151
|
A loss-of-adhesion CRISPR-Cas9 screening platform to identify cell adhesion-regulatory proteins and signaling pathways. Nat Commun 2022; 13:2136. [PMID: 35440579 PMCID: PMC9018714 DOI: 10.1038/s41467-022-29835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
The clinical introduction of the Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib, which targets B-cell antigen-receptor (BCR)-controlled integrin-mediated retention of malignant B cells in their growth-supportive lymphoid organ microenvironment, provided a major breakthrough in lymphoma and leukemia treatment. Unfortunately, a significant subset of patients is intrinsically resistant or acquires resistance against ibrutinib. Here, to discover novel therapeutic targets, we present an unbiased loss-of-adhesion CRISPR-Cas9 knockout screening method to identify proteins involved in BCR-controlled integrin-mediated adhesion. Illustrating the validity of our approach, several kinases with an established role in BCR-controlled adhesion, including BTK and PI3K, both targets for clinically applied inhibitors, are among the top hits of our screen. We anticipate that pharmacological inhibitors of the identified targets, e.g. PAK2 and PTK2B/PYK2, may have great clinical potential as therapy for lymphoma and leukemia patients. Furthermore, this screening platform is highly flexible and can be easily adapted to identify cell adhesion-regulatory proteins and signaling pathways for other stimuli, adhesion molecules, and cell types. Targeting integrin-mediated retention of malignant B cells in their protective microenvironment is an efficacious treatment for lymphoma and leukemia. Here, the authors present an unbiased loss-of-adhesion CRISPR screening method, identifying therapeutic targets for these B-cell malignancies.
Collapse
|
152
|
Köferle A, Schlattl A, Hörmann A, Thatikonda V, Popa A, Spreitzer F, Ravichandran MC, Supper V, Oberndorfer S, Puchner T, Wieshofer C, Corcokovic M, Reiser C, Wöhrle S, Popow J, Pearson M, Martinez J, Weitzer S, Mair B, Neumüller RA. Interrogation of cancer gene dependencies reveals paralog interactions of autosome and sex chromosome-encoded genes. Cell Rep 2022; 39:110636. [PMID: 35417719 DOI: 10.1016/j.celrep.2022.110636] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/22/2021] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
Genetic networks are characterized by extensive buffering. During tumor evolution, disruption of functional redundancies can create de novo vulnerabilities that are specific to cancer cells. Here, we systematically search for cancer-relevant paralog interactions using CRISPR screens and publicly available loss-of-function datasets. Our analysis reveals >2,000 candidate dependencies, several of which we validate experimentally, including CSTF2-CSTF2T, DNAJC15-DNAJC19, FAM50A-FAM50B, and RPP25-RPP25L. We provide evidence that RPP25L can physically and functionally compensate for the absence of RPP25 as a member of the RNase P/MRP complexes in tRNA processing. Our analysis also reveals unexpected redundancies between sex chromosome genes. We show that chrX- and chrY-encoded paralogs, such as ZFX-ZFY, DDX3X-DDX3Y, and EIF1AX-EIF1AY, are functionally linked. Tumor cell lines from male patients with loss of chromosome Y become dependent on the chrX-encoded gene. We propose targeting of chrX-encoded paralogs as a general therapeutic strategy for human tumors that have lost the Y chromosome.
Collapse
Affiliation(s)
- Anna Köferle
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Andreas Schlattl
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Alexandra Hörmann
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Venu Thatikonda
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Alexandra Popa
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Fiona Spreitzer
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | | | - Verena Supper
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Sarah Oberndorfer
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Teresa Puchner
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Corinna Wieshofer
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Maja Corcokovic
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Christoph Reiser
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Simon Wöhrle
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Johannes Popow
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Mark Pearson
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Javier Martinez
- Max Perutz Labs, Medical University of Vienna, Vienna BioCenter (VBC), Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Stefan Weitzer
- Max Perutz Labs, Medical University of Vienna, Vienna BioCenter (VBC), Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Barbara Mair
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria.
| | - Ralph A Neumüller
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria.
| |
Collapse
|
153
|
Elmas E, Saljoughian N, de Souza Fernandes Pereira M, Tullius BP, Sorathia K, Nakkula RJ, Lee DA, Naeimi Kararoudi M. CRISPR Gene Editing of Human Primary NK and T Cells for Cancer Immunotherapy. Front Oncol 2022; 12:834002. [PMID: 35449580 PMCID: PMC9016158 DOI: 10.3389/fonc.2022.834002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Antitumor activity of immune cells such as T cells and NK cells has made them auspicious therapeutic regimens for adaptive cancer immunotherapy. Enhancing their cytotoxic effects against malignancies and overcoming their suppression in tumor microenvironment (TME) may improve their efficacy to treat cancers. Clustered, regularly interspaced short palindromic repeats (CRISPR) genome editing has become one of the most popular tools to enhance immune cell antitumor activity. In this review we highlight applications and practicability of CRISPR/Cas9 gene editing and engineering strategies for cancer immunotherapy. In addition, we have reviewed several approaches to study CRISPR off-target effects.
Collapse
Affiliation(s)
- Ezgi Elmas
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, United States
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Noushin Saljoughian
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- CRISPR/Gene Editing Core, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Marcelo de Souza Fernandes Pereira
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Brian P. Tullius
- Pediatric Cellular Therapy, AdventHealth for Children, Orlando, FL, United States
| | - Kinnari Sorathia
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Robin J. Nakkula
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Dean A. Lee
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- CRISPR/Gene Editing Core, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
154
|
Price S, Bhosle S, Gonçalves E, Li X, McClurg DP, Barthorpe S, Beck A, Hall C, Lightfoot H, Farrow L, Ansari R, Jackson DA, Allen L, Roberts K, Beaver C, Francies HE, Garnett MJ. A suspension technique for efficient large-scale cancer organoid culturing and perturbation screens. Sci Rep 2022; 12:5571. [PMID: 35368031 PMCID: PMC8976852 DOI: 10.1038/s41598-022-09508-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Organoid cell culture methodologies are enabling the generation of cell models from healthy and diseased tissue. Patient-derived cancer organoids that recapitulate the genetic and histopathological diversity of patient tumours are being systematically generated, providing an opportunity to investigate new cancer biology and therapeutic approaches. The use of organoid cultures for many applications, including genetic and chemical perturbation screens, is limited due to the technical demands and cost associated with their handling and propagation. Here we report and benchmark a suspension culture technique for cancer organoids which allows for the expansion of models to tens of millions of cells with increased efficiency in comparison to standard organoid culturing protocols. Using whole-genome DNA and RNA sequencing analyses, as well as medium-throughput drug sensitivity testing and genome-wide CRISPR-Cas9 screening, we demonstrate that cancer organoids grown as a suspension culture are genetically and phenotypically similar to their counterparts grown in standard conditions. This culture technique simplifies organoid cell culture and extends the range of organoid applications, including for routine use in large-scale perturbation screens.
Collapse
|
155
|
Grinkevitch V, Wappett M, Crawford N, Price S, Lees A, McCann C, McAllister K, Prehn J, Young J, Bateson J, Gallagher L, Michaut M, Iyer V, Chatzipli A, Barthorpe S, Ciznadija D, Sloma I, Wesa A, Tice DA, Wessels L, Garnett M, Longley DB, McDermott U, McDade SS. Functional Genomic Identification of Predictors of Sensitivity and Mechanisms of Resistance to Multivalent Second-Generation TRAIL-R2 Agonists. Mol Cancer Ther 2022; 21:594-606. [PMID: 35086954 PMCID: PMC7612587 DOI: 10.1158/1535-7163.mct-21-0532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Multivalent second-generation TRAIL-R2 agonists are currently in late preclinical development and early clinical trials. Herein, we use a representative second-generation agent, MEDI3039, to address two major clinical challenges facing these agents: lack of predictive biomarkers to enable patient selection and emergence of resistance. Genome-wide CRISPR knockout screens were notable for the lack of resistance mechanisms beyond the canonical TRAIL-R2 pathway (caspase-8, FADD, BID) as well as p53 and BAX in TP53 wild-type models, whereas a CRISPR activatory screen identified cell death inhibitors MCL-1 and BCL-XL as mechanisms to suppress MEDI3039-induced cell death. High-throughput drug screening failed to identify genomic alterations associated with response to MEDI3039; however, transcriptomics analysis revealed striking association between MEDI3039 sensitivity and expression of core components of the extrinsic apoptotic pathway, most notably its main apoptotic effector caspase-8 in solid tumor cell lines. Further analyses of colorectal cell lines and patient-derived xenografts identified caspase-8 expression ratio to its endogenous regulator FLIP(L) as predictive of sensitivity to MEDI3039 in several major solid tumor types and a further subset indicated by caspase-8:MCL-1 ratio. Subsequent MEDI3039 combination screening of TRAIL-R2, caspase-8, FADD, and BID knockout models with 60 compounds with varying mechanisms of action identified two inhibitor of apoptosis proteins (IAP) that exhibited strong synergy with MEDI3039 that could reverse resistance only in BID-deleted models. In summary, we identify the ratios of caspase-8:FLIP(L) and caspase-8:MCL-1 as potential predictive biomarkers for second-generation TRAIL-R2 agonists and loss of key effectors such as FADD and caspase-8 as likely drivers of clinical resistance in solid tumors.
Collapse
Affiliation(s)
| | - Mark Wappett
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Nyree Crawford
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Stacey Price
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Andrea Lees
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Christopher McCann
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Katherine McAllister
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Jochen Prehn
- Royal College of Surgeons Ireland, Dublin, Ireland
| | - Jamie Young
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Jess Bateson
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Lewis Gallagher
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Magali Michaut
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Vivek Iyer
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | - Syd Barthorpe
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | - Ido Sloma
- Champions Oncology Inc., Rockville, Maryland
| | - Amy Wesa
- Champions Oncology Inc., Rockville, Maryland
| | | | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Delft Bioinformatics Lab, TU Delft, Delft, the Netherlands
| | - Mathew Garnett
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Daniel B. Longley
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Ultan McDermott
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Simon S. McDade
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| |
Collapse
|
156
|
Gogleva A, Polychronopoulos D, Pfeifer M, Poroshin V, Ughetto M, Martin MJ, Thorpe H, Bornot A, Smith PD, Sidders B, Dry JR, Ahdesmäki M, McDermott U, Papa E, Bulusu KC. Knowledge graph-based recommendation framework identifies drivers of resistance in EGFR mutant non-small cell lung cancer. Nat Commun 2022; 13:1667. [PMID: 35351890 PMCID: PMC8964738 DOI: 10.1038/s41467-022-29292-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/09/2022] [Indexed: 12/25/2022] Open
Abstract
Resistance to EGFR inhibitors (EGFRi) presents a major obstacle in treating non-small cell lung cancer (NSCLC). One of the most exciting new ways to find potential resistance markers involves running functional genetic screens, such as CRISPR, followed by manual triage of significantly enriched genes. This triage process to identify 'high value' hits resulting from the CRISPR screen involves manual curation that requires specialized knowledge and can take even experts several months to comprehensively complete. To find key drivers of resistance faster we build a recommendation system on top of a heterogeneous biomedical knowledge graph integrating pre-clinical, clinical, and literature evidence. The recommender system ranks genes based on trade-offs between diverse types of evidence linking them to potential mechanisms of EGFRi resistance. This unbiased approach identifies 57 resistance markers from >3,000 genes, reducing hit identification time from months to minutes. In addition to reproducing known resistance markers, our method identifies previously unexplored resistance mechanisms that we prospectively validate.
Collapse
Affiliation(s)
- Anna Gogleva
- Biological Insight Knowledge Graph (BIKG), AI Engineering, R&D IT, AstraZeneca, Cambridge, UK
| | - Dimitris Polychronopoulos
- Early Computational Oncology, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Matthias Pfeifer
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Michaël Ughetto
- Biological Insight Knowledge Graph (BIKG), AI Engineering, R&D IT, AstraZeneca, Gothenburg, Sweden
| | - Matthew J Martin
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Hannah Thorpe
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Aurelie Bornot
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Paul D Smith
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Ben Sidders
- Early Computational Oncology, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jonathan R Dry
- Early Computational Oncology, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA, USA
| | - Miika Ahdesmäki
- Early Computational Oncology, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Ultan McDermott
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Eliseo Papa
- Biological Insight Knowledge Graph (BIKG), AI Engineering, R&D IT, AstraZeneca, Cambridge, UK.
| | - Krishna C Bulusu
- Early Computational Oncology, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
157
|
Collier AJ, Bendall A, Fabian C, Malcolm AA, Tilgner K, Semprich CI, Wojdyla K, Nisi PS, Kishore K, Roamio Franklin VN, Mirshekar-Syahkal B, D’Santos C, Plath K, Yusa K, Rugg-Gunn PJ. Genome-wide screening identifies Polycomb repressive complex 1.3 as an essential regulator of human naïve pluripotent cell reprogramming. SCIENCE ADVANCES 2022; 8:eabk0013. [PMID: 35333572 PMCID: PMC8956265 DOI: 10.1126/sciadv.abk0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Uncovering the mechanisms that establish naïve pluripotency in humans is crucial for the future applications of pluripotent stem cells including the production of human blastoids. However, the regulatory pathways that control the establishment of naïve pluripotency by reprogramming are largely unknown. Here, we use genome-wide screening to identify essential regulators as well as major impediments of human primed to naïve pluripotent stem cell reprogramming. We discover that factors essential for cell state change do not typically undergo changes at the level of gene expression but rather are repurposed with new functions. Mechanistically, we establish that the variant Polycomb complex PRC1.3 and PRDM14 jointly repress developmental and gene regulatory factors to ensure naïve cell reprogramming. In addition, small-molecule inhibitors of reprogramming impediments improve naïve cell reprogramming beyond current methods. Collectively, this work defines the principles controlling the establishment of human naïve pluripotency and also provides new insights into mechanisms that destabilize and reconfigure cell identity during cell state transitions.
Collapse
Affiliation(s)
- Amanda J. Collier
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Adam Bendall
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | - Andrew A. Malcolm
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Katarzyna Tilgner
- Stem Cell Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | | | | | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | | | - Clive D’Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kosuke Yusa
- Stem Cell Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Stem Cell Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Peter J. Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
158
|
Mammalian HEMK1 methylates glutamine residue of the GGQ motif of mitochondrial release factors. Sci Rep 2022; 12:4104. [PMID: 35260756 PMCID: PMC8904536 DOI: 10.1038/s41598-022-08061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Despite limited reports on glutamine methylation, methylated glutamine is found to be highly conserved in a "GGQ" motif in both prokaryotes and eukaryotes. In bacteria, glutamine methylation of peptide chain release factors 1/2 (RF1/2) by the enzyme PrmC is essential for translational termination and transcript recycling. Two PrmC homologs, HEMK1 and HEMK2, are found in mammals. In contrast to those of HEMK2, the biochemical properties and biological significance of HEMK1 remain largely unknown. In this study, we demonstrated that HEMK1 is an active methyltransferase for the glutamine residue of the GGQ motif of all four putative mitochondrial release factors (mtRFs)-MTRF1, MTRF1L, MRPL58, and MTRFR. In HEMK1-deficient HeLa cells, GGQ motif glutamine methylation was absent in all the mtRFs. We examined cell growth and mitochondrial properties, but disruption of the HEMK1 gene had no considerable impact on the overall cell growth, mtDNA copy number, mitochondrial membrane potential, and mitochondrial protein synthesis under regular culture condition with glucose as a carbon source. Furthermore, cell growth potential of HEMK1 KO cells was still maintained in the respiratory condition with galactose medium. Our results suggest that HEMK1 mediates the GGQ methylation of all four mtRFs in human cells; however, this specific modification seems mostly dispensable in cell growth and mitochondrial protein homeostasis at least for HeLa cells under fermentative culture condition.
Collapse
|
159
|
Functional single-cell genomics of human cytomegalovirus infection. Nat Biotechnol 2022; 40:391-401. [PMID: 34697476 DOI: 10.1038/s41587-021-01059-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022]
Abstract
Understanding how viral and host factors interact and how perturbations impact infection is the basis for designing antiviral interventions. Here we define the functional contribution of each viral and host factor involved in human cytomegalovirus infection in primary human fibroblasts through pooled CRISPR interference and nuclease screening. To determine how genetic perturbation of critical host and viral factors alters the timing, course and progression of infection, we applied Perturb-seq to record the transcriptomes of tens of thousands of CRISPR-modified single cells and found that, normally, most cells follow a stereotypical transcriptional trajectory. Perturbing critical host factors does not change the stereotypical transcriptional trajectory per se but can stall, delay or accelerate progression along the trajectory, allowing one to pinpoint the stage of infection at which host factors act. Conversely, perturbation of viral factors can create distinct, abortive trajectories. Our results reveal the roles of host and viral factors and provide a roadmap for the dissection of host-pathogen interactions.
Collapse
|
160
|
Wang SW, Gao C, Zheng YM, Yi L, Lu JC, Huang XY, Cai JB, Zhang PF, Cui YH, Ke AW. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol Cancer 2022; 21:57. [PMID: 35189910 PMCID: PMC8862238 DOI: 10.1186/s12943-022-01518-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) system provides adaptive immunity against plasmids and phages in prokaryotes. This system inspires the development of a powerful genome engineering tool, the CRISPR/CRISPR-associated nuclease 9 (CRISPR/Cas9) genome editing system. Due to its high efficiency and precision, the CRISPR/Cas9 technique has been employed to explore the functions of cancer-related genes, establish tumor-bearing animal models and probe drug targets, vastly increasing our understanding of cancer genomics. Here, we review current status of CRISPR/Cas9 gene editing technology in oncological research. We first explain the basic principles of CRISPR/Cas9 gene editing and introduce several new CRISPR-based gene editing modes. We next detail the rapid progress of CRISPR screening in revealing tumorigenesis, metastasis, and drug resistance mechanisms. In addition, we introduce CRISPR/Cas9 system delivery vectors and finally demonstrate the potential of CRISPR/Cas9 engineering to enhance the effect of adoptive T cell therapy (ACT) and reduce adverse reactions.
Collapse
|
161
|
Zeng Z, Zhang X, Jiang CQ, Zhang YG, Wu X, Li J, Tang S, Li L, Gu LJ, Xie XY, Jiang YA. Identifying novel therapeutic targets in gastric cancer using genome-wide CRISPR-Cas9 screening. Oncogene 2022; 41:2069-2078. [PMID: 35177812 DOI: 10.1038/s41388-022-02177-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
Genome-scale CRISPR-Cas9 screening technology is a powerful tool to systematically identify genes essential for cancer cell survival. Herein, TKOv3, a genome-scale CRISPR-Cas9 knock-out library, was screened in the gastric cancer (GC) cells, and relevant validation experiments were performed. We obtained 854 essential genes for the AGS cell line, and 184 were novel essential genes. After knocking down essential genes: SPC25, DHX37, ABCE1, SNRPB, TOP3A, RUVBL1, CIT, TACC3 and MTBP, cell viability and proliferation were significantly decreased. Then, we analysed the detected essential genes at different time points and proved more characteristic genes might appear with the extension of selection. After progressive selection using a series of open datasets, 41 essential genes were identified as potential drug targets. Among them, methyltransferase 1 (METTL1) was over expressed in GC tissues. High METTL1 expression was associated with poor prognosis among 3 of 6 GC cohorts. Furthermore, GC cells growth was significantly inhibited after the down-regulation of METTL1 in vitro and in vivo. Function analysis revealed that METTL1 might play a role in the cell cycle through AKT/STAT3 pathways. In conclusion, compared with existing genome-scale screenings, we obtained 184 novel essential genes. Among them, METTL1 was validated as a potential therapeutic target of GC.
Collapse
Affiliation(s)
- Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xu Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cong-Qing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yong-Gang Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xue Wu
- Department of Biomedical informatics, The Ohio State University, Columbus, OH, USA
| | - Jin Li
- Department of Biomedical informatics, The Ohio State University, Columbus, OH, USA
| | - Shan Tang
- Department of Biomedical informatics, The Ohio State University, Columbus, OH, USA
| | - Lang Li
- Department of Biomedical informatics, The Ohio State University, Columbus, OH, USA
| | - Li-Juan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiao-Yu Xie
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ying-An Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
162
|
Hasegawa K, Ikeda S, Yaga M, Watanabe K, Urakawa R, Iehara A, Iwai M, Hashiguchi S, Morimoto S, Fujiki F, Nakajima H, Nakata J, Nishida S, Tsuboi A, Oka Y, Yoshihara S, Manabe M, Ichihara H, Mugitani A, Aoyama Y, Nakao T, Hirose A, Hino M, Ueda S, Takenaka K, Masuko T, Akashi K, Maruno T, Uchiyama S, Takamatsu S, Wada N, Morii E, Nagamori S, Motooka D, Kanai Y, Oji Y, Nakagawa T, Kijima N, Kishima H, Ikeda A, Ogino T, Shintani Y, Kubo T, Mihara E, Yusa K, Sugiyama H, Takagi J, Miyoshi E, Kumanogoh A, Hosen N. Selective targeting of multiple myeloma cells with a monoclonal antibody recognizing the ubiquitous protein CD98 heavy chain. Sci Transl Med 2022; 14:eaax7706. [PMID: 35171652 DOI: 10.1126/scitranslmed.aax7706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer-specific cell surface antigens are ideal therapeutic targets for monoclonal antibody (mAb)-based therapy. Here, we report that multiple myeloma (MM), an incurable hematological malignancy, can be specifically targeted by an mAb that recognizes a ubiquitously present protein, CD98 heavy chain (hc) (also known as SLC3A2). We screened more than 10,000 mAb clones raised against MM cells and identified R8H283, an mAb that bound MM cells but not normal hematopoietic or nonhematopoietic cells. R8H283 specifically recognized CD98hc. R8H283 did not react with monomers of CD98hc; instead, it bound CD98hc in heterodimers with a CD98 light chain (CD98lc), a complex that functions as an amino acid transporter. CD98 heterodimers were abundant on MM cells and took up amino acids for constitutive production of immunoglobulin. Although CD98 heterodimers were also present on normal leukocytes, R8H283 did not react with them. The glycoforms of CD98hc present on normal leukocytes were distinct from those present on MM cells, which may explain the lack of R8H283 reactivity to normal leukocytes. R8H283 exerted anti-MM effects without damaging normal hematopoietic cells. These findings suggested that R8H283 is a candidate for mAb-based therapies for MM. In addition, our findings showed that a cancer-specific conformational epitope in a ubiquitous protein, which cannot be identified by transcriptome or proteome analyses, can be found by extensive screening of primary human tumor samples.
Collapse
Affiliation(s)
- Kana Hasegawa
- Laboratory of Cellular Immunotherapy, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Shunya Ikeda
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Moto Yaga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kouki Watanabe
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Rika Urakawa
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Akie Iehara
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Mai Iwai
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Seishin Hashiguchi
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Soyoko Morimoto
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Jun Nakata
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yoshihiro Oka
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Satoshi Yoshihara
- Department of Hematology, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Masahiro Manabe
- Department of Hematology, Osaka General Hospital of West Japan Railway Company, Osaka 545-0053, Japan
| | | | - Atsuko Mugitani
- Department of Hematology, Fuchu Hospital, Osaka 594-0076, Japan
| | - Yasutaka Aoyama
- Department of Hematology, Fuchu Hospital, Osaka 594-0076, Japan
| | - Takafumi Nakao
- Department of Hematology, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Asao Hirose
- Department of Hematology and Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8586, Japan
| | - Masayuki Hino
- Department of Hematology and Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8586, Japan
| | - Shiho Ueda
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Katsuto Takenaka
- Department of Hematology, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
| | - Takashi Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Naoki Wada
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shushi Nagamori
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yusuke Oji
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tomoyoshi Nakagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Noriyuki Kijima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Atsuyo Ikeda
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tateki Kubo
- Department of Plastic Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Emiko Mihara
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Kosuke Yusa
- Stem Cell Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.,Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Naoki Hosen
- Laboratory of Cellular Immunotherapy, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
163
|
Bock C, Datlinger P, Chardon F, Coelho MA, Dong MB, Lawson KA, Lu T, Maroc L, Norman TM, Song B, Stanley G, Chen S, Garnett M, Li W, Moffat J, Qi LS, Shapiro RS, Shendure J, Weissman JS, Zhuang X. High-content CRISPR screening. NATURE REVIEWS. METHODS PRIMERS 2022; 2:9. [PMID: 37214176 PMCID: PMC10200264 DOI: 10.1038/s43586-022-00098-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CRISPR screens are a powerful source of biological discovery, enabling the unbiased interrogation of gene function in a wide range of applications and species. In pooled CRISPR screens, various genetically encoded perturbations are introduced into pools of cells. The targeted cells proliferate under a biological challenge such as cell competition, drug treatment or viral infection. Subsequently, the perturbation-induced effects are evaluated by sequencing-based counting of the guide RNAs that specify each perturbation. The typical results of such screens are ranked lists of genes that confer sensitivity or resistance to the biological challenge of interest. Contributing to the broad utility of CRISPR screens, adaptations of the core CRISPR technology make it possible to activate, silence or otherwise manipulate the target genes. Moreover, high-content read-outs such as single-cell RNA sequencing and spatial imaging help characterize screened cells with unprecedented detail. Dedicated software tools facilitate bioinformatic analysis and enhance reproducibility. CRISPR screening has unravelled various molecular mechanisms in basic biology, medical genetics, cancer research, immunology, infectious diseases, microbiology and other fields. This Primer describes the basic and advanced concepts of CRISPR screening and its application as a flexible and reliable method for biological discovery, biomedical research and drug development - with a special emphasis on high-content methods that make it possible to obtain detailed biological insights directly as part of the screen.
Collapse
Affiliation(s)
- Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florence Chardon
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Matthew B. Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Keith A. Lawson
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tian Lu
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Laetitia Maroc
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Thomas M. Norman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bicna Song
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
| | - Geoff Stanley
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Mathew Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Wei Li
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Lei S. Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
164
|
Bhattacharjee G, Gohil N, Khambhati K, Mani I, Maurya R, Karapurkar JK, Gohil J, Chu DT, Vu-Thi H, Alzahrani KJ, Show PL, Rawal RM, Ramakrishna S, Singh V. Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. J Control Release 2022; 343:703-723. [PMID: 35149141 DOI: 10.1016/j.jconrel.2022.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
A single gene mutation can cause a number of human diseases that affect quality of life. Until the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) systems, it was challenging to correct a gene mutation to avoid disease by reverting phenotypes. The advent of CRISPR technology has changed the field of gene editing, given its simplicity and intrinsic programmability, surpassing the limitations of both zinc-finger nuclease and transcription activator-like effector nuclease and becoming the method of choice for therapeutic gene editing by overcoming the bottlenecks of conventional gene-editing techniques. Currently, there is no commercially available medicinal cure to correct a gene mutation that corrects and reverses the abnormality of a gene's function. Devising reprogramming strategies for faithful recapitulation of normal phenotypes is a crucial aspect for directing the reprogrammed cells toward clinical trials. The CRISPR-Cas9 system has been promising as a tool for correcting gene mutations in maladies including blood disorders and muscular degeneration as well as neurological, cardiovascular, renal, genetic, stem cell, and optical diseases. In this review, we highlight recent developments and utilization of the CRISPR-Cas9 system in correcting or generating gene mutations to create model organisms to develop deeper insights into diseases, rescue normal gene functionality, and curb the progression of a disease.
Collapse
Affiliation(s)
- Gargi Bhattacharjee
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Khushal Khambhati
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi 110049, India
| | - Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | | | - Jigresh Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam
| | - Hue Vu-Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Viet Nam
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Rakesh M Rawal
- Department of Biochemistry and Forensic Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009, India
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India.
| |
Collapse
|
165
|
Shi ZD, Hao L, Han XX, Wu ZX, Pang K, Dong Y, Qin JX, Wang GY, Zhang XM, Xia T, Liang Q, Zhao Y, Li R, Zhang SQ, Zhang JH, Chen JG, Wang GC, Chen ZS, Han CH. Targeting HNRNPU to overcome cisplatin resistance in bladder cancer. Mol Cancer 2022; 21:37. [PMID: 35130920 PMCID: PMC8819945 DOI: 10.1186/s12943-022-01517-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/21/2022] [Indexed: 01/01/2023] Open
Abstract
Purpose The overall response of cisplatin-based chemotherapy in bladder urothelial carcinoma (BUC) remains unsatisfactory due to the complex pathological subtypes, genomic difference, and drug resistance. The genes that associated with cisplatin resistance remain unclear. Herein, we aimed to identify the cisplatin resistance associated genes in BUC. Experimental design The cytotoxicity of cisplatin was evaluated in six bladder cancer cell lines to compare their responses to cisplatin. The T24 cancer cells exhibited the lowest sensitivity to cisplatin and was therefore selected to explore the mechanisms of drug resistance. We performed genome-wide CRISPR screening in T24 cancer cells in vitro, and identified that the gene heterogeneous nuclear ribonucleoprotein U (HNRNPU) was the top candidate gene related to cisplatin resistance. Epigenetic and transcriptional profiles of HNRNPU-depleted cells after cisplatin treatment were analyzed to investigate the relationship between HNRNPU and cisplatin resistance. In vivo experiments were also performed to demonstrate the function of HNRNPU depletion in cisplatin sensitivity. Results Significant correlation was found between HNRNPU expression level and sensitivity to cisplatin in bladder cancer cell lines. In the high HNRNPU expressing T24 cancer cells, knockout of HNRNPU inhibited cell proliferation, invasion, and migration. In addition, loss of HNRNPU promoted apoptosis and S-phase arrest in the T24 cells treated with cisplatin. Data from The Cancer Genome Atlas (TCGA) demonstrated that HNRNPU expression was significantly higher in tumor tissues than in normal tissues. High HNRNPU level was negatively correlated with patient survival. Transcriptomic profiling analysis showed that knockout of HNRNPU enhanced cisplatin sensitivity by regulating DNA damage repair genes. Furthermore, it was found that HNRNPU regulates chemosensitivity by affecting the expression of neurofibromin 1 (NF1). Conclusions Our study demonstrated that HNRNPU expression is associated with cisplatin sensitivity in bladder urothelial carcinoma cells. Inhibition of HNRNPU could be a potential therapy for cisplatin-resistant bladder cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01517-9.
Collapse
|
166
|
Prajapati SC, Dunham N, Fan H, Garrett-Bakelman FE. Validation of CRISPR targeting for proliferation and cytarabine resistance control genes in the acute myeloid leukemia cell line MOLM-13. Biotechniques 2022; 72:81-84. [PMID: 35119307 PMCID: PMC9413368 DOI: 10.2144/btn-2021-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Acute myeloid leukemia patients with FMS-like tyrosine kinase 3–internal tandem duplications and mixed lineage leukemia–protein AF9 fusion proteins suffer from poor clinical outcomes. The MOLM-13 acute myeloid leukemia cell line harbors both of these abnormalities and is used in CRISPR experiments to identify disease drivers. However, experimental observations may be biased or inconclusive in the absence of experimentally validated positive control genes. We validated sgRNAs for knockdown of TP53 for cell proliferation and for DCK knockdown and CDA upregulation for cytarabine resistance control genes in MOLM-13 cells. We have provided a detailed CRISPR protocol applicable to both gene knockdown or activation experiments and downstream leukemic phenotype analyses. Inclusion of these controls in CRISPR experiments will enhance the capacity to identify novel myeloid leukemia drivers in MOLM-13 cells. CRISPR-Cas9 knockdown and upregulation approaches were used for changing the expression of control genes TP53, DCK, and CDA in the acute myeloid leukemia cell line MOLM-13. Lentivirus transduced cells were selected (sorted for green fluorescent protein positive cells or selected by antibiotic treatment), and knockdown or upregulation of genes in the stable cells was confirmed by real-time quantitative PCR and western blot analyses. EdU incorporation assay was used to measure cell proliferation. Colorimetric proliferation/survival assay and flow cytometric cell counting were used to measure cell growth and survival. Results from the experimental and control groups were compared using Student's t-test.
Collapse
Affiliation(s)
- Subhash C Prajapati
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Nicholas Dunham
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Hao Fan
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Francine E Garrett-Bakelman
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,University of Virginia Cancer Center, Charlottesville, VA 22903, USA
| |
Collapse
|
167
|
Zhang Y, Wang J, Ruan Y, Yang Y, Cheng Y, Wang F, Zhang C, Xu Y, Liu L, Yu M, Ren B, Wang J, Zhao B, Yang R, Xiong J, Wang J, Zhang J, Jian R, Liu Y, Tian Y. Genome-wide CRISPR screen identifies Puf60 as a novel stemness gene of mouse Embryonic Stem Cells. Stem Cells Dev 2022; 31:132-142. [PMID: 35019759 DOI: 10.1089/scd.2021.0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanisms underlying self-renewal of embryonic stem cells (ESCs) hold great value in the clinical translation of stem cell biology and regenerative medicine research. To study the mechanisms in ESC self-renewal, screening and identification of key genes maintaining ESC self-renewal were performed by a genome-wide CRISPR-Cas9 knockout virus library. The mouse ESC R1 were infected with CRISPR-Cas9 knockout virus library and cultured for 14 days. The variation of sgRNA ratio was analyzed by high-throughput sequencing, followed by bioinformatics analysis to profile the altered genes. Our results showed 1375 genes with increased sgRNA ratio were found to be mainly involved in signal transduction, cell differentiation and cell apoptosis; 2929 genes with decreased sgRNA ratio were mainly involved in cell cycle regulation, RNA splicing, and biological metabolic processes. We further confirmed our screen specificity by confirming Puf60, U2af2, Wdr75 and Usp16 as novel positive regulators in mESC self-renewal. Meanwhile, further analysis showed the relevance between Puf60 expression and tumor. In conclusion, our study screened key genes maintaining ESC self-renewal and successful identified Puf60, U2af2, Wdr75 and Usp16 as novel positive regulators in mESC self-renewal, which provided theoretical basis and research clues for a better understanding of ESC self-renewal regulation.
Collapse
Affiliation(s)
- Yue Zhang
- Army Medical University, 12525, Southwest Hospital/Southwest Eye Hospital, 30# Gaotanyan St., Shapingba District, Chongqing 400038, China, Chongqing, China, 400038;
| | - Jiaqi Wang
- Army Medical University, 12525, Institude of Immunulogy PLA & Department of Immunology, Army Medical University, Chongqing 400038, China, Chongqing, China;
| | - Yan Ruan
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Yi Yang
- Army Medical University, 12525, Experimental Center of Basic Medicine, College of Basic Medical Sciences, Chongqing, China;
| | - Yuda Cheng
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Fengsheng Wang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Chen Zhang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Yixiao Xu
- Army Medical University, 12525, Southwest Hospital/Southwest Eye Hospital, Chongqing, China;
| | - Lianlian Liu
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Meng Yu
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Bangqi Ren
- Army Medical University, 12525, Southwest Hospital/Southwest Eye Hospital, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China;
| | - Jiangjun Wang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Binyu Zhao
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Ran Yang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Jiaxiang Xiong
- Army Medical University, 12525, Experimental Center of Basic Medicine, College of Basic Medical Sciences, Chongqing, China;
| | - Jiali Wang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China;
| | - Junlei Zhang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China;
| | - Rui Jian
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology,, Chongqing, China;
| | - Yong Liu
- Army Medical University, 12525, Southwest Hospital/Southwest Eye Hospital, Chongqing, China;
| | - Yanping Tian
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology,, Chongqing, China;
| |
Collapse
|
168
|
Arede L, Foerner E, Wind S, Kulkarni R, Domingues AF, Giotopoulos G, Kleinwaechter S, Mollenhauer-Starkl M, Davison H, Chandru A, Asby R, Samarista R, Gupta S, Forte D, Curti A, Scheer E, Huntly BJP, Tora L, Pina C. KAT2A complexes ATAC and SAGA play unique roles in cell maintenance and identity in hematopoiesis and leukemia. Blood Adv 2022; 6:165-180. [PMID: 34654054 PMCID: PMC8753207 DOI: 10.1182/bloodadvances.2020002842] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
Epigenetic histone modifiers are key regulators of cell fate decisions in normal and malignant hematopoiesis. Their enzymatic activities are of particular significance as putative therapeutic targets in leukemia. In contrast, less is known about the contextual role in which those enzymatic activities are exercised and specifically how different macromolecular complexes configure the same enzymatic activity with distinct molecular and cellular consequences. We focus on KAT2A, a lysine acetyltransferase responsible for histone H3 lysine 9 acetylation, which we recently identified as a dependence in acute myeloid leukemia stem cells and that participates in 2 distinct macromolecular complexes: Ada two-A-containing (ATAC) and Spt-Ada-Gcn5-Acetyltransferase (SAGA). Through analysis of human cord blood hematopoietic stem cells and progenitors, and of myeloid leukemia cells, we identify unique respective contributions of the ATAC complex to regulation of biosynthetic activity in undifferentiated self-renewing cells and of the SAGA complex to stabilization or correct progression of cell type-specific programs with putative preservation of cell identity. Cell type and stage-specific dependencies on ATAC and SAGA-regulated programs explain multilevel KAT2A requirements in leukemia and in erythroid lineage specification and development. Importantly, they set a paradigm against which lineage specification and identity can be explored across developmental stem cell systems.
Collapse
Affiliation(s)
- Liliana Arede
- Department of Haematology
- Department of Genetics, and
| | | | | | | | | | - George Giotopoulos
- Department of Haematology
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | | | - Holly Davison
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UK
| | | | - Ryan Asby
- Department of Haematology
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ralph Samarista
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UK
| | - Shikha Gupta
- Department of Haematology
- Department of Genetics, and
| | - Dorian Forte
- Department of Haematology
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), Institute of Hematology “Seràgnoli”, Bologna, Italy
| | - Antonio Curti
- IRCCS Azienda ospedaliero-universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; and
| | - Brian J. P. Huntly
- Department of Haematology
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Laszlo Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; and
| | - Cristina Pina
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UK
- Centre for Genome Engineering and Maintenance (CenGEM), Brunel University London, Uxbridge, UK
| |
Collapse
|
169
|
Abstract
Most of the transcribed human genome codes for noncoding RNAs (ncRNAs), and long noncoding RNAs (lncRNAs) make for the lion's share of the human ncRNA space. Despite growing interest in lncRNAs, because there are so many of them, and because of their tissue specialization and, often, lower abundance, their catalog remains incomplete and there are multiple ongoing efforts to improve it. Consequently, the number of human lncRNA genes may be lower than 10,000 or higher than 200,000. A key open challenge for lncRNA research, now that so many lncRNA species have been identified, is the characterization of lncRNA function and the interpretation of the roles of genetic and epigenetic alterations at their loci. After all, the most important human genes to catalog and study are those that contribute to important cellular functions-that affect development or cell differentiation and whose dysregulation may play a role in the genesis and progression of human diseases. Multiple efforts have used screens based on RNA-mediated interference (RNAi), antisense oligonucleotide (ASO), and CRISPR screens to identify the consequences of lncRNA dysregulation and predict lncRNA function in select contexts, but these approaches have unresolved scalability and accuracy challenges. Instead-as was the case for better-studied ncRNAs in the past-researchers often focus on characterizing lncRNA interactions and investigating their effects on genes and pathways with known functions. Here, we focus most of our review on computational methods to identify lncRNA interactions and to predict the effects of their alterations and dysregulation on human disease pathways.
Collapse
|
170
|
Shohat S, Vol E, Shifman S. Gene essentiality in cancer cell lines is modified by the sex chromosomes. Genome Res 2022; 32:1993-2002. [PMID: 36418059 PMCID: PMC9808629 DOI: 10.1101/gr.276488.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Human sex differences arise from gonadal hormones and sex chromosomes. Studying the direct effects of sex chromosomes in humans is still challenging. Here we studied how the sex chromosomes can modulate gene expression and the outcome of mutations across the genome by exploiting the tendency of cancer cell lines to lose or gain sex chromosomes. We inferred the dosage of the sex chromosomes in 355 female and 408 male cancer cell lines and used it to dissect the contributions of the Y and X Chromosomes to sex-biased gene expression. Furthermore, based on genome-wide CRISPR screens, we identified genes whose essentiality is different between male and female cells depending on the sex chromosomes. The most significant genes were X-linked genes compensated by Y-linked paralogs. Our sex-based analysis identifies genes that, when mutated, can affect male and female cells differently and reinforces the roles of the X and Y Chromosomes in sex-specific cell function.
Collapse
|
171
|
Zhou Y, Fu Q, Shi H, Zhou G. CRISPR Guide RNA Library Screens in Human Induced Pluripotent Stem Cells. Methods Mol Biol 2022; 2549:233-257. [PMID: 35347694 DOI: 10.1007/7651_2021_455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-throughput CRISPR guide RNA (gRNA) library screen, that is, CRISPR/Cas9 screen, enables the unbiased identification of gene functions in a variety of biological processes. Typical pooled CRISPR/Cas9 screen couples a gRNA library and a guided Cas9 or dCas9 endonuclease to target specific gene loci, and then systematically uncover the causal link between candidate genes and observed cellular phenotypes via gRNA depletion or enrichment in screens. Here, we describe a detailed method of puromycin (PURO) concentration titration and lentiviral CRISPR gRNA library titration in Cas9 expressing monoclonal human iPSC line (Cas9+MNhiPSC) prior to performing the screens, conducting pooled CRISPR gRNA library screens in Cas9+MNhiPSC, genomic DNA extraction from the selected cell subpopulation and sequencing library preparation as well as next generation sequencing (NGS) to generate gRNA read counts. In CRISPR/Cas9 screen, we aim for 30% transduction efficiency (i.e., multiplicity of infection = 0.3) to ensure most of infected cells receive only one gRNA. The principles in this method can be applied to CRISPR perturbation (knockout, activation, repression or base editing) screens with other CRISPR gRNA libraries across many other cell models and other species.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Science Center, Shenzhen University, Shenzhen, China.
- Lungene Technologies Co., Ltd, Shenzhen, China.
| | - Qiang Fu
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Huijun Shi
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
172
|
Identification of a c-MYB-directed therapeutic for acute myeloid leukemia. Leukemia 2022; 36:1541-1549. [PMID: 35368048 PMCID: PMC9162920 DOI: 10.1038/s41375-022-01554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
A significant proportion of patients suffering from acute myeloid leukemia (AML) cannot be cured by conventional chemotherapy, relapsed disease being a common problem. Molecular targeting of essential oncogenic mediators is an attractive approach to improving outcomes for this disease. The hematopoietic transcription factor c-MYB has been revealed as a central component of complexes maintaining aberrant gene expression programs in AML. We have previously screened the Connectivity Map database to identify mebendazole as an anti-AML therapeutic targeting c-MYB. In the present study we demonstrate that another hit from this screen, the steroidal lactone withaferin A (WFA), induces rapid ablation of c-MYB protein and consequent inhibition of c-MYB target gene expression, loss of leukemia cell viability, reduced colony formation and impaired disease progression. Although WFA has been reported to have pleiotropic anti-cancer effects, we demonstrate that its anti-AML activity depends on c-MYB modulation and can be partially reversed by a stabilized c-MYB mutant. c-MYB ablation results from disrupted HSP/HSC70 chaperone protein homeostasis in leukemia cells following induction of proteotoxicity and the unfolded protein response by WFA. The widespread use of WFA in traditional medicines throughout the world indicates that it represents a promising candidate for repurposing into AML therapy.
Collapse
|
173
|
Pallaseni A, Peets E, Koeppel J, Weller J, Vanderstichele T, Ho U, Crepaldi L, van Leeuwen J, Allen F, Parts L. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3551-3564. [PMID: 35286377 PMCID: PMC8989541 DOI: 10.1093/nar/gkac161] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/19/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas base editors promise nucleotide-level control over DNA sequences, but the determinants of their activity remain incompletely understood. We measured base editing frequencies in two human cell lines for two cytosine and two adenine base editors at ∼14 000 target sequences and find that base editing activity is sequence-biased, with largest effects from nucleotides flanking the target base. Whether a base is edited depends strongly on the combination of its position in the target and the preceding base, acting to widen or narrow the effective editing window. The impact of features on editing rate depends on the position, with sequence bias efficacy mainly influencing bases away from the center of the window. We use these observations to train a machine learning model to predict editing activity per position, with accuracy ranging from 0.49 to 0.72 between editors, and with better generalization across datasets than existing tools. We demonstrate the usefulness of our model by predicting the efficacy of disease mutation correcting guides, and find that most of them suffer from more unwanted editing than pure outcomes. This work unravels the position-specificity of base editing biases and allows more efficient planning of editing campaigns in experimental and therapeutic contexts.
Collapse
Affiliation(s)
| | | | | | | | | | - Uyen Linh Ho
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Jolanda van Leeuwen
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Leopold Parts
- To whom correspondence should be addressed. Tel: +44 1223 834 244;
| |
Collapse
|
174
|
Dempster JM, Boyle I, Vazquez F, Root DE, Boehm JS, Hahn WC, Tsherniak A, McFarland JM. Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. Genome Biol 2021; 22:343. [PMID: 34930405 PMCID: PMC8686573 DOI: 10.1186/s13059-021-02540-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
CRISPR loss of function screens are powerful tools to interrogate biology but exhibit a number of biases and artifacts that can confound the results. Here, we introduce Chronos, an algorithm for inferring gene knockout fitness effects based on an explicit model of cell proliferation dynamics after CRISPR gene knockout. We test Chronos on two pan-cancer CRISPR datasets and one longitudinal CRISPR screen. Chronos generally outperforms competitors in separation of controls and strength of biomarker associations, particularly when longitudinal data is available. Additionally, Chronos exhibits the lowest copy number and screen quality bias of evaluated methods. Chronos is available at https://github.com/broadinstitute/chronos .
Collapse
Affiliation(s)
- Joshua M Dempster
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Isabella Boyle
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Francisca Vazquez
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Jesse S Boehm
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - William C Hahn
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Aviad Tsherniak
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - James M McFarland
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
175
|
Pemovska T, Bigenzahn JW, Srndic I, Lercher A, Bergthaler A, César-Razquin A, Kartnig F, Kornauth C, Valent P, Staber PB, Superti-Furga G. Metabolic drug survey highlights cancer cell dependencies and vulnerabilities. Nat Commun 2021; 12:7190. [PMID: 34907165 PMCID: PMC8671470 DOI: 10.1038/s41467-021-27329-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Interrogation of cellular metabolism with high-throughput screening approaches can unravel contextual biology and identify cancer-specific metabolic vulnerabilities. To systematically study the consequences of distinct metabolic perturbations, we assemble a comprehensive metabolic drug library (CeMM Library of Metabolic Drugs; CLIMET) covering 243 compounds. We, next, characterize it phenotypically in a diverse panel of myeloid leukemia cell lines and primary patient cells. Analysis of the drug response profiles reveals that 77 drugs affect cell viability, with the top effective compounds targeting nucleic acid synthesis, oxidative stress, and the PI3K/mTOR pathway. Clustering of individual drug response profiles stratifies the cell lines into five functional groups, which link to specific molecular and metabolic features. Mechanistic characterization of selective responses to the PI3K inhibitor pictilisib, the fatty acid synthase inhibitor GSK2194069, and the SLC16A1 inhibitor AZD3965, bring forth biomarkers of drug response. Phenotypic screening using CLIMET represents a valuable tool to probe cellular metabolism and identify metabolic dependencies at large.
Collapse
Affiliation(s)
- Tea Pemovska
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Johannes W Bigenzahn
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ismet Srndic
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexander Lercher
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Andreas Bergthaler
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Adrián César-Razquin
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Felix Kartnig
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Kornauth
- Department of Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center Vienna, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Department of Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Philipp B Staber
- Department of Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center Vienna, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM-Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
176
|
Foster B, Attwood M, Gibbs-Seymour I. Tools for Decoding Ubiquitin Signaling in DNA Repair. Front Cell Dev Biol 2021; 9:760226. [PMID: 34950659 PMCID: PMC8690248 DOI: 10.3389/fcell.2021.760226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
The maintenance of genome stability requires dedicated DNA repair processes and pathways that are essential for the faithful duplication and propagation of chromosomes. These DNA repair mechanisms counteract the potentially deleterious impact of the frequent genotoxic challenges faced by cells from both exogenous and endogenous agents. Intrinsic to these mechanisms, cells have an arsenal of protein factors that can be utilised to promote repair processes in response to DNA lesions. Orchestration of the protein factors within the various cellular DNA repair pathways is performed, in part, by post-translational modifications, such as phosphorylation, ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs). In this review, we firstly explore recent advances in the tools for identifying factors involved in both DNA repair and ubiquitin signaling pathways. We then expand on this by evaluating the growing repertoire of proteomic, biochemical and structural techniques available to further understand the mechanistic basis by which these complex modifications regulate DNA repair. Together, we provide a snapshot of the range of methods now available to investigate and decode how ubiquitin signaling can promote DNA repair and maintain genome stability in mammalian cells.
Collapse
Affiliation(s)
| | | | - Ian Gibbs-Seymour
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
177
|
Sutra Del Galy A, Menegatti S, Fuentealba J, Lucibello F, Perrin L, Helft J, Darbois A, Saitakis M, Tosello J, Rookhuizen D, Deloger M, Gestraud P, Socié G, Amigorena S, Lantz O, Menger L. In vivo genome-wide CRISPR screens identify SOCS1 as intrinsic checkpoint of CD4 + T H1 cell response. Sci Immunol 2021; 6:eabe8219. [PMID: 34860579 DOI: 10.1126/sciimmunol.abe8219] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Silvia Menegatti
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Jaime Fuentealba
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | | | - Laetitia Perrin
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Julie Helft
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Aurélie Darbois
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Michael Saitakis
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Jimena Tosello
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Derek Rookhuizen
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Marc Deloger
- INSERM US23, CNRS UMS 3655, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Pierre Gestraud
- Bioinformatics and Computational Systems Biology of Cancer, PSL Research University, MINES ParisTech, INSERM U900, Paris 75005, France
| | - Gérard Socié
- AP-HP Hospital Saint Louis, Hematology/Transplantation, Paris 75010, France
| | | | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris 75005, France.,Laboratoire d'immunologie clinique, Institut Curie, Paris 75005, France.,Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Institut Curie, Paris 75005, France
| | - Laurie Menger
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| |
Collapse
|
178
|
Yan F, Li J, Milosevic J, Petroni R, Liu S, Shi Z, Yuan S, Reynaga JM, Qi Y, Rico J, Yu S, Liu Y, Rokudai S, Palmisiano N, Meyer SE, Sung PJ, Wan L, Lan F, Garcia BA, Stanger BZ, Sykes DB, Blanco MA. KAT6A and ENL form an epigenetic transcriptional control module to drive critical leukemogenic gene expression programs. Cancer Discov 2021; 12:792-811. [PMID: 34853079 DOI: 10.1158/2159-8290.cd-20-1459] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 09/02/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Epigenetic programs are dysregulated in acute myeloid leukemia (AML) and help enforce an oncogenic state of differentiation arrest. To identify key epigenetic regulators of AML cell fate, we performed a differentiation-focused CRISPR screen in AML cells. This screen identified the histone acetyltransferase KAT6A as a novel regulator of myeloid differentiation that drives critical leukemogenic gene expression programs. We show that KAT6A is the initiator of a newly-described transcriptional control module in which KAT6A-catalyzed promoter H3K9ac is bound by the acetyllysine reader ENL, which in turn cooperates with a network of chromatin factors to induce transcriptional elongation. Inhibition of KAT6A has strong anti-AML phenotypes in vitro and in vivo, suggesting that KAT6A small molecule inhibitors could be of high therapeutic interest for mono or combinatorial differentiation-based treatment of AML.
Collapse
Affiliation(s)
- Fangxue Yan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania
| | - Jinyang Li
- School of Medicine, University of Pennsylvania
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital
| | | | | | | | - Salina Yuan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania
| | | | | | - Joshua Rico
- Biomedical Sciences, University of Pennsylvania
| | | | - Yiman Liu
- Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania
| | - Susumu Rokudai
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine
| | | | | | | | - Liling Wan
- Cancer Biology, Department of Cancer Biology, University of Pennsylvania; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Fei Lan
- Institutes of Biomedical Sciences, Fudan University
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania
| | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital
| | | |
Collapse
|
179
|
The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. J Adv Res 2021; 40:135-152. [PMID: 36100322 PMCID: PMC9481961 DOI: 10.1016/j.jare.2021.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Due to its high accuracy and efficiency, CRISPR/Cas9 techniques may provide a great chance to treat some gene-related diseases. Researchers used the CRISPR/Cas9 technique to cure or alleviate cancers through different approaches, such as gene therapy and immune therapy. The treatment of ocular diseases by Cas9 has entered into clinical phases.
Background Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is derived from the bacterial innate immune system and engineered as a robust gene-editing tool. Due to the higher specificity and efficiency of CRISPR/Cas9, it has been widely applied to many genetic and non-genetic disease, including cancers, genetic hemolytic diseases, acquired immunodeficiency syndrome, cardiovascular diseases, ocular diseases, and neurodegenerative diseases, and some X-linked diseases. Furthermore, in terms of the therapeutic strategy of cancers, many researchers used the CRISPR/Cas9 technique to cure or alleviate cancers through different approaches, such as gene therapy and immune therapy. Aim of Review Here, we conclude the recent application and clinical trials of CRISPR/Cas9 in non-cancerous diseases and cancers and pointed out some of the problems to be solved. Key Scientific Concepts of Review CRISPR/Cas9, derived from the microbial innate immune system, is developed as a robust gene-editing tool and has been applied widely. Due to its high accuracy and efficiency, CRISPR/Cas9 techniques may provide a great chance to treat some gene-related diseases by disrupting, inserting, correcting, replacing, or blocking genes for clinical application with gene therapy.
Collapse
|
180
|
Hariprabu KNG, Sathya M, Vimalraj S. CRISPR/Cas9 in cancer therapy: A review with a special focus on tumor angiogenesis. Int J Biol Macromol 2021; 192:913-930. [PMID: 34655593 DOI: 10.1016/j.ijbiomac.2021.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022]
Abstract
Tumor angiogenesis is a critical target for cancer treatment and its inhibition has become a common anticancer approach following chemotherapy. However, due to the simultaneous activation of different compensatory molecular mechanisms that enhance tumor angiogenesis, clinically authorized anti-angiogenic medicines are ineffective. Additionally, medications used to treat cancer have an effect on normal body cells; nonetheless, more research is needed to create new cancer therapeutic techniques. With advances in molecular biology, it is now possible to use gene-editing technology to alter the genome and study the functional changes resulting from genetic manipulation. With the development of CRISPR/Cas9 technology, it has become a very powerful tool for altering the genomes of many organisms. It was determined that CRISPR/Cas9, which first appeared in bacteria as a part of an adaptive immune system, could be used, in modified forms, to alter genomes and function. In conclusion, CRISPR/Cas9 could be a major step forward to cancer management by providing patients with an effective method for dealing with cancers by dissecting the carcinogenesis pathways, identifying new biologic targets, and perhaps arming cancer cells with drugs. Hence, this review will discuss the current applications of CRISPR/Cas9 technology in tumor angiogenesis research for the purpose of cancer treatment.
Collapse
Affiliation(s)
| | - Muthusamy Sathya
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India.
| |
Collapse
|
181
|
Tsujino T, Komura K, Inamoto T, Azuma H. CRISPR Screen Contributes to Novel Target Discovery in Prostate Cancer. Int J Mol Sci 2021; 22:ijms222312777. [PMID: 34884583 PMCID: PMC8658029 DOI: 10.3390/ijms222312777] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is one of the common malignancies in male adults. Recent advances in omics technology, especially in next-generation sequencing, have increased the opportunity to identify genes that correlate with cancer diseases, including PCa. In addition, a genetic screen based on CRISPR/Cas9 technology has elucidated the mechanisms of cancer progression and drug resistance, which in turn has enabled the discovery of new targets as potential genes for new therapeutic targets. In the era of precision medicine, such knowledge is crucial for clinicians in their decision-making regarding patient treatment. In this review, we focus on how CRISPR screen for PCa performed to date has contributed to the identification of biologically critical and clinically relevant target genes.
Collapse
Affiliation(s)
- Takuya Tsujino
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (T.I.); (H.A.)
- Division of Urology, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (T.T.); (K.K.); Tel.: +81-72-683-1221 (T.T. & K.K.)
| | - Kazumasa Komura
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (T.I.); (H.A.)
- Translational Research Program, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
- Correspondence: (T.T.); (K.K.); Tel.: +81-72-683-1221 (T.T. & K.K.)
| | - Teruo Inamoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (T.I.); (H.A.)
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (T.I.); (H.A.)
| |
Collapse
|
182
|
Laubscher D, Gryder BE, Sunkel BD, Andresson T, Wachtel M, Das S, Roschitzki B, Wolski W, Wu XS, Chou HC, Song YK, Wang C, Wei JS, Wang M, Wen X, Ngo QA, Marques JG, Vakoc CR, Schäfer BW, Stanton BZ, Khan J. BAF complexes drive proliferation and block myogenic differentiation in fusion-positive rhabdomyosarcoma. Nat Commun 2021; 12:6924. [PMID: 34836971 PMCID: PMC8626462 DOI: 10.1038/s41467-021-27176-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric malignancy of skeletal muscle lineage. The aggressive alveolar subtype is characterized by t(2;13) or t(1;13) translocations encoding for PAX3- or PAX7-FOXO1 chimeric transcription factors, respectively, and are referred to as fusion positive RMS (FP-RMS). The fusion gene alters the myogenic program and maintains the proliferative state while blocking terminal differentiation. Here, we investigated the contributions of chromatin regulatory complexes to FP-RMS tumor maintenance. We define the mSWI/SNF functional repertoire in FP-RMS. We find that SMARCA4 (encoding BRG1) is overexpressed in this malignancy compared to skeletal muscle and is essential for cell proliferation. Proteomic studies suggest proximity between PAX3-FOXO1 and BAF complexes, which is further supported by genome-wide binding profiles revealing enhancer colocalization of BAF with core regulatory transcription factors. Further, mSWI/SNF complexes localize to sites of de novo histone acetylation. Phenotypically, interference with mSWI/SNF complex function induces transcriptional activation of the skeletal muscle differentiation program associated with MYCN enhancer invasion at myogenic target genes, which is recapitulated by BRG1 targeting compounds. We conclude that inhibition of BRG1 overcomes the differentiation blockade of FP-RMS cells and may provide a therapeutic strategy for this lethal childhood tumor.
Collapse
Affiliation(s)
- Dominik Laubscher
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Berkley E. Gryder
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA ,grid.67105.350000 0001 2164 3847Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Benjamin D. Sunkel
- grid.240344.50000 0004 0392 3476Nationwide Children’s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH USA
| | - Thorkell Andresson
- grid.418021.e0000 0004 0535 8394Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Marco Wachtel
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Sudipto Das
- grid.418021.e0000 0004 0535 8394Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Bernd Roschitzki
- grid.7400.30000 0004 1937 0650Functional Genomics Center, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Witold Wolski
- grid.7400.30000 0004 1937 0650Functional Genomics Center, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Xiaoli S. Wu
- grid.225279.90000 0004 0387 3667Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA
| | - Hsien-Chao Chou
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Young K. Song
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Chaoyu Wang
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Jun S. Wei
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Meng Wang
- grid.240344.50000 0004 0392 3476Nationwide Children’s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH USA
| | - Xinyu Wen
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Quy Ai Ngo
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Joana G. Marques
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Christopher R. Vakoc
- grid.225279.90000 0004 0387 3667Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA
| | - Beat W. Schäfer
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Benjamin Z. Stanton
- grid.240344.50000 0004 0392 3476Nationwide Children’s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Department of Biological Chemistry & Pharmacology, The Ohio State University College of Medicine, Columbus, OH USA
| | - Javed Khan
- Genetics Branch, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
183
|
Vinceti A, Karakoc E, Pacini C, Perron U, De Lucia RR, Garnett MJ, Iorio F. CoRe: a robustly benchmarked R package for identifying core-fitness genes in genome-wide pooled CRISPR-Cas9 screens. BMC Genomics 2021; 22:828. [PMID: 34789150 PMCID: PMC8597285 DOI: 10.1186/s12864-021-08129-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND CRISPR-Cas9 genome-wide screens are being increasingly performed, allowing systematic explorations of cancer dependencies at unprecedented accuracy and scale. One of the major computational challenges when analysing data derived from such screens is to identify genes that are essential for cell survival invariantly across tissues, conditions, and genomic-contexts (core-fitness genes), and to distinguish them from context-specific essential genes. This is of paramount importance to assess the safety profile of candidate therapeutic targets and for elucidating mechanisms involved in tissue-specific genetic diseases. RESULTS We have developed CoRe: an R package implementing existing and novel methods for the identification of core-fitness genes (at two different level of stringency) from joint analyses of multiple CRISPR-Cas9 screens. We demonstrate, through a fully reproducible benchmarking pipeline, that CoRe outperforms state-of-the-art tools, yielding more reliable and biologically relevant sets of core-fitness genes. CONCLUSIONS CoRe offers a flexible pipeline, compatible with many pre-processing methods for the analysis of CRISPR data, which can be tailored onto different use-cases. The CoRe package can be used for the identification of high-confidence novel core-fitness genes, as well as a means to filter out potentially cytotoxic hits while analysing cancer dependency datasets for identifying and prioritising novel selective therapeutic targets.
Collapse
Affiliation(s)
| | - Emre Karakoc
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Clare Pacini
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | | | - Mathew J Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Francesco Iorio
- Human Technopole, Milan, Italy.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
184
|
Onishi I, Yamamoto K, Kinowaki Y, Kitagawa M, Kurata M. To Discover the Efficient and Novel Drug Targets in Human Cancers Using CRISPR/Cas Screening and Databases. Int J Mol Sci 2021; 22:12322. [PMID: 34830205 PMCID: PMC8622676 DOI: 10.3390/ijms222212322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas has emerged as an excelle nt gene-editing technology and is used worldwide for research. The CRISPR library is an ideal tool for identifying essential genes and synthetic lethality targeted for cancer therapies in human cancers. Synthetic lethality is defined as multiple genetic abnormalities that, when present individually, do not affect function or survival, but when present together, are lethal. Recently, many CRISPR libraries are available, and the latest libraries are more accurate and can be applied to few cells. However, it is easier to efficiently search for cancer targets with their own screenings by effectively using databases of CRISPR screenings, such as Depmap portal, PICKLES (Pooled In-Vitro CRISPR Knockout Library Essentiality Screens), iCSDB, Project Score database, and CRISP-view. This review will suggest recent optimal CRISPR libraries and effective databases for Novel Approaches in the Discovery and Design of Targeted Therapies.
Collapse
Affiliation(s)
- Iichiroh Onishi
- Department of Comprehensive Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (K.Y.); (Y.K.); (M.K.)
| | | | | | | | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (K.Y.); (Y.K.); (M.K.)
| |
Collapse
|
185
|
Discovery of putative tumor suppressors from CRISPR screens reveals rewired lipid metabolism in acute myeloid leukemia cells. Nat Commun 2021; 12:6506. [PMID: 34764293 PMCID: PMC8586352 DOI: 10.1038/s41467-021-26867-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR knockout fitness screens in cancer cell lines reveal many genes whose loss of function causes cell death or loss of fitness or, more rarely, the opposite phenotype of faster proliferation. Here we demonstrate a systematic approach to identify these proliferation suppressors, which are highly enriched for tumor suppressor genes, and define a network of 145 such genes in 22 modules. One module contains several elements of the glycerolipid biosynthesis pathway and operates exclusively in a subset of acute myeloid leukemia cell lines. The proliferation suppressor activity of genes involved in the synthesis of saturated fatty acids, coupled with a more severe loss of fitness phenotype for genes in the desaturation pathway, suggests that these cells operate at the limit of their carrying capacity for saturated fatty acids, which we confirm biochemically. Overexpression of this module is associated with a survival advantage in juvenile leukemias, suggesting a clinically relevant subtype. CRISPR-based knockout screens in cancer cells have suggested the existence of proliferation suppressor genes (PSG). Here, the authors develop an approach to systematically identify them, and reveal a PSG module involved in fatty acid synthesis and tumour suppression in acute myeloid leukemia cell lines.
Collapse
|
186
|
Perez AR, Sala L, Perez RK, Vidigal JA. CSC software corrects off-target mediated gRNA depletion in CRISPR-Cas9 essentiality screens. Nat Commun 2021; 12:6461. [PMID: 34753924 PMCID: PMC8578331 DOI: 10.1038/s41467-021-26722-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Off-target effects are well established confounders of CRISPR negative selection screens that impair the identification of essential genomic loci. In particular, non-coding regulatory elements and repetitive regions are often difficult to target with specific gRNAs, effectively precluding the unbiased screening of a large portion of the genome. To address this, we developed CRISPR Specificity Correction (CSC), a computational method that corrects for the effect of off-targeting on gRNA depletion. We benchmark CSC with data from the Cancer Dependency Map and show that it significantly improves the overall sensitivity and specificity of viability screens while preserving known essentialities, particularly for genes targeted by highly promiscuous gRNAs. We believe this tool will further enable the functional annotation of the genome as it represents a robust alternative to the traditional filtering strategy of discarding unspecific guides from the analysis. CSC is an open-source software that can be seamlessly integrated into current CRISPR analysis pipelines.
Collapse
Affiliation(s)
- Alexendar R Perez
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Sala
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD, USA
| | - Richard K Perez
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
187
|
Bajrami I, Walker C, Krastev DB, Weekes D, Song F, Wicks AJ, Alexander J, Haider S, Brough R, Pettitt SJ, Tutt ANJ, Lord CJ. Sirtuin inhibition is synthetic lethal with BRCA1 or BRCA2 deficiency. Commun Biol 2021; 4:1270. [PMID: 34750509 PMCID: PMC8575930 DOI: 10.1038/s42003-021-02770-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
PARP enzymes utilise NAD+ as a co-substrate for their enzymatic activity. Inhibition of PARP1 is synthetic lethal with defects in either BRCA1 or BRCA2. In order to assess whether other genes implicated in NAD+ metabolism were synthetic lethal with BRCA1 or BRCA2 gene defects, we carried out a genetic screen, which identified a synthetic lethality between BRCA1 and genetic inhibition of either of two sirtuin (SIRT) enzymes, SIRT1 or SIRT6. This synthetic lethal interaction was replicated using small-molecule SIRT inhibitors and was associated with replication stress and increased cellular PARylation, in contrast to the decreased PARylation associated with BRCA-gene/PARP inhibitor synthetic lethality. SIRT/BRCA1 synthetic lethality was reversed by genetic ablation of either PARP1 or the histone PARylation factor-coding gene HPF1, implicating PARP1/HPF1-mediated serine ADP-ribosylation as part of the mechanistic basis of this synthetic lethal effect. These observations suggest that PARP1/HPF1-mediated serine ADP-ribosylation, when driven by SIRT inhibition, can inadvertently inhibit the growth of BRCA-gene mutant cells.
Collapse
Affiliation(s)
- Ilirjana Bajrami
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Callum Walker
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Dragomir B Krastev
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Daniel Weekes
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Feifei Song
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Andrew J Wicks
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - John Alexander
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Syed Haider
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Rachel Brough
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK.
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| | - Andrew N J Tutt
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK.
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
188
|
Ugonotti J, Kawahara R, Loke I, Zhu Y, Chatterjee S, Tjondro HC, Sumer-Bayraktar Z, Neelamegham S, Thaysen-Andersen M. N-acetyl-β-D-hexosaminidases mediate the generation of paucimannosidic proteins via a putative noncanonical truncation pathway in human neutrophils. Glycobiology 2021; 32:218-229. [PMID: 34939086 DOI: 10.1093/glycob/cwab108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022] Open
Abstract
We recently discovered that human neutrophils express immunomodulatory glycoproteins carrying unusual and highly truncated paucimannosidic N-glycans (Man1-3GlcNAc2Fuc0-1), but their biosynthesis remains elusive. Guided by the well-characterized truncation pathway in invertebrates and plants in which the N-acetyl-β-D-hexosaminidase (Hex) isoenzymes catalyze paucimannosidic protein (PMP) formation, we here set out to test if the homologous human Hex α and β subunits encoded by HEXA and HEXB drive a similar truncation pathway in human neutrophils. To this end, we performed quantitative glycomics and glycoproteomics of several CRISPR-Cas9-edited Hex-disrupted neutrophil-like HL-60 mutants (HEXA-KO and HEXB-KO) and matching unedited cell lines. Hex disruption was validated using next-generation sequencing, enzyme-linked immunosorbent assay (ELISA), quantitative proteomics and Hex activity assays. Excitingly, all Hex-disrupted mutants displayed significantly reduced levels of paucimannosylation, particularly Man2-3GlcNAc2Fuc1, relative to unedited HL-60 suggesting that both HEXA and HEXB contribute to PMP formation via a hitherto unexplored truncation pathway in neutrophils. Quantitative N-glycomics indeed demonstrated reduced utilization of a putative noncanonical truncation pathway in favor of the canonical elongation pathway in all Hex-disrupted mutants relative to unedited controls. Quantitative glycoproteomics recapitulated the truncation-to-elongation switch in all Hex-disrupted mutants and showed a greater switch for N-glycoproteins cotrafficking with Hex to the azurophilic granules of neutrophils such as myeloperoxidase. Finally, we supported the Hex-PMP relationship by documenting that primary neutrophils isolated from an early-onset Sandhoff disease patient (HEXB-/-) displayed dramatically reduced paucimannosylation relative to neutrophils from an age-matched unaffected donor. We conclude that both human Hex α and β mediate PMP formation via a putative noncanonical truncation pathway in neutrophils.
Collapse
Affiliation(s)
- Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Balaclava Road, Macquarie Park, Sydney, NSW 2109, Australia
| | - Rebeca Kawahara
- Department of Molecular Sciences, Macquarie University, Balaclava Road, Macquarie Park, Sydney, NSW 2109, Australia
| | - Ian Loke
- Cordlife Group Limited, 1 Yishun Industrial Street, Singapore 768160, Singapore
| | - Yuqi Zhu
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Balaclava Road, Macquarie Park, Sydney, NSW 2109, Australia
| | - Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Balaclava Road, Macquarie Park, Sydney, NSW 2109, Australia
| | - Zeynep Sumer-Bayraktar
- Department of Molecular Sciences, Macquarie University, Balaclava Road, Macquarie Park, Sydney, NSW 2109, Australia
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, 906 Furnas Hall, Buffalo, NY 14260, USA
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Balaclava Road, Macquarie Park, Sydney, NSW 2109, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Balaclava Road, Macquarie Park, Sydney, NSW 2109, Australia
| |
Collapse
|
189
|
Yun H, Narayan N, Vohra S, Giotopoulos G, Mupo A, Madrigal P, Sasca D, Lara-Astiaso D, Horton SJ, Agrawal-Singh S, Meduri E, Basheer F, Marando L, Gozdecka M, Dovey OM, Castillo-Venzor A, Wang X, Gallipoli P, Müller-Tidow C, Osborne CS, Vassiliou GS, Huntly BJP. Mutational synergy during leukemia induction remodels chromatin accessibility, histone modifications and three-dimensional DNA topology to alter gene expression. Nat Genet 2021; 53:1443-1455. [PMID: 34556857 PMCID: PMC7611829 DOI: 10.1038/s41588-021-00925-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
Altered transcription is a cardinal feature of acute myeloid leukemia (AML); however, exactly how mutations synergize to remodel the epigenetic landscape and rewire three-dimensional DNA topology is unknown. Here, we apply an integrated genomic approach to a murine allelic series that models the two most common mutations in AML: Flt3-ITD and Npm1c. We then deconvolute the contribution of each mutation to alterations of the epigenetic landscape and genome organization, and infer how mutations synergize in the induction of AML. Our studies demonstrate that Flt3-ITD signals to chromatin to alter the epigenetic environment and synergizes with mutations in Npm1c to alter gene expression and drive leukemia induction. These analyses also allow the identification of long-range cis-regulatory circuits, including a previously unknown superenhancer of Hoxa locus, as well as larger and more detailed gene-regulatory networks, driven by transcription factors including PU.1 and IRF8, whose importance we demonstrate through perturbation of network members.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chromatin Assembly and Disassembly/genetics
- DNA, Neoplasm/chemistry
- Disease Models, Animal
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation, Leukemic
- Gene Regulatory Networks
- Genetic Loci
- Histones/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Mice, Inbred C57BL
- Mutation/genetics
- Nuclear Proteins/metabolism
- Nucleophosmin
- Principal Component Analysis
- Protein Processing, Post-Translational
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transcription, Genetic
- fms-Like Tyrosine Kinase 3/metabolism
- Mice
Collapse
Affiliation(s)
- Haiyang Yun
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nisha Narayan
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Shabana Vohra
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - George Giotopoulos
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Annalisa Mupo
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Haematological Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Pedro Madrigal
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Daniel Sasca
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Hematology, Oncology and Pneumology, University Medical Center Mainz, Mainz, Germany
| | - David Lara-Astiaso
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Sarah J Horton
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Shuchi Agrawal-Singh
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Eshwar Meduri
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Faisal Basheer
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Ludovica Marando
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Malgorzata Gozdecka
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Haematological Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Oliver M Dovey
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Haematological Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
| | | | - Xiaonan Wang
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Paolo Gallipoli
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Cameron S Osborne
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - George S Vassiliou
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Haematological Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Brian J P Huntly
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
190
|
Romine KA, Nechiporuk T, Bottomly D, Jeng S, McWeeney SK, Kaempf A, Corces MR, Majeti R, Tyner JW. Monocytic differentiation and AHR signaling as Primary Nodes of BET Inhibitor Response in Acute Myeloid Leukemia. Blood Cancer Discov 2021; 2:518-531. [PMID: 34568834 DOI: 10.1158/2643-3230.bcd-21-0012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To understand mechanisms of response to BET inhibitors (BETi), we mined the Beat AML functional genomic dataset and performed genome-wide CRISPR screens on BETi- sensitive and BETi- resistant AML cells. Both strategies revealed regulators of monocytic differentiation, SPI1, JUNB, FOS, and aryl-hydrocarbon receptor signaling (AHR/ARNT), as determinants of BETi response. AHR activation synergized with BETi while inhibition antagonized BETi-mediated cytotoxicity. Consistent with BETi sensitivity dependence on monocytic differentiation, ex vivo sensitivity to BETi in primary AML patient samples correlated with higher expression of monocytic markers CSF1R, LILRs, and VCAN. In addition, HL-60 cell line differentiation enhanced its sensitivity to BETi. Further, screens to rescue BETi sensitivity identified BCL2 and CDK6 as druggable vulnerabilities. Finally, monocytic AML patient samples refractory to venetoclax ex vivo were significantly more sensitive to combined BETi + venetoclax. Together, our work highlights mechanisms that could predict BETi response and identifies combination strategies to overcome resistance.
Collapse
Affiliation(s)
- Kyle A Romine
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Tamilla Nechiporuk
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Portland, OR, USA
| | - Sophia Jeng
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Oregon Clinical and Translational Research Institute, Portland, OR, USA
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Portland, OR, USA.,Oregon Clinical and Translational Research Institute, Portland, OR, USA
| | - Andy Kaempf
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Biostatistics Shared Resource, Portland, OR, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.,Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey W Tyner
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
191
|
ACE: a probabilistic model for characterizing gene-level essentiality in CRISPR screens. Genome Biol 2021; 22:278. [PMID: 34556174 PMCID: PMC8459512 DOI: 10.1186/s13059-021-02491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/08/2021] [Indexed: 11/10/2022] Open
Abstract
High-throughput CRISPR-Cas9 knockout screens are widely used to evaluate gene essentiality in cancer research. Here we introduce a probabilistic modeling framework, Analysis of CRISPR-based Essentiality (ACE), that accounts for multiple sources of variation in CRISPR-Cas9 screens and enables new statistical tests for essentiality. We show using simulations that ACE is effective at predicting both absolute and differential essentiality. When applied to publicly available data, ACE identifies known and novel candidates for genotype-specific essentiality, including RNA m6-A methyltransferases that exhibit enhanced essentiality in the presence of inactivating TP53 mutations. ACE provides a robust framework for identifying genes responsive to subtype-specific therapeutic targeting.
Collapse
|
192
|
Balla B, Tripon F, Banescu C. From Descriptive to Functional Genomics of Leukemias Focusing on Genome Engineering Techniques. Int J Mol Sci 2021; 22:10065. [PMID: 34576226 PMCID: PMC8470190 DOI: 10.3390/ijms221810065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
Genome engineering makes the precise manipulation of DNA sequences possible in a cell. Therefore, it is essential for understanding gene function. Meganucleases were the start of genome engineering, and it continued with the discovery of Zinc finger nucleases (ZFNs), followed by Transcription activator-like effector nucleases (TALENs). They can generate double-strand breaks at a desired target site in the genome, and therefore can be used to knock in mutations or knock out genes in the same way. Years later, genome engineering was transformed by the discovery of clustered regularly interspaced short palindromic repeats (CRISPR). Implementation of CRISPR systems involves recognition guided by RNA and the precise cleaving of DNA molecules. This property proves its utility in epigenetics and genome engineering. CRISPR has been and is being continuously successfully used to model mutations in leukemic cell lines and control gene expression. Furthermore, it is used to identify targets and discover drugs for immune therapies. The descriptive and functional genomics of leukemias is discussed in this study, with an emphasis on genome engineering methods. The CRISPR/Cas9 system's challenges, viewpoints, limits, and solutions are also explored.
Collapse
Affiliation(s)
- Beata Balla
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania
| | - Florin Tripon
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania
| | - Claudia Banescu
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania
- Clinical and Emergency County Hospital of Târgu Mureș, Strada Gheorghe Marinescu 50, 540136 Târgu Mureș, Romania
| |
Collapse
|
193
|
Clinical Functional Genomics. Cancers (Basel) 2021; 13:cancers13184627. [PMID: 34572854 PMCID: PMC8465855 DOI: 10.3390/cancers13184627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Functional genomics refers to the activity of the genome, that is, how the information contained in DNA (the book) is read and ‘acted upon’ in a biological context. Genes are turned ‘on’ (resulting in the synthesis of RNA that is translated into proteins) or ‘off’ during development and in response to environmental stimuli. Mis-regulation of these process can manifest as disease. Functional genomics are currently being developed clinically to improve patient care, with some clear potential future goals within the field. This commentary discusses rapidly evolving clinical functional genomic pathways and the underpinning technologies that have allowed for recent research and scientific advancements, and addresses challenges faced in the field. Abstract Functional genomics is the study of how the genome and its products, including RNA and proteins, function and interact to affect different biological processes. The field of functional genomics includes transcriptomics, proteomics, metabolomics and epigenomics, as these all relate to controlling the genome leading to expression of particular phenotypes. By studying whole genomes—clinical genomics, transcriptomes and epigenomes—functional genomics allows the exploration of the diverse relationship between genotype and phenotype, not only for humans as a species but also in individuals, allowing an understanding and evaluation of how the functional genome ‘contributes’ to different diseases. Functional variation in disease can help us better understand that disease, although it is currently limited in terms of ethnic diversity, and will ultimately give way to more personalized treatment plans.
Collapse
|
194
|
Khateb A, Deshpande A, Feng Y, Finlay D, Lee JS, Lazar I, Fabre B, Li Y, Fujita Y, Zhang T, Yin J, Pass I, Livneh I, Jeremias I, Burian C, Mason JR, Almog R, Horesh N, Ofran Y, Brown K, Vuori K, Jackson M, Ruppin E, Deshpande AJ, Ronai ZA. The ubiquitin ligase RNF5 determines acute myeloid leukemia growth and susceptibility to histone deacetylase inhibitors. Nat Commun 2021; 12:5397. [PMID: 34518534 PMCID: PMC8437979 DOI: 10.1038/s41467-021-25664-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) remains incurable, largely due to its resistance to conventional treatments. Here, we find that increased abundance of the ubiquitin ligase RNF5 contributes to AML development and survival. High RNF5 expression in AML patient specimens correlates with poor prognosis. RNF5 inhibition decreases AML cell growth in culture, in patient-derived xenograft (PDX) samples and in vivo, and delays development of MLL-AF9-driven leukemogenesis in mice, prolonging their survival. RNF5 inhibition causes transcriptional changes that overlap with those seen upon histone deacetylase (HDAC)1 inhibition. RNF5 induces the formation of K29 ubiquitin chains on the histone-binding protein RBBP4, promoting its recruitment to and subsequent epigenetic regulation of genes involved in AML maintenance. Correspondingly, RNF5 or RBBP4 knockdown enhances AML cell sensitivity to HDAC inhibitors. Notably, low expression of both RNF5 and HDAC coincides with a favorable prognosis. Our studies identify an ERAD-independent role for RNF5, demonstrating that its control of RBBP4 constitutes an epigenetic pathway that drives AML, and highlight RNF5/RBBP4 as markers useful to stratify patients for treatment with HDAC inhibitors.
Collapse
Affiliation(s)
- Ali Khateb
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anagha Deshpande
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yongmei Feng
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Darren Finlay
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Joo Sang Lee
- Cancer Data Science Lab (CDSL), National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Ikrame Lazar
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Bertrand Fabre
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yan Li
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yu Fujita
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Division of Respiratory Medicine, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Tongwu Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jun Yin
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ian Pass
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ido Livneh
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health, Munich, Germany
| | - Carol Burian
- Scripps MD Anderson Cancer Center, La Jolla, CA, USA
| | - James R Mason
- Scripps MD Anderson Cancer Center, La Jolla, CA, USA
| | - Ronit Almog
- Rambam Health Care Campus, Epidemiology Department and Biobank, Haifa, Israel
| | - Nurit Horesh
- Rambam Health Care Campus, Hematology and Bone marrow Transplantation Department, Haifa, Israel
| | - Yishai Ofran
- Technion Integrated Cancer Center, Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
- Rambam Health Care Campus, Hematology and Bone marrow Transplantation Department, Haifa, Israel
| | - Kevin Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kristiina Vuori
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael Jackson
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Eytan Ruppin
- Cancer Data Science Lab (CDSL), National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Aniruddha J Deshpande
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
195
|
Chen BR, Wang Y, Tubbs A, Zong D, Fowler FC, Zolnerowich N, Wu W, Bennett A, Chen CC, Feng W, Nussenzweig A, Tyler JK, Sleckman BP. LIN37-DREAM prevents DNA end resection and homologous recombination at DNA double-strand breaks in quiescent cells. eLife 2021; 10:68466. [PMID: 34477552 PMCID: PMC8416021 DOI: 10.7554/elife.68466] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/18/2021] [Indexed: 12/29/2022] Open
Abstract
DNA double-strand break (DSB) repair by homologous recombination (HR) is thought to be restricted to the S- and G2- phases of the cell cycle in part due to 53BP1 antagonizing DNA end resection in G1-phase and non-cycling quiescent (G0) cells. Here, we show that LIN37, a component of the DREAM transcriptional repressor, functions in a 53BP1-independent manner to prevent DNA end resection and HR in G0 cells. Loss of LIN37 leads to the expression of HR proteins, including BRCA1, BRCA2, PALB2, and RAD51, and promotes DNA end resection in G0 cells even in the presence of 53BP1. In contrast to 53BP1-deficiency, DNA end resection in LIN37-deficient G0 cells depends on BRCA1 and leads to RAD51 filament formation and HR. LIN37 is not required to protect DNA ends in cycling cells at G1-phase. Thus, LIN37 regulates a novel 53BP1-independent cell phase-specific DNA end protection pathway that functions uniquely in quiescent cells.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, United States
| | - Yinan Wang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Anthony Tubbs
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
| | - Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
| | - Faith C Fowler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Nicholas Zolnerowich
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
| | - Wei Wu
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
| | - Amelia Bennett
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Chun-Chin Chen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Wendy Feng
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, United States
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, Bethesda, United States
| | - Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States
| | - Barry P Sleckman
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|
196
|
Hassan JJ, Lieske A, Dörpmund N, Klatt D, Hoffmann D, Kleppa MJ, Kustikova OS, Stahlhut M, Schwarzer A, Schambach A, Maetzig T. A Multiplex CRISPR-Screen Identifies PLA2G4A as Prognostic Marker and Druggable Target for HOXA9 and MEIS1 Dependent AML. Int J Mol Sci 2021; 22:ijms22179411. [PMID: 34502319 PMCID: PMC8431012 DOI: 10.3390/ijms22179411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
HOXA9 and MEIS1 are frequently upregulated in acute myeloid leukemia (AML), including those with MLL-rearrangement. Because of their pivotal role in hemostasis, HOXA9 and MEIS1 appear non-druggable. We, thus, interrogated gene expression data of pre-leukemic (overexpressing Hoxa9) and leukemogenic (overexpressing Hoxa9 and Meis1; H9M) murine cell lines to identify cancer vulnerabilities. Through gene expression analysis and gene set enrichment analyses, we compiled a list of 15 candidates for functional validation. Using a novel lentiviral multiplexing approach, we selected and tested highly active sgRNAs to knockout candidate genes by CRISPR/Cas9, and subsequently identified a H9M cell growth dependency on the cytosolic phospholipase A2 (PLA2G4A). Similar results were obtained by shRNA-mediated suppression of Pla2g4a. Remarkably, pharmacologic inhibition of PLA2G4A with arachidonyl trifluoromethyl ketone (AACOCF3) accelerated the loss of H9M cells in bulk cultures. Additionally, AACOCF3 treatment of H9M cells reduced colony numbers and colony sizes in methylcellulose. Moreover, AACOCF3 was highly active in human AML with MLL rearrangement, in which PLA2G4A was significantly higher expressed than in AML patients without MLL rearrangement, and is sufficient as an independent prognostic marker. Our work, thus, identifies PLA2G4A as a prognostic marker and potential therapeutic target for H9M-dependent AML with MLL-rearrangement.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- CRISPR-Cas Systems
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Group IV Phospholipases A2/antagonists & inhibitors
- Group IV Phospholipases A2/genetics
- High-Throughput Screening Assays
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Myeloid Ecotropic Viral Integration Site 1 Protein/genetics
- Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jacob Jalil Hassan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Anna Lieske
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Nicole Dörpmund
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Denise Klatt
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Marc-Jens Kleppa
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Olga S. Kustikova
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Maike Stahlhut
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
| | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Maetzig
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.J.H.); (A.L.); (N.D.); (D.K.); (D.H.); (M.-J.K.); (O.S.K.); (M.S.); (A.S.); (A.S.)
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence:
| |
Collapse
|
197
|
Takahashi S, Kanai A, Okuda H, Miyamoto R, Komata Y, Kawamura T, Matsui H, Inaba T, Takaori-Kondo A, Yokoyama A. HBO1-MLL interaction promotes AF4/ENL/P-TEFb-mediated leukemogenesis. eLife 2021; 10:e65872. [PMID: 34431785 PMCID: PMC8387021 DOI: 10.7554/elife.65872] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/12/2021] [Indexed: 12/27/2022] Open
Abstract
Leukemic oncoproteins cause uncontrolled self-renewal of hematopoietic progenitors by aberrant gene activation, eventually causing leukemia. However, the molecular mechanism underlying aberrant gene activation remains elusive. Here, we showed that leukemic MLL fusion proteins associate with the HBO1 histone acetyltransferase (HAT) complex through their trithorax homology domain 2 (THD2) in various human cell lines. MLL proteins associated with the HBO1 complex through multiple contacts mediated mainly by the ING4/5 and PHF16 subunits in a chromatin-bound context where histone H3 lysine 4 tri-methylation marks were present. Of the many MLL fusions, MLL-ELL particularly depended on the THD2-mediated association with the HBO1 complex for leukemic transformation. The C-terminal portion of ELL provided a binding platform for multiple factors including AF4, EAF1, and p53. MLL-ELL activated gene expression in murine hematopoietic progenitors by loading an AF4/ENL/P-TEFb (AEP) complex onto the target promoters wherein the HBO1 complex promoted the association with AEP complex over EAF1 and p53. Moreover, the NUP98-HBO1 fusion protein exerted its oncogenic properties via interaction with MLL but not its intrinsic HAT activity. Thus, the interaction between the HBO1 complex and MLL is an important nexus in leukemic transformation, which may serve as a therapeutic target for drug development.
Collapse
Affiliation(s)
- Satoshi Takahashi
- Tsuruoka Metabolomics Laboratory, National Cancer CenterTsuruokaJapan
- Department of Hematology and Oncology, Kyoto University Graduate School of MedicineKyotoJapan
| | - Akinori Kanai
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima UniversityHiroshimaJapan
| | - Hiroshi Okuda
- Tsuruoka Metabolomics Laboratory, National Cancer CenterTsuruokaJapan
| | - Ryo Miyamoto
- Tsuruoka Metabolomics Laboratory, National Cancer CenterTsuruokaJapan
| | - Yosuke Komata
- Tsuruoka Metabolomics Laboratory, National Cancer CenterTsuruokaJapan
| | | | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto UniversityKumamotoJapan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima UniversityHiroshimaJapan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Kyoto University Graduate School of MedicineKyotoJapan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer CenterTsuruokaJapan
- Department of Hematology and Oncology, Kyoto University Graduate School of MedicineKyotoJapan
- Division of Hematological Malignancy, National Cancer Center Research InstituteTokyoJapan
| |
Collapse
|
198
|
Orellana EA, Liu Q, Yankova E, Pirouz M, De Braekeleer E, Zhang W, Lim J, Aspris D, Sendinc E, Garyfallos DA, Gu M, Ali R, Gutierrez A, Mikutis S, Bernardes GJL, Fischer ES, Bradley A, Vassiliou GS, Slack FJ, Tzelepis K, Gregory RI. METTL1-mediated m 7G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell 2021; 81:3323-3338.e14. [PMID: 34352207 PMCID: PMC8380730 DOI: 10.1016/j.molcel.2021.06.031] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/02/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023]
Abstract
The emerging "epitranscriptomics" field is providing insights into the biological and pathological roles of different RNA modifications. The RNA methyltransferase METTL1 catalyzes N7-methylguanosine (m7G) modification of tRNAs. Here we find METTL1 is frequently amplified and overexpressed in cancers and is associated with poor patient survival. METTL1 depletion causes decreased abundance of m7G-modified tRNAs and altered cell cycle and inhibits oncogenicity. Conversely, METTL1 overexpression induces oncogenic cell transformation and cancer. Mechanistically, we find increased abundance of m7G-modified tRNAs, in particular Arg-TCT-4-1, and increased translation of mRNAs, including cell cycle regulators that are enriched in the corresponding AGA codon. Accordingly, Arg-TCT expression is elevated in many tumor types and is associated with patient survival, and strikingly, overexpression of this individual tRNA induces oncogenic transformation. Thus, METTL1-mediated tRNA modification drives oncogenic transformation through a remodeling of the mRNA "translatome" to increase expression of growth-promoting proteins and represents a promising anti-cancer target.
Collapse
Affiliation(s)
- Esteban A Orellana
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Qi Liu
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eliza Yankova
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Milner Therapeutics Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Storm Therapeutics Ltd., Moneta Building (B280), Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Mehdi Pirouz
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Etienne De Braekeleer
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Wencai Zhang
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Jihoon Lim
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Demetrios Aspris
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Karaiskakio Foundation, Nicandrou Papamina Avenue, 2032 Nicosia, Cyprus
| | - Erdem Sendinc
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Dimitrios A Garyfallos
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Muxin Gu
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Raja Ali
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sigitas Mikutis
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Eric S Fischer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Allan Bradley
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - George S Vassiliou
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Karaiskakio Foundation, Nicandrou Papamina Avenue, 2032 Nicosia, Cyprus; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Frank J Slack
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Konstantinos Tzelepis
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Milner Therapeutics Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard Initiative for RNA Medicine, Boston, MA 02115, USA.
| |
Collapse
|
199
|
Lu D, Song Y, Yu Y, Wang D, Liu B, Chen L, Li X, Li Y, Cheng L, Lv F, Zhang P, Xing Y. KAT2A-mediated AR translocation into nucleus promotes abiraterone-resistance in castration-resistant prostate cancer. Cell Death Dis 2021; 12:787. [PMID: 34381019 PMCID: PMC8357915 DOI: 10.1038/s41419-021-04077-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
Abiraterone, a novel androgen synthesis inhibitor, has been approved for castration-resistant prostate cancer (CRPC) treatment. However, most patients eventually acquire resistance to this agent, and the underlying mechanisms related to this resistance remain largely unelucidated. Lysine acetyltransferase 2 A (KAT2A) has been reported to enhance transcriptional activity for certain histone or non-histone proteins through the acetylation and post-translational modification of the androgen receptor (AR). Therefore, we hypothesised that KAT2A might play a critical role in the resistance of prostate tumours to hormonal treatment. In this study, we found that KAT2A expression was increased in abiraterone-resistant prostate cancer C4-2 cells (C4-2-AbiR). Consistently, elevated expression of KAT2A was observed in patients with prostate cancer exhibiting high-grade disease or biochemical recurrence following radical prostatectomy, as well as in those with poor clinical survival outcomes. Moreover, KAT2A knockdown partially re-sensitised C4-2-AbiR cells to abiraterone, whereas KAT2A overexpression promoted abiraterone resistance in parental C4-2 cells. Consistent with this finding, KAT2A knockdown rescued abiraterone sensitivity and inhibited the proliferation of C4-2-AbiR cells in a mouse model. Mechanistically, KAT2A directly acetylated the hinge region of the AR, and induced AR translocation from the cytoplasm to the nucleus, resulting in increased transcriptional activity of the AR-targeted gene prostate specific antigen (PSA) leading to resistance to the inhibitory effect of abiraterone on proliferation. Taken together, our findings demonstrate a substantial role for KAT2A in the regulation of post-translational modifications in AR affecting CRPC development, suggesting that targeting KAT2A might be a potential strategy for CRPC treatment.
Collapse
Affiliation(s)
- Dingheng Lu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ying Yu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Decai Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bing Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuexiang Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yunxue Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulin Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pu Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
200
|
Miyamoto R, Kanai A, Okuda H, Komata Y, Takahashi S, Matsui H, Inaba T, Yokoyama A. HOXA9 promotes MYC-mediated leukemogenesis by maintaining gene expression for multiple anti-apoptotic pathways. eLife 2021; 10:e64148. [PMID: 34310280 PMCID: PMC8313233 DOI: 10.7554/elife.64148] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/04/2021] [Indexed: 11/13/2022] Open
Abstract
HOXA9 is often highly expressed in leukemias. However, its precise roles in leukemogenesis remain elusive. Here, we show that HOXA9 maintains gene expression for multiple anti-apoptotic pathways to promote leukemogenesis. In MLL fusion-mediated leukemia, MLL fusion directly activates the expression of MYC and HOXA9. Combined expression of MYC and HOXA9 induced leukemia, whereas single gene transduction of either did not, indicating a synergy between MYC and HOXA9. HOXA9 sustained expression of the genes implicated in the hematopoietic precursor identity when expressed in hematopoietic precursors, but did not reactivate it once silenced. Among the HOXA9 target genes, BCL2 and SOX4 synergistically induced leukemia with MYC. Not only BCL2, but also SOX4 suppressed apoptosis, indicating that multiple anti-apoptotic pathways underlie cooperative leukemogenesis by HOXA9 and MYC. These results demonstrate that HOXA9 is a crucial transcriptional maintenance factor that promotes MYC-mediated leukemogenesis, potentially explaining why HOXA9 is highly expressed in many leukemias.
Collapse
Affiliation(s)
- Ryo Miyamoto
- Tsuruoka Metabolomics Laboratory, National Cancer CenterTsuruokaJapan
| | - Akinori Kanai
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima UniversityHiroshimaJapan
| | - Hiroshi Okuda
- Tsuruoka Metabolomics Laboratory, National Cancer CenterTsuruokaJapan
| | - Yosuke Komata
- Tsuruoka Metabolomics Laboratory, National Cancer CenterTsuruokaJapan
| | - Satoshi Takahashi
- Tsuruoka Metabolomics Laboratory, National Cancer CenterTsuruokaJapan
- Department of Hematology and Oncology, Kyoto University Graduate School of MedicineKyotoJapan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto UniversityKumamotoJapan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima UniversityHiroshimaJapan
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer CenterTsuruokaJapan
- Division of Hematological Malignancy, National Cancer Center Research InstituteTokyoJapan
| |
Collapse
|