151
|
RON signalling promotes therapeutic resistance in ESR1 mutant breast cancer. Br J Cancer 2020; 124:191-206. [PMID: 33257837 PMCID: PMC7782501 DOI: 10.1038/s41416-020-01174-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Background Oestrogen Receptor 1 (ESR1) mutations are frequently acquired in oestrogen receptor (ER)-positive metastatic breast cancer (MBC) patients who were treated with aromatase inhibitors (AI) in the metastatic setting. Acquired ESR1 mutations are associated with poor prognosis and there is a lack of effective therapies that selectively target these cancers. Methods We performed a proteomic kinome analysis in ESR1 Y537S mutant cells to identify hyperactivated kinases in ESR1 mutant cells. We validated Recepteur d’Origine Nantais (RON) and PI3K hyperactivity through phospho-immunoblot analysis, organoid growth assays, and in an in vivo patient-derived xenograft (PDX) metastatic model. Results We demonstrated that RON was hyperactivated in ESR1 mutant models, and in acquired palbociclib-resistant (PalbR) models. RON and insulin-like growth factor 1 receptor (IGF-1R) interacted as shown through pharmacological and genetic inhibition and were regulated by the mutant ER as demonstrated by reduced phospho-protein expression with endocrine therapies (ET). We show that ET in combination with a RON inhibitor (RONi) decreased ex vivo organoid growth of ESR1 mutant models, and as a monotherapy in PalbR models, demonstrating its therapeutic efficacy. Significantly, ET in combination with the RONi reduced metastasis of an ESR1 Y537S mutant PDX model. Conclusions Our results demonstrate that RON/PI3K pathway inhibition may be an effective treatment strategy in ESR1 mutant and PalbR MBC patients. Clinically our data predict that ET resistance mechanisms can also contribute to CDK4/6 inhibitor resistance. ![]()
Collapse
|
152
|
Xu B, Amallraja A, Swaminathan P, Elsey R, Davis C, Theel S, Viet S, Petersen J, Krie A, Davies G, Williams CB, Ehli E, Meißner T. Case report: 16-yr life history and genomic evolution of an ER + HER2 - breast cancer. Cold Spring Harb Mol Case Stud 2020; 6:a005629. [PMID: 33008833 PMCID: PMC7784492 DOI: 10.1101/mcs.a005629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Metastatic breast cancer is one of the leading causes of cancer-related death in women. Limited studies have been done on the genomic evolution between primary and metastatic breast cancer. We reconstructed the genomic evolution through the 16-yr history of an ER+ HER2- breast cancer patient to investigate molecular mechanisms of disease relapse and treatment resistance after long-term exposure to hormonal therapy. Genomic and transcriptome profiling was performed on primary breast tumor (2002), initial recurrence (2012), and liver metastasis (2015) samples. Cell-free DNA analysis was performed at 11 time points (2015-2017). Mutational analysis revealed a low mutational burden in the primary tumor that doubled at the time of progression, with driver mutations in PI3K-Akt and RAS-RAF signaling pathways. Phylogenetic analysis showed an early branching off between primary tumor and metastasis. Liquid biopsies, although initially negative, started to detect an ESR1 E380Q mutation in 2016 with increasing allele frequency until the end of 2017. Transcriptome analysis revealed 721 (193 up, 528 down) genes to be differentially expressed between primary tumor and first relapse. The most significantly down-regulated genes were TFF1 and PGR, indicating resistance to aromatase inhibitor (AI) therapy. The most up-regulated genes included PTHLH, S100P, and SOX2, promoting tumor growth and metastasis. This phylogenetic reconstruction of the life history of a single patient's cancer as well as monitoring tumor progression through liquid biopsies allowed for uncovering the molecular mechanisms leading to initial relapse, metastatic spread, and treatment resistance.
Collapse
Affiliation(s)
- Bing Xu
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Anu Amallraja
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Padmapriya Swaminathan
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Rachel Elsey
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Christel Davis
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Stephanie Theel
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Sarah Viet
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Jason Petersen
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Amy Krie
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Gareth Davies
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Casey B Williams
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Erik Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Tobias Meißner
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| |
Collapse
|
153
|
Lee N, Park MJ, Song W, Jeon K, Jeong S. Currently Applied Molecular Assays for Identifying ESR1 Mutations in Patients with Advanced Breast Cancer. Int J Mol Sci 2020; 21:ijms21228807. [PMID: 33233830 PMCID: PMC7699999 DOI: 10.3390/ijms21228807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Approximately 70% of breast cancers, the leading cause of cancer-related mortality worldwide, are positive for the estrogen receptor (ER). Treatment of patients with luminal subtypes is mainly based on endocrine therapy. However, ER positivity is reduced and ESR1 mutations play an important role in resistance to endocrine therapy, leading to advanced breast cancer. Various methodologies for the detection of ESR1 mutations have been developed, and the most commonly used method is next-generation sequencing (NGS)-based assays (50.0%) followed by droplet digital PCR (ddPCR) (45.5%). Regarding the sample type, tissue (50.0%) was more frequently used than plasma (27.3%). However, plasma (46.2%) became the most used method in 2016-2019, in contrast to 2012-2015 (22.2%). In 2016-2019, ddPCR (61.5%), rather than NGS (30.8%), became a more popular method than it was in 2012-2015. The easy accessibility, non-invasiveness, and demonstrated usefulness with high sensitivity of ddPCR using plasma have changed the trends. When using these assays, there should be a comprehensive understanding of the principles, advantages, vulnerability, and precautions for interpretation. In the future, advanced NGS platforms and modified ddPCR will benefit patients by facilitating treatment decisions efficiently based on information regarding ESR1 mutations.
Collapse
Affiliation(s)
- Nuri Lee
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea; (N.L.); (M.-J.P.); (W.S.)
| | - Min-Jeong Park
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea; (N.L.); (M.-J.P.); (W.S.)
| | - Wonkeun Song
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea; (N.L.); (M.-J.P.); (W.S.)
| | - Kibum Jeon
- Department of Laboratory Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea;
| | - Seri Jeong
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea; (N.L.); (M.-J.P.); (W.S.)
- Correspondence: ; Tel.: +82-845-5305
| |
Collapse
|
154
|
Arnesen S, Blanchard Z, Williams MM, Berrett KC, Li Z, Oesterreich S, Richer JK, Gertz J. Estrogen Receptor Alpha Mutations in Breast Cancer Cells Cause Gene Expression Changes through Constant Activity and Secondary Effects. Cancer Res 2020; 81:539-551. [PMID: 33184109 DOI: 10.1158/0008-5472.can-20-1171] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/18/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
While breast cancer patients with tumors that express estrogen receptor α (ER) generally respond well to hormone therapies that block ER activity, a significant number of patients relapse. Approximately 30% of these recurrences harbor activating mutations in the ligand binding domain (LBD) of ER, which have been shown to confer ligand-independent function. However, much is still unclear regarding the effect of mutant ER beyond its estrogen independence. To investigate the molecular effects of mutant ER, we developed multiple isogenic ER-mutant cell lines for the most common LBD mutations, Y537S and D538G. These mutations induced differential expression of thousands of genes, the majority of which were mutant allele specific and were not observed upon estrogen treatment of wild-type (WT) cells. These mutant-specific genes showed consistent differential expression across ER-mutant lines developed in other laboratories. WT cells with long-term estrogen exposure only exhibited some of these transcriptional changes, suggesting that mutant ER causes novel regulatory effects that are not simply due to constant activity. While ER mutations exhibited minor effects on ER genomic binding, with the exception of ligand independence, ER mutations conferred substantial differences in chromatin accessibility. Mutant ER was bound to approximately a quarter of mutant-enriched accessible regions that were enriched for other DNA binding factors, including FOXA1, CTCF, and OCT1. Overall, our findings indicate that mutant ER causes several consistent effects on gene expression, both indirectly and through constant activity. SIGNIFICANCE: This study demonstrates the multiple roles of mutant ER in breast cancer progression, including constant ER activity and secondary regulatory effects on gene expression and chromatin accessibility. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/3/539/F1.large.jpg.See related commentary by Hermida-Prado and Jeselsohn, p. 537 See related article by Williams and colleagues, p. 732.
Collapse
Affiliation(s)
- Spencer Arnesen
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Zannel Blanchard
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Michelle M Williams
- Department of Pathology, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Kristofer C Berrett
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Zheqi Li
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steffi Oesterreich
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer K Richer
- Department of Pathology, Anschutz Medical Campus, University of Colorado, Aurora, Colorado
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
155
|
Williams MM, Spoelstra NS, Arnesen S, O'Neill KI, Christenson JL, Reese J, Torkko KC, Goodspeed A, Rosas E, Hanamura T, Sams SB, Li Z, Oesterreich S, Riggins RB, Jacobsen BM, Elias A, Gertz J, Richer JK. Steroid Hormone Receptor and Infiltrating Immune Cell Status Reveals Therapeutic Vulnerabilities of ESR1-Mutant Breast Cancer. Cancer Res 2020; 81:732-746. [PMID: 33184106 DOI: 10.1158/0008-5472.can-20-1200] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Mutations in ESR1 that confer constitutive estrogen receptor alpha (ER) activity in the absence of ligand are acquired by ≥40% of metastatic breast cancers (MBC) resistant to adjuvant aromatase inhibitor (AI) therapy. To identify targetable vulnerabilities in MBC, we examined steroid hormone receptors and tumor-infiltrating immune cells in metastatic lesions with or without ER mutations. ER and progesterone receptor (PR) were significantly lower in metastases with wild-type (WT) ER compared with those with mutant ER, suggesting that metastases that evade AI therapy by mechanism(s) other than acquiring ER mutations lose dependency on ER and PR. Metastases with mutant ER had significantly higher T regulatory and Th cells, total macrophages, and programmed death ligand-1 (PD-L1)-positive immune-suppressive macrophages than those with WT ER. Breast cancer cells with CRISPR-Cas9-edited ER (D538G, Y537S, or WT) and patient-derived xenografts harboring mutant or WT ER revealed genes and proteins elevated in mutant ER cells, including androgen receptor (AR), chitinase-3-like protein 1 (CHI3L1), and IFN-stimulated genes (ISG). Targeting these proteins blunted the selective advantage of ER-mutant tumor cells to survive estrogen deprivation, anchorage independence, and invasion. Thus, patients with mutant ER MBC might respond to standard-of-care fulvestrant or other selective ER degraders when combined with AR or CHI3L1 inhibition, perhaps with the addition of immunotherapy. SIGNIFICANCE: Targetable alterations in MBC, including AR, CHI3L1, and ISG, arise following estrogen-deprivation, and ER-mutant metastases may respond to immunotherapies due to elevated PD-L1+ macrophages.See related article by Arnesen et al., p. 539.
Collapse
Affiliation(s)
- Michelle M Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Spencer Arnesen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Kathleen I O'Neill
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jordan Reese
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kathleen C Torkko
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andrew Goodspeed
- Department of Pharmacology and University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emmanuel Rosas
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Toru Hanamura
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sharon B Sams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Zheqi Li
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, Pennsylvania.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steffi Oesterreich
- Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, Pennsylvania.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca B Riggins
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Britta M Jacobsen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anthony Elias
- School of Medicine, Division of Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
156
|
Luque-Bolivar A, Pérez-Mora E, Villegas VE, Rondón-Lagos M. Resistance and Overcoming Resistance in Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2020; 12:211-229. [PMID: 33204149 PMCID: PMC7666993 DOI: 10.2147/bctt.s270799] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
The incidence and mortality of breast cancer (BC) have increased in recent years, and BC is the main cause of cancer-related death in women worldwide. One of the most significant clinical problems in the treatment of patients with BC is the development of therapeutic resistance. Therefore, elucidating the molecular mechanisms involved in drug resistance is critical. The therapeutic decision for the management of patients with BC is based not only on the assessment of prognostic factors but also on the evaluation of clinical and pathological parameters. Although this has been a successful approach, some patients relapse and/or eventually develop resistance to treatment. This review is focused on recent studies on the possible biological and molecular mechanisms involved in both response and resistance to treatment in BC. Additionally, emerging treatments that seek to overcome resistance and reduce side effects are also described. A greater understanding of the mechanisms of action of treatments used in BC might contribute not only to the enhancement of our understanding of the mechanisms involved in the development of resistance but also to the optimization of the existing treatment regimens.
Collapse
Affiliation(s)
- Andrea Luque-Bolivar
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja150003, Colombia
| | - Erika Pérez-Mora
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja150003, Colombia
| | | | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja150003, Colombia
| |
Collapse
|
157
|
Lu Y, Liu W. Selective Estrogen Receptor Degraders (SERDs): A Promising Strategy for Estrogen Receptor Positive Endocrine-Resistant Breast Cancer. J Med Chem 2020; 63:15094-15114. [PMID: 33138369 DOI: 10.1021/acs.jmedchem.0c00913] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Estrogen receptor (ER) plays important roles in gene transcription and the proliferation of ER positive breast cancers. Selective modulation of ER has been a therapeutic target for this specific type of breast cancer for more than 30 years. Selective estrogen receptor modulators (SERMs) and aromatase inhibitors (AIs) have been demonstrated to be effective therapeutic approaches for ER positive breast cancers. Unfortunately, 30-50% of ER positive tumors become resistant to SERM/AI treatment after 3-5 years. Fulvestrant, the only approved selective estrogen receptor degrader (SERD), is currently an important therapeutic approach for the treatment of endocrine-resistant breast cancers. The poor pharmacokinetic properties of fulvestrant have inspired the development of a new generation of oral SERDs to overcome drug resistance. In this review, we describe recent advances in ERα structure, functions, and mechanisms of endocrine resistance and summarize the development of oral SERDs in both academic and industrial areas.
Collapse
Affiliation(s)
- Yunlong Lu
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Wukun Liu
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
158
|
Scott JS, Moss TA, Balazs A, Barlaam B, Breed J, Carbajo RJ, Chiarparin E, Davey PRJ, Delpuech O, Fawell S, Fisher DI, Gagrica S, Gangl ET, Grebe T, Greenwood RD, Hande S, Hatoum-Mokdad H, Herlihy K, Hughes S, Hunt TA, Huynh H, Janbon SLM, Johnson T, Kavanagh S, Klinowska T, Lawson M, Lister AS, Marden S, McGinnity DF, Morrow CJ, Nissink JWM, O'Donovan DH, Peng B, Polanski R, Stead DS, Stokes S, Thakur K, Throner SR, Tucker MJ, Varnes J, Wang H, Wilson DM, Wu D, Wu Y, Yang B, Yang W. Discovery of AZD9833, a Potent and Orally Bioavailable Selective Estrogen Receptor Degrader and Antagonist. J Med Chem 2020; 63:14530-14559. [PMID: 32910656 DOI: 10.1021/acs.jmedchem.0c01163] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein we report the optimization of a series of tricyclic indazoles as selective estrogen receptor degraders (SERD) and antagonists for the treatment of ER+ breast cancer. Structure based design together with systematic investigation of each region of the molecular architecture led to the identification of N-[1-(3-fluoropropyl)azetidin-3-yl]-6-[(6S,8R)-8-methyl-7-(2,2,2-trifluoroethyl)-6,7,8,9-tetrahydro-3H-pyrazolo[4,3-f]isoquinolin-6-yl]pyridin-3-amine (28). This compound was demonstrated to be a highly potent SERD that showed a pharmacological profile comparable to fulvestrant in its ability to degrade ERα in both MCF-7 and CAMA-1 cell lines. A stringent control of lipophilicity ensured that 28 had favorable physicochemical and preclinical pharmacokinetic properties for oral administration. This, combined with demonstration of potent in vivo activity in mouse xenograft models, resulted in progression of this compound, also known as AZD9833, into clinical trials.
Collapse
Affiliation(s)
- James S Scott
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Thomas A Moss
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Amber Balazs
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Bernard Barlaam
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Jason Breed
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | | | | | - Paul R J Davey
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Oona Delpuech
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Stephen Fawell
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David I Fisher
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | | | - Eric T Gangl
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Tyler Grebe
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | - Sudhir Hande
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Holia Hatoum-Mokdad
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Kara Herlihy
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Samantha Hughes
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Thomas A Hunt
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Hoan Huynh
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Sophie L M Janbon
- Early Chemical Development, Pharmaceutical Sciences, R&D, Macclesfield, United Kingdom
| | - Tony Johnson
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Stefan Kavanagh
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Mandy Lawson
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Andrew S Lister
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Stacey Marden
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, Boston, Massachusetts, United States
| | | | | | | | | | - Bo Peng
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Radoslaw Polanski
- Discovery Sciences R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Darren S Stead
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Stephen Stokes
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Kumar Thakur
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Scott R Throner
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | - Jeffrey Varnes
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Haixia Wang
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David M Wilson
- Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Dedong Wu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, Boston, Massachusetts, United States
| | - Ye Wu
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Bin Yang
- Oncology R&D, AstraZeneca, R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Wenzhan Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, Boston, Massachusetts, United States
| |
Collapse
|
159
|
Li Z, He B, Feng W. Evaluation of bottom-up and top-down mass spectrum identifications with different customized protein sequences databases. Bioinformatics 2020; 36:1030-1036. [PMID: 31584612 DOI: 10.1093/bioinformatics/btz733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 08/12/2019] [Accepted: 09/25/2019] [Indexed: 02/05/2023] Open
Abstract
MOTIVATION Generally, bottom-up and top-down are two complementary approaches for proteoforms identification. The inference of proteoforms relies on searching mass spectra against an accurate proteoform sequence database. A customized protein sequence database derived by RNA-Seq data can be used to better identify the proteoform existed in a studied species. However, the quality of sequences in customized databases which constructed by different strategies affect the performances of mass spectrometry (MS) identification. Additionally, performances of identifications between bottom-up and top-down using customized databases are also needed to be evaluated. RESULTS Three customized databases were constructed with different strategies separately. Two of them were based on translating assembled transcripts with or without genomic annotation, and the third one is a variant-extending protein database. By testing with bottom-up and top-down MS data separately, a variant-extending protein database could identify not only the most number of spectra but also the alleles expressed at the same time in diploid cells. An assembled database could identify the spectrum missed in reference database and amino acid (AA) alterations existed in studied species. AVAILABILITY AND IMPLEMENTATION Experimental results demonstrated that the proteoform sequences in an annotated database are more suitable for identifying AA alterations and peptide sequences missed in reference database. An unannotated database instead of a reference proteome database gets an enough high sensitivity of identifying mass spectra. The variant-extending reference database is the most sensitive to identify mass spectra and single AA variants. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ziwei Li
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Bo He
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Weixing Feng
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| |
Collapse
|
160
|
Wu J, Bryan J, Rubinstein SM, Wang L, Lenoue-Newton M, Zuhour R, Levy M, Micheel C, Xu Y, Bhavnani SK, Mackey L, Warner JL. Opportunities and Challenges for Analyzing Cancer Data at the Inter- and Intra-Institutional Levels. JCO Precis Oncol 2020; 4:1900394. [PMID: 32923903 DOI: 10.1200/po.19.00394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Our goal was to identify the opportunities and challenges in analyzing data from the American Association of Cancer Research Project Genomics Evidence Neoplasia Information Exchange (GENIE), a multi-institutional database derived from clinically driven genomic testing, at both the inter- and the intra-institutional level. Inter-institutionally, we identified genotypic differences between primary and metastatic tumors across the 3 most represented cancers in GENIE. Intra-institutionally, we analyzed the clinical characteristics of the Vanderbilt-Ingram Cancer Center (VICC) subset of GENIE to inform the interpretation of GENIE as a whole. METHODS We performed overall cohort matching on the basis of age, ethnicity, and sex of 13,208 patients stratified by cancer type (breast, colon, or lung) and sample site (primary or metastatic). We then determined whether detected variants, at the gene level, were associated with primary or metastatic tumors. We extracted clinical data for the VICC subset from VICC's clinical data warehouse. Treatment exposures were mapped to a 13-class schema derived from the HemOnc ontology. RESULTS Across 756 genes, there were significant differences in all cancer types. In breast cancer, ESR1 variants were over-represented in metastatic samples (odds ratio, 5.91; q < 10-6). TP53 mutations were over-represented in metastatic samples across all cancers. VICC had a significantly different cancer type distribution than that of GENIE but patients were well matched with respect to age, sex, and sample type. Treatment data from VICC was used for a bipartite network analysis, demonstrating clusters with a mix of histologies and others being more histology specific. CONCLUSION This article demonstrates the feasibility of deriving meaningful insights from GENIE at the inter- and intra-institutional level and illuminates the opportunities and challenges of the data GENIE contains. The results should help guide future development of GENIE, with the goal of fully realizing its potential for accelerating precision medicine.
Collapse
Affiliation(s)
- Julie Wu
- Department of Internal Medicine, Vanderbilt University, Nashville, TN
| | | | - Samuel M Rubinstein
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Lucy Wang
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Michele Lenoue-Newton
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Raed Zuhour
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX
| | - Mia Levy
- Department of Internal Medicine, Vanderbilt University, Nashville, TN.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN.,Department of Biomedical Informatics, Vanderbilt University, Nashville, TN
| | - Christine Micheel
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Yaomin Xu
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN.,Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Suresh K Bhavnani
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX
| | | | - Jeremy L Warner
- Department of Internal Medicine, Vanderbilt University, Nashville, TN.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN.,Department of Biomedical Informatics, Vanderbilt University, Nashville, TN
| |
Collapse
|
161
|
Chen B, Ye P, Chen Y, Liu T, Cha JH, Yan X, Yang WH. Involvement of the Estrogen and Progesterone Axis in Cancer Stemness: Elucidating Molecular Mechanisms and Clinical Significance. Front Oncol 2020; 10:1657. [PMID: 33014829 PMCID: PMC7498570 DOI: 10.3389/fonc.2020.01657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Estrogen and progesterone regulate the growth and development of human tissues, including the reproductive system and breasts, through estrogen and progesterone receptors, respectively. These receptors are also important indicators for the clinical prognosis of breast cancer and various reproductive cancers. Many studies have reported that cancer stem cells (CSCs) play a key role in tumor initiation, progression, metastasis, and recurrence. Although the role of estrogen and progesterone in human organs and various cancers has been studied, the molecular mechanisms underlying the action of these hormones on CSCs remain unclear. Therefore, further elucidation of the effects of estrogen and progesterone on CSCs should provide a new direction for developing pertinent therapies. In this review, we summarize the current knowledge on the estrogen and progesterone axis involved in cancer stemness and discuss potential therapeutic strategies to inhibit CSCs by targeting relevant pathways.
Collapse
Affiliation(s)
- Bi Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Peng Ye
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yeh Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Tong Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.,The Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
| | - Jong-Ho Cha
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, South Korea
| | - Xiuwen Yan
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Wen-Hao Yang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
162
|
Roy S, Whitehead TD, Quirk JD, Salter A, Ademuyiwa FO, Li S, An H, Shoghi KI. Optimal co-clinical radiomics: Sensitivity of radiomic features to tumour volume, image noise and resolution in co-clinical T1-weighted and T2-weighted magnetic resonance imaging. EBioMedicine 2020; 59:102963. [PMID: 32891051 PMCID: PMC7479492 DOI: 10.1016/j.ebiom.2020.102963] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background Radiomics analyses has been proposed to interrogate the biology of tumour as well as to predict/assess response to therapy in vivo. The objective of this work was to assess the sensitivity of radiomics features to noise, resolution, and tumour volume in the context of a co-clinical trial. Methods Triple negative breast cancer (TNBC) patients were recruited into an ongoing co-clinical imaging trial. Sub-typed matched TNBC patient-derived tumour xenografts (PDX) were generated to investigate optimal co-clinical MR radiomic features. The MR imaging protocol included T1-weighed and T2-weighted imaging. To test the sensitivity of radiomics to resolution, PDX were imaged at three different resolutions. Multiple sets of images with varying signal-to-noise ratio (SNR) were generated, and an image independent patch-based method was implemented to measure the noise levels. Forty-eight radiomic features were extracted from manually segmented 2D and 3D segmented tumours and normal tissues of T1- and T2- weighted co-clinical MR images. Findings Sixteen radiomics features were identified as volume dependent and corrected for volume-dependency following normalization. Features from grey-level run-length matrix (GLRLM), grey-level size zone matrix (GLSZM) were identified as most sensitive to noise. Radiomic features Kurtosis and Run-length variance (RLV) from GLSZM were most sensitive to changes in resolution in both T1w and T2w MRI. In general, 3D radiomic features were more robust compared to 2D (single slice) measures, although the former exhibited higher variability between subjects. Interpretation Tumour volume, noise characteristics, and image resolution significantly impact radiomic analysis in co-clinical studies.
Collapse
Affiliation(s)
- Sudipta Roy
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy D Whitehead
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James D Quirk
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amber Salter
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO USA
| | - Foluso O Ademuyiwa
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO USA
| | - Shunqiang Li
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO USA
| | - Hongyu An
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO USA
| | - Kooresh I Shoghi
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO USA.
| |
Collapse
|
163
|
Cairns J, Ingle JN, Dudenkov TM, Kalari KR, Carlson EE, Na J, Buzdar AU, Robson ME, Ellis MJ, Goss PE, Shepherd LE, Goodnature B, Goetz MP, Weinshilboum RM, Li H, Bari MG, Wang L. Pharmacogenomics of aromatase inhibitors in postmenopausal breast cancer and additional mechanisms of anastrozole action. JCI Insight 2020; 5:137571. [PMID: 32701512 PMCID: PMC7455128 DOI: 10.1172/jci.insight.137571] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/15/2020] [Indexed: 01/09/2023] Open
Abstract
Aromatase inhibitors (AIs) reduce breast cancer recurrence and prolong survival, but up to 30% of patients exhibit recurrence. Using a genome-wide association study of patients entered on MA.27, a phase III randomized trial of anastrozole versus exemestane, we identified a single nucleotide polymorphism (SNP) in CUB And Sushi multiple domains 1 (CSMD1) associated with breast cancer–free interval, with the variant allele associated with fewer distant recurrences. Mechanistically, CSMD1 regulates CYP19 expression in an SNP- and drug-dependent fashion, and this regulation is different among 3 AIs: anastrozole, exemestane, and letrozole. Overexpression of CSMD1 sensitized AI-resistant cells to anastrozole but not to the other 2 AIs. The SNP in CSMD1 that was associated with increased CSMD1 and CYP19 expression levels increased anastrozole sensitivity, but not letrozole or exemestane sensitivity. Anastrozole degrades estrogen receptor α (ERα), especially in the presence of estradiol (E2). ER+ breast cancer organoids and AI- or fulvestrant-resistant breast cancer cells were more sensitive to anastrozole plus E2 than to AI alone. Our findings suggest that the CSMD1 SNP might help to predict AI response, and anastrozole plus E2 serves as a potential new therapeutic strategy for patients with AI- or fulvestrant-resistant breast cancers. A germline variation within the CSMD1 gene predicts aromatase inhibitor response in breast cancer.
Collapse
Affiliation(s)
- Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics
| | | | - Tanda M Dudenkov
- Department of Molecular Pharmacology and Experimental Therapeutics
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Erin E Carlson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Jie Na
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Aman U Buzdar
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark E Robson
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Paul E Goss
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Barbara Goodnature
- Patient advocate, Mayo Clinic Breast Cancer Specialized Program of Research Excellence, Rochester, Minnesota, USA
| | | | | | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics
| | | | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics
| |
Collapse
|
164
|
Ehmsen S, Pedersen MH, Wang G, Terp MG, Arslanagic A, Hood BL, Conrads TP, Leth-Larsen R, Ditzel HJ. Increased Cholesterol Biosynthesis Is a Key Characteristic of Breast Cancer Stem Cells Influencing Patient Outcome. Cell Rep 2020; 27:3927-3938.e6. [PMID: 31242424 DOI: 10.1016/j.celrep.2019.05.104] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/01/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor eradication may be greatly improved by targeting cancer stem cells (CSCs), as they exhibit resistance to conventional therapy. To gain insight into the unique biology of CSCs, we developed patient-derived xenograft tumors (PDXs) from ER- breast cancers from which we isolated mammospheres that are enriched for CSCs. Comparative global proteomic analysis was performed on patient tumor tissues and corresponding PDXs and mammospheres. Mammospheres exhibited increased expression of proteins associated with de novo cholesterol synthesis. The clinical relevance of increased cholesterol biosynthesis was verified in a large breast cancer cohort showing correlation with shorter relapse-free survival. RNAi and chemical inhibition of the cholesterol biosynthesis pathway reduced mammosphere formation, which could be rescued by a downstream metabolite. Our findings identify the cholesterol biosynthesis pathway as central for CSC propagation and a potential therapeutic target, as well as providing a mechanistic explanation for the therapeutic benefit of statins in breast cancer.
Collapse
Affiliation(s)
- Sidse Ehmsen
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark; Department of Oncology, Odense University Hospital, 5000 Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5000 Odense, Denmark
| | - Martin H Pedersen
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark
| | - Guisong Wang
- Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Annandale, VA 22003, USA
| | - Mikkel G Terp
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark
| | - Amina Arslanagic
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark
| | - Brian L Hood
- Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Annandale, VA 22003, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Annandale, VA 22003, USA; Inova Schar Cancer Institute, Inova Center for Personalized Health, Fairfax, VA 22031, USA
| | - Rikke Leth-Larsen
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark; Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark.
| | - Henrik J Ditzel
- Department of Molecular Medicine, Cancer, and Inflammation Research Unit, University of Southern Denmark, 5000 Odense, Denmark; Department of Oncology, Odense University Hospital, 5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5000 Odense, Denmark.
| |
Collapse
|
165
|
Ge X, Quirk JD, Engelbach JA, Bretthorst GL, Li S, Shoghi KI, Garbow JR, Ackerman JJH. Test-Retest Performance of a 1-Hour Multiparametric MR Image Acquisition Pipeline With Orthotopic Triple-Negative Breast Cancer Patient-Derived Tumor Xenografts. ACTA ACUST UNITED AC 2020; 5:320-331. [PMID: 31572793 PMCID: PMC6752291 DOI: 10.18383/j.tom.2019.00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Preclinical imaging is critical in the development of translational strategies to detect diseases and monitor response to therapy. The National Cancer Institute Co-Clinical Imaging Resource Program was launched, in part, to develop best practices in preclinical imaging. In this context, the objective of this work was to develop a 1-hour, multiparametric magnetic resonance image-acquisition pipeline with triple-negative breast cancer patient-derived xenografts (PDXs). The 1-hour, image-acquisition pipeline includes T1- and T2-weighted scans, quantitative T1, T2, and apparent diffusion coefficient (ADC) parameter maps, and dynamic contrast-enhanced (DCE) time-course images. Quality-control measures used phantoms. The triple-negative breast cancer PDXs used for this study averaged 174 ± 73 μL in volume, with region of interest–averaged T1, T2, and ADC values of 1.9 ± 0.2 seconds, 62 ± 3 milliseconds, and 0.71 ± 0.06 μm2/ms (mean ± SD), respectively. Specific focus was on assessing the within-subject test–retest coefficient-of-variation (CVWS) for each of the magnetic resonance imaging metrics. Determination of PDX volume via manually drawn regions of interest is highly robust, with ∼1% CVWS. Determination of T2 is also robust with a ∼3% CVWS. Measurements of T1 and ADC are less robust with CVWS values in the 6%–11% range. Preliminary DCE test–retest time-course determinations, as quantified by area under the curve and Ktrans from 2-compartment exchange (extended Tofts) modeling, suggest that DCE is the least robust protocol, with ∼30%–40% CVWS.
Collapse
Affiliation(s)
| | | | | | | | | | - Kooresh I Shoghi
- Departments of Radiology.,Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St Louis, MO
| | - Joel R Garbow
- Departments of Radiology.,Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St Louis, MO
| | - Joseph J H Ackerman
- Departments of Radiology.,Internal Medicine, and.,Chemistry, Washington University, St Louis, MO; and.,Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St Louis, MO
| |
Collapse
|
166
|
Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, Petralia F, Li Y, Liang WW, Reva B, Krek A, Ji J, Song X, Liu W, Hong R, Yao L, Blumenberg L, Savage SR, Wendl MC, Wen B, Li K, Tang LC, MacMullan MA, Avanessian SC, Kane MH, Newton CJ, Cornwell M, Kothadia RB, Ma W, Yoo S, Mannan R, Vats P, Kumar-Sinha C, Kawaler EA, Omelchenko T, Colaprico A, Geffen Y, Maruvka YE, da Veiga Leprevost F, Wiznerowicz M, Gümüş ZH, Veluswamy RR, Hostetter G, Heiman DI, Wyczalkowski MA, Hiltke T, Mesri M, Kinsinger CR, Boja ES, Omenn GS, Chinnaiyan AM, Rodriguez H, Li QK, Jewell SD, Thiagarajan M, Getz G, Zhang B, Fenyö D, Ruggles KV, Cieslik MP, Robles AI, Clauser KR, Govindan R, Wang P, Nesvizhskii AI, Ding L, Mani DR, Carr SA. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell 2020; 182:200-225.e35. [PMID: 32649874 PMCID: PMC7373300 DOI: 10.1016/j.cell.2020.06.013] [Citation(s) in RCA: 479] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/06/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.
Collapse
Affiliation(s)
- Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, 02115, USA.
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Suhas V Vasaikar
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wen-Wei Liang
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Runyu Hong
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Lijun Yao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Lili Blumenberg
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael C Wendl
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lauren C Tang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Melanie A MacMullan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shayan C Avanessian
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - MacIntosh Cornwell
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramani B Kothadia
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pankaj Vats
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Emily A Kawaler
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tatiana Omelchenko
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Yosef E Maruvka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, Poznań, 61-701, Poland; International Institute for Molecular Oncology, Poznań, 60-203, Poland
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajwanth R Veluswamy
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Qing Kay Li
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, 21224, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Ramaswamy Govindan
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
167
|
Shin SH, Lee JS, Zhang JM, Choi S, Boskovic ZV, Zhao R, Song M, Wang R, Tian J, Lee MH, Kim JH, Jeong M, Lee JH, Petukhov M, Lee SW, Kim SG, Zou L, Byun S. Synthetic lethality by targeting the RUVBL1/2-TTT complex in mTORC1-hyperactive cancer cells. SCIENCE ADVANCES 2020; 6:eaay9131. [PMID: 32789167 PMCID: PMC7399646 DOI: 10.1126/sciadv.aay9131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/19/2020] [Indexed: 05/08/2023]
Abstract
Despite considerable efforts, mTOR inhibitors have produced limited success in the clinic. To define the vulnerabilities of mTORC1-addicted cancer cells and to find previously unknown therapeutic targets, we investigated the mechanism of piperlongumine, a small molecule identified in a chemical library screen to specifically target cancer cells with a hyperactive mTORC1 phenotype. Sensitivity to piperlongumine was dependent on its ability to suppress RUVBL1/2-TTT, a complex involved in chromatin remodeling and DNA repair. Cancer cells with high mTORC1 activity are subjected to higher levels of DNA damage stress via c-Myc and displayed an increased dependency on RUVBL1/2 for survival and counteracting genotoxic stress. Examination of clinical cancer tissues also demonstrated that high mTORC1 activity was accompanied by high RUVBL2 expression. Our findings reveal a previously unknown role for RUVBL1/2 in cell survival, where it acts as a functional chaperone to mitigate stress levels induced in the mTORC1-Myc-DNA damage axis.
Collapse
Affiliation(s)
- Seung Ho Shin
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji Su Lee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Sungbin Choi
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Zarko V. Boskovic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Ran Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Mengqiu Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Rui Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jie Tian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Mee-Hyun Lee
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jae Hwan Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Minju Jeong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jung Hyun Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Michael Petukhov
- Petersburg Nuclear Physics Institute named after B.P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Sam W. Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sang Gyun Kim
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Building 149 13th Street, Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Sanguine Byun
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
168
|
Finlay-Schultz J, Jacobsen BM, Riley D, Paul KV, Turner S, Ferreira-Gonzalez A, Harrell JC, Kabos P, Sartorius CA. New generation breast cancer cell lines developed from patient-derived xenografts. Breast Cancer Res 2020; 22:68. [PMID: 32576280 PMCID: PMC7310532 DOI: 10.1186/s13058-020-01300-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breast cancer is a highly heterogeneous disease characterized by multiple histologic and molecular subtypes. While a myriad of breast cancer cell lines have been developed over the past 60 years, estrogen receptor alpha (ER)+ disease and some mutations associated with this subtype remain underrepresented. Here we describe six breast cancer cell lines derived from patient-derived xenografts (PDX) and their general characteristics. METHODS Established breast cancer PDX were processed into cell suspensions and placed into standard 2D cell culture; six emerged into long-term passageable cell lines. Cell lines were assessed for protein expression of common luminal, basal, and mesenchymal markers, growth assessed in response to estrogens and endocrine therapies, and RNA-seq and oncogenomics testing performed to compare relative transcript levels and identify putative oncogenic drivers. RESULTS Three cell lines express ER and two are also progesterone receptor (PR) positive; PAM50 subtyping identified one line as luminal A. One of the ER+PR+ lines harbors a D538G mutation in the gene for ER (ESR1), providing a natural model that contains this endocrine-resistant genotype. The third ER+PR-/low cell line has mucinous features, a rare histologic type of breast cancer. The three other lines are ER- and represent two basal-like and a mixed ductal/lobular breast cancer. The cell lines show varied responses to tamoxifen and fulvestrant, and three were demonstrated to regrow tumors in vivo. RNA sequencing confirms all cell lines are human and epithelial. Targeted oncogenomics testing confirmed the noted ESR1 mutation in addition to other mutations (i.e., PIK3CA, BRCA2, CCND1, NF1, TP53, MYC) and amplifications (i.e., FGFR1, FGFR3) frequently found in breast cancers. CONCLUSIONS These new generation breast cancer cell lines add to the existing repository of breast cancer models, increase the number of ER+ lines, and provide a resource that can be genetically modified for studying several important clinical breast cancer features.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Cell Culture Techniques
- Cell Line, Tumor
- Female
- Gene Expression Profiling
- Heterografts
- Humans
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
Collapse
Affiliation(s)
- Jessica Finlay-Schultz
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Britta M Jacobsen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Duncan Riley
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kiran V Paul
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Scott Turner
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Peter Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Carol A Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
169
|
Savage P, Pacis A, Kuasne H, Liu L, Lai D, Wan A, Dankner M, Martinez C, Muñoz-Ramos V, Pilon V, Monast A, Zhao H, Souleimanova M, Annis MG, Aguilar-Mahecha A, Lafleur J, Bertos NR, Asselah J, Bouganim N, Petrecca K, Siegel PM, Omeroglu A, Shah SP, Aparicio S, Basik M, Meterissian S, Park M. Chemogenomic profiling of breast cancer patient-derived xenografts reveals targetable vulnerabilities for difficult-to-treat tumors. Commun Biol 2020; 3:310. [PMID: 32546838 PMCID: PMC7298048 DOI: 10.1038/s42003-020-1042-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Subsets of breast tumors present major clinical challenges, including triple-negative, metastatic/recurrent disease and rare histologies. Here, we developed 37 patient-derived xenografts (PDX) from these difficult-to-treat cancers to interrogate their molecular composition and functional biology. Whole-genome and transcriptome sequencing and reverse-phase protein arrays revealed that PDXs conserve the molecular landscape of their corresponding patient tumors. Metastatic potential varied between PDXs, where low-penetrance lung micrometastases were most common, though a subset of models displayed high rates of dissemination in organotropic or diffuse patterns consistent with what was observed clinically. Chemosensitivity profiling was performed in vivo with standard-of-care agents, where multi-drug chemoresistance was retained upon xenotransplantation. Consolidating chemogenomic data identified actionable features in the majority of PDXs, and marked regressions were observed in a subset that was evaluated in vivo. Together, this clinically-annotated PDX library with comprehensive molecular and phenotypic profiling serves as a resource for preclinical studies on difficult-to-treat breast tumors.
Collapse
Affiliation(s)
- Paul Savage
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Alain Pacis
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada.,Canadian Centre for Computational Genomics, McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Hellen Kuasne
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Leah Liu
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Daniel Lai
- Department of Molecular Oncology, British Columbia Cancer Research Centre, University of British Columbia, Vancouver, BC, V5Z 1L3, Canada
| | - Adrian Wan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, University of British Columbia, Vancouver, BC, V5Z 1L3, Canada
| | - Matthew Dankner
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Constanza Martinez
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada.,Department of Pathology, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Valentina Muñoz-Ramos
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Virginie Pilon
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Anie Monast
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Hong Zhao
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Margarita Souleimanova
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Matthew G Annis
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada
| | | | - Josiane Lafleur
- Lady Davis Research Institute, Jewish General Hospital, Montréal, QC, H3T 1E2, Canada
| | - Nicholas R Bertos
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Jamil Asselah
- Department of Oncology, McGill University, Montréal, QC, H4A 3T2, Canada
| | - Nathaniel Bouganim
- Department of Oncology, McGill University, Montréal, QC, H4A 3T2, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Peter M Siegel
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Atilla Omeroglu
- Department of Pathology, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Sohrab P Shah
- Department of Molecular Oncology, British Columbia Cancer Research Centre, University of British Columbia, Vancouver, BC, V5Z 1L3, Canada.,Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, University of British Columbia, Vancouver, BC, V5Z 1L3, Canada
| | - Mark Basik
- Lady Davis Research Institute, Jewish General Hospital, Montréal, QC, H3T 1E2, Canada.,Department of Surgery, Jewish General Hospital, Montréal, QC, H3T 1E2, Canada
| | - Sarkis Meterissian
- Department of Surgery, McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
| | - Morag Park
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montréal, QC, H3A 1A3, Canada. .,Department of Medicine, McGill University, Montréal, QC, H4A 3J1, Canada. .,Department of Pathology, McGill University, Montréal, QC, H4A 3J1, Canada. .,Department of Biochemistry, McGill University, Montréal, QC, H3A 1A3, Canada.
| |
Collapse
|
170
|
Gibbs ZA, Reza LC, Cheng CC, Westcott JM, McGlynn K, Whitehurst AW. The testis protein ZNF165 is a SMAD3 cofactor that coordinates oncogenic TGFβ signaling in triple-negative breast cancer. eLife 2020; 9:57679. [PMID: 32515734 PMCID: PMC7302877 DOI: 10.7554/elife.57679] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer/testis (CT) antigens are proteins whose expression is normally restricted to germ cells yet aberrantly activated in tumors, where their functions remain relatively cryptic. Here we report that ZNF165, a CT antigen frequently expressed in triple-negative breast cancer (TNBC), associates with SMAD3 to modulate transcription of transforming growth factor β (TGFβ)-dependent genes and thereby promote growth and survival of human TNBC cells. In addition, we identify the KRAB zinc finger protein, ZNF446, and its associated tripartite motif protein, TRIM27, as obligate components of the ZNF165-SMAD3 complex that also support tumor cell viability. Importantly, we find that TRIM27 alone is necessary for ZNF165 transcriptional activity and is required for TNBC tumor growth in vivo using an orthotopic xenograft model in immunocompromised mice. Our findings indicate that aberrant expression of a testis-specific transcription factor is sufficient to co-opt somatic transcriptional machinery to drive a pro-tumorigenic gene expression program in TNBC.
Collapse
Affiliation(s)
- Zane A Gibbs
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Luis C Reza
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chun-Chun Cheng
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jill M Westcott
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kathleen McGlynn
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
| | - Angelique W Whitehurst
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
171
|
Savaikar MA, Whitehead T, Roy S, Strong L, Fettig N, Prmeau T, Luo J, Li S, Wahl RL, Shoghi KI. Preclinical PERCIST and 25% of SUV max Threshold: Precision Imaging of Response to Therapy in Co-clinical 18F-FDG PET Imaging of Triple-Negative Breast Cancer Patient-Derived Tumor Xenografts. J Nucl Med 2020; 61:842-849. [PMID: 31757841 PMCID: PMC7262224 DOI: 10.2967/jnumed.119.234286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
Numerous recent works highlight the limited utility of established tumor cell lines in recapitulating the heterogeneity of tumors in patients. More realistic preclinical cancer models are thought to be provided by transplantable, patient-derived xenografts (PDXs). The inter- and intratumor heterogeneity of PDXs, however, presents several challenges in developing optimal quantitative pipelines to assess response to therapy. The objective of this work was to develop and optimize image metrics for 18F-FDG PET to assess response to combination docetaxel and carboplatin therapy in a co-clinical trial involving triple-negative breast cancer PDXs. We characterized the reproducibility of standardized uptake value (SUV) metrics to assess response to therapy, and we optimized a preclinical PERCIST paradigm to complement clinical standards. Considerations in this effort included variability in tumor growth rate and tumor size, solid tumors versus tumor heterogeneity and a necrotic phenotype, and optimal selection of tumor slices versus whole tumor. Methods: A test-retest protocol was implemented to optimize the reproducibility of 18F-FDG PET SUV thresholds, SUVpeak metrics, and preclinical PERCIST parameters. In assessing response to therapy, 18F-FDG PET imaging was performed at baseline and 4 d after therapy. The reproducibility, accuracy, variability, and performance of imaging metrics to assess response to therapy were determined. We defined an index called the Quantitative Response Assessment Score to integrate parameters of prediction and precision and thus aid in selecting the optimal image metric to assess response to therapy. Results: Our data suggest that a threshold of 25% of SUVmax (SUV25) was highly reproducible (<9% variability). The concordance and reproducibility of preclinical PERCIST were maximized at α = 0.7 and β = 2.8 and exhibited a high correlation with SUV25 measures of tumor uptake, which in turn correlated with the SUV of metabolic tumor. Conclusion: The Quantitative Response Assessment Score favors SUV25 followed by SUVpeak for a sphere with a volume of 14 mm3 (SUVP14) as optimal metrics of response to therapy. Additional studies are warranted to fully characterize the utility of SUV25 and preclinical PERCIST SUVP14 as image metrics for response to therapy across a wide range of therapeutic regimens and PDX models.
Collapse
Affiliation(s)
- Madhusudan A Savaikar
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Timothy Whitehead
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Sudipta Roy
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Lori Strong
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Nicole Fettig
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Tina Prmeau
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri; and
| | - Shunqiang Li
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Richard L Wahl
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Kooresh I Shoghi
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
172
|
Luveta J, Parks RM, Heery DM, Cheung KL, Johnston SJ. Invasive Lobular Breast Cancer as a Distinct Disease: Implications for Therapeutic Strategy. Oncol Ther 2020; 8:1-11. [PMID: 32700069 PMCID: PMC7359988 DOI: 10.1007/s40487-019-00105-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Invasive lobular carcinoma comprises 10-15% of all breast cancers and is increasingly recognised as a distinct and understudied disease compared with the predominant histological subtype, invasive ductal carcinoma. Hallmarks of invasive lobular carcinoma include E-cadherin loss, leading to discohesive morphology with cells proliferating in single-file strands and oestrogen receptor positivity, with favourable response to endocrine therapy. This review summarises the distinct histological and molecular features of invasive lobular carcinoma with focus on diagnostic challenges and the impact on surgical management and medical therapy. Emphasis is placed on recent advances in our understanding of the unique molecular biology of lobular breast cancer and how this is optimising our therapy approach in the clinic.
Collapse
Affiliation(s)
- Jocelyn Luveta
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Gene Regulation and RNA Biology, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Ruth M Parks
- Division of Medical Sciences and Graduate Entry Medicine, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - David M Heery
- Gene Regulation and RNA Biology, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Kwok-Leung Cheung
- Division of Medical Sciences and Graduate Entry Medicine, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Simon J Johnston
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK.
- Gene Regulation and RNA Biology, School of Pharmacy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
173
|
Cho SY. Patient-derived xenografts as compatible models for precision oncology. Lab Anim Res 2020; 36:14. [PMID: 32461927 PMCID: PMC7238616 DOI: 10.1186/s42826-020-00045-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
Cancer is a very heterogeneous disease, displaying heterogeneity between patients (inter-tumoral heterogeneity) and heterogeneity within a patient (intra-tumoral heterogeneity). Precision oncology is a diagnostic and therapeutic approach for cancers based on the stratification of patients using genomic and molecular profiling of tumors. To develop diagnostic and therapeutic tools for the application of precision oncology, appropriate preclinical mouse models that reflect tumor heterogeneity are required. Patient-derived xenograft (PDX) models are generated by the engraftment of patient tumors into immunodeficient mice that retain several aspects of the patient’s tumor characteristics, including inter-tumoral heterogeneity and intra-tumoral heterogeneity. Therefore, PDX models can be applied in various developmental steps of cancer diagnostics and therapeutics, such as biomarker development, companion diagnostics, drug efficacy testing, overcoming drug resistance, and co-clinical trials. This review summarizes the diverse aspects of PDX models, addressing the factors considered for PDX generation, application of PDX models for cancer research, and future directions of PDX models.
Collapse
Affiliation(s)
- Sung-Yup Cho
- 1Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea.,2Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,3Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University, Seoul, South Korea
| |
Collapse
|
174
|
Abstract
The estrogen receptor positive (ER+) subset is the dominant contributor to global deaths from breast cancer which now exceeds 500,000 deaths annually. Lethality is driven by endocrine resistance, which has been shown to be associated with high mutational rates and extreme subclonal diversity. Treatment forces subclonal selection until the patient eventually succumbs to metastatic treatment-resistant disease. Recently, we have been addressing several questions related to this process: What is the cause of the increased mutation rate in lethal ER+ breast cancer? Why is endocrine therapy resistance related to mutational load? What are the functions of the somatic mutations that are eventually selected in the treatment resistant and metastatic clones? These questions have provoked new mechanistic hypotheses that link resistance to endocrine agents to: (1) Specific defects in single strand break repair are associated with increased mortality from ER+ breast cancer [1,2]; (2) Loss/mutations of certain single strand break repair proteins that disrupt estrogen-regulated cell cycle control through the ATM, CHK2, CDK4 axis [1,2] thereby directly coupling endocrine therapy resistance to specific DNA repair defects; (3) Acquired mutations that drive metastasis include the generation of in-frame ESR1 gene fusions that activate epithelial-to-mesenchymal transition (EMT) driven metastasis as well as endocrine drug-resistant proliferation [3].
Collapse
|
175
|
Lv X, Dobrolecki LE, Ding Y, Rosen JM, Lewis MT, Chen X. Orthotopic Transplantation of Breast Tumors as Preclinical Models for Breast Cancer. J Vis Exp 2020. [PMID: 32478757 DOI: 10.3791/61173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Preclinical models that faithfully recapitulate tumor heterogeneity and therapeutic response are critical for translational breast cancer research. Immortalized cell lines are easy to grow and genetically modify to study molecular mechanisms, yet the selective pressure from cell culture often leads to genetic and epigenetic alterations over time. Patient-derived xenograft (PDX) models faithfully recapitulate the heterogeneity and drug response of human breast tumors. PDX models exhibit a relatively short latency after orthotopic transplantation that facilitates the investigation of breast tumor biology and drug response. The transplantable genetically engineered mouse models allow the study of breast tumor immunity. The current protocol describes the method to orthotopically transplant breast tumor fragments into the mammary fat pad followed by drug treatments. These preclinical models provide valuable approaches to investigate breast tumor biology, drug response, biomarker discovery and mechanisms of drug resistance.
Collapse
Affiliation(s)
- Xiangdong Lv
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Lester and Sue Smith Breast Center, Baylor College of Medicine; Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Lacey E Dobrolecki
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Lester and Sue Smith Breast Center, Baylor College of Medicine; Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Yao Ding
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Lester and Sue Smith Breast Center, Baylor College of Medicine; Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Lester and Sue Smith Breast Center, Baylor College of Medicine; Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Lester and Sue Smith Breast Center, Baylor College of Medicine; Dan L. Duncan Cancer Center, Baylor College of Medicine;
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Lester and Sue Smith Breast Center, Baylor College of Medicine; Dan L. Duncan Cancer Center, Baylor College of Medicine;
| |
Collapse
|
176
|
Iwamoto T, Fujisawa T, Shien T, Araki K, Sakamaki K, Sangai T, Kikawa Y, Takao S, Nishimura R, Takahashi M, Aihara T, Mukai H, Taira N. The efficacy of sequential second-line endocrine therapies (ETs) in postmenopausal estrogen receptor-positive and HER2-negative metastatic breast cancer patients with lower sensitivity to initial ETs. Breast Cancer 2020; 27:973-981. [PMID: 32394413 DOI: 10.1007/s12282-020-01095-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/11/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Second-line endocrine therapy (ET) for estrogen receptor (ER)-positive and human epidermal growth factor 2 (HER2)-negative metastatic breast cancer (MBC) is offered based on the response to first-line ET. However, no clinical trials have evaluated the efficacy and safety of secondary ETs in patients with poor responses to initial ET. This study evaluated the efficacy of second-line ET in ER-positive and HER2-negative postmenopausal MBC patients with low or very low sensitivity to initial ET. METHODS This multicenter prospective observational cohort study evaluated the response of 49 patients to second-line ETs in postmenopausal MBC patients with low or very low sensitivity to initial ET. The primary endpoint was the clinical benefit rate (CBR) for 24 weeks. RESULTS Of the 49 patients assessed, 40 (82%) received fulvestrant in the second line, 5 (10%) received selective estrogen receptor modulators, 3 (6%) received aromatase inhibitors (AIs) alone, and 1 received everolimus with a steroidal AI. The overall CBR was 44.9% [90% confidence interval (CI): 34.6-57.6, p = 0.009]; CBR demonstrated similar significance across the progesterone receptor-positive (n = 39, 51.3%, 90% CI: 39.6-65.2, p = 0.002), very low sensitivity (n = 17, 58.8%, 90% CI: 42.0-78.8, p = 0.003), and non-visceral metastases (n = 25, 48.0%, 90% CI: 34.1-65.9, p = 0.018) groups. The median progression-free survival was 7.1 months (95% CI: 5.6-10.6). CONCLUSION Second-line ET might be a viable treatment option for postmenopausal patients with MBC with low and very low sensitivity to initial ET. Future studies based on larger and independent cohorts are needed to validate these findings.
Collapse
Affiliation(s)
- Takayuki Iwamoto
- Department of Breast and Endocrine Surgery, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Tomomi Fujisawa
- Department of Breast Oncology, Gunma Prefectural Cancer Center, Gunma, Japan
| | - Tadahiko Shien
- Department of Breast and Endocrine Surgery, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuhiro Araki
- Department of Medical Oncology, Gunma Prefectural Cancer Center, Gunma, Japan
| | - Kentaro Sakamaki
- Department of Biostatistics and Bioinformatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takafumi Sangai
- Department of Breast and Thyroid Surgery, Chiba University Hospital, Chiba, Japan
| | - Yuichiro Kikawa
- Department of Breast Surgery, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Shintaro Takao
- Department of Breast Surgery, Hyogo Cancer Center, Hyogo, Japan
| | - Reiki Nishimura
- Department of Breast Oncology, Kumamoto Shinto General Hospital, Kumamoto, Japan
| | - Masato Takahashi
- Department of Breast Surgery, National Hospital Organization Hokkaido Cancer Center, Hokkaido, Japan
| | | | - Hirofumi Mukai
- Division of Breast and Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Naruto Taira
- Department of Breast and Endocrine Surgery, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
177
|
Hanan EJ, Liang J, Wang X, Blake RA, Blaquiere N, Staben ST. Monomeric Targeted Protein Degraders. J Med Chem 2020; 63:11330-11361. [DOI: 10.1021/acs.jmedchem.0c00093] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
178
|
Kang HN, Kim JH, Park AY, Choi JW, Lim SM, Kim J, Shin EJ, Hong MH, Pyo KH, Yun MR, Kim DH, Lee H, Yoon SO, Kim DH, Park YM, Byeon HK, Jung I, Paik S, Koh YW, Cho BC, Kim HR. Establishment and characterization of patient-derived xenografts as paraclinical models for head and neck cancer. BMC Cancer 2020; 20:316. [PMID: 32293356 PMCID: PMC7160896 DOI: 10.1186/s12885-020-06786-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background We investigated whether head and neck squamous cell carcinoma (HNSCC) patient-derived xenografts (PDXs) reaffirm patient responses to anti-cancer therapeutics. Methods Tumors from HNSCC patients were transplanted into immunodeficient mice and propagated via subsequent implantation. We evaluated established PDXs by histology, genomic profiling, and in vivo anti-cancer efficacy testing to confirm them as the authentic in vivo platform. Results From 62 HNSCCs, 15 (24%) PDXs were established. The primary cancer types were tongue (8), oropharynx (3), hypopharynx (1), ethmoid sinus cancer (1), supraglottic cancer (1), and parotid gland (1); six PDXs (40%) were established from biopsy specimens from advanced HNSCC. PDXs mostly retained donor characteristics and remained stable across passages. PIK3CA (H1047R), HRAS (G12D), and TP53 mutations (H193R, I195T, R248W, R273H, E298X) and EGFR, CCND1, MYC, and PIK3CA amplifications were identified. Using the acquisition method, biopsy showed a significantly higher engraftment rate when compared with that of surgical resection (100% [6/6] vs. 16.1% [9/56], P < 0.001). Specimens obtained from metastatic sites showed a significantly higher engraftment rate than did those from primary sites (100% [9/9] vs. 11.3% [6/53], P < 0.001). Three PDX models from HPV-positive tumors were established, as compared to 12 from HPV-negative (15.8% [3/19] and 27.9% [12/43] respectively, P = 0.311), suggesting that HPV positivity tends to show a low engraftment rate. Drug responses in PDX recapitulated the clinical responses of the matching patients with pan-HER inhibitors and pan-PI3K inhibitor. Conclusions Genetically and clinically annotated HNSCC PDXs could be useful preclinical tools for evaluating biomarkers, therapeutic targets, and new drug discovery.
Collapse
Affiliation(s)
- Han Na Kang
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea
| | - Jae-Hwan Kim
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea
| | - A-Young Park
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea
| | - Jae Woo Choi
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, Seongnam-si, South Korea
| | - Jinna Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Joo Shin
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea
| | - Min Hee Hong
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Kyoung-Ho Pyo
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Mi Ran Yun
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea
| | - Dong Hwi Kim
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea
| | - Hanna Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Och Yoon
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Da Hee Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Young Min Park
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Hyung Kwon Byeon
- Department of Otolaryngology-Head and Neck Surgery Korea, University College of Medicine, Seoul, South Korea
| | - Inkyung Jung
- Department of Biostatistics and Medical Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Soonmyung Paik
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon Woo Koh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.
| | - Byoung Chul Cho
- JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, South Korea. .,Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.
| | - Hye Ryun Kim
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.
| |
Collapse
|
179
|
Hanker AB, Sudhan DR, Arteaga CL. Overcoming Endocrine Resistance in Breast Cancer. Cancer Cell 2020; 37:496-513. [PMID: 32289273 PMCID: PMC7169993 DOI: 10.1016/j.ccell.2020.03.009] [Citation(s) in RCA: 547] [Impact Index Per Article: 109.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Estrogen receptor-positive (ER+) breast cancer is the most common breast cancer subtype. Treatment of ER+ breast cancer comprises interventions that suppress estrogen production and/or target the ER directly (overall labeled as endocrine therapy). While endocrine therapy has considerably reduced recurrence and mortality from breast cancer, de novo and acquired resistance to this treatment remains a major challenge. An increasing number of mechanisms of endocrine resistance have been reported, including somatic alterations, epigenetic changes, and changes in the tumor microenvironment. Here, we review recent advances in delineating mechanisms of resistance to endocrine therapies and potential strategies to overcome such resistance.
Collapse
Affiliation(s)
- Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Dhivya R Sudhan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
180
|
Suppression of breast cancer metastasis and extension of survival by a new antiestrogen in a preclinical model driven by mutant estrogen receptors. Breast Cancer Res Treat 2020; 181:297-307. [PMID: 32277377 DOI: 10.1007/s10549-020-05629-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/03/2020] [Indexed: 01/18/2023]
Abstract
PURPOSE Many human breast tumors become resistant to endocrine therapies and recur due to estrogen receptor (ERα) mutations that convey constitutive activity and a more aggressive phenotype. Here, we examined the effectiveness of a novel adamantyl antiestrogen, K-07, in suppressing the growth of breast cancer metastases containing the two most frequent ER-activating mutations, Y537S and D538G, and in extending survival in a preclinical metastatic cancer model. METHODS MCF7 breast cancer cells expressing luciferase and Y537S or D538G ER were injected into NOD-SCID-gamma female mice, and animals were treated orally with the antiestrogen K-07 or control vehicle. Comparisons were also made with the antiestrogen Fulvestrant. The development of metastases was monitored by in vivo bioluminescence imaging with phenotypic characterization of the metastases in liver and lung by immunohistochemical and biochemical analyses. RESULTS These breast cancer cells established metastases in liver and lung, and K-07 treatment reduced the metastatic burden. Mice treated with K-07 also survived much longer. By day 70, only 28% of vehicle-treated mice with mutant ER metastases were alive, whereas all K-07-treated D538G and Y537S mice were still alive. K-07 also markedly reduced the level of metastatic cell ER and the expression of ER-regulated genes. CONCLUSION The antiestrogen K-07 can reduce in vivo metastasis of breast cancers and extend host survival in this preclinical model driven by constitutively active mutant ERs, suggesting that this compound may be suitable for further translational examination of its efficacy in suppression of metastasis in breast cancers containing constitutively active mutant ERs.
Collapse
|
181
|
McDermott JE, Arshad OA, Petyuk VA, Fu Y, Gritsenko MA, Clauss TR, Moore RJ, Schepmoes AA, Zhao R, Monroe ME, Schnaubelt M, Tsai CF, Payne SH, Huang C, Wang LB, Foltz S, Wyczalkowski M, Wu Y, Song E, Brewer MA, Thiagarajan M, Kinsinger CR, Robles AI, Boja ES, Rodriguez H, Chan DW, Zhang B, Zhang Z, Ding L, Smith RD, Liu T, Rodland KD. Proteogenomic Characterization of Ovarian HGSC Implicates Mitotic Kinases, Replication Stress in Observed Chromosomal Instability. CELL REPORTS MEDICINE 2020; 1. [PMID: 32529193 PMCID: PMC7289043 DOI: 10.1016/j.xcrm.2020.100004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the absence of a dominant driving mutation other than uniformly present TP53 mutations, deeper understanding of the biology driving ovarian high-grade serous cancer (HGSC) requires analysis at a functional level, including post-translational modifications. Comprehensive proteogenomic and phosphoproteomic characterization of 83 prospectively collected ovarian HGSC and appropriate normal precursor tissue samples (fallopian tube) under strict control of ischemia time reveals pathways that significantly differentiate between HGSC and relevant normal tissues in the context of homologous repair deficiency (HRD) status. In addition to confirming key features of HGSC from previous studies, including a potential survival-associated signature and histone acetylation as a marker of HRD, deep phosphoproteomics provides insights regarding the potential role of proliferation-induced replication stress in promoting the characteristic chromosomal instability of HGSC and suggests potential therapeutic targets for use in precision medicine trials. Comparison of ovarian cancer and normal precursors identifies key signaling pathways Mitotic and cyclin-dependent kinases emerge as potential therapeutic targets Previously identified hallmarks of homologous repair status and survival are confirmed Replication stress appears to drive increased chromosomal instability
Collapse
Affiliation(s)
- Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97201, USA.,These authors contributed equally
| | - Osama A Arshad
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.,These authors contributed equally
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Yi Fu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Therese R Clauss
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liang-Bo Wang
- The McDonnell Genome Institute, Washington University in St. Louis, St Louis, MO 63108, USA
| | - Steven Foltz
- The McDonnell Genome Institute, Washington University in St. Louis, St Louis, MO 63108, USA
| | - Matthew Wyczalkowski
- The McDonnell Genome Institute, Washington University in St. Louis, St Louis, MO 63108, USA
| | - Yige Wu
- The McDonnell Genome Institute, Washington University in St. Louis, St Louis, MO 63108, USA
| | - Ehwang Song
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Molly A Brewer
- Department of Obstetrics and Gynecology, University of Connecticut, Farmington, CT 06030, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Li Ding
- The McDonnell Genome Institute, Washington University in St. Louis, St Louis, MO 63108, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.,Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA.,Lead Contact
| | | |
Collapse
|
182
|
Reinert T, Ramalho S, de Vasconcelos VCA, Silva LR, da Silva AER, de Andrade CA, Kraft MBDPL, Coelho GP, Mandelli J, Binotto M, Cabello C, de Paiva Silva GR, Bines J, Barrios CH, Ellis MJ, Graudenz MS. ESR1 Mutations Are Not a Common Mechanism of Endocrine Resistance in Patients With Estrogen Receptor-Positive Breast Cancer Treated With Neoadjuvant Aromatase Inhibitor Therapy. Front Oncol 2020; 10:342. [PMID: 32309212 PMCID: PMC7145981 DOI: 10.3389/fonc.2020.00342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction: Mutations in the ESR1 gene (ESR1m) are important mechanisms of resistance to endocrine therapy in estrogen receptor–positive (ER+) metastatic breast cancer and have been studied as a potential therapeutic target, as well as a predictive and prognostic biomarker. Nonetheless, the role of ESR1m as a possible mechanism of primary endocrine resistance, as well as whether it also occurs in tumors that are resistant to ET administered in early-stage disease as (neo)adjuvant, has not been adequately studied. In this study, we evaluated the prevalence of ESR1m in tumor samples from patients with ER+ breast cancer resistant to neoadjuvant aromatase inhibitor therapy. Methods: We followed a prospective cohort of patients with ER+ HER2– stages II and III breast cancer treated with neoadjuvant endocrine therapy (NET). Tumor samples from patients with a pattern of primary endocrine resistance [defined as a Preoperative Endocrine Prognostic Index (PEPI) score of ≥4] were identified and analyzed for the presence of ESR1m. Results: One hundred twenty-seven patients were included in the cohort, of which 100 (79%) had completed NET and underwent surgery. Among these patients, the PEPI score ranged from 0 to 3 in 70% (70/100), whereas 30% (30/100) had a PEPI score of 4 or more. Twenty-three of these patients were included in the analysis. ESR1 mutations were not identified in any of the 23 patients with early-stage ER+ breast cancer resistant to NET. Discussion: Growing evidence supports the notion that there are different mechanisms for primary and secondary endocrine resistance. Our study suggests that ESR1 mutations do not evolve rapidly and do not represent a common mechanism of primary endocrine resistance in the neoadjuvant setting. Therefore, ESR1m should be considered a mechanism of acquired endocrine resistance in the context of advanced disease. Further research should be conducted to identify factors associated with intrinsic resistance to ET.
Collapse
Affiliation(s)
- Tomás Reinert
- Postgraduate Program in Medical Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Centro de Pesquisa da Serra Gaucha (CEPESG), Caxias Do Sul, Brazil.,Latin American Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
| | - Susana Ramalho
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Leonardo Roberto Silva
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana Elisa Ribeiro da Silva
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Camila Annicchino de Andrade
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Jovana Mandelli
- Diagnose Patologia e Biologia Molecular, Caxias Do Sul, Brazil
| | - Monique Binotto
- Centro de Pesquisa da Serra Gaucha (CEPESG), Caxias Do Sul, Brazil
| | - Cesar Cabello
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Geisilene Russano de Paiva Silva
- Laboratory of Molecular and Investigative Pathology - LAPE, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - José Bines
- Instituto Nacional Do Câncer (INCA - HCIII), Rio de Janeiro, Brazil
| | - Carlos H Barrios
- Latin American Cooperative Oncology Group (LACOG), Porto Alegre, Brazil
| | - Matthew J Ellis
- Lester and Sue Smith Breast Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Marcia Silveira Graudenz
- Postgraduate Program in Medical Sciences, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
183
|
Zheng ZY, Anurag M, Lei JT, Cao J, Singh P, Peng J, Kennedy H, Nguyen NC, Chen Y, Lavere P, Li J, Du XH, Cakar B, Song W, Kim BJ, Shi J, Seker S, Chan DW, Zhao GQ, Chen X, Banks KC, Lanman RB, Shafaee MN, Zhang XHF, Vasaikar S, Zhang B, Hilsenbeck SG, Li W, Foulds CE, Ellis MJ, Chang EC. Neurofibromin Is an Estrogen Receptor-α Transcriptional Co-repressor in Breast Cancer. Cancer Cell 2020; 37:387-402.e7. [PMID: 32142667 PMCID: PMC7286719 DOI: 10.1016/j.ccell.2020.02.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/15/2019] [Accepted: 02/06/2020] [Indexed: 12/18/2022]
Abstract
We report that neurofibromin, a tumor suppressor and Ras-GAP (GTPase-activating protein), is also an estrogen receptor-α (ER) transcriptional co-repressor through leucine/isoleucine-rich motifs that are functionally independent of GAP activity. GAP activity, in turn, does not affect ER binding. Consequently, neurofibromin depletion causes estradiol hypersensitivity and tamoxifen agonism, explaining the poor prognosis associated with neurofibromin loss in endocrine therapy-treated ER+ breast cancer. Neurofibromin-deficient ER+ breast cancer cells initially retain sensitivity to selective ER degraders (SERDs). However, Ras activation does play a role in acquired SERD resistance, which can be reversed upon MEK inhibitor addition, and SERD/MEK inhibitor combinations induce tumor regression. Thus, neurofibromin is a dual repressor for both Ras and ER signaling, and co-targeting may treat neurofibromin-deficient ER+ breast tumors.
Collapse
Affiliation(s)
- Ze-Yi Zheng
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jin Cao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Purba Singh
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jianheng Peng
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Department of Physical Examination, the First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Hilda Kennedy
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Nhu-Chau Nguyen
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yue Chen
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - Philip Lavere
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jing Li
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xin-Hui Du
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Department of Bone and Soft Tissue, Zhengzhou University Affiliated Henan Cancer Hospital and College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Burcu Cakar
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wei Song
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jiejun Shi
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Sinem Seker
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Doug W Chan
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Guo-Qiang Zhao
- Department of Bone and Soft Tissue, Zhengzhou University Affiliated Henan Cancer Hospital and College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, P. R. China
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Maryam Nemati Shafaee
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Suhas Vasaikar
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wei Li
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Eric C Chang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
184
|
Dou Y, Kawaler EA, Cui Zhou D, Gritsenko MA, Huang C, Blumenberg L, Karpova A, Petyuk VA, Savage SR, Satpathy S, Liu W, Wu Y, Tsai CF, Wen B, Li Z, Cao S, Moon J, Shi Z, Cornwell M, Wyczalkowski MA, Chu RK, Vasaikar S, Zhou H, Gao Q, Moore RJ, Li K, Sethuraman S, Monroe ME, Zhao R, Heiman D, Krug K, Clauser K, Kothadia R, Maruvka Y, Pico AR, Oliphant AE, Hoskins EL, Pugh SL, Beecroft SJI, Adams DW, Jarman JC, Kong A, Chang HY, Reva B, Liao Y, Rykunov D, Colaprico A, Chen XS, Czekański A, Jędryka M, Matkowski R, Wiznerowicz M, Hiltke T, Boja E, Kinsinger CR, Mesri M, Robles AI, Rodriguez H, Mutch D, Fuh K, Ellis MJ, DeLair D, Thiagarajan M, Mani DR, Getz G, Noble M, Nesvizhskii AI, Wang P, Anderson ML, Levine DA, Smith RD, Payne SH, Ruggles KV, Rodland KD, Ding L, Zhang B, Liu T, Fenyö D. Proteogenomic Characterization of Endometrial Carcinoma. Cell 2020; 180:729-748.e26. [PMID: 32059776 PMCID: PMC7233456 DOI: 10.1016/j.cell.2020.01.026] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
We undertook a comprehensive proteogenomic characterization of 95 prospectively collected endometrial carcinomas, comprising 83 endometrioid and 12 serous tumors. This analysis revealed possible new consequences of perturbations to the p53 and Wnt/β-catenin pathways, identified a potential role for circRNAs in the epithelial-mesenchymal transition, and provided new information about proteomic markers of clinical and genomic tumor subgroups, including relationships to known druggable pathways. An extensive genome-wide acetylation survey yielded insights into regulatory mechanisms linking Wnt signaling and histone acetylation. We also characterized aspects of the tumor immune landscape, including immunogenic alterations, neoantigens, common cancer/testis antigens, and the immune microenvironment, all of which can inform immunotherapy decisions. Collectively, our multi-omic analyses provide a valuable resource for researchers and clinicians, identify new molecular associations of potential mechanistic significance in the development of endometrial cancers, and suggest novel approaches for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emily A Kawaler
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Daniel Cui Zhou
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lili Blumenberg
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Alla Karpova
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shankha Satpathy
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Yige Wu
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhi Li
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - MacIntosh Cornwell
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rosalie K Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Suhas Vasaikar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Zhou
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Qingsong Gao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sunantha Sethuraman
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - David Heiman
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karsten Krug
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karl Clauser
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramani Kothadia
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yosef Maruvka
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Amanda E Oliphant
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Emily L Hoskins
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Samuel L Pugh
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Sean J I Beecroft
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - David W Adams
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jonathan C Jarman
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Andy Kong
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Antonio Colaprico
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xi Steven Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrzej Czekański
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Marcin Jędryka
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Rafał Matkowski
- Department of Oncology, Wroclaw Medical University, 50-367 Wrocław, Poland; Wroclaw Comprehensive Cancer Center, 53-413 Wrocław, Poland
| | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, 61-701 Poznań, Poland; University Hospital of Lord's Transfiguration, 60-569 Poznań, Poland; International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Mutch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine Fuh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Deborah DeLair
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Noble
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew L Anderson
- College of Medicine Obstetrics & Gynecology, University of South Florida Health, Tampa, FL 33620, USA
| | - Douglas A Levine
- Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Kelly V Ruggles
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA.
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - David Fenyö
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
185
|
Gonzalez TL, Hancock M, Sun S, Gersch CL, Larios JM, David W, Hu J, Hayes DF, Wang S, Rae JM. Targeted degradation of activating estrogen receptor α ligand-binding domain mutations in human breast cancer. Breast Cancer Res Treat 2020; 180:611-622. [PMID: 32067153 DOI: 10.1007/s10549-020-05564-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/03/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE Studies have identified several estrogen receptor α (ERα) ligand-binding domain (LBD) somatic mutations in endocrine therapy resistant, metastatic ER-positive breast cancers. The most common mutations, Tyr537Ser (Y537S) and Asp538Gly (D538G), are detected in ~ 30% of endocrine resistant metastatic breast cancer patients. These ESR1 mutations induce the agonist conformation of ERα, confer an estrogen-independent phenotype, and promote drug resistance to antiestrogens. METHODS ER-positive, estrogen-dependent MCF-7 cells were engineered to express either the Y537S or D538G mutants using CRISPR knock-in (cY537S and cD538G). These cells were used to screen several estrogen receptor degrader (ERD) compounds synthesized using the Proteolysis Targeting Chimeras (PROTAC) method to induce degradation of ERα via the ubiquitin-proteasome pathway. RESULTS Wild-type MCF-7 and ERα LBD mutant cells were treated with ERD-148 (10 pM-1 µM) and assayed for cellular proliferation using the PrestoBlue cell viability assay. ERD-148 attenuated ER-dependent growth with IC50 values of 0.8, 10.5, and 6.1 nM in MCF-7, cY537S, and cD538G cells, respectively. Western blot analysis showed that MCF-7 cells treated with 1 nM ERD-148 for 24 h exhibited reduced ERα protein expression as compared to the mutants. The ER-regulated gene, GREB1, demonstrated significant downregulation in parental and mutant cells after 24 h of ERD-148 treatment at 10 nM. Growth of the ER-negative, estrogen-independent MDA-MB-231 breast cancer cells was not inhibited by ERD-148 at the ~ IC90 observed in the ER-positive cells. CONCLUSION ERD-148 inhibits the growth of ER-positive breast cancer cells via downregulating ERα with comparable potency to Fulvestrant with marginal non-specific toxicity.
Collapse
Affiliation(s)
- Thomas L Gonzalez
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Molly Hancock
- The University of Michigan Rogel Cancer Center, Ann Arbor, USA.,Department of Internal Medicine, University of Michigan Medical School, 6310 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Siqi Sun
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, USA
| | - Christina L Gersch
- The University of Michigan Rogel Cancer Center, Ann Arbor, USA.,Department of Internal Medicine, University of Michigan Medical School, 6310 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Jose M Larios
- The University of Michigan Rogel Cancer Center, Ann Arbor, USA.,Department of Internal Medicine, University of Michigan Medical School, 6310 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Wadie David
- The University of Michigan Rogel Cancer Center, Ann Arbor, USA.,Department of Internal Medicine, University of Michigan Medical School, 6310 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Jiantao Hu
- The University of Michigan Rogel Cancer Center, Ann Arbor, USA.,Department of Internal Medicine, University of Michigan Medical School, 6310 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Daniel F Hayes
- The University of Michigan Rogel Cancer Center, Ann Arbor, USA.,Department of Internal Medicine, University of Michigan Medical School, 6310 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Shaomeng Wang
- The University of Michigan Rogel Cancer Center, Ann Arbor, USA.,Department of Internal Medicine, University of Michigan Medical School, 6310 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, USA.,Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James M Rae
- The University of Michigan Rogel Cancer Center, Ann Arbor, USA. .,Department of Internal Medicine, University of Michigan Medical School, 6310 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA. .,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, USA.
| |
Collapse
|
186
|
Lu X, Huang A, Xiao M, Sun L, Mao J, Luo G, Xiang H. A new class of 1,3,5-triazine-based selective estrogen receptor degraders (SERDs): Lead optimization, molecular docking and dynamic simulation. Bioorg Chem 2020; 97:103666. [PMID: 32088420 DOI: 10.1016/j.bioorg.2020.103666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/01/2020] [Accepted: 02/12/2020] [Indexed: 01/12/2023]
Abstract
Selective estrogen receptor degrader (SERD) that acts as not only ER antagonist, but also ER degrader, would be useful for the treatment for drug-resistance ER+ breast cancer. However, most of currently available SERD candidates involve very limited molecular scaffolds and are still in clinical trials. In this study, we introduced a 1,3,5-triazine ring into a homobibenzyl motif extracted from amounts of ER ligands and synthesized sixteen SERDs bearing acrylic acid or acrylic amide side chains that possess both ERα antagonism and degradation properties. And all compounds were screened for their anti-proliferative activity against ER+ MCF-7 and Ishikawa cell lines. Among them, compound XHA1614 displayed potent growth inhibition activity against MCF-7 and Ishikawa cells with IC50 values of 3.15 μM and 3.11 μM, respectively. Moreover, XHA1614 could dramatically degrade ER level at 1 nM in a Western blotting assay and afforded an outstanding antagonistic activity via suppressing the expression of progesterone receptor messenger RNA in MCF-7 cells in a RT-PCR assay. Further molecular docking and dynamic simulation on properly selected derivative furnished insights into its binding profile within ERα. Our findings suggest that the 1,3,5-triazine core was a feasible alternative to currently reported SERD scaffold, and provide information that will be useful for further development of promising SERDs candidates for breast cancer therapies.
Collapse
Affiliation(s)
- Xiang Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ali Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Maoxu Xiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Sun
- Shenzhen Shuli Tech Co., Ltd, Shenzhen 518126, China
| | - Jiashun Mao
- Shenzhen Shuli Tech Co., Ltd, Shenzhen 518126, China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hua Xiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
187
|
Jeannot E, Darrigues L, Michel M, Stern MH, Pierga JY, Rampanou A, Melaabi S, Benoist C, Bièche I, Vincent-Salomon A, El Ayachy R, Noret A, Epaillard N, Cabel L, Bidard FC, Proudhon C. A single droplet digital PCR for ESR1 activating mutations detection in plasma. Oncogene 2020; 39:2987-2995. [PMID: 32042112 DOI: 10.1038/s41388-020-1174-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 11/09/2022]
Abstract
Activating mutations in the estrogen receptor 1 (ESR1) gene confer resistance to aromatase inhibitors (AI), and may be targeted by selective estrogen receptor downregulators. We designed a multiplex droplet digital PCR (ddPCR), which combines a drop-off assay, targeting the clustered hotspot mutations found in exon 8, with an unconventional assay interrogating the E380Q mutation in exon 5. We assessed its sensitivity in vitro using synthetic oligonucleotides, harboring E380Q, L536R, Y537C, Y537N, Y537S, or D538G mutations. Further validation was performed on plasma samples from a prospective study and compared with next generation sequencing (NGS) data. The multiplex ESR1-ddPCR showed a high sensitivity with a limit of detection ranging from 0.07 to 0.19% in mutant allele frequency. The screening of plasma samples from patients with AI-resistant metastatic breast cancer identified ESR1 mutations in 29% of them, all mutations being confirmed by NGS. In addition, this test identifies patients harboring polyclonal alterations. Furthermore, the monitoring of circulating tumor DNA using this technique during treatment follow-up predicts the clinical benefit of palbociclib-fulvestrant. The multiplex ESR1-ddPCR detects, in a single reaction, the most frequent ESR1 activating mutations with good sensitivity. This method allows real-time liquid biopsy for ESR1 mutation monitoring in large cohorts of patients.
Collapse
Affiliation(s)
- Emmanuelle Jeannot
- Circulating tumor biomarkers laboratory, Inserm CIC 1428, Institut Curie, PSL Research University, Paris, France.,Department of Biopathology and Genetics, Institut Curie, PSL Research University, Paris, France
| | - Lauren Darrigues
- Circulating tumor biomarkers laboratory, Inserm CIC 1428, Institut Curie, PSL Research University, Paris, France
| | - Marc Michel
- Circulating tumor biomarkers laboratory, Inserm CIC 1428, Institut Curie, PSL Research University, Paris, France
| | - Marc-Henri Stern
- INSERM U830, Institut Curie, PSL Research University, Paris, France
| | - Jean-Yves Pierga
- Circulating tumor biomarkers laboratory, Inserm CIC 1428, Institut Curie, PSL Research University, Paris, France.,Department of Medical Oncology, Institut Curie, PSL Research University, Paris & Saint Cloud, France.,Université de Paris, Paris, France.,Medical Oncology, Department of the Institut Curie, Paris, France
| | - Aurore Rampanou
- Circulating tumor biomarkers laboratory, Inserm CIC 1428, Institut Curie, PSL Research University, Paris, France
| | - Samia Melaabi
- Department of Biopathology and Genetics, Institut Curie, PSL Research University, Paris, France
| | - Camille Benoist
- Department of Biopathology and Genetics, Institut Curie, PSL Research University, Paris, France
| | - Ivan Bièche
- Department of Biopathology and Genetics, Institut Curie, PSL Research University, Paris, France
| | - Anne Vincent-Salomon
- Department of Biopathology and Genetics, Institut Curie, PSL Research University, Paris, France
| | - Radouane El Ayachy
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris & Saint Cloud, France
| | - Aurélien Noret
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris & Saint Cloud, France
| | - Nicolas Epaillard
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris & Saint Cloud, France
| | - Luc Cabel
- Department of Medical Oncology, Institut Curie, PSL Research University, Paris & Saint Cloud, France.,Versailles Saint Quentin University, Paris Saclay University, Saint Cloud, France
| | - François-Clément Bidard
- Circulating tumor biomarkers laboratory, Inserm CIC 1428, Institut Curie, PSL Research University, Paris, France.,Department of Medical Oncology, Institut Curie, PSL Research University, Paris & Saint Cloud, France.,Versailles Saint Quentin University, Paris Saclay University, Saint Cloud, France
| | - Charlotte Proudhon
- Circulating tumor biomarkers laboratory, Inserm CIC 1428, Institut Curie, PSL Research University, Paris, France.
| |
Collapse
|
188
|
GLL398, an oral selective estrogen receptor degrader (SERD), blocks tumor growth in xenograft breast cancer models. Breast Cancer Res Treat 2020; 180:359-368. [PMID: 32030569 DOI: 10.1007/s10549-020-05558-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Selective estrogen receptor degrader (SERD) has proven clinically effective in treating advanced or metastatic breast cancer since the approval of fulvestrant by FDA in 2002. Recent expansion of indications as a first line monotherapy and as combination therapy with CDK4/6 inhibitors further extends its clinical utility as an efficacious breast cancer endocrine regimen. However, the poor pharmacokinetic properties of fulvestrant and its injection-only administration route has driven continued efforts to develop orally bioavailability SERD that could potentially improve clinical response to SERD treatment. GLL398, a boron-modified GW5638 analog, showed superior oral bioavailability, while retaining both antiestrogenic activity and ER degrading efficacy at a potency level comparable to the more active metabolite of GW5638, GW7604. METHODS Here we used molecular modeling, ER (Y537S) binding assay, MCF-7 Xenograft tumor, and patient-derived xenograft (PDX) tumor model to conduct further studies on the pharmacology and metabolism of GLL398. RESULTS Consistent with GLL398's robust activities in breast cancer cells that either are tamoxifen resistant or express constitutively active, mutant ESR1 (Y537S), it was found to bind the mutant ERY537S with high affinity. Molecular modeling of the binding mode of GLL398 to ER also found its molecular interactions consistent with the experimentally determined high binding affinity towards WT ER and ERY537S. To test the in vivo efficacy of GLL398, mice bearing MCF-7-derived xenograft breast tumors and patient-derived xenograft tumors harboring ERY537S were treated with GLL398 which potently inhibited tumor growth in mice. CONCLUSIONS This study demonstrates GLL398 is an oral SERD that has therapeutic efficacy in clinically relevant breast tumor models.
Collapse
|
189
|
Clinical significance of gene mutation in ctDNA analysis for hormone receptor-positive metastatic breast cancer. Breast Cancer Res Treat 2020; 180:331-341. [PMID: 32020432 DOI: 10.1007/s10549-019-05512-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/13/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE In this study, we aim to investigate the mutation spectrum of circulating tumor DNA among hormone receptor-positive metastatic breast cancer (HR-MBC) patients using ultradeep targeted resequencing. In addition, we also evaluate the correlation of mutations detected from this study with progression-free survival (PFS). MATERIALS AND METHODS A total of 56 HR-MBC patients were enrolled. Cell-free DNA (cfDNA) was extracted from plasma and sequenced by using Oncomine Breast cancer cfDNA assay in this study. RESULT Concentration of cfDNA is correlated with a number of metastatic organs and serum CEA levels (Spearman's rank correlation p = 0.0018, p = 0.0015 respectively). Cases with high cfDNA levels (≥ 2.6 ng/μl of plasma) showed worse progression-free survival (PFS) and overall survival compared with cases with low cfDNA levels (p = 0.043 and 0.046, respectively). Among these patients, 29 patients (51.7%) have TP53 mutations, 12 patients (30.3%) have PIK3CA mutations, and 9 patients (16.0%) have ESR1 mutations. Acquisition of ESR1 mutation increased according to the lines of hormone therapy. In addition, patients with ESR1 mutation showed shorter PFS than those without mutation (log-rank p = 0.047). In the multivariate analysis, ESR1 mutation and cfDNA concentration were significant for PFS (p = 0.027 and 0.006, respectively). In conclusion, assessment of ESR1 mutation and cfDNA concentration could be useful in predicting prognosis for HR-MBCs.
Collapse
|
190
|
Li X, Lu J, Zhang L, Luo Y, Zhao Z, Li M. Clinical Implications of Monitoring ESR1 Mutations by Circulating Tumor DNA in Estrogen Receptor Positive Metastatic Breast Cancer: A Pilot Study. Transl Oncol 2020. [PMID: 31877464 DOI: 10.3760/cma.j.issn.1674-2397.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND ESR1 mutations are frequently detected in ER+ MBC, and have been reported to be associated with endocrine therapy resistance. However, there are little researches to validate whether dynamic monitoring of ESR1 mutations could serve as a predictive plasma biomarker of acquired resistance to endocrine therapy. Therefore, in this study, we performed longitudinal circulating tumor DNA (ctDNA) detection to evaluate the clinical implications of monitoring ESR1 mutations. METHODS We performed longitudinal dynamic mutation analyses of plasma samples from 45 patients with metastatic breast cancer (MBC) and sequencing paired biopsy tissues, using a targeted NGS panel of 425 genes. These patients were treated at the Second Affiliated Hospital of Dalian Medical University between January 2017 and February 2019 with written informed consent. RESULTS Mutations profiles were highly concordant between plasma and paired tissue samples from 45 MBC patients (r = 0.96, P < 0.0001). ESR1 mutations were enriched in ER+ MBC patients after AI therapy (17.8%, 8/45). The median time from AI endocrine therapies to the initial detection of ESR1 mutation was 39 months (95% CI 21.32-57.57). Some hotspot mutations (Y537S (n = 5), Y537N (n = 1), D538G (n = 2), E380Q (n = 2)) and several rare mutations (L345SfsX7, 24fs, G344delinsGC) were identified in our cohort. In addition, we observed that two patients obtained multiple ESR1 mutations over the course of treatment (Y537N/Y537S/D538G, L345SfsX7/24fs/E380Q). Through dynamically monitoring ESR1 mutations by ctDNA, we demonstrated that the change of allele frequency of ESR1 mutations was an important biomarker, which could predict endocrine resistance of ER+ MBC in our study. We also observed that the combination of everolimus in four cases with acquired ESR1 mutations showed longer PFS than other therapies without everolimus. CONCLUSION The dynamic monitoring of ESR1 mutations by ctDNA is a promising tool to predict endocrine therapy resistance in ER+ MBC patients.
Collapse
Affiliation(s)
- Xuelu Li
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116023, China; Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jiawei Lu
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116023, China; Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Lanxin Zhang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116023, China; Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yaoting Luo
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116023, China; Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zuowei Zhao
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116023, China; Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Man Li
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116023, China; Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
191
|
Li X, Lu J, Zhang L, Luo Y, Zhao Z, Li M. Clinical Implications of Monitoring ESR1 Mutations by Circulating Tumor DNA in Estrogen Receptor Positive Metastatic Breast Cancer: A Pilot Study. Transl Oncol 2020; 13:321-328. [PMID: 31877464 PMCID: PMC6931202 DOI: 10.1016/j.tranon.2019.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND ESR1 mutations are frequently detected in ER+ MBC, and have been reported to be associated with endocrine therapy resistance. However, there are little researches to validate whether dynamic monitoring of ESR1 mutations could serve as a predictive plasma biomarker of acquired resistance to endocrine therapy. Therefore, in this study, we performed longitudinal circulating tumor DNA (ctDNA) detection to evaluate the clinical implications of monitoring ESR1 mutations. METHODS We performed longitudinal dynamic mutation analyses of plasma samples from 45 patients with metastatic breast cancer (MBC) and sequencing paired biopsy tissues, using a targeted NGS panel of 425 genes. These patients were treated at the Second Affiliated Hospital of Dalian Medical University between January 2017 and February 2019 with written informed consent. RESULTS Mutations profiles were highly concordant between plasma and paired tissue samples from 45 MBC patients (r = 0.96, P < 0.0001). ESR1 mutations were enriched in ER+ MBC patients after AI therapy (17.8%, 8/45). The median time from AI endocrine therapies to the initial detection of ESR1 mutation was 39 months (95% CI 21.32-57.57). Some hotspot mutations (Y537S (n = 5), Y537N (n = 1), D538G (n = 2), E380Q (n = 2)) and several rare mutations (L345SfsX7, 24fs, G344delinsGC) were identified in our cohort. In addition, we observed that two patients obtained multiple ESR1 mutations over the course of treatment (Y537N/Y537S/D538G, L345SfsX7/24fs/E380Q). Through dynamically monitoring ESR1 mutations by ctDNA, we demonstrated that the change of allele frequency of ESR1 mutations was an important biomarker, which could predict endocrine resistance of ER+ MBC in our study. We also observed that the combination of everolimus in four cases with acquired ESR1 mutations showed longer PFS than other therapies without everolimus. CONCLUSION The dynamic monitoring of ESR1 mutations by ctDNA is a promising tool to predict endocrine therapy resistance in ER+ MBC patients.
Collapse
Affiliation(s)
- Xuelu Li
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116023, China; Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jiawei Lu
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116023, China; Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Lanxin Zhang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116023, China; Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yaoting Luo
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116023, China; Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zuowei Zhao
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116023, China; Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Man Li
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116023, China; Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
192
|
Ali MA, Farah MA, Al-Anazi KM, Basha SH, Bai F, Lee J, Al-Hemaid FMA, Mahmoud AH, Hailan WAQ. In Silico Elucidation of the Plausible Inhibitory Potential of Withaferin A of Withania Somnifera Medicinal Herb Against Breast Cancer Targeting Estrogen Receptor. Curr Pharm Biotechnol 2020; 21:842-851. [PMID: 31995002 DOI: 10.2174/1389201021666200129121843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Estrogen Receptors (ER) are members of the nuclear intracellular receptors family. ER once activated by estrogen, it binds to DNA via translocating into the nucleus and regulates the activity of various genes. Withaferin A (WA) - an active compound of a medicinal plant Withania somnifera was reported to be a very effective anti-cancer agent and some of the recent studies has demonstrated that WA is capable of arresting the development of breast cancer via targeting estrogen receptor. OBJECTIVE The present study is aimed at understanding the molecular level interactions of ER and Tamoxifen in comparison to Withaferin A using In-silico approaches with emphasis on Withaferin A binding capability with ER in presence of point mutations which are causing de novo drug resistance to existing drugs like Tamoxifen. METHODS Molecular modeling and docking studies were performed for the Tamoxifen and Withaferin A with the Estrogen receptor. Molecular docking simulations of estrogen receptor in complex with Tamoxifen and Withaferin A were also performed. RESULTS Amino acid residues, Glu353, Arg394 and Leu387 was observed as crucial for binding and stabilizing the protein-ligand complex in case of Tamoxifen and Withaferin-A. The potential of Withaferin A to overcome the drug resistance caused by the mutations in estrogen receptor to the existing drugs such as Tamoxifen was demonstrated. CONCLUSION In-silico analysis has elucidated the binding mode and molecular level interactions which are expected to be of great help in further optimizing Withaferin A or design / discovery of future breast cancer inhibitors targeting estrogen receptor.
Collapse
Affiliation(s)
- Mohammad A Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh- 11451, Saudi Arabia
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh- 11451, Saudi Arabia
| | - Khalid M Al-Anazi
- Department of Zoology, College of Science, King Saud University, Riyadh- 11451, Saudi Arabia
| | - Syed H Basha
- Innovative Informatica Technologies, HIG, HUDA, Mayuri Nagar, Miyapur, Hyderabad, 500 049, India
| | - Fang Bai
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Fahad M A Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh- 11451, Saudi Arabia
| | - Ahmed H Mahmoud
- Department of Zoology, College of Science, King Saud University, Riyadh- 11451, Saudi Arabia
| | - Waleed A Q Hailan
- Department of Zoology, College of Science, King Saud University, Riyadh- 11451, Saudi Arabia
| |
Collapse
|
193
|
Abstract
Cancer proteogenomics promises new insights into cancer biology and treatment efficacy by integrating genomics, transcriptomics and protein profiling including modifications by mass spectrometry (MS). A critical limitation is sample input requirements that exceed many sources of clinically important material. Here we report a proteogenomics approach for core biopsies using tissue-sparing specimen processing and microscaled proteomics. As a demonstration, we analyze core needle biopsies from ERBB2 positive breast cancers before and 48–72 h after initiating neoadjuvant trastuzumab-based chemotherapy. We show greater suppression of ERBB2 protein and both ERBB2 and mTOR target phosphosite levels in cases associated with pathological complete response, and identify potential causes of treatment resistance including the absence of ERBB2 amplification, insufficient ERBB2 activity for therapeutic sensitivity despite ERBB2 amplification, and candidate resistance mechanisms including androgen receptor signaling, mucin overexpression and an inactive immune microenvironment. The clinical utility and discovery potential of proteogenomics at biopsy-scale warrants further investigation. Connecting genomics and proteomics allows the development of more efficient and specific treatments for cancer. Here, the authors develop proteogenomic methods to defining cancer signaling in-vivo starting from core needle biopsies and with application to a HER2 breast cancer focused clinical trial.
Collapse
|
194
|
Zhu W, Ren C, Wang Y, Wen L, Zhang G, Liao N. Prevalence of ESR1 Mutation in Chinese ER-Positive Breast Cancer. Onco Targets Ther 2020; 13:615-621. [PMID: 32021303 PMCID: PMC6982432 DOI: 10.2147/ott.s233662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/19/2019] [Indexed: 11/23/2022] Open
Abstract
Background ESR1 mutation and its possible relation to endocrine therapy resistance in ER-positive breast cancers have been studied with respect to genetic sequencing data from Western patients but rarely from Chinese patients. This study aimed to investigate the prevalence of ESR1 mutation in Chinese primary and metastatic ER-positive breast cancer. Methods Tumor samples from 297 primary breast cancer (PBC) patients and blood samples from 43 metastatic breast cancer (MBC) patients were obtained to perform whole exon sequencing of the ESR1 gene through next-generation sequencing (NGS). Clinicopathological features of MBC patients were listed and grouped to explore potential factors in ESR1 mutations. Results A total of 15 ESR1 variations, including 11 point mutations, 1 in-frame deletion mutation, 1 synonymous mutation, and 2 amplifications were identified in 13 patients. The ESR1 mutation rate was 1% (3/297) in PBC patients and 18.6% (8/43) in MBC patients. All ESR1 point mutations occurred in the estrogen receptor ligand-binding domain. Six (54.5%) of the 11 point mutations were hotspot mutations. Among all MBC patients, the ESR1 mutation rate in those who had a treatment history using aromatase inhibitors (AI) was significantly higher than those who did not (25.8% versus 0%, P=0.015). Moreover, the ESR1 mutation rate in those who received AI treatment over a period of 12 months was significantly higher than in those whose treatment lasted less than 12 months [36.3% versus 0%, P<0.001]. Conclusion ESR1 mutations were more frequently observed in the circulating cell-free DNA of MBC patients than in PBC patients among the Chinese cohort, and higher among those pretreated with AI, suggesting that such mutations may undergo selection during AI treatment.
Collapse
Affiliation(s)
- Wenzhen Zhu
- Department of Breast Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Chongyang Ren
- Department of Breast Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Yulei Wang
- Department of Breast Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Lingzhu Wen
- Department of Breast Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Guochun Zhang
- Department of Breast Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Ning Liao
- Department of Breast Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
195
|
Udeshi ND, Mani DC, Satpathy S, Fereshetian S, Gasser JA, Svinkina T, Olive ME, Ebert BL, Mertins P, Carr SA. Rapid and deep-scale ubiquitylation profiling for biology and translational research. Nat Commun 2020; 11:359. [PMID: 31953384 PMCID: PMC6969155 DOI: 10.1038/s41467-019-14175-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/19/2019] [Indexed: 11/21/2022] Open
Abstract
Protein ubiquitylation is involved in a plethora of cellular processes. While antibodies directed at ubiquitin remnants (K-ɛ-GG) have improved the ability to monitor ubiquitylation using mass spectrometry, methods for highly multiplexed measurement of ubiquitylation in tissues and primary cells using sub-milligram amounts of sample remains a challenge. Here, we present a highly sensitive, rapid and multiplexed protocol termed UbiFast for quantifying ~10,000 ubiquitylation sites from as little as 500 μg peptide per sample from cells or tissue in a TMT10plex in ca. 5 h. High-field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) is used to improve quantitative accuracy for posttranslational modification analysis. We use the approach to rediscover substrates of the E3 ligase targeting drug lenalidomide and to identify proteins modulated by ubiquitylation in models of basal and luminal human breast cancer. The sensitivity and speed of the UbiFast method makes it suitable for large-scale studies in primary tissue samples. Comprehensive protein ubiquitylation profiling by mass spectrometry typically requires large sample amounts, limiting its applicability to tissue samples. Here, the authors present an optimized proteomics method that enables multiplexed ubiquitylome analysis of cells and tumor tissue samples.
Collapse
Affiliation(s)
| | - Deepak C Mani
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | | | - Jessica A Gasser
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Division of Hematology, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Tanya Svinkina
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Meagan E Olive
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Benjamin L Ebert
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Division of Hematology, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Philipp Mertins
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
196
|
Fowler AM, Salem K, DeGrave M, Ong IM, Rassman S, Powers GL, Kumar M, Michel CJ, Mahajan AM. Progesterone Receptor Gene Variants in Metastatic Estrogen Receptor Positive Breast Cancer. Discov Oncol 2020; 11:63-75. [PMID: 31942683 DOI: 10.1007/s12672-020-00377-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/07/2020] [Indexed: 01/20/2023] Open
Abstract
Tumor mutations in the gene encoding estrogen receptor alpha (ESR1) have been identified in metastatic breast cancer patients with endocrine therapy resistance. However, relatively little is known about the occurrence of mutations in the progesterone receptor (PGR) gene in this population. The study objective was to determine the frequency and prognostic significance of tumor PGR mutations for patients with estrogen receptor (ER)-positive metastatic breast cancer. Thirty-five women with metastatic or locally recurrent ER+ breast cancer were included in this IRB-approved, retrospective study. Targeted next-generation sequencing of the PGR gene was performed on isolated tumor DNA. Associations between mutation status and clinicopathologic factors were analyzed as well as overall survival (OS) from time of metastatic diagnosis. The effect of the PGR variant Y890C (c.2669A>G) identified in this cohort on PR transactivation function was tested using ER-PR- (MDA-MB-231), ER+PR+ (T47D), and ER+PR- (T47D PR KO) breast cancer cell lines. There were 71 occurrences of protein-coding PGR variants in 67% (24/36; 95% CI 49-81%) of lesions. Of the 49 unique variants, 14 are single nucleotide polymorphisms (SNPs). Excluding SNPs, the median OS of patients with PGR variants was 32 months compared to 79 months with wild-type PGR (p = 0.42). The most frequently occurring (4/36 lesions) non-SNP variant was Y890C. Cells expressing Y890C had reduced progestin-stimulated PR transactivation compared to cells expressing wild-type PR. PGR variants occur frequently in ER+ metastatic breast cancer. Although some variants are SNPs, others are predicted to be functionally deleterious as demonstrated with Y890C PR.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53792, USA.
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
| | - Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Michael DeGrave
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Irene M Ong
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53792, USA
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Shane Rassman
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ginny L Powers
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Manoj Kumar
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ciara J Michel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Aparna M Mahajan
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| |
Collapse
|
197
|
Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol 2020; 13:4. [PMID: 31910904 PMCID: PMC6947974 DOI: 10.1186/s13045-019-0829-z] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022] Open
Abstract
Patient-derived tumor xenografts (PDXs), in which tumor fragments surgically dissected from cancer patients are directly transplanted into immunodeficient mice, have emerged as a useful model for translational research aimed at facilitating precision medicine. PDX susceptibility to anti-cancer drugs is closely correlated with clinical data in patients, from whom PDX models have been derived. Accumulating evidence suggests that PDX models are highly effective in predicting the efficacy of both conventional and novel anti-cancer therapeutics. This also allows “co-clinical trials,” in which pre-clinical investigations in vivo and clinical trials could be performed in parallel or sequentially to assess drug efficacy in patients and PDXs. However, tumor heterogeneity present in PDX models and in the original tumor samples constitutes an obstacle for application of PDX models. Moreover, human stromal cells originally present in tumors dissected from patients are gradually replaced by host stromal cells as the xenograft grows. This replacement by murine stroma could preclude analysis of human tumor-stroma interactions, as some mouse stromal cytokines might not affect human carcinoma cells in PDX models. The present review highlights the biological and clinical significance of PDX models and three-dimensional patient-derived tumor organoid cultures of several kinds of solid tumors, such as those of the colon, pancreas, brain, breast, lung, skin, and ovary.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8412, Japan. .,Department of Immunological Diagnosis, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8412, Japan.
| |
Collapse
|
198
|
Abstract
Next-generation sequencing (NGS) has become the primary technology for discovering gene fusions. Decreasing NGS costs have resulted in a growing quantity of patients with whole transcriptome sequencing (RNA-seq) and whole genome sequencing (WGS) data. We developed a gene fusion discovery tool, INTEGRATE, that leverages both RNA-seq and WGS data to reconstruct gene fusion junctions and genomic breakpoints by split-read alignment. INTEGRATE has become widely adopted by the larger cancer research community to discover biologically and clinically relevant gene fusions. Here we explain the rationale driving the development of the INTEGRATE tool and describe the detailed practical procedures for applying INTEGRATE to discover gene fusions using NGS data. INTEGRATE can be applied to both combined data and RNA-seq only data.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Radiation Oncology, Siteman Cancer Center, Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Maher
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, McDonell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Biomedical Engineering, University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
199
|
Fan H, Demirci U, Chen P. Emerging organoid models: leaping forward in cancer research. J Hematol Oncol 2019; 12:142. [PMID: 31884964 PMCID: PMC6936115 DOI: 10.1186/s13045-019-0832-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer heterogeneity is regarded as the main reason for the failure of conventional cancer therapy. The ability to reconstruct intra- and interpatient heterogeneity in cancer models is crucial for understanding cancer biology as well as for developing personalized anti-cancer therapy. Cancer organoids represent an emerging approach for creating patient-derived in vitro cancer models that closely recapitulate the pathophysiological features of natural tumorigenesis and metastasis. Meanwhile, cancer organoids have recently been utilized in the discovery of personalized anti-cancer therapy and prognostic biomarkers. Further, the synergistic combination of cancer organoids with organ-on-a-chip and 3D bioprinting presents a new avenue in the development of more sophisticated and optimized model systems to recapitulate complex cancer-stroma or multiorgan metastasis. Here, we summarize the recent advances in cancer organoids from a perspective of the in vitro emulation of natural cancer evolution and the applications in personalized cancer theranostics. We also discuss the challenges and trends in reconstructing more comprehensive cancer models for basic and clinical cancer research.
Collapse
Affiliation(s)
- Han Fan
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, 115 Donghu Road, Wuhan, 430071, Hubei, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, 430071, Hubei, China
| | - Utkan Demirci
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94304, USA.
| | - Pu Chen
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, 115 Donghu Road, Wuhan, 430071, Hubei, China.
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, 430071, Hubei, China.
| |
Collapse
|
200
|
The ER-alpha mutation Y537S confers Tamoxifen-resistance via enhanced mitochondrial metabolism, glycolysis and Rho-GDI/PTEN signaling: Implicating TIGAR in somatic resistance to endocrine therapy. Aging (Albany NY) 2019; 10:4000-4023. [PMID: 30573703 PMCID: PMC6326696 DOI: 10.18632/aging.101690] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023]
Abstract
Naturally-occurring somatic mutations in the estrogen receptor gene (ESR1) have been previously implicated in the clinical development of resistance to hormonal therapies, such as Tamoxifen. For example, the somatic mutation Y537S has been specifically associated with acquired endocrine resistance. Briefly, we recombinantly-transduced MCF7 cells with a lentiviral vector encoding ESR1 (Y537S). As a first step, we confirmed that MCF7-Y537S cells are indeed functionally resistant to Tamoxifen, as compared with vector alone controls. Importantly, further phenotypic characterization of Y537S cells revealed that they show increased resistance to Tamoxifen-induced apoptosis, allowing them to form mammospheres with higher efficiency, in the presence of Tamoxifen. Similarly, Y537S cells had elevated basal levels of ALDH activity, a marker of “stemness”, which was also Tamoxifen-resistant. Metabolic flux analysis of Y537S cells revealed a hyper-metabolic phenotype, with significantly increased mitochondrial respiration and high ATP production, as well as enhanced aerobic glycolysis. Finally, to understand which molecular signaling pathways that may be hyper-activated in Y537S cells, we performed unbiased label-free proteomics analysis. Our results indicate that TIGAR over-expression and the Rho-GDI/PTEN signaling pathway appear to be selectively activated by the Y537S mutation. Remarkably, this profile is nearly identical in MCF7-TAMR cells; these cells were independently-generated in vitro, suggesting a highly conserved mechanism underlying Tamoxifen-resistance. Importantly, we show that the Y537S mutation is specifically associated with the over-expression of a number of protein markers of poor clinical outcome (COL6A3, ERBB2, STAT3, AFP, TFF1, CDK4 and CD44). In summary, we have uncovered a novel metabolic mechanism leading to endocrine resistance, which may have important clinical implications for improving patient outcomes.
Collapse
|