151
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. RNA-Binding Proteins as Epigenetic Regulators of Brain Functions and Their Involvement in Neurodegeneration. Int J Mol Sci 2022; 23:ijms232314622. [PMID: 36498959 PMCID: PMC9739182 DOI: 10.3390/ijms232314622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
A central aspect of nervous system development and function is the post-transcriptional regulation of mRNA fate, which implies time- and site-dependent translation, in response to cues originating from cell-to-cell crosstalk. Such events are fundamental for the establishment of brain cell asymmetry, as well as of long-lasting modifications of synapses (long-term potentiation: LTP), responsible for learning, memory, and higher cognitive functions. Post-transcriptional regulation is in turn dependent on RNA-binding proteins that, by recognizing and binding brief RNA sequences, base modifications, or secondary/tertiary structures, are able to control maturation, localization, stability, and translation of the transcripts. Notably, most RBPs contain intrinsically disordered regions (IDRs) that are thought to be involved in the formation of membrane-less structures, probably due to liquid-liquid phase separation (LLPS). Such structures are evidenced as a variety of granules that contain proteins and different classes of RNAs. The other side of the peculiar properties of IDRs is, however, that, under altered cellular conditions, they are also prone to form aggregates, as observed in neurodegeneration. Interestingly, RBPs, as part of both normal and aggregated complexes, are also able to enter extracellular vesicles (EVs), and in doing so, they can also reach cells other than those that produced them.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-238-97 (ext. 415/446)
| |
Collapse
|
152
|
Han P, She Y, Yang Z, Zhuang M, Wang Q, Luo X, Yin C, Zhu J, Jaffrey SR, Ji SJ. Cbln1 regulates axon growth and guidance in multiple neural regions. PLoS Biol 2022; 20:e3001853. [PMID: 36395107 PMCID: PMC9671368 DOI: 10.1371/journal.pbio.3001853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
The accurate construction of neural circuits requires the precise control of axon growth and guidance, which is regulated by multiple growth and guidance cues during early nervous system development. It is generally thought that the growth and guidance cues that control the major steps of axon development have been defined. Here, we describe cerebellin-1 (Cbln1) as a novel cue that controls diverse aspects of axon growth and guidance throughout the central nervous system (CNS) by experiments using mouse and chick embryos. Cbln1 has previously been shown to function in late neural development to influence synapse organization. Here, we find that Cbln1 has an essential role in early neural development. Cbln1 is expressed on the axons and growth cones of developing commissural neurons and functions in an autocrine manner to promote axon growth. Cbln1 is also expressed in intermediate target tissues and functions as an attractive guidance cue. We find that these functions of Cbln1 are mediated by neurexin-2 (Nrxn2), which functions as the Cbln1 receptor for axon growth and guidance. In addition to the developing spinal cord, we further show that Cbln1 functions in diverse parts of the CNS with major roles in cerebellar parallel fiber growth and retinal ganglion cell axon guidance. Despite the prevailing role of Cbln1 as a synaptic organizer, our study discovers a new and unexpected function for Cbln1 as a general axon growth and guidance cue throughout the nervous system.
Collapse
Affiliation(s)
- Peng Han
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuanchu She
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhuoxuan Yang
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Mengru Zhuang
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qingjun Wang
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaopeng Luo
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Chaoqun Yin
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Junda Zhu
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Samie R. Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, New York, United States of America
- * E-mail: (SRJ); (SJJ)
| | - Sheng-Jian Ji
- School of Life Sciences, Department of Neuroscience and Department of Biology, Brain Research Center, Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
- * E-mail: (SRJ); (SJJ)
| |
Collapse
|
153
|
Saunders A, Huang KW, Vondrak C, Hughes C, Smolyar K, Sen H, Philson AC, Nemesh J, Wysoker A, Kashin S, Sabatini BL, McCarroll SA. Ascertaining cells' synaptic connections and RNA expression simultaneously with barcoded rabies virus libraries. Nat Commun 2022; 13:6993. [PMID: 36384944 PMCID: PMC9668842 DOI: 10.1038/s41467-022-34334-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
Brain function depends on synaptic connections between specific neuron types, yet systematic descriptions of synaptic networks and their molecular properties are not readily available. Here, we introduce SBARRO (Synaptic Barcode Analysis by Retrograde Rabies ReadOut), a method that uses single-cell RNA sequencing to reveal directional, monosynaptic relationships based on the paths of a barcoded rabies virus from its "starter" postsynaptic cell to that cell's presynaptic partners. Thousands of these partner relationships can be ascertained in a single experiment, alongside genome-wide RNAs. We use SBARRO to describe synaptic networks formed by diverse mouse brain cell types in vitro, finding that different cell types have presynaptic networks with differences in average size and cell type composition. Patterns of RNA expression suggest that functioning synapses are critical for rabies virus uptake. By tracking individual rabies clones across cells, SBARRO offers new opportunities to map the synaptic organization of neural circuits.
Collapse
Affiliation(s)
- Arpiar Saunders
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.5288.70000 0000 9758 5690Vollum Institute, Oregon Health & Science University, Portland, OR 97239 USA
| | - Kee Wui Huang
- grid.38142.3c000000041936754XHoward Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - Cassandra Vondrak
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Christina Hughes
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Karina Smolyar
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Harsha Sen
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Adrienne C. Philson
- grid.38142.3c000000041936754XHoward Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - James Nemesh
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Alec Wysoker
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Seva Kashin
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Bernardo L. Sabatini
- grid.38142.3c000000041936754XHoward Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - Steven A. McCarroll
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| |
Collapse
|
154
|
A slit-diaphragm-associated protein network for dynamic control of renal filtration. Nat Commun 2022; 13:6446. [PMID: 36307401 PMCID: PMC9616960 DOI: 10.1038/s41467-022-33748-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/29/2022] [Indexed: 12/25/2022] Open
Abstract
The filtration of blood in the kidney which is crucial for mammalian life is determined by the slit-diaphragm, a cell-cell junction between the foot processes of renal podocytes. The slit-diaphragm is thought to operate as final barrier or as molecular sensor of renal filtration. Using high-resolution proteomic analysis of slit-diaphragms affinity-isolated from rodent kidney, we show that the native slit-diaphragm is built from the junction-forming components Nephrin, Neph1 and Podocin and a co-assembled high-molecular weight network of proteins. The network constituents cover distinct classes of proteins including signaling-receptors, kinases/phosphatases, transporters and scaffolds. Knockout or knock-down of either the core components or the selected network constituents tyrosine kinase MER (MERTK), atrial natriuretic peptide-receptor C (ANPRC), integral membrane protein 2B (ITM2B), membrane-associated guanylate-kinase, WW and PDZ-domain-containing protein1 (MAGI1) and amyloid protein A4 resulted in target-specific impairment or disruption of the filtration process. Our results identify the slit-diaphragm as a multi-component system that is endowed with context-dependent dynamics via a co-assembled protein network.
Collapse
|
155
|
Janz P, Bainier M, Marashli S, Schoenenberger P, Valencia M, Redondo RL. Neurexin1α knockout rats display oscillatory abnormalities and sensory processing deficits back-translating key endophenotypes of psychiatric disorders. Transl Psychiatry 2022; 12:455. [PMID: 36307390 PMCID: PMC9616904 DOI: 10.1038/s41398-022-02224-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Neurexins are presynaptic transmembrane proteins crucial for synapse development and organization. Deletion and missense mutations in all three Neurexin genes have been identified in psychiatric disorders, with mutations in the NRXN1 gene most strongly linked to schizophrenia (SZ) and autism spectrum disorder (ASD). While the consequences of NRXN1 deletion have been extensively studied on the synaptic and behavioral levels, circuit endophenotypes that translate to the human condition have not been characterized yet. Therefore, we investigated the electrophysiology of cortico-striatal-thalamic circuits in Nrxn1α-/- rats and wildtype littermates focusing on a set of translational readouts, including spontaneous oscillatory activity, auditory-evoked oscillations and potentials, as well as mismatch negativity-like (MMN) responses and responses to social stimuli. On the behavioral level Nrxn1α-/- rats showed locomotor hyperactivity. In vivo freely moving electrophysiology revealed pronounced increases of spontaneous oscillatory power within the gamma band in all studied brain areas and elevation of gamma coherence in cortico-striatal and thalamocortical circuits of Nrxn1α-/- rats. In contrast, auditory-evoked oscillations driven by chirp-modulated tones showed reduced power in cortical areas confined to slower oscillations. Finally, Nrxn1α-/- rats exhibited altered auditory evoked-potentials and profound deficits in MMN-like responses, explained by reduced prediction error. Despite deficits for auditory stimuli, responses to social stimuli appeared intact. A central hypothesis for psychiatric and neurodevelopmental disorders is that a disbalance of excitation-to-inhibition is underlying oscillatory and sensory deficits. In a first attempt to explore the impact of inhibitory circuit modulation, we assessed the effects of enhancing tonic inhibition via δ-containing GABAA receptors (using Gaboxadol) on endophenotypes possibly associated with network hyperexcitability. Pharmacological experiments applying Gaboxadol showed genotype-specific differences, but failed to normalize oscillatory or sensory processing abnormalities. In conclusion, our study revealed endophenotypes in Nrxn1α-/- rats that could be used as translational biomarkers for drug development in psychiatric disorders.
Collapse
Affiliation(s)
- Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Marie Bainier
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Samuel Marashli
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Philipp Schoenenberger
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Miguel Valencia
- Universidad de Navarra, CIMA, Program of Neuroscience, 31080, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31080, Pamplona, Spain
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, 31080, Pamplona, Spain
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
156
|
Midorikawa M. Developmental and activity-dependent modulation of coupling distance between release site and Ca2+ channel. Front Cell Neurosci 2022; 16:1037721. [DOI: 10.3389/fncel.2022.1037721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Synapses are junctions between a presynaptic neuron and a postsynaptic cell specialized for fast and precise information transfer. The presynaptic terminal secretes neurotransmitters via exocytosis of synaptic vesicles. Exocytosis is a tightly regulated reaction that occurs within a millisecond of the arrival of an action potential. One crucial parameter in determining the characteristics of the transmitter release kinetics is the coupling distance between the release site and the Ca2+ channel. Still, the technical limitations have hindered detailed analysis from addressing how the coupling distance is regulated depending on the development or activity of the synapse. However, recent technical advances in electrophysiology and imaging are unveiling their different configurations in different conditions. Here, I will summarize developmental- and activity-dependent changes in the coupling distances revealed by recent studies.
Collapse
|
157
|
Michetti C, Falace A, Benfenati F, Fassio A. Synaptic genes and neurodevelopmental disorders: From molecular mechanisms to developmental strategies of behavioral testing. Neurobiol Dis 2022; 173:105856. [PMID: 36070836 DOI: 10.1016/j.nbd.2022.105856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
Synaptopathies are a class of neurodevelopmental disorders caused by modification in genes coding for synaptic proteins. These proteins oversee the process of neurotransmission, mainly controlling the fusion and recycling of synaptic vesicles at the presynaptic terminal, the expression and localization of receptors at the postsynapse and the coupling between the pre- and the postsynaptic compartments. Murine models, with homozygous or heterozygous deletion for several synaptic genes or knock-in for specific pathogenic mutations, have been developed. They have proved to be extremely informative for understanding synaptic physiology, as well as for clarifying the patho-mechanisms leading to developmental delay, epilepsy and motor, cognitive and social impairments that are the most common clinical manifestations of neurodevelopmental disorders. However, the onset of these disorders emerges during infancy and adolescence while the behavioral phenotyping is often conducted in adult mice, missing important information about the impact of synaptic development and maturation on the manifestation of the behavioral phenotype. Here, we review the main achievements obtained by behavioral testing in murine models of synaptopathies and propose a battery of behavioral tests to improve classification, diagnosis and efficacy of potential therapeutic treatments. Our aim is to underlie the importance of studying behavioral development and better focusing on disease onset and phenotypes.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Antonio Falace
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
158
|
Shao Z, Yang Y, Hu Z. Editorial: Regulation of synaptic structure and function. Front Mol Neurosci 2022; 15:1060367. [PMID: 36311012 PMCID: PMC9615913 DOI: 10.3389/fnmol.2022.1060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Zhiyong Shao
| | - Yang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Yang Yang
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD, Australia
- Zhitao Hu
| |
Collapse
|
159
|
Dai J, Liakath-Ali K, Golf SR, Südhof TC. Distinct neurexin-cerebellin complexes control AMPA- and NMDA-receptor responses in a circuit-dependent manner. eLife 2022; 11:e78649. [PMID: 36205393 PMCID: PMC9586558 DOI: 10.7554/elife.78649] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023] Open
Abstract
At CA1→subiculum synapses, alternatively spliced neurexin-1 (Nrxn1SS4+) and neurexin-3 (Nrxn3SS4+) enhance NMDA-receptors and suppress AMPA-receptors, respectively, without affecting synapse formation. Nrxn1SS4+ and Nrxn3SS4+ act by binding to secreted cerebellin-2 (Cbln2) that in turn activates postsynaptic GluD1 receptors. Whether neurexin-Cbln2-GluD1 signaling has additional functions besides regulating NMDA- and AMPA-receptors, and whether such signaling performs similar roles at other synapses, however, remains unknown. Here, we demonstrate using constitutive Cbln2 deletions in mice that at CA1→subiculum synapses, Cbln2 performs no additional developmental roles besides regulating AMPA- and NMDA-receptors. Moreover, low-level expression of functionally redundant Cbln1 did not compensate for a possible synapse-formation function of Cbln2 at CA1→subiculum synapses. In exploring the generality of these findings, we examined the prefrontal cortex where Cbln2 was recently implicated in spinogenesis, and the cerebellum where Cbln1 is known to regulate parallel-fiber synapses. In the prefrontal cortex, Nrxn1SS4+-Cbln2 signaling selectively controlled NMDA-receptors without affecting spine or synapse numbers, whereas Nrxn3SS4+-Cbln2 signaling had no apparent role. In the cerebellum, conversely, Nrxn3SS4+-Cbln1 signaling regulated AMPA-receptors, whereas now Nrxn1SS4+-Cbln1 signaling had no manifest effect. Thus, Nrxn1SS4+- and Nrxn3SS4+-Cbln1/2 signaling complexes differentially control NMDA- and AMPA-receptors in different synapses in diverse neural circuits without regulating synapse or spine formation.
Collapse
Affiliation(s)
- Jinye Dai
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Kif Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Samantha Rose Golf
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Thomas C Südhof
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| |
Collapse
|
160
|
Dissection of the long-range projections of specific neurons at the synaptic level in the whole mouse brain. Proc Natl Acad Sci U S A 2022; 119:e2202536119. [PMID: 36161898 PMCID: PMC9546530 DOI: 10.1073/pnas.2202536119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Through synaptic connections, long-range circuits transmit information among neurons and connect different brain regions to form functional motifs and execute specific functions. Tracing the synaptic distribution of specific neurons requires submicron-level resolution information. However, it is a great challenge to map the synaptic terminals completely because these fine structures span multiple regions, even in the whole brain. Here, we develop a pipeline including viral tracing, sample embedding, fluorescent micro-optical sectional tomography, and big data processing. We mapped the whole-brain distribution and architecture of long projections of the parvalbumin neurons in the basal forebrain at the synaptic level. These neurons send massive projections to multiple downstream regions with subregional preference. With three-dimensional reconstruction in the targeted areas, we found that synaptic degeneration was inconsistent with the accumulation of amyloid-β plaques but was preferred in memory-related circuits, such as hippocampal formation and thalamus, but not in most hypothalamic nuclei in 8-month-old mice with five familial Alzheimer's disease mutations. Our pipeline provides a platform for generating a whole-brain atlas of cell-type-specific synaptic terminals in the physiological and pathological brain, which can provide an important resource for the study of the organizational logic of specific neural circuits and the circuitry changes in pathological conditions.
Collapse
|
161
|
Qi C, Luo LD, Feng I, Ma S. Molecular mechanisms of synaptogenesis. Front Synaptic Neurosci 2022; 14:939793. [PMID: 36176941 PMCID: PMC9513053 DOI: 10.3389/fnsyn.2022.939793] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Synapses are the basic units for information processing and storage in the nervous system. It is only when the synaptic connection is established, that it becomes meaningful to discuss the structure and function of a circuit. In humans, our unparalleled cognitive abilities are correlated with an increase in the number of synapses. Additionally, genes involved in synaptogenesis are also frequently associated with neurological or psychiatric disorders, suggesting a relationship between synaptogenesis and brain physiology and pathology. Thus, understanding the molecular mechanisms of synaptogenesis is the key to the mystery of circuit assembly and neural computation. Furthermore, it would provide therapeutic insights for the treatment of neurological and psychiatric disorders. Multiple molecular events must be precisely coordinated to generate a synapse. To understand the molecular mechanisms underlying synaptogenesis, we need to know the molecular components of synapses, how these molecular components are held together, and how the molecular networks are refined in response to neural activity to generate new synapses. Thanks to the intensive investigations in this field, our understanding of the process of synaptogenesis has progressed significantly. Here, we will review the molecular mechanisms of synaptogenesis by going over the studies on the identification of molecular components in synapses and their functions in synaptogenesis, how cell adhesion molecules connect these synaptic molecules together, and how neural activity mobilizes these molecules to generate new synapses. Finally, we will summarize the human-specific regulatory mechanisms in synaptogenesis and results from human genetics studies on synaptogenesis and brain disorders.
Collapse
Affiliation(s)
- Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Cai Qi,
| | - Li-Da Luo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, United States
| | - Irena Feng
- Boston University School of Medicine, Boston, MA, United States
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
162
|
Kim J, Wulschner LEG, Oh WC, Ko J. Trans
‐synaptic mechanisms orchestrated by mammalian synaptic cell adhesion molecules. Bioessays 2022; 44:e2200134. [DOI: 10.1002/bies.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jinhu Kim
- Department of Brain Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Korea
- Center for Synapse Diversity and Specificity DGIST Daegu Korea
| | | | - Won Chan Oh
- Department of Pharmacology University of Colorado School of Medicine Aurora Colorado USA
| | - Jaewon Ko
- Department of Brain Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Korea
- Center for Synapse Diversity and Specificity DGIST Daegu Korea
| |
Collapse
|
163
|
Liu X, Hua F, Yang D, Lin Y, Zhang L, Ying J, Sheng H, Wang X. Roles of neuroligins in central nervous system development: focus on glial neuroligins and neuron neuroligins. Lab Invest 2022; 20:418. [PMID: 36088343 PMCID: PMC9463862 DOI: 10.1186/s12967-022-03625-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022]
Abstract
Neuroligins are postsynaptic cell adhesion molecules that are relevant to many neurodevelopmental disorders. They are differentially enriched at the postsynapse and interact with their presynaptic ligands, neurexins, whose differential binding to neuroligins has been shown to regulate synaptogenesis, transmission, and other synaptic properties. The proper functioning of functional networks in the brain depends on the proper connection between neuronal synapses. Impaired synaptogenesis or synaptic transmission results in synaptic dysfunction, and these synaptic pathologies are the basis for many neurodevelopmental disorders. Deletions or mutations in the neuroligins genes have been found in patients with both autism and schizophrenia. It is because of the important role of neuroligins in synaptic connectivity and synaptic dysfunction that studies on neuroligins in the past have mainly focused on their expression in neurons. As studies on the expression of genes specific to various cells of the central nervous system deepened, neuroligins were found to be expressed in non-neuronal cells as well. In the central nervous system, glial cells are the most representative non-neuronal cells, which can also express neuroligins in large amounts, especially astrocytes and oligodendrocytes, and they are involved in the regulation of synaptic function, as are neuronal neuroligins. This review examines the mechanisms of neuron neuroligins and non-neuronal neuroligins in the central nervous system and also discusses the important role of neuroligins in the development of the central nervous system and neurodevelopmental disorders from the perspective of neuronal neuroligins and glial neuroligins.
Collapse
|
164
|
Maurer MH, Kohler A, Hudemann M, Jüngling J, Biskup S, Menzel M. Case Report of a Juvenile Patient with Autism Spectrum Disorder with a Novel Combination of Copy Number Variants in ADGRL3 (LPHN3) and Two Pseudogenes. Appl Clin Genet 2022; 15:125-131. [PMID: 36082049 PMCID: PMC9447451 DOI: 10.2147/tacg.s361239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
We report the finding of two copy number variants (CNVs) in a 12-year-old boy presenting both with autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Clinical features included aggressive behavior, mood instability, suicidal statements, repetitive and restrictive behavior, sensitivity to noise, learning problems and dyslexia, though no intellectual disability was present. Using array-based comparative genomic hybridization (array-CGH), we identified two CNVs, both triplex duplications of 324 kb on 3p26.3, and 284 kb on 4q13.1, respectively. One of the CNVs is located on chromosome 4q13.1 in the region of the gene encoding for adhesion G protein-coupled receptor L3 (ADGRL3, former name: latrophilin-3, LPHN3), the other on chromosome 3p26.3 in the region of the two pseudogenes AC090043.1 and RPL23AP39. The patient described in the present study showed increased symptoms under methylphenidate treatment but responded positively to 3 mg per day of the atypical neuroleptic drug aripiprazole. To our knowledge, this is the first report of a CNV in the ADGRL3 gene and its first association with ASD in humans.
Collapse
Affiliation(s)
- Martin H Maurer
- Mariaberg Hospital for Child and Adolescent Psychiatry, Gammertingen, Germany
- Correspondence: Martin H Maurer, Mariaberg Hospital for Child and Adolescent Psychiatry, Burghaldenstraße 12, Gammertingen, 72501, Germany, Tel +49 7124 9237200, Fax +49 7124 923555, Email
| | - Anja Kohler
- Mariaberg Hospital for Child and Adolescent Psychiatry, Gammertingen, Germany
| | - Melanie Hudemann
- Mariaberg Hospital for Child and Adolescent Psychiatry, Gammertingen, Germany
| | | | - Saskia Biskup
- Zentrum für Humangenetik, Tübingen, Germany
- Center for Genomics and Transcriptomics, CeGaT GmbH, Tübingen, Germany
| | - Martin Menzel
- Mariaberg Hospital for Child and Adolescent Psychiatry, Gammertingen, Germany
| |
Collapse
|
165
|
Zhang W, Chen Y, Qin J, Lu J, Fan Y, Shi Z, Song X, Li C, Zhao T. Prolonged sevoflurane exposure causes abnormal synapse development and dysregulates beta-neurexin and neuroligins in the hippocampus in neonatal rats. J Affect Disord 2022; 312:22-29. [PMID: 35691415 DOI: 10.1016/j.jad.2022.05.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The underlying molecular mechanisms of the excitatory/inhibitory (E/I) imbalance induced by sevoflurane exposure to neonates remain poorly understood. This study aimed to investigate the long-term effects of prolonged sevoflurane exposure to neonatal rats during the peak period of synaptogenesis on the changes of trans-synaptic neurexin-neuroligin interactions, synaptic ultrastructure in the hippocampus and cognition. METHODS A total of 30 rat pups at postnatal day (P) 7 was randomly divided into two groups: the control group (exposed to 30 % oxygen balanced with nitrogen) and the sevoflurane group (exposed to 2.5 % sevoflurane plus 30 % oxygen balanced with nitrogen) for 6 h. Neurocognitive behaviors were assessed with the Open field test at P23-25 and the Morris water maze test at P26-30. The expression of β-neurexin (β-NRX), N-methyl-d-aspartate receptor 2 subunit (NR2A and NR2B), neuroligin-1 (NLG-1), neuroligin-2 (NLG-2), postsynaptic density protein-95 (PSD-95), α1-subunit of the γ-aminobutyric acid A receptor (GABAAα1) and gephyrin in the hippocampus at P30 were measured by Western blot. The ultrastructure of synapses was examined under electron microscope. RESULTS Prolonged sevoflurane exposure at P7 resulted in cognitive deficiency in adolescence, as well as the downregulation of β-NRX, NR2A, NR2B, NLG-1, and PSD-95, and the upregulation of GABAAα1, NLG-2, and gephyrin in the hippocampal CA3 region. Sevoflurane anesthesia also increased the number of symmetric synapses in the hippocampus. CONCLUSIONS Prolonged sevoflurane exposure during the brain development leads to cognitive deficiency and disproportion of excitatory/inhibitory synapses which may be caused by dysregulated expression of synaptic adhesion molecules of β-NRX and neuroligins.
Collapse
Affiliation(s)
- Wenhua Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China; Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yanxin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China; Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510623, China
| | - Jingwen Qin
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Junming Lu
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China; Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510623, China
| | - Yanting Fan
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ziwen Shi
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Chuanxiang Li
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China; Department of Anesthesiology, Pinghu Hospital of Shenzhen University, Shenzhen 518111, China.
| | - Tianyun Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| |
Collapse
|
166
|
Ramirez MA, Ninoyu Y, Miller C, Andrade LR, Edassery S, Bomba-Warczak E, Ortega B, Manor U, Rutherford MA, Friedman RA, Savas JN. Cochlear ribbon synapse maturation requires Nlgn1 and Nlgn3. iScience 2022; 25:104803. [PMID: 35992071 PMCID: PMC9386149 DOI: 10.1016/j.isci.2022.104803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/10/2022] [Accepted: 07/15/2022] [Indexed: 01/13/2023] Open
Abstract
Hearing depends on precise synaptic transmission between cochlear inner hair cells and spiral ganglion neurons through afferent ribbon synapses. Neuroligins (Nlgns) facilitate synapse maturation in the brain, but they have gone unstudied in the cochlea. We report Nlgn3 and Nlgn1 knockout (KO) cochleae have fewer ribbon synapses and have impaired hearing. Nlgn3 KO is more vulnerable to noise trauma with limited activity at high frequencies one day after noise. Furthermore, Nlgn3 KO cochleae have a 5-fold reduction in synapse number compared to wild type after two weeks of recovery. Double KO cochlear phenotypes are more prominent than the KOs, for example, 5-fold smaller synapses, 25% reduction in synapse density, and 30% less synaptic output. These observations indicate Nlgn3 and Nlgn1 are essential to cochlear ribbon synapse maturation and function.
Collapse
Affiliation(s)
- Miguel A. Ramirez
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yuzuru Ninoyu
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, 9500 Gilman Drive, Mail Code 0666, La Jolla, CA 92093, USA
| | - Cayla Miller
- Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Leonardo R. Andrade
- Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Seby Edassery
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ewa Bomba-Warczak
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Briana Ortega
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, 9500 Gilman Drive, Mail Code 0666, La Jolla, CA 92093, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark A. Rutherford
- Department of Otolaryngology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Rick A. Friedman
- Division of Otolaryngology, Department of Surgery, University of California, San Diego, 9500 Gilman Drive, Mail Code 0666, La Jolla, CA 92093, USA
| | - Jeffrey N. Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
167
|
Nozawa K, Sogabe T, Hayashi A, Motohashi J, Miura E, Arai I, Yuzaki M. In vivo nanoscopic landscape of neurexin ligands underlying anterograde synapse specification. Neuron 2022; 110:3168-3185.e8. [PMID: 36007521 DOI: 10.1016/j.neuron.2022.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/04/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Excitatory synapses are formed and matured by the cooperative actions of synaptic organizers, such as neurexins (Nrxns), neuroligins (Nlgns), LRRTMs, and Cbln1. Recent super-resolution nanoscopy developments have revealed that many synaptic organizers, as well as glutamate receptors and glutamate release machinery, exist as nanoclusters within synapses. However, it is unclear how such nanodomains interact with each other to organize excitatory synapses in vivo. By applying X10 expansion microscopy to epitope tag knockin mice, we found that Cbln1, Nlgn1, and LRRTM1, which share Nrxn as a common presynaptic receptor, form overlapping or separate nanodomains depending on Nrxn with or without a sequence encoded by splice site 4. The size and position of glutamate receptor nanodomains of GluD1, NMDA, and AMPA receptors were regulated by Cbln1, Nlgn1, and LRRTM1 nanodomains, respectively. These findings indicate that Nrxns anterogradely regulate the postsynaptic nanoscopic architecture of glutamate receptors through competition and coordination of Nrxn ligands.
Collapse
Affiliation(s)
- Kazuya Nozawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Taku Sogabe
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayumi Hayashi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Junko Motohashi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eriko Miura
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Itaru Arai
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
168
|
Balseiro-Gómez S, Park J, Yue Y, Ding C, Shao L, Ҫetinkaya S, Kuzoian C, Hammarlund M, Verhey KJ, Yogev S. Neurexin and frizzled intercept axonal transport at microtubule minus ends to control synapse formation. Dev Cell 2022; 57:1802-1816.e4. [PMID: 35809561 PMCID: PMC9378695 DOI: 10.1016/j.devcel.2022.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 02/01/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023]
Abstract
Synapse formation is locally determined by transmembrane proteins, yet synaptic material is synthesized remotely and undergoes processive transport in axons. How local synaptogenic signals intercept synaptic cargo in transport to promote its delivery and synapse formation is unknown. We found that the control of synaptic cargo delivery at microtubule (MT) minus ends mediates pro- and anti-synaptogenic activities of presynaptic neurexin and frizzled in C. elegans and identified the atypical kinesin VAB-8/KIF26 as a key molecule in this process. VAB-8/KIF26 levels at synaptic MT minus ends are controlled by frizzled and neurexin; loss of VAB-8 mimics neurexin mutants or frizzled hyperactivation, and its overexpression can rescue synapse loss in these backgrounds. VAB-8/KIF26 is required for the synaptic localization of other minus-end proteins and promotes the pausing of retrograde transport to allow delivery to synapses. Consistently, reducing retrograde transport rescues synapse loss in vab-8 and neurexin mutants. These results uncover a mechanistic link between synaptogenic signaling and axonal transport.
Collapse
Affiliation(s)
- Santiago Balseiro-Gómez
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Junhyun Park
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chen Ding
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Lin Shao
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Selim Ҫetinkaya
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Caroline Kuzoian
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Marc Hammarlund
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaul Yogev
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA.
| |
Collapse
|
169
|
Ducrot C, Trudeau LÉ. [Synaptic and non-synaptic connectivity of dopaminergic neurons]. Med Sci (Paris) 2022; 38:627-629. [PMID: 36094225 DOI: 10.1051/medsci/2022088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Charles Ducrot
- Département de pharmacologie et physiologie, Département de neurosciences, faculté de médecine, université de Montréal, Montréal, Québec, Canada
| | - Louis-Éric Trudeau
- Département de pharmacologie et physiologie, Département de neurosciences, faculté de médecine, université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
170
|
Neurovascular dysfunction in GRN-associated frontotemporal dementia identified by single-nucleus RNA sequencing of human cerebral cortex. Nat Neurosci 2022; 25:1034-1048. [PMID: 35879464 DOI: 10.1038/s41593-022-01124-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/16/2022] [Indexed: 12/13/2022]
Abstract
Frontotemporal dementia (FTD) is the second most prevalent form of early-onset dementia, affecting predominantly frontal and temporal cerebral lobes. Heterozygous mutations in the progranulin gene (GRN) cause autosomal-dominant FTD (FTD-GRN), associated with TDP-43 inclusions, neuronal loss, axonal degeneration and gliosis, but FTD-GRN pathogenesis is largely unresolved. Here we report single-nucleus RNA sequencing of microglia, astrocytes and the neurovasculature from frontal, temporal and occipital cortical tissue from control and FTD-GRN brains. We show that fibroblast and mesenchymal cell numbers were enriched in FTD-GRN, and we identified disease-associated subtypes of astrocytes and endothelial cells. Expression of gene modules associated with blood-brain barrier (BBB) dysfunction was significantly enriched in FTD-GRN endothelial cells. The vasculature supportive function and capillary coverage by pericytes was reduced in FTD-GRN tissue, with increased and hypertrophic vascularization and an enrichment of perivascular T cells. Our results indicate a perturbed BBB and suggest that the neurovascular unit is severely affected in FTD-GRN.
Collapse
|
171
|
Exome sequencing analysis of Japanese autism spectrum disorder case-control sample supports an increased burden of synaptic function-related genes. Transl Psychiatry 2022; 12:265. [PMID: 35811316 PMCID: PMC9271461 DOI: 10.1038/s41398-022-02033-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 01/16/2023] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable, complex disorder in which rare variants contribute significantly to disease risk. Although many genes have been associated with ASD, there have been few genetic studies of ASD in the Japanese population. In whole exomes from a Japanese ASD sample of 309 cases and 299 controls, rare variants were associated with ASD within specific neurodevelopmental gene sets, including highly constrained genes, fragile X mental retardation protein target genes, and genes involved in synaptic function, with the strongest enrichment in trans-synaptic signaling (p = 4.4 × 10-4, Q-value = 0.06). In particular, we strengthen the evidence regarding the role of ABCA13, a synaptic function-related gene, in Japanese ASD. The overall results of this case-control exome study showed that rare variants related to synaptic function are associated with ASD susceptibility in the Japanese population.
Collapse
|
172
|
Oku S, Siddiqui TJ. A GPI-anchored Neurexin 3 proteoform mediates dendritic inhibition. Neuron 2022; 110:2041-2044. [DOI: 10.1016/j.neuron.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
173
|
Fang R, Xia C, Close JL, Zhang M, He J, Huang Z, Halpern AR, Long B, Miller JA, Lein ES, Zhuang X. Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH. Science 2022; 377:56-62. [PMID: 35771910 PMCID: PMC9262715 DOI: 10.1126/science.abm1741] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human cerebral cortex has tremendous cellular diversity. How different cell types are organized in the human cortex and how cellular organization varies across species remain unclear. In this study, we performed spatially resolved single-cell profiling of 4000 genes using multiplexed error-robust fluorescence in situ hybridization (MERFISH), identified more than 100 transcriptionally distinct cell populations, and generated a molecularly defined and spatially resolved cell atlas of the human middle and superior temporal gyrus. We further explored cell-cell interactions arising from soma contact or proximity in a cell type-specific manner. Comparison of the human and mouse cortices showed conservation in the laminar organization of cells and differences in somatic interactions across species. Our data revealed human-specific cell-cell proximity patterns and a markedly increased enrichment for interactions between neurons and non-neuronal cells in the human cortex.
Collapse
Affiliation(s)
- Rongxin Fang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Chenglong Xia
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | | | - Meng Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Jiang He
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Zhengkai Huang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Aaron R. Halpern
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Brian Long
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Ed S. Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
174
|
Saint‐Martin M, Goda Y. Astrocyte–synapse interactions and cell adhesion molecules. FEBS J 2022. [DOI: 10.1111/febs.16540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Margaux Saint‐Martin
- Laboratory for Synaptic Plasticity and Connectivity RIKEN Center for Brain Science Wako‐shi, Saitama Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity RIKEN Center for Brain Science Wako‐shi, Saitama Japan
- Synapse Biology Unit Okinawa Institute of Science and Technology Graduate University Japan
| |
Collapse
|
175
|
Han Y, Cao R, Qin L, Chen LY, Tang AH, Südhof TC, Zhang B. Neuroligin-3 confines AMPA receptors into nanoclusters, thereby controlling synaptic strength at the calyx of Held synapses. SCIENCE ADVANCES 2022; 8:eabo4173. [PMID: 35704570 PMCID: PMC9200272 DOI: 10.1126/sciadv.abo4173] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/02/2022] [Indexed: 05/30/2023]
Abstract
The subsynaptic organization of postsynaptic neurotransmitter receptors into nanoclusters that are aligned with presynaptic release sites is essential for the high fidelity of synaptic transmission. However, the mechanisms controlling the nanoscale organization of neurotransmitter receptors in vivo remain incompletely understood. Here, we deconstructed the role of neuroligin-3 (Nlgn3), a postsynaptic adhesion molecule linked to autism, in organizing AMPA-type glutamate receptors in the calyx of Held synapse. Deletion of Nlgn3 lowered the amplitude and slowed the kinetics of AMPA receptor-mediated synaptic responses. Super-resolution microscopy revealed that, unexpectedly, these impairments in synaptic transmission were associated with an increase in the size of postsynaptic PSD-95 and AMPA receptor nanoclusters but a decrease of the densities in these clusters. Modeling showed that a dilution of AMPA receptors into larger nanocluster volumes decreases synaptic strength. Nlgn3, likely by binding to presynaptic neurexins, thus is a key organizer of AMPA receptor nanoclusters that likely acts via PSD-95 adaptors to optimize the fidelity of synaptic transmission.
Collapse
Affiliation(s)
- Ying Han
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Ran Cao
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230026, China
- CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Liming Qin
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lulu Y. Chen
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94043, USA
| | - Ai-Hui Tang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230026, China
- CAS Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94043, USA
| | - Bo Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
176
|
Dhume SH, Connor SA, Mills F, Tari PK, Au-Yeung SHM, Karimi B, Oku S, Roppongi RT, Kawabe H, Bamji SX, Wang YT, Brose N, Jackson MF, Craig AM, Siddiqui TJ. Distinct but overlapping roles of LRRTM1 and LRRTM2 in developing and mature hippocampal circuits. eLife 2022; 11:64742. [PMID: 35662394 PMCID: PMC9170246 DOI: 10.7554/elife.64742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/20/2022] [Indexed: 01/21/2023] Open
Abstract
LRRTMs are postsynaptic cell adhesion proteins that have region-restricted expression in the brain. To determine their role in the molecular organization of synapses in vivo, we studied synapse development and plasticity in hippocampal neuronal circuits in mice lacking both Lrrtm1 and Lrrtm2. We found that LRRTM1 and LRRTM2 regulate the density and morphological integrity of excitatory synapses on CA1 pyramidal neurons in the developing brain but are not essential for these roles in the mature circuit. Further, they are required for long-term-potentiation in the CA3-CA1 pathway and the dentate gyrus, and for enduring fear memory in both the developing and mature brain. Our data show that LRRTM1 and LRRTM2 regulate synapse development and function in a cell-type and developmental-stage-specific manner, and thereby contribute to the fine-tuning of hippocampal circuit connectivity and plasticity.
Collapse
Affiliation(s)
- Shreya H Dhume
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Steven A Connor
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.,Department of Biology, York University, Toronto, Canada
| | - Fergil Mills
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Parisa Karimi Tari
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.,Department of Biology, York University, Toronto, Canada
| | - Sarah H M Au-Yeung
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Benjamin Karimi
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Shinichiro Oku
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Reiko T Roppongi
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.,Department of Pharmacology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Yu Tian Wang
- Division of Neurology, Department of Medicine and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Ann Marie Craig
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Tabrez J Siddiqui
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.,The Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.,Program in Biomedical Engineering, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
177
|
Xu Y, Wang ML, Tao H, Geng C, Guo F, Hu B, Wang R, Hou XY. ErbB4 in parvalbumin-positive interneurons mediates proactive interference in olfactory associative reversal learning. Neuropsychopharmacology 2022; 47:1292-1303. [PMID: 34707248 PMCID: PMC9117204 DOI: 10.1038/s41386-021-01205-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/04/2021] [Accepted: 10/02/2021] [Indexed: 11/09/2022]
Abstract
Consolidated memories influence later learning and cognitive processes when new information is overlapped with previous events. To reveal which cellular and molecular factors are associated with this proactive interference, we challenged mice with odor-reward associative learning followed by a reversal-learning task. The results showed that genetical ablation of ErbB4 in parvalbumin (PV)-positive interneurons improved performance in reversal-learning phase, with no alteration in learning phase, supporting that PV interneuron ErbB4 is required for proactive interference. Mechanistically, olfactory learning promoted PV interneuron excitatory synaptic plasticity and direct binding of ErbB4 with presynaptic Neurexin1β (NRXN1β) and postsynaptic scaffold PSD-95 in the prefrontal cortex. Interrupting ErbB4-NRXN1β interaction impaired network activity-driven excitatory inputs and excitatory synaptic transmission onto PV interneurons. Neuronal activity-induced ErbB4-PSD-95 association facilitated transsynaptic binding of ErbB4-NRXN1β and excitatory synapse formation in ErbB4-positive interneurons. Furthermore, ErbB4-NRXN1β binding was responsible for the activity-regulated activation of ErbB4 and extracellular signal-regulated kinase (ERK) 1/2 in PV interneurons, as well as synaptic plasticity-related expression of brain-derived neurotrophic factor (BDNF). Correlatedly, blocking ErbB4-NRXN1β coupling in the medial prefrontal cortex of adult mice facilitated reversal learning of an olfactory associative task. These findings provide novel insight into the physiological role of PV interneuron ErbB4 signaling in cognitive processes and reveal an associative learning-related transsynaptic NRXN1β-ErbB4-PSD-95 complex that affects the ERK1/2-BDNF pathway and underlies local inhibitory circuit plasticity and proactive interference.
Collapse
Affiliation(s)
- Yan Xu
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Meng-Lin Wang
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Hui Tao
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China ,grid.254147.10000 0000 9776 7793State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198 China
| | - Chi Geng
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Feng Guo
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Bin Hu
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Ran Wang
- grid.417303.20000 0000 9927 0537Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004 China
| | - Xiao-Yu Hou
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China. .,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
178
|
Chung C, Shin W, Kim E. Early and Late Corrections in Mouse Models of Autism Spectrum Disorder. Biol Psychiatry 2022; 91:934-944. [PMID: 34556257 DOI: 10.1016/j.biopsych.2021.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and repetitive symptoms. A key feature of ASD is early-life manifestations of symptoms, indicative of early pathophysiological mechanisms. In mouse models of ASD, increasing evidence indicates that there are early pathophysiological mechanisms that can be corrected early to prevent phenotypic defects in adults, overcoming the disadvantage of the short-lasting effects that characterize adult-initiated treatments. In addition, the results from gene restorations indicate that ASD-related phenotypes can be rescued in some cases even after the brain has fully matured. These results suggest that we need to consider both temporal and mechanistic aspects in studies of ASD models and carefully compare genetic and nongenetic corrections. Here, we summarize the early and late corrections in mouse models of ASD by genetic and pharmacological interventions and discuss how to better integrate these results to ensure efficient and long-lasting corrections for eventual clinical translation.
Collapse
Affiliation(s)
- Changuk Chung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea; Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
179
|
Burlingham SR, Wong NF, Peterkin L, Lubow L, Dos Santos Passos C, Benner O, Ghebrial M, Cast TP, Xu-Friedman MA, Südhof TC, Chanda S. Induction of synapse formation by de novo neurotransmitter synthesis. Nat Commun 2022; 13:3060. [PMID: 35650274 PMCID: PMC9160008 DOI: 10.1038/s41467-022-30756-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
A vital question in neuroscience is how neurons align their postsynaptic structures with presynaptic release sites. Although synaptic adhesion proteins are known to contribute in this process, the role of neurotransmitters remains unclear. Here we inquire whether de novo biosynthesis and vesicular release of a noncanonical transmitter can facilitate the assembly of its corresponding postsynapses. We demonstrate that, in both stem cell-derived human neurons as well as in vivo mouse neurons of purely glutamatergic identity, ectopic expression of GABA-synthesis enzymes and vesicular transporters is sufficient to both produce GABA from ambient glutamate and transmit it from presynaptic terminals. This enables efficient accumulation and consistent activation of postsynaptic GABAA receptors, and generates fully functional GABAergic synapses that operate in parallel but independently of their glutamatergic counterparts. These findings suggest that presynaptic release of a neurotransmitter itself can signal the organization of relevant postsynaptic apparatus, which could be directly modified to reprogram the synapse identity of neurons.
Collapse
Affiliation(s)
- Scott R Burlingham
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Nicole F Wong
- Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lindsay Peterkin
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Lily Lubow
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Orion Benner
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Michael Ghebrial
- Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Thomas P Cast
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Thomas C Südhof
- Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Soham Chanda
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO, USA.
- Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
180
|
Serova OV, Gantsova EA, Deyev IE, Petrenko AG. Tissue-Specific Expression of Neurexin-1α Isoforms in Rat Organs. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract—
Neurexins are a family of synaptic adhesion proteins that play a key role in synapse formation and maintenance. Neurexins undergo extensive alternative splicing at six sites (SS1–SS6) resulting in expression of multiplicity of different isoforms. Alternative splicing regulates the functional activity of neurexins in different types of tissues and cells and presumably plays a key role in determining the specificity of the interaction of various neurons. In this study, we have investigated the pattern of tissue expression of neurexin-1α mRNA isoforms including an insert in the recently discovered splice site SS6 using TaqMan Real-Time PCR in different organs of Wistar rats. The isoform containing the insert in the SS6 site was found only in neural tissues suggesting its potential functional importance. Position of the SS6 insert in the hinge region between the LNS5 and LNS6 domains increases variability of possible conformations of the molecule which may represent an additional mechanism for regulating functional activity of the neurexin-1α in the brain.
Collapse
|
181
|
Levy KA, Weisz ED, Jongens TA. Loss of neurexin-1 in Drosophila melanogaster results in altered energy metabolism and increased seizure susceptibility. Hum Mol Genet 2022; 31:3422-3438. [PMID: 35617143 PMCID: PMC9558836 DOI: 10.1093/hmg/ddac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Although autism is typically characterized by differences in language, social interaction and restrictive, repetitive behaviors, it is becoming more well known in the field that alterations in energy metabolism and mitochondrial function are comorbid disorders in autism. The synaptic cell adhesion molecule, neurexin-1 (NRXN1), has previously been implicated in autism, and here we show that in Drosophila melanogaster, the homologue of NRXN1, called Nrx-1, regulates energy metabolism and nutrient homeostasis. First, we show that Nrx-1-null flies exhibit decreased resistance to nutrient deprivation and heat stress compared to controls. Additionally, Nrx-1 mutants exhibit a significantly altered metabolic profile characterized by decreased lipid and carbohydrate stores. Nrx-1-null Drosophila also exhibit diminished levels of nicotinamide adenine dinucleotide (NAD+), an important coenzyme in major energy metabolism pathways. Moreover, loss of Nrx-1 resulted in striking abnormalities in mitochondrial morphology in the flight muscle of Nrx-1-null Drosophila and impaired flight ability in these flies. Further, following a mechanical shock Nrx-1-null flies exhibited seizure-like activity, a phenotype previously linked to defects in mitochondrial metabolism and a common symptom of patients with NRXN1 deletions. The current studies indicate a novel role for NRXN1 in the regulation of energy metabolism and uncover a clinically relevant seizure phenotype in Drosophila lacking Nrx-1.
Collapse
Affiliation(s)
- Kyra A Levy
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA.,Autism Spectrum Program of Excellence, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eliana D Weisz
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Autism Spectrum Program of Excellence, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas A Jongens
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Autism Spectrum Program of Excellence, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
182
|
Transsynaptic cerebellin 4-neogenin 1 signaling mediates LTP in the mouse dentate gyrus. Proc Natl Acad Sci U S A 2022; 119:e2123421119. [PMID: 35544694 DOI: 10.1073/pnas.2123421119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SignificanceSynapses are controlled by transsynaptic adhesion complexes that mediate bidirectional signaling between pre- and postsynaptic compartments. Long-term potentiation (LTP) of synaptic transmission is thought to enable synaptic modifications during memory formation, but the signaling mechanisms involved remain poorly understood. We show that binding of cerebellin-4 (Cbln4), a secreted ligand of presynaptic neurexin adhesion molecules, to neogenin-1, a postsynaptic surface protein known as a developmental netrin receptor, is essential for normal LTP at entorhinal cortex→dentate gyrus synapses in mice. Cbln4 and neogenin-1 are dispensable for basal synaptic transmission and not involved in establishing synaptic connections as such. Our data identify a netrin receptor as a postsynaptic organizer of synaptic plasticity that collaborates specifically with the presynaptic neurexin-ligand Cbln4.
Collapse
|
183
|
Wang J, Huang H, Liu C, Zhang Y, Wang W, Zou Z, Yang L, He X, Wu J, Ma J, Liu Y. Research Progress on the Role of Vitamin D in Autism Spectrum Disorder. Front Behav Neurosci 2022; 16:859151. [PMID: 35619598 PMCID: PMC9128593 DOI: 10.3389/fnbeh.2022.859151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can lead to severe social behavioral difficulties, which mainly manifests as social communication and interaction disorders; narrow interests; and repetitive, stereotyped behaviors. In recent years, the prevalence of ASD has increased annually, and it has evolved from a rare disease to one with a high incidence among childhood developmental disorders. The pathogenesis of ASD is considered to be the interaction of genetic and environmental factors. There is increasing evidence that vitamin D deficiency in pregnancy and early childhood can lead to the occurrence of ASD. Studies have demonstrated that vitamin D intervention can significantly improve the symptoms of ASD, but the underlying mechanism is still unclear. Therefore, exploring the neuroprotective mechanism of vitamin D against ASD is a huge challenge currently being worked on by current basic and clinical researchers, a task which is of great significance for the clinical promotion and optimization of vitamin D in the treatment of ASD. To further clarify the relationship between vitamin D and ASD, this review summarizes the correlation between vitamin D level and ASD, the effects of vitamin D supplementation on ASD, the possible mechanism of vitamin D involved in ASD, and insights from ASD animal models.
Collapse
Affiliation(s)
- Jing Wang
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Haoyu Huang
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Chunming Liu
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Yangping Zhang
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Wenjuan Wang
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Zhuo Zou
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Lei Yang
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Xuemei He
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Jinting Wu
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Jing Ma
- Department of Otolaryngology, Head and Neck Surgery, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
- *Correspondence: Jing Ma,
| | - Yun Liu
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
- *Correspondence: Jing Ma,
| |
Collapse
|
184
|
Hauser D, Behr K, Konno K, Schreiner D, Schmidt A, Watanabe M, Bischofberger J, Scheiffele P. Targeted proteoform mapping uncovers specific Neurexin-3 variants required for dendritic inhibition. Neuron 2022; 110:2094-2109.e10. [PMID: 35550065 PMCID: PMC9275415 DOI: 10.1016/j.neuron.2022.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/05/2022] [Accepted: 04/15/2022] [Indexed: 12/21/2022]
Abstract
The diversification of cell adhesion molecules by alternative splicing is proposed to underlie molecular codes for neuronal wiring. Transcriptomic approaches mapped detailed cell-type-specific mRNA splicing programs. However, it has been hard to probe the synapse-specific localization and function of the resulting protein splice isoforms, or “proteoforms,” in vivo. We here apply a proteoform-centric workflow in mice to test the synapse-specific functions of the splice isoforms of the synaptic adhesion molecule Neurexin-3 (NRXN3). We uncover a major proteoform, NRXN3 AS5, that is highly expressed in GABAergic interneurons and at dendrite-targeting GABAergic terminals. NRXN3 AS5 abundance significantly diverges from Nrxn3 mRNA distribution and is gated by translation-repressive elements. Nrxn3 AS5 isoform deletion results in a selective impairment of dendrite-targeting interneuron synapses in the dentate gyrus without affecting somatic inhibition or glutamatergic perforant-path synapses. This work establishes cell- and synapse-specific functions of a specific neurexin proteoform and highlights the importance of alternative splicing regulation for synapse specification. Translational regulation guides alternative Neurexin proteoform expression NRXN3 AS5 proteoforms are concentrated at dendrite-targeting interneuron synapses A proteome-centric workflow uncovers NRXN3 AS5 interactors in vivo Loss of NRXN3 AS5 leads to selective impairments in dendritic inhibition
Collapse
Affiliation(s)
- David Hauser
- Biozentrum of the University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Katharina Behr
- Department of Biomedicine, University of Basel, Pestalozzistrasse 20, 4056 Basel, Switzerland
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Dietmar Schreiner
- Biozentrum of the University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum of the University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Josef Bischofberger
- Department of Biomedicine, University of Basel, Pestalozzistrasse 20, 4056 Basel, Switzerland
| | - Peter Scheiffele
- Biozentrum of the University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
185
|
Kim D, Kim B. Anatomical and Functional Differences in the Sex-Shared Neurons of the Nematode C. elegans. Front Neuroanat 2022; 16:906090. [PMID: 35601998 PMCID: PMC9121059 DOI: 10.3389/fnana.2022.906090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Studies on sexual dimorphism in the structure and function of the nervous system have been pivotal to understanding sex differences in behavior. Such studies, especially on invertebrates, have shown the importance of neurons specific to one sex (sex-specific neurons) in shaping sexually dimorphic neural circuits. Nevertheless, recent studies using the nematode C. elegans have revealed that the common neurons that exist in both sexes (sex-shared neurons) also play significant roles in generating sex differences in the structure and function of neural circuits. Here, we review the anatomical and functional differences in the sex-shared neurons of C. elegans. These sexually dimorphic characteristics include morphological differences in neurite projection or branching patterns with substantial changes in synaptic connectivity, differences in synaptic connections without obvious structural changes, and functional modulation in neural circuits with no or minimal synaptic connectivity changes. We also cover underlying molecular mechanisms whereby these sex-shared neurons contribute to the establishment of sexually dimorphic circuits during development and function differently between the sexes.
Collapse
|
186
|
Toledo A, Letellier M, Bimbi G, Tessier B, Daburon S, Favereaux A, Chamma I, Vennekens K, Vanderlinden J, Sainlos M, de Wit J, Choquet D, Thoumine O. MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior. eLife 2022; 11:75233. [PMID: 35532105 PMCID: PMC9084894 DOI: 10.7554/elife.75233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
MDGA molecules can bind neuroligins and interfere with trans-synaptic interactions to neurexins, thereby impairing synapse development. However, the subcellular localization and dynamics of MDGAs, or their specific action mode in neurons remain unclear. Here, surface immunostaining of endogenous MDGAs and single molecule tracking of recombinant MDGAs in dissociated hippocampal neurons reveal that MDGAs are homogeneously distributed and exhibit fast membrane diffusion, with a small reduction in mobility across neuronal maturation. Knocking-down/out MDGAs using shRNAs and CRISPR/Cas9 strategies increases the density of excitatory synapses, the membrane confinement of neuroligin-1, and the phosphotyrosine level of neuroligins associated with excitatory post-synaptic differentiation. Finally, MDGA silencing reduces the mobility of AMPA receptors, increases the frequency of miniature EPSCs (but not IPSCs), and selectively enhances evoked AMPA-receptor-mediated EPSCs in CA1 pyramidal neurons. Overall, our results support a mechanism by which interactions between MDGAs and neuroligin-1 delays the assembly of functional excitatory synapses containing AMPA receptors.
Collapse
Affiliation(s)
- Andrea Toledo
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Mathieu Letellier
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Giorgia Bimbi
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Béatrice Tessier
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Sophie Daburon
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Alexandre Favereaux
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Ingrid Chamma
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Kristel Vennekens
- VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute
| | - Jeroen Vanderlinden
- VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute
| | - Matthieu Sainlos
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| | - Joris de Wit
- VIB Center for Brain & Disease Research and KU Leuven, Department of Neurosciences, Leuven Brain Institute
| | - Daniel Choquet
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
- University of Bordeaux, CNRS UAR 3420, INSERM, Bordeaux Imaging Center
| | - Olivier Thoumine
- University of Bordeaux, CNRS UMR 5297, Interdisciplinary Institute for Neuroscience
| |
Collapse
|
187
|
Liu F, Bao Y, Qiu B, Mao J, Liao X, Huang H, Zhang A, Zhang G, Qi S, Mei F. Identification of Novel Cerebrospinal Fluid Biomarkers for Cognitive Decline in Aneurysmal Subarachnoid Hemorrhage: A Proteomic Approach. Front Cell Neurosci 2022; 16:861425. [PMID: 35602555 PMCID: PMC9120969 DOI: 10.3389/fncel.2022.861425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background Cognitive impairment commonly occurs in aneurysmal subarachnoid hemorrhage (aSAH) survivors. Cerebrospinal fluid (CSF) biomarkers have been proven useful in several central neurological disorders. No such diagnostic biomarkers are available for predicting cognitive impairment after aSAH to date. Here, we aimed to identify novel CSF biomarkers for cognitive deficits after aSAH using an in-depth proteomic approach. Methods We applied mass spectrometry with data independent acquisition (DIA) quantification to identify biomarker candidates in CSF samples from a well-characterized cohort comprising patients with impaired cognition (n = 9) and patients with intact cognition (n = 9). The potential biological processes and signaling pathways associated with differential proteins were analyzed using R software. The candidates were further validated in a larger independent cohort (n = 40) using ELISA. The diagnostic utility of these proteins was investigated by using receiver operating characteristic curve analysis. Results In total, we identified 628 proteins. The discovery cohort revealed that 115 proteins were differentially expressed in cognitive impairment patients compared to patients with intact cognition (P < 0.05). Independent cohort replication confirmed NCAM2, NPTXR, NRXN2, RELN, and CNTN2 as sensitive and specific candidate biomarkers for disorders of cognition. Lower CSF levels of all biomarker candidates, except RELN, were associated with more pronounced cognitive decline. Conclusion We identified and validated five CSF biomarkers for cognitive impairment in aSAH patients. These particular proteins have important predictive and discriminative potential for cognitive impairment in aSAH and could be potential targets for early disease intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fen Mei
- *Correspondence: Songtao Qi Fen Mei
| |
Collapse
|
188
|
Midorikawa M. Pathway-specific maturation of presynaptic functions of the somatosensory thalamus. Neurosci Res 2022; 181:1-8. [DOI: 10.1016/j.neures.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023]
|
189
|
Lim D, Kim D, Um JW, Ko J. Reassessing synaptic adhesion pathways. Trends Neurosci 2022; 45:517-528. [DOI: 10.1016/j.tins.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 01/19/2023]
|
190
|
Kim D, Jung H, Shirai Y, Kim H, Kim J, Lim D, Mori T, Lee H, Park D, Kim HY, Guo Q, Pang B, Qiu W, Cao X, Kouyama-Suzuki E, Uemura T, Kasem E, Fu Y, Kim S, Tokunaga A, Yoshizawa T, Suzuki T, Sakagami H, Lee KJ, Ko J, Tabuchi K, Um JW. IQSEC3 Deletion Impairs Fear Memory Through Upregulation of Ribosomal S6K1 Signaling in the Hippocampus. Biol Psychiatry 2022; 91:821-831. [PMID: 35219498 DOI: 10.1016/j.biopsych.2021.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND IQSEC3, a gephyrin-binding GABAergic (gamma-aminobutyric acidergic) synapse-specific guanine nucleotide exchange factor, was recently reported to regulate activity-dependent GABAergic synapse maturation, but the underlying signaling mechanisms remain incompletely understood. METHODS We generated mice with conditional knockout (cKO) of Iqsec3 to examine whether altered synaptic inhibition influences hippocampus-dependent fear memory formation. In addition, electrophysiological recordings, immunohistochemistry, and behavioral assays were used to address our question. RESULTS We found that Iqsec3-cKO induces a specific reduction in GABAergic synapse density, GABAergic synaptic transmission, and maintenance of long-term potentiation in the hippocampal CA1 region. In addition, Iqsec3-cKO mice exhibited impaired fear memory formation. Strikingly, Iqsec3-cKO caused abnormally enhanced activation of ribosomal P70-S6K1-mediated signaling in the hippocampus but not in the cortex. Furthermore, inhibiting upregulated S6K1 signaling by expressing dominant-negative S6K1 in the hippocampal CA1 of Iqsec3-cKO mice completely rescued impaired fear learning and inhibitory synapse density but not deficits in long-term potentiation maintenance. Finally, upregulated S6K1 signaling was rescued by IQSEC3 wild-type, but not by an ARF-GEF (adenosine diphosphate ribosylation factor-guanine nucleotide exchange factor) inactive IQSEC3 mutant. CONCLUSIONS Our results suggest that IQSEC3-mediated balanced synaptic inhibition in hippocampal CA1 is critical for the proper formation of hippocampus-dependent fear memory.
Collapse
Affiliation(s)
- Dongwook Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hyeji Jung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Hyeonho Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jinhu Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Dongseok Lim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Hyojeong Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Dongseok Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hee Young Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Qi Guo
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Bo Pang
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Wen Qiu
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Xueshan Cao
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Takeshi Uemura
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Enas Kasem
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan; Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Yu Fu
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Akinori Tokunaga
- Division of Laboratory Animal Resources, Life Science Research Laboratory, University of Fukui, Fukui, Japan
| | - Takahiro Yoshizawa
- Research Center for Supports to Advanced Science, Shinshu University, Nagano, Japan
| | - Tatsuo Suzuki
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Kea Joo Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea; Neural Circuits Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan.
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea.
| |
Collapse
|
191
|
Rhoades R, Henry B, Prichett D, Fang Y, Teng S. Computational Saturation Mutagenesis to Investigate the Effects of Neurexin-1 Mutations on AlphaFold Structure. Genes (Basel) 2022; 13:789. [PMID: 35627176 PMCID: PMC9141173 DOI: 10.3390/genes13050789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 02/05/2023] Open
Abstract
Neurexin-1 (NRXN1) is a membrane protein essential in synapse formation and cell signaling as a cell-adhesion molecule and cell-surface receptor. NRXN1 and its binding partner neuroligin have been associated with deficits in cognition. Recent genetics research has linked NRXN1 missense mutations to increased risk for brain disorders, including schizophrenia (SCZ) and autism spectrum disorder (ASD). Investigation of the structure-function relationship in NRXN1 has proven difficult due to a lack of the experimental full-length membrane protein structure. AlphaFold, a deep learning-based predictor, succeeds in high-quality protein structure prediction and offers a solution for membrane protein model construction. In the study, we applied a computational saturation mutagenesis method to analyze the systemic effects of missense mutations on protein functions in a human NRXN1 structure predicted from AlphaFold and an experimental Bos taurus structure. The folding energy changes were calculated to estimate the effects of the 29,540 mutations of AlphaFold model on protein stability. The comparative study on the experimental and computationally predicted structures shows that these energy changes are highly correlated, demonstrating the reliability of the AlphaFold structure for the downstream bioinformatics analysis. The energy calculation revealed that some target mutations associated with SCZ and ASD could make the protein unstable. The study can provide helpful information for characterizing the disease-causing mutations and elucidating the molecular mechanisms by which the variations cause SCZ and ASD. This methodology could provide the bioinformatics protocol to investigate the effects of target mutations on multiple AlphaFold structures.
Collapse
Affiliation(s)
- Raina Rhoades
- Department of Biology, Howard University, Washington, DC 20059, USA; (R.R.); (B.H.); (D.P.)
| | - Brianna Henry
- Department of Biology, Howard University, Washington, DC 20059, USA; (R.R.); (B.H.); (D.P.)
| | - Dominique Prichett
- Department of Biology, Howard University, Washington, DC 20059, USA; (R.R.); (B.H.); (D.P.)
| | - Yayin Fang
- Department of Biochemistry and Molecular Biology, Howard University, Washington, DC 20059, USA;
| | - Shaolei Teng
- Department of Biology, Howard University, Washington, DC 20059, USA; (R.R.); (B.H.); (D.P.)
| |
Collapse
|
192
|
Lagardère M, Drouet A, Sainlos M, Thoumine O. High-Resolution Fluorescence Imaging Combined With Computer Simulations to Quantitate Surface Dynamics and Nanoscale Organization of Neuroligin-1 at Synapses. Front Synaptic Neurosci 2022; 14:835427. [PMID: 35546899 PMCID: PMC9083120 DOI: 10.3389/fnsyn.2022.835427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroligins (NLGNs) form a family of cell adhesion molecules implicated in synapse development, but the mechanisms that retain these proteins at synapses are still incompletely understood. Recent studies indicate that surface-associated NLGN1 is diffusionally trapped at synapses, where it interacts with quasi-static scaffolding elements of the post-synaptic density. Whereas single molecule tracking reveals rapid diffusion and transient immobilization of NLGN1 at synapses within seconds, fluorescence recovery after photobleaching experiments indicate instead a long-term turnover of NLGN1 at synapse, in the hour time range. To gain insight into the mechanisms supporting NLGN1 anchorage at post-synapses and try to reconcile those experimental paradigms, we quantitatively analyzed here live-cell and super-resolution imaging experiments performed on NLGN1 using a newly released simulator of membrane protein dynamics for fluorescence microscopy, FluoSim. Based on a small set of parameters including diffusion coefficients, binding constants, and photophysical rates, the framework describes fairly well the dynamic behavior of extra-synaptic and synaptic NLGN1 over both short and long time ranges, and provides an estimate of NLGN1 copy numbers in post-synaptic densities at steady-state (around 50 dimers). One striking result is that the residence time of NLGN1 at synapses is much longer than what can be expected from extracellular interactions with pre-synaptic neurexins only, suggesting that NLGN1 is stabilized at synapses through multivalent interactions with intracellular post-synaptic scaffolding proteins.
Collapse
Affiliation(s)
| | | | | | - Olivier Thoumine
- CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, University of Bordeaux, Bordeaux, France
| |
Collapse
|
193
|
Liu Z, Jiang M, Liakath-Ali K, Sclip A, Ko J, Zhang RS, Südhof TC. Deletion of Calsyntenin-3, an atypical cadherin, suppresses inhibitory synapses but increases excitatory parallel-fiber synapses in cerebellum. eLife 2022; 11:e70664. [PMID: 35420982 PMCID: PMC9064300 DOI: 10.7554/elife.70664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Cadherins contribute to the organization of nearly all tissues, but the functions of several evolutionarily conserved cadherins, including those of calsyntenins, remain enigmatic. Puzzlingly, two distinct, non-overlapping functions for calsyntenins were proposed: As postsynaptic neurexin ligands in synapse formation, or as presynaptic kinesin adaptors in vesicular transport. Here, we show that, surprisingly, acute CRISPR-mediated deletion of calsyntenin-3 in mouse cerebellum in vivo causes a large decrease in inhibitory synapse, but a robust increase in excitatory parallel-fiber synapses in Purkinje cells. As a result, inhibitory synaptic transmission was suppressed, whereas parallel-fiber synaptic transmission was enhanced in Purkinje cells by the calsyntenin-3 deletion. No changes in the dendritic architecture of Purkinje cells or in climbing-fiber synapses were detected. Sparse selective deletion of calsyntenin-3 only in Purkinje cells recapitulated the synaptic phenotype, indicating that calsyntenin-3 acts by a cell-autonomous postsynaptic mechanism in cerebellum. Thus, by inhibiting formation of excitatory parallel-fiber synapses and promoting formation of inhibitory synapses in the same neuron, calsyntenin-3 functions as a postsynaptic adhesion molecule that regulates the excitatory/inhibitory balance in Purkinje cells.
Collapse
Affiliation(s)
- Zhihui Liu
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Man Jiang
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Kif Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Alessandra Sclip
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and TechnologyDaeguRepublic of Korea
| | - Roger Shen Zhang
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
194
|
Serrano ME, Kim E, Petrinovic MM, Turkheimer F, Cash D. Imaging Synaptic Density: The Next Holy Grail of Neuroscience? Front Neurosci 2022; 16:796129. [PMID: 35401097 PMCID: PMC8990757 DOI: 10.3389/fnins.2022.796129] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The brain is the central and most complex organ in the nervous system, comprising billions of neurons that constantly communicate through trillions of connections called synapses. Despite being formed mainly during prenatal and early postnatal development, synapses are continually refined and eliminated throughout life via complicated and hitherto incompletely understood mechanisms. Failure to correctly regulate the numbers and distribution of synapses has been associated with many neurological and psychiatric disorders, including autism, epilepsy, Alzheimer’s disease, and schizophrenia. Therefore, measurements of brain synaptic density, as well as early detection of synaptic dysfunction, are essential for understanding normal and abnormal brain development. To date, multiple synaptic density markers have been proposed and investigated in experimental models of brain disorders. The majority of the gold standard methodologies (e.g., electron microscopy or immunohistochemistry) visualize synapses or measure changes in pre- and postsynaptic proteins ex vivo. However, the invasive nature of these classic methodologies precludes their use in living organisms. The recent development of positron emission tomography (PET) tracers [such as (18F)UCB-H or (11C)UCB-J] that bind to a putative synaptic density marker, the synaptic vesicle 2A (SV2A) protein, is heralding a likely paradigm shift in detecting synaptic alterations in patients. Despite their limited specificity, novel, non-invasive magnetic resonance (MR)-based methods also show promise in inferring synaptic information by linking to glutamate neurotransmission. Although promising, all these methods entail various advantages and limitations that must be addressed before becoming part of routine clinical practice. In this review, we summarize and discuss current ex vivo and in vivo methods of quantifying synaptic density, including an evaluation of their reliability and experimental utility. We conclude with a critical assessment of challenges that need to be overcome before successfully employing synaptic density biomarkers as diagnostic and/or prognostic tools in the study of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Marija M Petrinovic
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
195
|
Uemura T, Suzuki-Kouyama E, Kawase S, Kurihara T, Yasumura M, Yoshida T, Fukai S, Yamazaki M, Fei P, Abe M, Watanabe M, Sakimura K, Mishina M, Tabuchi K. Neurexins play a crucial role in cerebellar granule cell survival by organizing autocrine machinery for neurotrophins. Cell Rep 2022; 39:110624. [PMID: 35385735 DOI: 10.1016/j.celrep.2022.110624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 01/22/2023] Open
Abstract
Neurexins (NRXNs) are key presynaptic cell adhesion molecules that regulate synapse formation and function via trans-synaptic interaction with postsynaptic ligands. Here, we generate cerebellar granule cell (CGC)-specific Nrxn triple-knockout (TKO) mice for complete deletion of all NRXNs. Unexpectedly, most CGCs die in these mice, and this requirement for NRXNs for cell survival is reproduced in cultured CGCs. The axons of cultured Nrxn TKO CGCs that are not in contact with a postsynaptic structure show defects in the formation of presynaptic protein clusters and in action-potential-induced Ca2+ influxes. These cells also show impaired secretion of depolarization-induced, fluorescence-tagged brain-derived neurotrophic factor (BDNF) from their axons, and the cell-survival defect is rescued by the application of BDNF. These results suggest that CGC survival is maintained by autocrine neurotrophic factors and that NRXNs organize the presynaptic protein clusters and the autocrine neurotrophic-factor secretory machinery independent of contact with postsynaptic ligands.
Collapse
Affiliation(s)
- Takeshi Uemura
- Division of Gene Research, Research Center for Advanced Science, Shinshu University, Nagano 390-8621, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan; Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan; Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; JST CREST, Saitama 332-0012, Japan.
| | - Emi Suzuki-Kouyama
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan; JST CREST, Saitama 332-0012, Japan
| | - Shiori Kawase
- Division of Gene Research, Research Center for Advanced Science, Shinshu University, Nagano 390-8621, Japan; Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan; JST CREST, Saitama 332-0012, Japan
| | - Taiga Kurihara
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan
| | - Misato Yasumura
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; JST PRESTO, Saitama 332-0012, Japan
| | - Shuya Fukai
- JST CREST, Saitama 332-0012, Japan; Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Peng Fei
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masayoshi Mishina
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Brain Science Laboratory, Research Organization of Science and Technology, Ritsumeikan University, Shiga 525-8577, Japan
| | - Katsuhiko Tabuchi
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan; Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano 390-8621, Japan; JST PRESTO, Saitama 332-0012, Japan.
| |
Collapse
|
196
|
Abstract
Neurexin-3 is primarily localized in the presynaptic membrane and forms complexes with various ligands located in the postsynaptic membrane. Neurexin-3 has important roles in synapse development and synapse functions. Neurexin-3 mediates excitatory presynaptic differentiation by interacting with leucine-rich-repeat transmembrane neuronal proteins. Meanwhile, neurexin-3 modulates the expression of presynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors and γ-aminobutyric acid A receptors by interacting with neuroligins at excitatory and inhibitory synapses. Numerous studies have documented the potential contribution of neurexin-3 to neurodegenerative and neuropsychiatric disorders, such as Alzheimer's disease, addiction behaviors, and other diseases, which raises hopes that understanding the mechanisms of neurexin-3 may hold the key to developing new strategies for related illnesses. This review comprehensively covers the literature to provide current knowledge of the structure, function, and clinical role of neurexin-3.
Collapse
|
197
|
Bali N, Lee HK(P, Zinn K. Sticks and Stones, a conserved cell surface ligand for the Type IIa RPTP Lar, regulates neural circuit wiring in Drosophila. eLife 2022; 11:e71469. [PMID: 35356892 PMCID: PMC9000958 DOI: 10.7554/elife.71469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Type IIa receptor-like protein tyrosine phosphatases (RPTPs) are essential for neural development. They have cell adhesion molecule (CAM)-like extracellular domains that interact with cell-surface ligands and coreceptors. We identified the immunoglobulin superfamily CAM Sticks and Stones (Sns) as a new partner for the Drosophila Type IIa RPTP Lar. Lar and Sns bind to each other in embryos and in vitro, and the human Sns ortholog, Nephrin, binds to human Type IIa RPTPs. Genetic analysis shows that Lar and Sns function together to regulate larval neuromuscular junction development, axon guidance in the mushroom body (MB), and innervation of the optic lobe (OL) medulla by R7 photoreceptors. In the neuromuscular system, Lar and Sns are both required in motor neurons, and may function as coreceptors. In the MB and OL, however, the relevant Lar-Sns interactions are in trans (between neurons), so Sns functions as a Lar ligand in these systems.
Collapse
Affiliation(s)
- Namrata Bali
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Hyung-Kook (Peter) Lee
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
198
|
Maxeiner S, Benseler F, Brose N, Krasteva-Christ G. Of Humans and Gerbils— Independent Diversification of Neuroligin-4 Into X- and Y-Specific Genes in Primates and Rodents. Front Mol Neurosci 2022; 15:838262. [PMID: 35431802 PMCID: PMC9005811 DOI: 10.3389/fnmol.2022.838262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
The neural cell adhesion protein neuroligin-4 has puzzled neuroscientists and geneticist alike for almost two decades. Its clinical association with autism spectrum disorders (ASD) is well established, however, its diversification into sex chromosome-specific copies, NLGN4X and NLGN4Y, remains uncharted territory. Just recently, the presence of substantial neuroligin-4 sequence differences between humans and laboratory mice, in which Nlgn4 is a pseudoautosomal gene, could be explained as a consequence of dramatic changes affecting the pseudoautosomal region on both sex chromosomes in a subset of rodents, the clade eumuroida. In this study, we describe the presence of sex chromosome-specific copies of neuroligin-4 genes in the Mongolian gerbil (Meriones unguiculatus) marking the first encounter of its kind in rodents. Gerbils are members of the family Muridae and are closely related to mice and rats. Our results have been incorporated into an extended evolutionary analysis covering primates, rodents, lagomorphs, treeshrews and culogos comprising together the mammalian superorder euarchontoglires. We gathered evidence that substantial changes in neuroligin-4 genes have also occurred outside eumuroida in other rodent species as well as in lagomorphs. These changes feature, e.g., a general reduction of its gene size, an increase in its average GC-content as well as in the third position (GC3) of synonymous codons, and the accumulation of repetitive sequences in line with previous observations. We further show conclusively that the diversification of neuroligin-4 in sex chromosome-specific copies has happened multiple times independently during mammal evolution proving that Y-chromosomal NLGN4Y genes do not originate from a single common NLGN4Y ancestor.
Collapse
Affiliation(s)
- Stephan Maxeiner
- Anatomy and Cell Biology, Saarland University, Homburg, Germany
- *Correspondence: Stephan Maxeiner,
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | |
Collapse
|
199
|
Wang Q, Wang X, Xu L. Intelligent Somatosensory Interactive Activities Restore Motor Function to Children with Autism. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4516005. [PMID: 35388325 PMCID: PMC8977316 DOI: 10.1155/2022/4516005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/04/2022] [Indexed: 12/01/2022]
Abstract
So far, the biomedical community has not provided clear etiological conclusions and targeted drug treatments. Educational intervention and rehabilitation are the main ways to promote the development of autistic children's ability and change the quality of life. This research mainly explores how intelligent somatosensory interactive activities can restore motor function to children with autism. Case studies are used to investigate the current problems of hand movement training for children with autism and the effect of somatosensory games on rehabilitation training for autism. The experience of autistic children using somatosensory games for hand movement training was analyzed. Through the collection, sorting, and analysis of data, the influence of different factors on users' immersive experience is explored. It designs and implements the system's somatosensory game module, including a detailed introduction to the development platform and key technologies used in the development of the somatosensory game module, and shows the functions, program flow, main features, and implementation effects of the somatosensory game. The development process of the somatosensory interaction system is introduced in detail, including model making, character control, task flow control, collision detection, interactive interface, and natural interaction methods of gesture interaction and voice interaction. This study outlines the concepts related to autism and the characteristics of children with autism. It discusses the feasibility of applying somatosensory games to the hand movement training of children with autism and analyzes the development status and application of somatosensory games in detail to lay the foundation for follow-up research. Moreover, it defines the research content of somatosensory interactive training products and clarifies the design content and direction of the product. The comfort evaluation of the somatosensory game products designed in the study reached 92.9%. This research further proves that somatosensory games have a positive effect.
Collapse
Affiliation(s)
- Qiang Wang
- School of Physical Education and Training, Shanghai University of Sport, Shanghai 200438, China
- School of Sports and Health, Guangdong Polytechnic of Science and Technology, Zhuhai 519090, Guangdong, China
| | - Xing Wang
- School of Physical Education and Training, Shanghai University of Sport, Shanghai 200438, China
| | - Lei Xu
- School of Physical Education, South China University of Technology, Guangzhou 510640, Guangdong, China
| |
Collapse
|
200
|
Teng Z, Gottmann K. Hemisynapse Formation Between Target Astrocytes and Cortical Neuron Axons in vitro. Front Mol Neurosci 2022; 15:829506. [PMID: 35386271 PMCID: PMC8978633 DOI: 10.3389/fnmol.2022.829506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/08/2022] [Indexed: 01/28/2023] Open
Abstract
One of the most fundamental organizing principles in the mammalian brain is that neurons do not establish synapses with the other major cell type, the astrocytes. However, induced synapse formation between neurons and astrocytes appears conceivable, because astrocytes are well known to express functional ionotropic glutamate receptors. Here, we attempted to trigger synapse formation between co-cultured neurons and astrocytes by overexpressing the strongly synaptogenic adhesion protein LRRTM2 in astrocytes physically contacted by cortical axons. Interestingly, control experiments with immature cortical astrocytes without any overexpression resulted in the induction of synaptic vesicle clustering in contacting axons (hemisynapse formation). This synaptogenic activity correlated with the endogenous expression of the synaptogenic protein Neuroligin1. Hemisynapse formation was further enhanced upon overexpression of LRRTM2 in cortical astrocytes. In contrast, cerebellar astrocytes required overexpression of LRRTM2 for induction of synaptic vesicle clustering in contacting axons. We further addressed, whether hemisynapse formation was accompanied by the appearance of fully functional glutamatergic synapses. We therefore attempted to record AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) in innervated astrocytes using the whole-cell patch-clamp technique. Despite the endogenous expression of the AMPA receptor subunits GluA2 and to a lesser extent GluA1, we did not reliably observe spontaneous AMPA mEPSCs. In conclusion, overexpression of the synaptogenic protein LRRTM2 induced hemisynapse formation between co-cultured neurons and astrocytes. However, the formation of fully functional synapses appeared to require additional factors critical for nano-alignment of presynaptic vesicles and postsynaptic receptors.
Collapse
|