang A, Han S. Peptidomics analysis of umbilical cord blood reveals potential preclinical biomarkers for neonatal respiratory distress syndrome. Life Sci 2019; 236:116737. [PMID: 31505194 DOI: 10.1016/j.lfs.2019.116737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 02/04/2023]
Abstract
AIMS The purpose of this study was to investigate the pathophysiology and discover novel predictors of neonatal respiratory distress syndrome (NRDS) from a peptidomics perspective. MAIN METHODS Comparative profiling of umbilical cord blood from NRDS and control patients was performed by liquid chromatography tandem mass spectrometry technology. The underlying biological functions of the differentially expressed peptides (DEPs) were predicted by Gene Ontology (GO) and KEGG pathway analyses. The interactions of DEPs and their precursor proteins were explored by ingenuity pathway analysis (IPA). The sources and stability of DEPs were determined by online databases, including UniProt, SMART and ProtParam tool. KEY FINDINGS A total of 251 DEPs were identified, of which 139 peptides were upregulated, and 112 peptides were downregulated (fold change ≥2.0, P < 0.05). These DEPs were predicted to be associated with respiratory failure, atelectasis, and morphogenesis of endothelial cells. These processes indicated that DEPs may play a role in NRDS. Among them, eleven stable DEPs might be used as preclinical biomarkers. SIGNIFICANCE Our findings improve our understanding of NRDS and facilitate the discovery of candidate diagnostic biomarkers for NRDS from the perspective of peptidomics.
Collapse
Affiliation(s)
- Yin Hu
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Juan Wang
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yahui Zhou
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Hanying Xie
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China; The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xiangyun Yan
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Xue Chu
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Wenjuan Chen
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yiwen Liu
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China; The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xingyun Wang
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Jun Wang
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China; The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| | - Aiqing Zhang
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China; Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, 262 Zhongshan North Road, Nanjing, Jiangsu 210003, China.
| | - Shuping Han
- Department of Pediatrics, The Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| |
Collapse
|
191
|
Slaying a giant: Structures of calmodulin and protein kinase a bound to the cardiac ryanodine receptor. Cell Calcium 2019; 83:102079. [PMID: 31522075 DOI: 10.1016/j.ceca.2019.102079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 11/22/2022]
Abstract
Ryanodine Receptors are Ca2+ release channels expressed in the Endoplasmic and Sarcoplasmic Reticulum membranes. Gong et al [1] reported cryo-EM structures of the cardiac RyR2 complexed to Calmodulin, which can downregulate channel opening. Haji-Ghassemi et al [2] report crystal structures of an RyR2 domain with PKA, a kinase promoting channel opening.
Collapse
|
192
|
Diszházi G, Magyar ZÉ, Mótyán JA, Csernoch L, Jóna I, Nánási PP, Almássy J. Dantrolene Requires Mg 2+ and ATP To Inhibit the Ryanodine Receptor. Mol Pharmacol 2019; 96:401-407. [PMID: 31337666 DOI: 10.1124/mol.119.116475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/07/2019] [Indexed: 12/15/2022] Open
Abstract
Dantrolene is a ryanodine receptor (RyR) inhibitor, which is used to relax muscles in malignant hyperthermia syndrome. Although dantrolene binds to the RyR protein, its mechanism of action is unknown, mainly because of the controversial results showing that dantrolene inhibited Ca2+ release from intact fibers and sarcoplasmic reticulum (SR) vesicles, but failed to inhibit single RyR channel currents in bilayers. Accordingly, it was concluded that an important factor for dantrolene's action was lost during the purification procedure of RyR. Recently, Mg2+ was demonstrated to be the essential factor for dantrolene to inhibit Ca2+ release in skinned muscle fibers. The aim of the present study was to confirm these results in Ca2+ release and bilayer experiments, using SR vesicles and solubilized channels, respectively. Our Ca2+ release experiments demonstrated that the effect of dantrolene and Mg2+ was cooperative and that ATP enhanced the inhibiting effect of dantrolene. Namely, 10 µM dantrolene reduced RyR channel open probability by ∼50% in the presence of 3 mM free Mg2+ and 1 mM ATP, whereas channel activity further decreased to ∼20% of control when [ATP] was increased to 2 mM. Our data provide important complementary information that supports the direct, Mg2+-dependent mechanism of dantrolene's action and suggests that dantrolene also requires ATP to inhibit RyR.
Collapse
Affiliation(s)
- Gyula Diszházi
- Departments of Physiology (G.D., Z.É.M., L.C., P.P.N., J.A.) and Biochemistry and Molecular Biology (J.A.M.), and Research Centre for Molecular Medicine (I.J.), Faculty of Medicine, and Department of Dental Physiology and Pharmacology, Faculty of Dentistry (P.P.N.), University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Édua Magyar
- Departments of Physiology (G.D., Z.É.M., L.C., P.P.N., J.A.) and Biochemistry and Molecular Biology (J.A.M.), and Research Centre for Molecular Medicine (I.J.), Faculty of Medicine, and Department of Dental Physiology and Pharmacology, Faculty of Dentistry (P.P.N.), University of Debrecen, Debrecen, Hungary
| | - János András Mótyán
- Departments of Physiology (G.D., Z.É.M., L.C., P.P.N., J.A.) and Biochemistry and Molecular Biology (J.A.M.), and Research Centre for Molecular Medicine (I.J.), Faculty of Medicine, and Department of Dental Physiology and Pharmacology, Faculty of Dentistry (P.P.N.), University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Departments of Physiology (G.D., Z.É.M., L.C., P.P.N., J.A.) and Biochemistry and Molecular Biology (J.A.M.), and Research Centre for Molecular Medicine (I.J.), Faculty of Medicine, and Department of Dental Physiology and Pharmacology, Faculty of Dentistry (P.P.N.), University of Debrecen, Debrecen, Hungary
| | - István Jóna
- Departments of Physiology (G.D., Z.É.M., L.C., P.P.N., J.A.) and Biochemistry and Molecular Biology (J.A.M.), and Research Centre for Molecular Medicine (I.J.), Faculty of Medicine, and Department of Dental Physiology and Pharmacology, Faculty of Dentistry (P.P.N.), University of Debrecen, Debrecen, Hungary
| | - Péter Pál Nánási
- Departments of Physiology (G.D., Z.É.M., L.C., P.P.N., J.A.) and Biochemistry and Molecular Biology (J.A.M.), and Research Centre for Molecular Medicine (I.J.), Faculty of Medicine, and Department of Dental Physiology and Pharmacology, Faculty of Dentistry (P.P.N.), University of Debrecen, Debrecen, Hungary
| | - János Almássy
- Departments of Physiology (G.D., Z.É.M., L.C., P.P.N., J.A.) and Biochemistry and Molecular Biology (J.A.M.), and Research Centre for Molecular Medicine (I.J.), Faculty of Medicine, and Department of Dental Physiology and Pharmacology, Faculty of Dentistry (P.P.N.), University of Debrecen, Debrecen, Hungary
| |
Collapse
|
193
|
Alzugaray ME, Gavazzi MV, Ronderos JR. Calcium signalling in early divergence of Metazoa: mechanisms involved in the control of muscle-like cell contraction in Hydra plagiodesmica. CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our laboratory has previously examined the effect of neuropeptides on the activity of the hypostome of the hydra Hydra plagiodesmica Dioni, 1968 (Cnidaria: Hydrozoa). These results showed that the hypostome, a structure extruded during feeding, responds to myoregulatory peptides and that this mechanism might be regulated by changes in the cytosolic levels of calcium (Ca2+). We analyse now the ways in which Ca2+ modulates hypostome activity during feeding. The use of calcium chelators confirms that Ca2+ is relevant in inducing hypostome extrusion. The assay of compounds that modulate the activity of Ca2+ channels in the endoplasmic reticulum suggests that, beyond the extracellular influx of calcium, intracellular sources of the ion are involved and might include both ryanodine receptors (RyR) and the inositol 1,4,5-trisphosphate receptor (IP3R). Bioinformatic searches based on sequences of RyR and IP3R of humans (Homo sapiens Linnaeus, 1758) show that IP3Rs are present in all groups analysed, including Fungi and Choanoflagellata. Although H. plagiodesmica responds to caffeine and ryanodine, which are known to modulate RyRs, this family of receptors seems not to be predicted in Cnidaria, suggesting that this phylum either lacks these kinds of channels or that they possess a different structure compared with those possessed by other Metazoa.
Collapse
Affiliation(s)
- María Eugenia Alzugaray
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM–UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - María Victoria Gavazzi
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM–UNLP), La Plata, Argentina
| | - Jorge Rafael Ronderos
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM–UNLP), La Plata, Argentina
| |
Collapse
|
194
|
Structure Determination by Single-Particle Cryo-Electron Microscopy: Only the Sky (and Intrinsic Disorder) is the Limit. Int J Mol Sci 2019; 20:ijms20174186. [PMID: 31461845 PMCID: PMC6747279 DOI: 10.3390/ijms20174186] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
Traditionally, X-ray crystallography and NMR spectroscopy represent major workhorses of structural biologists, with the lion share of protein structures reported in protein data bank (PDB) being generated by these powerful techniques. Despite their wide utilization in protein structure determination, these two techniques have logical limitations, with X-ray crystallography being unsuitable for the analysis of highly dynamic structures and with NMR spectroscopy being restricted to the analysis of relatively small proteins. In recent years, we have witnessed an explosive development of the techniques based on Cryo-electron microscopy (Cryo-EM) for structural characterization of biological molecules. In fact, single-particle Cryo-EM is a special niche as it is a technique of choice for the structural analysis of large, structurally heterogeneous, and dynamic complexes. Here, sub-nanometer atomic resolution can be achieved (i.e., resolution below 10 Å) via single-particle imaging of non-crystalline specimens, with accurate 3D reconstruction being generated based on the computational averaging of multiple 2D projection images of the same particle that was frozen rapidly in solution. We provide here a brief overview of single-particle Cryo-EM and show how Cryo-EM has revolutionized structural investigations of membrane proteins. We also show that the presence of intrinsically disordered or flexible regions in a target protein represents one of the major limitations of this promising technique.
Collapse
|
195
|
Ca 2+-regulated Ca 2+ channels with an RCK gating ring control plant symbiotic associations. Nat Commun 2019; 10:3703. [PMID: 31420535 PMCID: PMC6697748 DOI: 10.1038/s41467-019-11698-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/20/2019] [Indexed: 11/24/2022] Open
Abstract
A family of plant nuclear ion channels, including DMI1 (Does not Make Infections 1) and its homologs CASTOR and POLLUX, are required for the establishment of legume-microbe symbioses by generating nuclear and perinuclear Ca2+ spiking. Here we show that CASTOR from Lotus japonicus is a highly selective Ca2+ channel whose activation requires cytosolic/nucleosolic Ca2+, contrary to the previous suggestion of it being a K+ channel. Structurally, the cytosolic/nucleosolic ligand-binding soluble region of CASTOR contains two tandem RCK (Regulator of Conductance for K+) domains, and four subunits assemble into the gating ring architecture, similar to that of large conductance, Ca2+-gated K+ (BK) channels despite the lack of sequence similarity. Multiple ion binding sites are clustered at two locations within each subunit, and three of them are identified to be Ca2+ sites. Our in vitro and in vivo assays also demonstrate the importance of these gating-ring Ca2+ binding sites to the physiological function of CASTOR as well as DMI1. CASTOR is a Lotus japonicus ion channel required for nuclear Ca2+ spiking and establishing rhizobial and mycorrhizal symbioses. Here, via structural and functional analysis, Kim et al. show that CASTOR is a Ca2+-selective channel activated via Ca2+ binding to a soluble gating ring consisting of tandem RCK domains.
Collapse
|
196
|
Chirasani VR, Xu L, Addis HG, Pasek DA, Dokholyan NV, Meissner G, Yamaguchi N. A central core disease mutation in the Ca 2+-binding site of skeletal muscle ryanodine receptor impairs single-channel regulation. Am J Physiol Cell Physiol 2019; 317:C358-C365. [PMID: 31166712 PMCID: PMC6732417 DOI: 10.1152/ajpcell.00052.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
Abstract
Cryoelectron microscopy and mutational analyses have shown that type 1 ryanodine receptor (RyR1) amino acid residues RyR1-E3893, -E3967, and -T5001 are critical for Ca2+-mediated activation of skeletal muscle Ca2+ release channel. De novo missense mutation RyR1-Q3970K in the secondary binding sphere of Ca2+ was reported in association with central core disease (CCD) in a 2-yr-old boy. Here, we characterized recombinant RyR1-Q3970K mutant by cellular Ca2+ release measurements, single-channel recordings, and computational methods. Caffeine-induced Ca2+ release studies indicated that RyR1-Q3970K formed caffeine-sensitive, Ca2+-conducting channel in HEK293 cells. However, in single-channel recordings, RyR1-Q3970K displayed low Ca2+-dependent channel activity and greatly reduced activation by caffeine or ATP. A RyR1-Q3970E mutant corresponds to missense mutation RyR2-Q3925E associated with arrhythmogenic syndrome in cardiac muscle. RyR1-Q3970E also formed caffeine-induced Ca2+ release in HEK293 cells and exhibited low activity in the presence of the activating ligand Ca2+ but, in contrast to RyR1-Q3970K, was activated by ATP and caffeine in single-channel recordings. Computational analyses suggested distinct structural rearrangements in the secondary binding sphere of Ca2+ of the two mutants, whereas the interaction of Ca2+ with directly interacting RyR1 amino acid residues Glu3893, Glu3967, and Thr5001 was only minimally affected. We conclude that RyR1-Q3970 has a critical role in Ca2+-dependent activation of RyR1 and that a missense RyR1-Q3970K mutant may give rise to myopathy in skeletal muscle.
Collapse
Affiliation(s)
- Venkat R Chirasani
- Departments of Pharmacology and Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Le Xu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Hannah G Addis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, South Carolina
| | - Daniel A Pasek
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Nikolay V Dokholyan
- Departments of Pharmacology and Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Naohiro Yamaguchi
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, South Carolina
| |
Collapse
|
197
|
Modulation of cardiac ryanodine receptor 2 by calmodulin. Nature 2019; 572:347-351. [PMID: 31278385 DOI: 10.1038/s41586-019-1377-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/04/2019] [Indexed: 11/08/2022]
Abstract
The high-conductance intracellular calcium (Ca2+) channel RyR2 is essential for the coupling of excitation and contraction in cardiac muscle. Among various modulators, calmodulin (CaM) regulates RyR2 in a Ca2+-dependent manner. Here we reveal the regulatory mechanism by which porcine RyR2 is modulated by human CaM through the structural determination of RyR2 under eight conditions. Apo-CaM and Ca2+-CaM bind to distinct but overlapping sites in an elongated cleft formed by the handle, helical and central domains. The shift in CaM-binding sites on RyR2 is controlled by Ca2+ binding to CaM, rather than to RyR2. Ca2+-CaM induces rotations and intradomain shifts of individual central domains, resulting in pore closure of the PCB95 and Ca2+-activated channel. By contrast, the pore of the ATP, caffeine and Ca2+-activated channel remains open in the presence of Ca2+-CaM, which suggests that Ca2+-CaM is one of the many competing modulators of RyR2 gating.
Collapse
|
198
|
Wang T, Zhang L, Shi C, Wei R, Yin C. Interaction of the Homer1 EVH1 domain and skeletal muscle ryanodine receptor. Biochem Biophys Res Commun 2019; 514:720-725. [PMID: 31078268 DOI: 10.1016/j.bbrc.2019.04.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
The skeletal muscle ryanodine receptor (RyR1) proteins are intracellular calcium (Ca2+) release channels on the membrane of the sarcoplasmic reticulum (SR) and required for skeletal muscle excitation-contraction coupling. Homer (Vesl) is a family of scaffolding proteins that modulate target proteins including RyRs (ryanodine receptors), mGluRs (group 1 metabotropic glutamate receptors) and IP3Rs (inositol-1,4,5-trisphosphate receptors) through a conserved EVH1 (Ena/VASP homology 1) domain. Here, we examined the interaction between Homer1 EVH1 domain and RyR1 by co-immunoprecipitation, continuous sucrose density-gradient centrifugation, and bio-layer interferometry binding assay at different Ca2+ concentrations. Our results show that there exists a high-affinity binding between the Homer1 EVH1 domain and RyR1, especially at 1 mM of Ca2+. Based on our data and the known structures of Homer1 EVH1 domain and RyR1, we found two consensus proline-rich sequences in the structure of RyR1, PPHHF and FLPPP, and proposed two corresponding binding models to show mechanisms of recognition different from those used by other proline-rich motifs. The side proline residues of two proline-rich motifs from RyR1 are away from the hydrophobic surface of Homer1 EVH1, rather than buried in this hydrophobic surface. Our results provide evidence that Homer1 regulates RyR1 by direct interaction.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Biophysics, The Health Science Center, Peking University, Beijing, 100191, China.
| | - Lei Zhang
- Department of Biophysics, The Health Science Center, Peking University, Beijing, 100191, China; Electron Microscopy Analysis Laboratory, The Health Science Center, Peking University, Beijing, 100191, China.
| | - Chao Shi
- Department of Biophysics, The Health Science Center, Peking University, Beijing, 100191, China.
| | - Risheng Wei
- Department of Biophysics, The Health Science Center, Peking University, Beijing, 100191, China.
| | - Changcheng Yin
- Department of Biophysics, The Health Science Center, Peking University, Beijing, 100191, China; Electron Microscopy Analysis Laboratory, The Health Science Center, Peking University, Beijing, 100191, China; Center for Protein Science, Peking University, Beijing, 100871, China.
| |
Collapse
|
199
|
Salvage SC, Gallant EM, Beard NA, Ahmad S, Valli H, Fraser JA, Huang CLH, Dulhunty AF. Ion channel gating in cardiac ryanodine receptors from the arrhythmic RyR2-P2328S mouse. J Cell Sci 2019; 132:jcs.229039. [PMID: 31028179 PMCID: PMC6550012 DOI: 10.1242/jcs.229039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
Mutations in the cardiac ryanodine receptor Ca2+ release channel (RyR2) can cause deadly ventricular arrhythmias and atrial fibrillation (AF). The RyR2-P2328S mutation produces catecholaminergic polymorphic ventricular tachycardia (CPVT) and AF in hearts from homozygous RyR2P2328S/P2328S (denoted RyR2S/S) mice. We have now examined P2328S RyR2 channels from RyR2S/S hearts. The activity of wild-type (WT) and P2328S RyR2 channels was similar at a cytoplasmic [Ca2+] of 1 mM, but P2328S RyR2 was significantly more active than WT at a cytoplasmic [Ca2+] of 1 µM. This was associated with a >10-fold shift in the half maximal activation concentration (AC50) for Ca2+ activation, from ∼3.5 µM Ca2+ in WT RyR2 to ∼320 nM in P2328S channels and an unexpected >1000-fold shift in the half maximal inhibitory concentration (IC50) for inactivation from ∼50 mM in WT channels to ≤7 μM in P2328S channels, which is into systolic [Ca2+] levels. Unexpectedly, the shift in Ca2+ activation was not associated with changes in sub-conductance activity, S2806 or S2814 phosphorylation or the level of FKBP12 (also known as FKBP1A) bound to the channels. The changes in channel activity seen with the P2328S mutation correlate with altered Ca2+ homeostasis in myocytes from RyR2S/S mice and the CPVT and AF phenotypes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Samantha C Salvage
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Esther M Gallant
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Acton ACT 2601, Australia
| | - Nicole A Beard
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Haseeb Valli
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - James A Fraser
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Angela F Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Acton ACT 2601, Australia
| |
Collapse
|
200
|
Haji-Ghassemi O, Yuchi Z, Van Petegem F. The Cardiac Ryanodine Receptor Phosphorylation Hotspot Embraces PKA in a Phosphorylation-Dependent Manner. Mol Cell 2019; 75:39-52.e4. [PMID: 31078384 DOI: 10.1016/j.molcel.2019.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/05/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
Ryanodine receptors (RyRs) are intracellular Ca2+ release channels controlling essential cellular functions. RyRs are targeted by cyclic AMP (cAMP)-dependent protein kinase A (PKA), a controversial regulation implicated in disorders ranging from heart failure to Alzheimer's. Using crystal structures, we show that the phosphorylation hotspot domain of RyR2 embraces the PKA catalytic subunit, with an extensive interface not seen in PKA complexes with peptides. We trapped an intermediary open-form PKA bound to the RyR2 domain and an ATP analog, showing that PKA can engage substrates in an open form. Phosphomimetics or prior phosphorylation at nearby sites in RyR2 either enhance or reduce the activity of PKA. Finally, we show that a phosphomimetic at S2813, a well-known target site for calmodulin-dependent kinase II, induces the formation of an alpha helix in the phosphorylation domain, resulting in increased interactions and PKA activity. This shows that the different phosphorylation sites in RyR2 are not independent.
Collapse
Affiliation(s)
- Omid Haji-Ghassemi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zhiguang Yuchi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|